

SAR TEST REPORT

Product Name	HSUPA/HSDPA/UMTS triband/GSM quadband mobile phone
Model Name	4037T/4037N
FCC ID	RAD483
Applicant	TCT Mobile Limited
Manufacturer	TCT Mobile Limited
Date of issue	June 5, 2014

TA Technology (Shanghai) Co., Ltd.

TA Technology	(Shanghai)	Со.,	Ltd.
Tes	st Report		

Report No.: RXA1404-0098SAR01R1

GENERAL SUMMARY

Approved by Revised by Performed by		
Comment	The test result only responds to the measured sample.	
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only. General Judgment: Pass	
	 KDB 941225 D06 Hotspot Mode SAR v01r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters. 	
	KDB 941225 D03 Test Reduction GSM_GPRS_EDGE v01 :Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE	
	KDB 941225 D02 HSPA and 1x Advanced v02r02 SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced	
	KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA	
Reference Standard(s)	KDB 648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets.	
	KDB 447498 D01 Mobile Portable RF Exposure v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies	
	KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz	
	IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	
	ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)	
	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices	

Weizhong Yang Director Minbao Ling SAR Manager Yi Zhang SAR Engineer

TA Technology (Shanghai) Co., Ltd. Test Report	
104-0098SAR01R1	F

TABLE OF CONTENT

1. Gene	eral Information	. 5
1.1. N	Notes of the Test Report	. 5
1.2.	Testing Laboratory	. 5
1.3. <i>I</i>	Applicant Information	. 6
1.4. I	Manufacturer Information	. 6
1.5. I	Information of EUT	. 7
1.6. E	EUT Antenna Locations	. 9
1.7.	The Maximum Reported SAR _{1g}	10
1.8.	Test Date	11
2. SAR	Measurements System Configuration	12
2.1. 8	SAR Measurement Set-up	12
2.2. [DASY5 E-field Probe System	13
2.2.1	. EX3DV4 Probe Specification	13
2.2.2	E-field Probe Calibration	14
2.3. (Other Test Equipment	14
2.3.1		
2.3.2	Phantom	15
2.4. 8	Scanning Procedure	15
2.5. [Data Storage and Evaluation	17
2.5.1	. Data Storage	17
2.5.2	Data Evaluation by SEMCAD	17
3. Labo	ratory Environment	19
4. Tissu	ie-equivalent Liquid	20
4.1.	Tissue-equivalent Liquid Ingredients	20
4.2.	Tissue-equivalent Liquid Properties	22
5. Syste	em Check	23
5.1. [Description of System Check	23
5.2. 8	System Check Results	25
6. Oper	ational Conditions during Test	26
6.1. (General Description of Test Procedures	26
6.2.	Test Positions	26
6.2.1	. Against Phantom Head	26
6.2.2	Body Worn Configuration	26
6.3. I	Measurement Variability	28
6.4.	Test Configuration	29
6.4.1	. GSM Test Configuration	29
6.4.2	UMTS Test Configuration	30
6.4.3	B. HSDPA Test Configuration	30
6.4.4	. HSUPA Test Configuration	32
6.4.5	. WIFI Test Configuration	33
6.4.6	BT Test Configuration	33

Report No.: RXA1404-0098SAR01R1

Page 4 of 152

	~ 4
7. Test Results	
7.1. Conducted Power Results	
7.2. Standalone SAR Test Exclusion Considerations	
7.3. SAR Test Results	. 41
7.3.1. GSM 850 (GSM/GPRS/EGPRS)	. 41
7.3.2. GSM 1900 (GSM/GPRS/EGPRS)	. 43
7.3.3. UMTS Band II (WCDMA/HSDPA/HSUPA)	. 45
7.3.1. UMTS Band IV (WCDMA/HSDPA)	. 47
7.3.2. UMTS Band V (WCDMA/HSDPA/HSUPA)	. 49
7.3.3. WIFI (802.11b)	. 51
7.3.4. Bluetooth	. 52
7.4. Simultaneous Transmission Conditions	. 53
8. 700MHz to 3GHz Measurement Uncertainty	. 57
9. Main Test Instruments	. 59
ANNEX A: Test Layout	. 60
ANNEX B: System Check Results	. 65
ANNEX C: Graph Results	. 73
ANNEX D: Probe Calibration Certificate	. 99
ANNEX E: D835V2 Dipole Calibration Certificate	110
ANNEX F: D1750V2 Dipole Calibration Certificate	118
ANNEX G: D1900V2 Dipole Calibration Certificate 1	126
ANNEX H: D2450V2 Dipole Calibration Certificate 1	134
ANNEX I: DAE4 Calibration Certificate 1	142
ANNEX J: The EUT Appearances and Test Configuration	145

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. The sample under test was selected by the Client. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	yangweizhong@ta-shanghai.com

1.3. Applicant Information

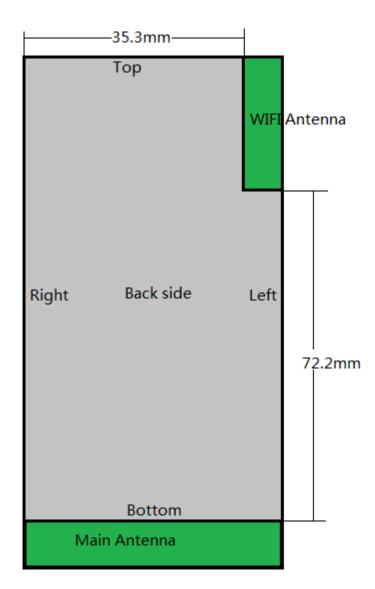
Company:	TCT Mobile Limited
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
	Pudong Area Shanghai
	P.R. China
	201203

1.4. Manufacturer Information

Company:	TCT Mobile Limited
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
	Pudong Area Shanghai
	P.R. China
	201203

1.5. Information of EUT

General Information


Device Type:	Portable Device	
Exposure Category:	Uncontrolled Environment / General Po	pulation
State of Sample:	Prototype Unit	
Product IMEI:	014068000004276	
Hardware Version:	PIO	
Software Version:	vC16	
Antenna Type:	Internal Antenna	
Device Operating Configurations :		
	GSM 850/GSM 1900;	
Test Mode(s):	UMTS Band II/ UMTS Band IV/UMTS B	and V;
	802.11b/g/n HT20/HT40;	
	Bluetooth;	
Test Modulation:	(GSM)GMSK; (UMTS)QPSK; (WIFI)CC	K;
Device Class:	В	
HSUPA UE Category:	6	
HSPA+ UE Downlink Category:	14	
	Max Number of Timeslots in Uplink	4
GPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4
	Max Total Timeslot	5
	Max Number of Timeslots in Uplink	4
EGPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4
	Max Total Timeslot	5
	Mode	Tx (MHz)
	GSM 850	824.2 ~ 848.8
	GSM 1900	1850.2 ~ 1909.8
Operating Frequency Range(s):	UMTS Band II	1852.4 ~ 1907.6
operating requercy range(3).	UMTS Band IV	1712.4 ~ 1752.6
	UMTS Band V	826.4 ~ 846.6
	Bluetooth	2402 ~2480
	WIFI	2412 ~2462
	GSM 850: 4	
Power Class:	GSM 1900: 1	
	UMTS Band II/IV/V: 3	
	GSM 850: level 5	
Power Level	GSM 1900: level 0	
	UMTS Band II/IV/V: all up bits	

Auxiliary Equipment Details

AE1: Battery 1			
Model:	TLiB60B		
Capacity	1400mAh		
Manufacturer:	SCUD		
S/N:	FMTADYC901014330		
AE2: Battery 2			
Model:	TLi014A1		
Capacity	1400mAh		
Manufacturer:	BYD		
S/N:	B1400002C110RHA2		

TA Techno	ology (Shanghai) Co.,	Ltd.
	Test Report	
404 00000 000101	-	

1.6. EUT Antenna Locations

Table 1:	Mobile	Hotspot	Sides	for S	SAR	Testing
----------	--------	---------	-------	-------	-----	---------

Mode	Back Side	Front Side	Left Edge	Right Edge	Top Edge	Bottom Edge
GSM 850	Yes	Yes	Yes	Yes	N/A	Yes
GSM 1900	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band II	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band IV	Yes	Yes	Yes	Yes	N/A	Yes
UMTS Band V	Yes	Yes	Yes	Yes	N/A	Yes
2.4GHz WLAN	Yes	Yes	Yes	N/A	Yes	N/A
Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.						

1.7. The Maximum Reported SAR_{1g}

Head SAR Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
GSM 850	Right Cheek	251/848.8	0.890	1.090	
GSM 1900	Left Cheek	810/1909.8	0.342	0.453	
UMTS Band II	Left Cheek	9400/1880	0.819	0.898	
UMTS Band IV	Left Cheek	1413/1732.6	0.873	1.040	
UMTS Band V	Right Cheek	4233/846.6	0.793	0.806	
WiFi(802.11b)	Right Cheek	11/2462	0.405	0.482	

Body Worn Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
GPRS 850	Back Side	251/848.8	0.896	0.994	
GPRS 1900	Back Side	661/1880	0.543	0.687	
UMTS Band II	Back Side	9400/1880	0.892	0.978	
UMTS Band IV	Front side	1413/1732.6	0.851	1.014	
UMTS Band V	Back Side	4132/826.4	0.969	1.050	
WiFi(802.11b)	Front side	11/2462	0.083	0.099	

Hotspot SAR Configuration

		Channel	Limit SAR _{1g} 1.6 W/kg		
Mode	Test Position	/Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
EGPRS 850	Back Side	251/848.8	0.894	0.992	
GPRS 1900	Bottom Edge	810/1909.8	0.739	0.948	
UMTS Band II	Bottom Edge	9400/1880	1.080	1.184	
UMTS Band IV	Bottom Edge	1413/1732.6	0.980	1.167	
UMTS Band V	Back Side	4132/826.4	0.969	1.050	
WiFi(802.11b)	Front side	11/2462	0.083	0.099	

Report No.: RXA1404-0098SAR01R1

Page 11 of 152

1.8. Test Date

The test performed from May 4, 2014 to May 21, 2014.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

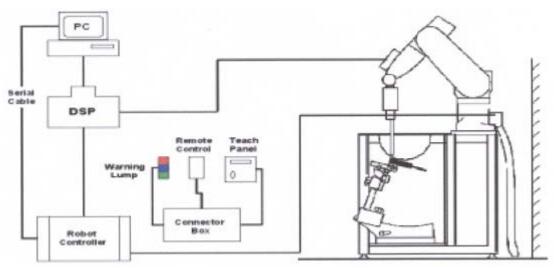


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

- Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
- Calibration ISO/IEC 17025 calibration service available
- Frequency 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity \pm 0.3 dB in HSL (rotation around probe axis) \pm 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 10μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

- Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
- Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RXA1404-0098SAR01R1

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta \mathbf{t}}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RXA1404-0098SAR01R1

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W) Aailable Special

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

Report No.: RXA1404-0098SAR01R1

spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

• Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Frequency	Scan Scan Scan Spatial		Minimum Zoom Scan	
	Resolution (mm) (∆x _{area} , ∆y _{area})	Resolution (mm) (∆x _{zoom} , ∆y _{zoom})	Resolution (mm) ∆z _{zoom} (n)	Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

Table 2: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	,	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RXA1404-0098SAR01R1

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	U _i = input signal of channel i	(i = x, y, z)
	<i>Cf</i> = crest factor of exciting field	(DASY parameter)
	dcp_i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field probes:	$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$	
With V_i	= compensated signal of channel i	(i = x, y, z)

Norm _i	= sensor sensitivity of channel i	(i = x, y, z)
	[mV/(V/m) ²] for E-field Probes	

ConvF	= sensitivity enhancement in solution
a _{ij}	= sensor sensitivity factors for H-field probes
f	= carrier frequency [GHz]
-	

- E_i = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

Report No.: RXA1404-0098SAR01R1

- with **SAR** = local specific absorption rate in mW/g
 - **E**_{tot} = total field strength in V/m

= conductivity in [mho/m]

or [Siemens/m]

= equivalent tissue density

in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^{2} / 3770$$
 or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 3: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 3 and table 4 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 4: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz					
Water	41.45					
Sugar	56					
Salt	1.45					
Preventol	0.1					
Cellulose	1.0					
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9					

MIXTURE%	FREQUENCY(Brain) 1750MHz			
Water	55.24			
Glycol	44.45			
Salt	0.31			
Dielectric Parameters Target Value	f=1750MHz ε=40.1 σ=1.37			

MIXTURE%	FREQUENCY(Brain) 1900MHz			
Water	55.242			
Glycol monobutyl	44.452			
Salt	0.306			
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40			
Target Value				

MIXTURE%	FREQUENCY(Brain) 2450MHz			
Water	62.7			
Glycol	36.8			
Salt	0.5			
Dielectric Parameters Target Value	f=2450MHz ε=39.20 σ=1.80			

Table 5: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz					
Water	52.5					
Sugar	45					
Salt	1.4					
Preventol	0.1					
Cellulose	1.0					
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97					

MIXTURE%	FREQUENCY(Body) 1750MHz			
Water	69.91			
Glycol	29.97			
Salt	0.12			
Dielectric Parameters	f=1750MHz ε=53.4 σ=1.49			
Target Value				

MIXTURE%	FREQUENCY (Body) 1900MHz			
Water	69.91			
Glycol monobutyl	29.96			
Salt	0.13			
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52			

MIXTURE%	FREQUENCY(Body) 2450MHz				
Water	73.2				
Glycol	26.7				
Salt	0.1				
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95				

4.2. Tissue-equivalent Liquid Properties

				Measured Dielectric		Target Dielectric		Limit	
Frequency	Test Date	Temp	Parameters		Parameters		(Within ±5%)		
Frequency	Test Date	Ĉ	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)	
835MHz (head)	2014-5-4	21.5	41.4	0.93	41.5	0.90	-0.24%	3.33%	
1750MHz (head)	2014-5-12	21.5	39.7	1.32	40.1	1.37	-1.00%	-3.65%	
1900MHz (head)	2014-5-10	21.5	39.6	1.43	40.0	1.40	-1.00%	2.14%	
2450MHz (head)	2014-5-21	21.5	39.1	1.80	39.2	1.80	-0.26%	0%	
835MHz (body)	2014-5-5	21.5	55.9	0.98	55.2	0.97	1.27%	1.03%	
1750MHz (body)	2014-5-12	21.5	52.9	1.50	53.4	1.49	-0.94%	0.67%	
1900MHz (body)	2014-5-11	21.5	53.1	1.52	53.3	1.52	-0.38%	0 %	
2450MHz (body)	2014-5-21	21.5	52.1	1.99	52.7	1.95	-1.14%	2.05%	

Table 6: Dielectric Performance of Tissue Simulating Liquid

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 7 and table 8.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

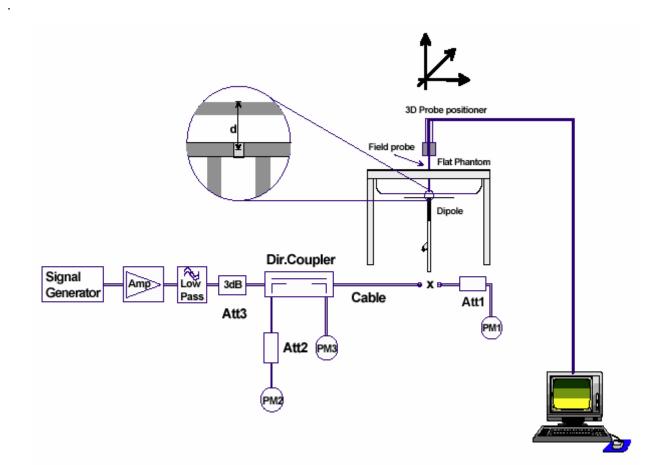


Figure 6 System Check Set-up

Report No.: RXA1404-0098SAR01R1

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D835V2 SN: 4d020						
	Head	Liquid				
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
8/26/2011	-27.7	/	52.9	/		
8/25/2012	-29.1	5.0%	55.0	2.1Ω		
8/24/2013	-26.6	4.1%	55.3	2.4Ω		
Body Liquid						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ		
8/26/2011 -25.1		/	48.7	/		
8/25/2012	-24.3	3.2%	50.6	1.9Ω		
8/24/2013	-24.7	1.6%	51.1	2.4Ω		

Dipole D1900V2 SN: 5d060							
Head Liquid							
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ			
8/31/2011	-22.3	/	52.6	/			
8/30/2012	-21.7	2.7%	51.4	1.2Ω			
8/29/2013	-21.4	4.2%	50.5	2.1Ω			
	Body Liquid						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ			
8/31/2011	-21.3	/	47.3	/			
8/30/2012	-20.9	1.9%	45.9	1.4Ω			
8/29/2013	-20.4	4.4%	44.8	2.5Ω			

Dipole D2450V2 SN: 786										
Head Liquid										
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ						
8/29/2011	-25.5	/	55.0	/						
8/28/2012	-26.8	5.1%	56.5	1.5Ω						
8/27/2013	-26.4	3.5%	56.9	1.9Ω						
	Body L	₋iquid								
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ						
8/29/2011	-29.0	/	50.4	/						
8/28/2012	-29.9	3.1%	52.1	1.7Ω						
8/27/2013	-28.2	2.8%	52.7	2.3Ω						

5.2. System Check Results

Table 7: System Check in Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		٤r	σ(s/m)		(W/kg)		Deviation)
835MHz	2014-5-4	41.4	0.93	2.44	9.76	9.34	4.50%
1750MHz	2014-5-12	39.7	1.32	8.45	33.80	37.20	-9.14%
1900MHz	2014-5-10	39.6	1.43	9.48	37.92	40.30	-5.91%
2450MHz	2014-5-21	39.1	1.80	13.70	54.80	53.80	1.86%
	e graph results get Values use			alibration certi	ficate		

Table 8: System Check in Body Tissue Simulating Liquid

Frequency	Test Date		ectric neters σ(s/m)	250mW Measured SAR _{1g}	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g}	Limit (±10% Deviation)
			- (-)			i	
835MHz	2014-5-5	55.9	0.98	2.41	9.64	9.46	1.90%
1750MHz	2014-5-12	52.9	1.50	9.24	36.96	38.80	-4.74%
1900MHz	2014-5-11	53.1	1.52	9.93	39.72	41.70	-4.75%
2450MHz	2014-5-21	52.1	1.99	12.50	50.00	51.70	-3.29%
Note: 1. The	e graph results	see ANN	EX B.				
2. Tar	get Values use	d derive f	rom the ca	alibration certi	ficate		

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Positions

6.2.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.2.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with

Report No.: RXA1404-0098SAR01R1

different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \ge 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

6.4. Test Configuration

6.4.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. the EGPRS class is 12 for this EUT, it has at most 4 timeslots is 12 for this EUT, it has at most 4 timeslots is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

Table 9: The allowed power reduction in the multi-slot configuration

6.4.2. UMTS Test Configuration

6.4.2.1. Output power Verification

Maximum output power is verified on the High, Middle and Low channel according to the procedures described in section 5.2 of 3GPP TS 34. 121, using the appropriate RMC or AMR with TPC(transmit power control) set to all up bits for WCDMA/HSDPA or applying the required inner loop power control procedures to the maximum output power while HSUPA is active. Results for all applicable physical channel configuration (DPCCH, DPDCH_n and spreading codes, HSDPA, HSPA) should be tabulated in the SAR report. All configuration that are not supported by the DUT or can not be measured due to technical or equipment limitations should be clearly identified

6.4.2.2. Head SAR Measurements

SAR for head exposure configurations in voice mode is measured using a 12.2kbps RMC with TPC bits configured to all up bits. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2kbps AMR with a 3.4 kbps SRB(Signaling radio bearer) using the exposure configuration that results in the highest SAR in 12.2kbps RMC for that RF channel.

6.4.2.3. Body SAR Measurements

SAR for body exposure configurations in voice and data modes is measured using 12.2kbps RMC with TPC bits configured to all up bits. SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average output of each RF channel, for each spreading code and DPDCH_n configuration, are less than 1/4 dB higher than those measured in 12.2kbps RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 kbps RMC. When more than 2 DPDCH_n are supported by the DUT, it may be necessary to configure additional DPDCH_n for a DUT using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

6.4.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the 'Body SAR Measurements' procedures of that section. In addition,body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding

Report No.: RXA1404-0098SAR01R1

sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-set	ß	6 6		ß ß		ß /ß	β_{hs}	CM(dB)	MPR(dB)		
Sub-set	β _c	β _d	(SF)	β_{c}/β_{d}	(note 1, note 2)	(note 3)					
1	2/15	15/15	64	2/15	4/15	0.0	0.0				
2	12/15	15/15	64	12/15	24/15	1.0	0.0				
2	(note 4)	(note 4)	64	(note 4)	24/15		0.0				
3	15/15	8/15	64	15/8	30/15	1.5	0.5				
4	15/15	4/15	64	15/4	30/15	1.5	0.5				
	^	and \wedge = 0		- 0 /0 - 20/15							

Table 10: Subtests for UMTS Release 5 HSDPA

Note 1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow $A_{hs} = \beta_{hs}/\beta_c = 30/15$ \Leftrightarrow $\beta_{hs} = 30/15*\beta_c$

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs=}30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQI} = 7 (A_{hs=}24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

Table 11: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (NINF)	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	/	0.67
Number of Physical Channel Codes	Codes	5
Modulation	1	QPSK

Report No.: RXA1404-0098SAR01R1

6.4.4. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.⁴⁰

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E- DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 12: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

Report No.: RXA1404-0098SAR01R1

Table 13: HSUPA UE category										
UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)				
1	1	4	10	4	7110	0.7296				
_	2	8	2	4	2798					
2	2	4	10	4	14484	1.4592				
3	2	4	10	4	14484	1.4592				
	2	8	2	2	5772	2.9185				
4	2	4	10	2	20000	2.00				
5	2	4	10	2	20000	2.00				
6	4	8	2		11484	5.76				
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00				
7	4	8	2		22996	?				
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	?				
with S UE Cat	F4.	·	·	codes shall be trai						

Table 13: HSUPA UE category

6.4.5. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 16 for 802.11 b mode by software. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

6.4.6. BT Test Configuration

For BT SAR testing, BT engineering testing software installed on the EUT can provide continuous transmitting RF signal with maximum output power. And the CBT contrl the EUT operating at 2441 MHz with hoping off, and data rate set for 3DH5. This RF signal utilized in SAR measurement has Almost 100% duty cycle and its crest factor is 1.

7. Test Results

7.1. Conducted Power Results

Table 14: Conducted Power Measurement Results

		Burst Co	nducted Pov	wer(dBm)		Aver	age power(dBm)
GSM	850	Chann	el/Frequency	/(MHz)	1	Chann	el/Frequency	/(MHz)
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
GSM		32.37	32.35	32.42	-9.03dB	23.34	23.32	23.39
	1Txslot	32.41	32.42	32.46	-9.03dB	23.38	23.39	23.43
GPRS	2Txslots	29.75	29.74	29.78	-6.02dB	23.73	23.72	23.76
(GMSK)	3Txslots	27.79	27.79	27.85	-4.26dB	23.53	23.53	23.59
	4Txslots	27.03	27.04	27.09	-3.01dB	24.02	24.03	24.08
	1Txslot	32.45	32.44	32.47	-9.03dB	23.42	23.41	23.44
EGPRS	2Txslots	29.77	29.75	29.79	-6.02dB	23.75	23.73	23.77
(GMSK)	3Txslots	27.83	27.81	27.85	-4.26dB	23.57	23.55	23.59
	4Txslots	27.05	27.05	27.10	-3.01dB	24.04	24.04	24.09
	1Txslot	26.31	26.18	26.06	-9.03dB	17.28	17.15	17.03
EGPRS	2Txslots	25.36	25.11	24.84	-6.02dB	19.34	19.09	18.82
(8PSK)	3Txslots	23.40	23.18	23.02	-4.26dB	19.14	18.92	18.76
	4Txslots	22.34	22.19	21.86	-3.01dB	19.33	19.18	18.85
	41251015	22.34	22.19	21.00	-5.010D	13.55	19.10	10.00
	41251015		nducted Pov		-0.010D		age power(
GSM		Burst Co		wer(dBm)	-3.01dB	Aver		dBm)
GSM		Burst Co	nducted Pov	wer(dBm)		Aver	age power(dBm)
GSM GS	1900	Burst Co Chann	nducted Pov	wer(dBm) /(MHz)		Aver Chann	age power(o	d Bm) /(MHz)
	1900	Burst Co Chann 512/1850.2	nducted Povel/Frequency	wer(dBm) /(MHz) 810/1909.8	1	Aver Chann 512/1850.2	rage power(o el/Frequency 661/1880	d Bm) /(MHz) 810/1909.8
	1900 SM	Burst Co Chann 512/1850.2 29.20	nducted Pov el/Frequency 661/1880 29.11	wer(dBm) /(MHz) 810/1909.8 29.08	/ -9.03dB	Aver Chann 512/1850.2 20.17	age power(d el/Frequency 661/1880 20.08	d Bm) /(MHz) 810/1909.8 20.05
GS	1900 6M 1Txslot	Burst Co Chann 512/1850.2 29.20 29.21	nducted Pov el/Frequency 661/1880 29.11 29.14	wer(dBm) /(MHz) 810/1909.8 29.08 29.09	/ -9.03dB -9.03dB	Aver Chann 512/1850.2 20.17 20.18	rage power(d el/Frequency 661/1880 20.08 20.11	d Bm) /(MHz) 810/1909.8 20.05 20.06
GS	1900 SM 1Txslot 2Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81	/ -9.03dB -9.03dB -6.02dB	Aver Chann 512/1850.2 20.17 20.18 20.91	age power(0 el/Frequency 661/1880 20.08 20.11 20.88	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79
GS	1900 SM 1Txslot 2Txslots 3Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95	/ -9.03dB -9.03dB -6.02dB -4.26dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.77	age power(0 el/Frequency 661/1880 20.08 20.11 20.88 20.69	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69
GS	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92	/ -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.77 20.92	rage power(d el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.91
GPRS (GMSK)	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93 29.18	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98 29.17	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92 29.04	/ -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.77 20.92 20.15	age power(0 el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97 20.14	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.91 20.01
GPRS (GMSK) EGPRS	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93 29.18 26.90	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98 29.17 26.88	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92 29.04 26.80	/ -9.03dB -9.03dB -6.02dB -4.26dB -4.26dB -3.01dB -9.03dB -9.03dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.77 20.92 20.15 20.88	age power(0 el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97 20.14 20.86	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.91 20.01 20.78
GPRS (GMSK) EGPRS	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93 29.18 26.90 25.00	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98 29.17 26.88 25.00	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92 29.04 26.80 24.95	/ -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.77 20.92 20.15 20.88 20.74	age power(0 el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97 20.14 20.86 20.74	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.91 20.01 20.78 20.69
GPRS (GMSK) EGPRS	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93 29.18 26.90 25.00 25.00 23.95	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98 29.17 26.88 25.00 23.95	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92 29.04 26.80 24.95 23.86	/ -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.91 20.77 20.92 20.15 20.88 20.74 20.74	age power(el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97 20.14 20.86 20.74 20.94	ABm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.01 20.78 20.69 20.69 20.85
GPRS (GMSK) EGPRS (GMSK)	1900 SM 1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots 4Txslots 1Txslot	Burst Co Chann 512/1850.2 29.20 29.21 26.93 25.03 23.93 29.18 26.90 25.00 23.95 25.51	nducted Pov el/Frequency 661/1880 29.11 29.14 26.90 24.95 23.98 29.17 26.88 25.00 23.95 25.37	wer(dBm) /(MHz) 810/1909.8 29.08 29.09 26.81 24.95 23.92 29.04 26.80 24.95 23.86 23.86 25.39	/ -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -4.26dB -3.01dB -3.01dB	Aver Chann 512/1850.2 20.17 20.18 20.91 20.91 20.77 20.92 20.15 20.88 20.74 20.74 20.94 16.48	age power(0 el/Frequency 661/1880 20.08 20.11 20.88 20.69 20.97 20.14 20.86 20.74 20.94 16.34	dBm) /(MHz) 810/1909.8 20.05 20.06 20.79 20.69 20.91 20.01 20.78 20.69 20.78 20.69 20.85 16.36

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

Report No.: RXA1404-0098SAR01R1

=> conducted power divided by (8/1) => -9.03 dB
2Txslots = 2 transmit time slots out of 8 time slots
=> conducted power divided by (8/2) => -6.02 dB
3Txslots = 3 transmit time slots out of 8 time slots
=> conducted power divided by (8/3) => -4.26 dB
4Txslots = 4 transmit time slots out of 8 time slots
=> conducted power divided by (8/4) => -3.01 dB
2) Average power numbers
The maximum power numbers are marks in bold.

-		C	conducted Power (dBn	ו)			
UMTS	Band II	C	Channel/Frequency(MHz	<u>z</u>)			
	-	9262/1852.4	9400/1880	9538/1907.6			
	12.2kbps RMC	22.63	22.60	22.64			
RMC	64kbps RMC	22.52	22.47	22.52			
RIVIC	144kbps RMC	22.63	22.54	22.53			
	384kbps RMC	22.50	22.55	22.57			
	Sub - Test 1	22.74	22.68	22.64			
HSDPA	Sub - Test 2	22.60	22.47	22.76			
пзира	Sub - Test 3	22.63	22.77	22.64			
	Sub - Test 4	22.54	22.75	22.65			
	Sub - Test 1	21.27	21.19	21.20			
	Sub - Test 2	19.95	19.89	19.89			
HSUPA	Sub - Test 3	20.49	20.37	20.37			
	Sub - Test 4	19.98	19.98	19.84			
	Sub - Test 5	21.23	21.17	21.23			
		Conducted Power (dBm)					
UMTS	Band IV	Channel/Frequency(MHz)					
		1312/1712.4	1413/1732.6	1513/1752.6			
	12.2kbps RMC	22.71	22.24	22.75			
RMC	64kbps RMC	22.55	22.19	22.75			
RIVIC	144kbps RMC	22.62	22.08	22.62			
	384kbps RMC	22.67	22.16	22.62			
	Sub - Test 1	22.71	22.31	22.92			
HSDPA	Sub - Test 2	22.62	22.41	22.81			
RODA	Sub - Test 3	22.86	22.18	22.75			
	Sub - Test 4	22.87	22.19	22.70			

Page 35 of 152

Report No.: RXA1404-0098SAR01R1

Page 36 of 152

	Sub - Test 1	21.27	20.88	21.35
	Sub - Test 2	19.94	19.59	20.07
HSUPA	Sub - Test 3	20.51	20.05	20.56
	Sub - Test 4	19.97	19.70	20.16
	Sub - Test 5	21.28	20.83	21.31
	·	C	onducted Power (dBn	n)
UMTS	Band V	C	Channel/Frequency(MHz	z)
		4132/826.4	4183/836.6	4233/846.6
	12.2kbps RMC	23.15	23.05	23.43
RMC	64kbps RMC	22.99	23.00	23.43
RIVIC	144kbps RMC	23.06	22.89	23.30
	384kbps RMC	23.11	22.97	23.30
	Sub - Test 1	23.15	23.12	23.60
HSDPA	Sub - Test 2	23.06	23.22	23.49
NSUFA	Sub - Test 3	23.30	22.99	23.43
	Sub - Test 4	23.31	23.00	23.38
	Sub - Test 1	21.71	21.69	22.03
	Sub - Test 2	20.38	20.40	20.75
HSUPA	Sub - Test 3	20.95	20.86	21.24
	Sub - Test 4	20.41	20.51	20.84
	Sub - Test 5	21.72	21.64	21.99

Page 37 of 152

The average output power of BT antenna is as following:

Channel/Frequency	Ch 0/ 2402 MHz	Ch 39/ 2441 MHz	Ch 78/ 2480 MHz
GFSK(dBm)	6.37	6.73	6.69
π/4DQPSK(dBm)	4.06	4.37	4.21
8DPSK(dBm)	4.04	4.46	4.24

The output power of WIFI antenna is as following:

Mode	Channel/	Data rate	AV Power (dBm)					
	Frequency(MHz)	(Mbps)						
		1	15.77					
	1/2412	2	15.82					
		5.5	15.68					
		11	15.38					
		1	16.06					
802.11b	6/2437	2	16.05					
002.110	0/2401	5.5 15.70 11 15.40						
		11	15.40					
		1	16.24					
	11/2462	2	16.23					
	11/2402	5.5	16.08					
		11						
		6	13.52					
		9	13.24					
		12	13.04					
	1/01/10	18	12.70					
	1/2412	24	12.45					
		36	11.86					
		48	11.18					
		54	11.01					
		6	13.66					
802.11g		9	13.56					
Ŭ		12	13.39					
		18	12.78					
	6/2437	24	12.52					
		36	11.92					
		48	11.45					
		54	11.27					
		6	13.89					
	11/2462	9	13.69					
	-	12	13.55					

Report No.: RXA1404-0098SAR01R1

Page 38 of 152

		18	13.17				
		24	12.89				
		36	12.09				
		48	11.58				
		54	11.45				
		MCS0	13.66				
		MCS0 MCS1	13.26				
		MCS2	12.70				
	1/2412	MCS3	12.38				
		MCS4	11.88				
		MCS5	11.46				
		MCS6	11.31				
		MCS7	11.13				
		MCS0	13.78				
		MCS1	13.36				
		MCS2	13.03				
802.11n HT20	6/2437	MCS3	12.44 11.95				
		6/2437 MCS4 MCS5					
			11.52				
		MCS6	11.36				
		MCS7	11.18				
		MCS0	13.93				
		MCS1	13.54				
		MCS2	13.21				
	11/2462	MCS3	12.89				
	11/2402	MCS4	12.11				
		MCS5	11.71				
		MCS6	11.54				
		MCS7	11.32				
		MCS0	10.07				
		MCS1	9.43				
		MCS2	8.91				
	2/2422	MCS3	8.48				
	3/2422	MCS4	7.81				
		MCS5	7.06				
		MCS6	6.84				
802.11n HT40		MCS7	6.74				
		MCS0	10.14				
		MCS1	9.51				
	0/0/07	MCS2	8.98				
	6/2437	MCS3	8.55				
		MCS4	7.66				
		MCS5	7.19				

Report No.: RXA1404-0098SAR01R1

Page 39 of 152

		MCS6	6.95
		MCS7	6.86
		MCS0	10.27
		MCS1	9.62
	9/2452	MCS2	10.16
		MCS3	8.45
	9/2452	MCS4	7.80
		MCS5	7.30
		MCS6	7.09
		MCS7	6.98

7.2. Standalone SAR Test Exclusion Considerations

Per FCC KDB 447498 D01, the SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) (min. test separation distance, mm) *√ Frequency (GHz) ≤3.0

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR			
Bluetooth	Head	2480	7	5	1.6	3.0	No			
Bidotootii	Body	2480	7	10	0.8	3.0	No			
Wifi	Head	2480	17	5	15.8	3.0	Yes			
2.4GHz	Body	2480	17	10	7.9	3.0	Yes			
Note: For Right touch position where the Bluetooth estimated SAR is overly conservative for certain conditions, the test lab choose to perform standalone SAR measurements and use the measured SAR to determine simultaneous										

transmission SAR test exclusion

7.3. SAR Test Results

7.3.1. GSM 850 (GSM/GPRS/EGPRS)

Table 15: SAR Values [GSM 850 (GSM/GPRS/EGPRS)]

	Channel/	_		Maximum	Conducted	Drift ± 0.21dB	Li	mit SAR ₁	_g 1.6 W/kg	
Test Position	Frequency (MHz)	Time slot	Duty Allowed Cycle Power (dBm)		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
Test Position of Head										
	251/848.8	GSM	1:8.3	33.3	32.42	0.050	0.816	1.22	0.999	/
Left Cheek	190/836.6	GSM	1:8.3	33.3	32.35	-0.035	0.662	1.24	0.824	/
	128/824.2	GSM	1:8.3	33.3	32.37	-0.020	0.541	1.24	0.670	/
	251/848.8	GSM	1:8.3	33.3	32.42	0.010	0.577	1.22	0.707	/
Left/Tilt	190/836.6	GSM	1:8.3	33.3	32.35	-0.050	0.486	1.24	0.605	/
-	128/824.2	GSM	1:8.3	33.3	32.37	0.010	0.415	1.24	0.514	/
	251/848.8	GSM	1:8.3	33.3	32.42	0.040	0.890	1.22	1.090	Figure15
Right Cheek	190/836.6	GSM	1:8.3	33.3	32.35	-0.024	0.736	1.24	0.916	/
-	128/824.2	GSM	1:8.3	33.3	32.37	0.050	0.569	1.24	0.705	/
	251/848.8	GSM	1:8.3	33.3	32.42	0.100	0.610	1.22	0.747	/
Right/Tilt	190/836.6	GSM	1:8.3	33.3	32.35	0.120	0.518	1.24	0.645	/
-	128/824.2	GSM	1:8.3	33.3	32.37	0.010	0.421	1.24	0.522	/
		<u> </u>	Worst (Case Positi	on of Head W	Vith Battery	2			
Right Cheek	251/848.8	GSM	1:8.3	33.3	32.42	0.110	0.872	1.22	1.068	/
		<u> </u>	Test	position of	Body (Dista	nce 10mm)				
	251/848.8	4Txslots	1:2.075	27.5	27.09	-0.080	0.900	1.10	0.989	/
Back Side	190/836.6	4Txslots	1:2.075	27.5	27.04	-0.070	0.878	1.11	0.976	/
-	128/824.2	4Txslots	1:2.075	27.5	27.03	-0.130	0.785	1.11	0.875	/
Front Side	190/836.9	4Txslots	1:2.075	27.5	27.04	-0.070	0.624	1.11	0.694	/
Left Edge	190/836.9	4Txslots	1:2.075	27.5	27.04	0.110	0.409	1.11	0.455	/
Right Edge	190/836.9	4Txslots	1:2.075	27.5	27.04	-0.020	0.389	1.11	0.432	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	190/836.9	4Txslots	1:2.075	27.5	27.04	0.010	0.074	1.11	0.082	/
'		Wors	t Case Po	sition of Bo	dy With EGF	PRS (Distan	ce 10mm)			

Report No.: RXA1404-0098SAR01R1

Page 42 of 152

				r							
Back Side	251/848.8	4Txslots	1:2.075	27.5	27.05	-0.010	0.894	1.11	0.992	/	
Worst Case Position of Body With Battery 2 (Distance 10mm)											
Back Side	Back Side 251/848.8 4Txslots 1:2.075 27.5 27.05 -0.06 0.896 1.11 0.994 Figure 16										
	Worst Case Position of SAR (1 st Repeated SAR, Distance 10mm)										
Back Side	251/848.8	4Txslots	1:2.075	27.5	27.09	-0.040	0.898	1.10	0.987	/	
Note: 1.The val	lue with blue co	lor is the n	naximum S	AR Value of	each test bai	nd.					
2. Per FC	2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power										
channel fo	or each test con	figuration	is ≤ 0.8 W/ł	kg then testi	ng at the othe	r channels	s optional for s	such test o	configuratio	n(s).	

3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was \leq 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

6. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested

Table 16: SAR Measurement Variability Results [GSM 850(GSM/GPRS/EGPRS)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	251/848.8	0.900	0.898	1.00	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥

1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Page 43 of 152

7.3.2. GSM 1900 (GSM/GPRS/EGPRS)

Table 17: SAR Values [GSM 1900(GSM/GPRS/EGPRS)]

	Channel/	-	Ľ	Maximum	Conducted	Drift ± 0.21dB	I	_imit SAR	_{1g} 1.6 W/kg			
Test Position	Frequency (MHz)	Time slot	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
	Test Position of Head											
	810/1909.8	GSM	1:8.3	30.3	29.08	0.080	0.331	1.32	0.438	/		
Left Cheek	661/1880	GSM	1:8.3	30.3	29.11	0.120	0.318	1.32	0.418	/		
	512/1850.2	GSM	1:8.3	30.3	29.2	0.100	0.318	1.29	0.410	/		
	810/1909.8	GSM	1:8.3	30.3	29.08	0.090	0.097	1.32	0.128	/		
Left/Tilt	661/1880	GSM	1:8.3	30.3	29.11	0.100	0.093	1.32	0.122	/		
	512/1850.2	GSM	1:8.3	30.3	29.2	0.070	0.089	1.29	0.114	/		
	810/1909.8	GSM	1:8.3	30.3	29.08	0.140	0.309	1.32	0.409	/		
Right Cheek	661/1880	GSM	1:8.3	30.3	29.11	0.100	0.293	1.32	0.385	/		
	512/1850.2	GSM	1:8.3	30.3	29.2	0.140	0.295	1.29	0.380	/		
	810/1909.8	GSM	1:8.3	30.3	29.08	0.090	0.110	1.32	0.146	/		
Right/Tilt	661/1880	GSM	1:8.3	30.3	29.11	0.110	0.104	1.32	0.137	/		
	512/1850.2	GSM	1:8.3	30.3	29.2	0.060	0.109	1.29	0.140	/		
			Worst (Case Positio	on of Head W	/ith Battery	2		I			
Left Cheek	810/1909.8	GSM	1:8.3	30.3	29.08	0.090	0.342	1.32	0.453	Figure17		
			Test	position of	Body (Distar	nce 10mm)	1		1			
Back Side	661/1880	4Txslots	1:2.075	25	23.98	-0.130	0.543	1.26	0.687	/		
Front Side	661/1880	4Txslots	1:2.075	25	23.98	-0.120	0.503	1.26	0.636	/		
Left Edge	661/1880	4Txslots	1:2.075	25	23.98	0.030	0.176	1.26	0.223	/		
Right Edge	661/1880	4Txslots	1:2.075	25	23.98	-0.030	0.093	1.26	0.118	/		
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	810/1909.8	4Txslots	1:2.075	25	23.92	0.120	0.725	1.28	0.930	/		
Bottom Edge	661/1880	4Txslots	1:2.075	25	23.98	0.080	0.679	1.26	0.859	1		
	512/1850.2	4Txslots	1:2.075	25	23.93	0.080	0.627	1.28	0.802	/		
		Wors	t Case Po	sition of Bo	dy With EGP	RS (Distan	ce 10mm)	1				
Bottom Edge	810/1909.8	4 Txslot	1:2.075	25	23.95	0.010	0.728	1.27	0.927	/		

Report No.: RXA1404-0098SAR01R1

Page 44 of 152

Worst Case Position of Body With Battery 2 (Distance 10mm)											
Bottom Edge	810/1909.8	4 Txslot	1:2.075	25	23.92	-0.010	0.739	1.28	0.948	Figure18	
 Note: 1.The value with blue color is the maximum SAR Value of each test band. 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s). 											
3. When r	nultiple slots a	-							Ũ	• •	
	SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required. 5. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due										
to higher peak-to-average power (PAR) ratios inherent in 8-PSK. 6. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested											

Page 45 of 152

7.3.3. UMTS Band II (WCDMA/HSDPA/HSUPA)

Table 18: SAR Values [UMTS Band II (WCDMA/HSDPA/HSUPA)]

	Channel/			Maximum	Conducted	Drift ± 0.21dB	L	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test Positi	on of Head					
	9538/1907.6	RMC 12.2K	1:1	23	22.64	0.180	0.737	1.09	0.801	/
Left Cheek	9400/1880	RMC 12.2K	1:1	23	22.6	-0.070	0.819	1.10	0.898	Figure19
	9262/1852.4	RMC 12.2K	1:1	23	22.63	0.050	0.699	1.09	0.761	/
	9538/1907.6	RMC 12.2K	1:1	23	22.64	0.040	0.209	1.09	0.227	/
Left/Tilt	9400/1880	RMC 12.2K	1:1	23	22.6	0.020	0.218	1.10	0.239	/
	9262/1852.4	RMC 12.2K	1:1	23	22.63	0.110	0.195	1.09	0.212	/
	9538/1907.6	RMC 12.2K	1:1	23	22.64	0.030	0.651	1.09	0.707	/
Right Cheek	9400/1880	RMC 12.2K	1:1	23	22.6	0.100	0.705	1.10	0.773	/
	9262/1852.4	RMC 12.2K	1:1	23	22.63	0.040	0.664	1.09	0.723	/
	9538/1907.6	RMC 12.2K	1:1	23	22.64	0.070	0.204	1.09	0.222	/
Right/Tilt	9400/1880	RMC 12.2K	1:1	23	22.6	0.070	0.235	1.10	0.258	/
	9262/1852.4	RMC 12.2K	1:1	23	22.63	0.120	0.225	1.09	0.245	/
		Wor	st Case	e Position o	of Head With	Battery 2				
Left Cheek	9400/1880	RMC 12.2K	1:1	23	22.6	-0.020	0.757	1.10	0.830	/
		Т	est pos	ition of Boo	dy (Distance	10mm)	L			
	9538/1907.6	RMC 12.2K	1:1	23	22.64	-0.080	0.853	1.09	0.927	/
Back Side	9400/1880	RMC 12.2K	1:1	23	22.6	-0.022	0.892	1.10	0.978	/
	9262/1852.4	RMC 12.2K	1:1	23	22.63	-0.150	0.699	1.09	0.761	/
	9538/1907.6	RMC 12.2K	1:1	23	22.64	-0.010	0.756	1.09	0.821	/
Front Side	9400/1880	RMC 12.2K	1:1	23	22.6	-0.030	0.775	1.10	0.850	/
	9262/1852.4	RMC 12.2K	1:1	23	22.63	-0.040	0.671	1.09	0.731	/
Left Edge	9400/1880	RMC 12.2K	1:1	23	22.6	0.180	0.416	1.10	0.456	/
Right Edge	9400/1880	RMC 12.2K	1:1	23	22.6	0.010	0.196	1.10	0.215	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	9538/1907.6	RMC 12.2K	1:1	23	22.64	0.0230	1.000	1.09	1.086	1

Report No.: RXA1404-0098SAR01R1

Page 46 of 152

				1								
	9400/1880	RMC 12.2K	1:1	23	22.6	0.022	1.080	1.10	1.184	Figure20		
	9262/1852.4	RMC 12.2K	1:1	23	22.63	0.034	1.030	1.09	1.122	/		
	Worst Case Position of Body With Battery 2 (Distance 10mm)											
Bottom Edge	9400/1880	RMC 12.2K	1:1	23	22.6	-0.027	1.060	1.10	1.162	1		
		Worst Case Po	sition	of SAR (1 st	Repeated SA	AR, Distanc	e 10mm)		1			
Bottom Edge	9400/1880	RMC 12.2K	1:1	23	22.6	0.022	1.080	1.10	1.184	1		
Note: 1.The valu	ue with blue colo	r is the maximun	۱ SAR ۱	/alue of eac	h test band.							
2. Per FC0	C KDB Publicatio	on 447498 D01,	if the re	eported (sca	led) SAR me	asured at th	e middle ch	nannel or	highest out	put power		
channel for	r each test confi	guration is ≤ 0.8	W/kg th	en testing a	t the other cha	annels is op	tional for su	ch test co	nfiguration	(s).		
3. WCDMA	A mode were tes	sted under RMC	12.2kb	ps without H	HSPA (HSDP)	A/HSUPA) ii	nactive per	KDB Pub	lication 94	1225 D01.		
HSPA (HSI	DPA/HSUPA) SA	AR for body was	not rec	quired since	the average	output pow	er of the HS	SPA (HSD	PA/HSUPA) subtests		
was not mo	ore than 0.25 dB	higher than the	RMC le	vel and the i	maximum SA	R for 12.2kb	ps RMC wa	s less tha	n 75% SAF	R limit.		
4. HSPA + SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more												
than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.												
5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR												
was ≤ 1.	.2 W/kg, no addit	tional SAR evalu	ations ι	using a head	lset cable wer	e required.						

6. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested

Table 19: SAR Measurement Variability Results [UMTS Band II (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Bottom Edge	9400/1880	1.080	1.080	1.00	N/A	N/A

Note: 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Page 47 of 152

7.3.1. UMTS Band IV (WCDMA/HSDPA)

Table 20: SAR Values [UMTS Band IV (WCDMA/HSDPA)]

	Channel/	-		Maximum	Conducted	Drift ± 0.21dB	L	imit SAR	a _{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test Posi	tion of Head					
	1513/1752.6	RMC 12.2K	1:1	23	22.75	0.031	0.641	1.06	0.679	1
Left Cheek	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.055	0.865	1.19	1.030	1
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.037	0.646	1.07	0.691	/
	1513/1752.6	RMC 12.2K	1:1	23	22.75	0.100	0.128	1.06	0.136	/
Left Tilt	1413/1732.6	RMC 12.2K	1:1	23	22.24	-0.050	0.157	1.19	0.187	/
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.180	0.133	1.07	0.142	/
	1513/1752.6	RMC 12.2K	1:1	23	22.75	-0.070	0.449	1.06	0.476	1
Right Cheek	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.067	0.652	1.19	0.777	/
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.170	0.552	1.07	0.590	1
	1513/1752.6	RMC 12.2K	1:1	23	22.75	0.060	0.151	1.06	0.160	1
Right Tilt	1413/1732.6	RMC 12.2K	1:1	23	22.24	-0.060	0.208	1.19	0.248	1
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.045	0.166	1.07	0.177	1
		W	orst Ca	se Position	of Head Wit	h Battery 2	<u> </u>			
Left Cheek	1413/1732.6	RMC 12.2K	1:1	23	22.24	-0.070	0.873	1.19	1.040	Figure21
			Test po	osition of B	ody (Distanc	e 10mm)	L			
	1513/1752.6	RMC 12.2K	1:1	23	22.75	-0.040	0.600	1.06	0.636	/
Back Side	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.020	0.725	1.19	0.864	/
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.060	0.563	1.07	0.602	/
	1513/1752.6	RMC 12.2K	1:1	23	22.75	-0.070	0.684	1.06	0.725	/
Front Side	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.010	0.851	1.19	1.014	/
	1312/1712.4	RMC 12.2K	1:1	23	22.71	-0.010	0.734	1.07	0.785	/
Left Edge	1413/1732.6	RMC 12.2K	1:1	23	22.24	-0.080	0.243	1.19	0.289	/
Right Edge	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.100	0.176	1.19	0.210	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	1513/1752.6	RMC 12.2K	1:1	23	22.75	0.050	0.951	1.06	1.007	/

Report No.: RXA1404-0098SAR01R1

• •

Page 48 of 152

	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.050	0.978	1.19	1.165	1
	1312/1712.4	RMC 12.2K	1:1	23	22.71	0.020	0.754	1.07	0.806	1
		Worst Case	e Positi	on of Body	With Battery	2 (Distanc	e 10mm)			
Bottom Edge	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.050	0.980	1.19	1.167	Figure22
		Worst Case I	Positio	n of SAR (1	st Repeated S	SAR, Distar	ice 10mm)			
Bottom Edge	1413/1732.6	RMC 12.2K	1:1	23	22.24	0.050	0.978	1.19	1.165	1
channel fo 3. WCDMA HSPA (HS was not mo 4. HSPA + than 0.25 c	C KDB Publicati r each test conf A mode were tes DPA/HSUPA) S ore than 0.25 dE SAR for body w dB higher than th	on 447498 D0 iguration is ≤ 0 sted under RM AR for body wa 3 higher than th vas not required he RMC level o	1, if the .8 W/kg C 12.2 as not r as RMC d since or the m	reported (so then testing kbps without equired since level and the the average aximum rep	caled) SAR m g at the other t HSPA (HSD ce the average the maximum s e output powe orted SAR for	easured at channels is PA/HSUPA) e output pov SAR for 12.2 r of the HSF	optional for inactive per wer of the H 2kbps RMC PA (HSDPA/ RMC was les	such test ⁻ KDB Pul SPA (HSI was less t HSUPA) s s than 75	configuration blication 94 DPA/HSUP/ han 75% S subtests wa % SAR lim	on(s). 1225 D01. A) subtests AR limit. s not more it.
5. Per FCC	KDB Publicatio	n 648474 D04.	SAR w	as evaluate	d without a he	eadset conn	ected to the	device. Si	ince the rer	orted SAR

was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

6. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)			
Bottom Edge	1413/1732.6	0.980	0.978	1.00	N/A	N/A			
Note: 1) When	the original highe	st measured SA	AR is \geq 0.80 W/kg, the r	neasurement	was repeated once				
2) A second rep	eated measurem	ent was preform	ned only if the ratio of la	rgest to small	est SAR for the orig	inal and first repeated			
measurements	was > 1.20 or wh	en the original	or repeated measurem	ent was ≥ 1.4	5 W/kg (~ 10% from	the 1-g SAR limit).			
3) A third repea	3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg								
and the ratio of	largest to smalle	st SAR for the c	original, first and second	d repeated me	easurements is > 1.2	20.			
4) Repeated me	easurements are	not required wh	en the original highest	measured SA	R is < 0.80 W/kg				

Table 21: SAR Measurement Variability Results [UMTS Band IV (WCDMA/HSDPA)]

Page 49 of 152

7.3.2. UMTS Band V (WCDMA/HSDPA/HSUPA)

Table 22: SAR Values [UMTS Band V (WCDMA/HSDPA/HSUPA)]

	Channel/	-		Maximum	Conducted	Drift ± 0.21dB	L	imit SAR	_{1g} 1.6 W/kg	
Test Position	Frequency (MHz)	Channel Type	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test Pos	sition of Head	d				
	4233/846.6	RMC 12.2K	1:1	23.5	23.43	0.070	0.752	1.02	0.764	/
Left Cheek	4183/836.6	RMC 12.2K	1:1	23.5	23.05	0.080	0.560	1.11	0.621	1
	4132/826.4	RMC 12.2K	1:1	23.5	23.15	0.120	0.674	1.08	0.731	1
	4233/846.6	RMC 12.2K	1:1	23.5	23.43	0.080	0.557	1.02	0.566	/
Left/Tilt	4183/836.6	RMC 12.2K	1:1	23.5	23.05	-0.010	0.412	1.11	0.457	/
	4132/826.4	RMC 12.2K	1:1	23.5	23.15	0.030	0.491	1.08	0.532	/
	4233/846.6	RMC 12.2K	1:1	23.5	23.43	0.100	0.793	1.02	0.806	Figure23
Right Cheek	4183/836.6	RMC 12.2K	1:1	23.5	23.05	0.022	0.605	1.11	0.671	1
	4132/826.4	RMC 12.2K	1:1	23.5	23.15	0.160	0.696	1.08	0.754	/
	4233/846.6	RMC 12.2K	1:1	23.5	23.43	0.040	0.579	1.02	0.588	/
Right/Tilt	4183/836.6	RMC 12.2K	1:1	23.5	23.05	0.060	0.436	1.11	0.484	1
	4132/826.4	RMC 12.2K	1:1	23.5	23.15	0.160	0.508	1.08	0.551	1
		v	Vorst C	ase Positio	n of Head W	ith Battery 2				
Right Cheek	4233/846.6	RMC 12.2K	1:1	23.5	23.43	0.080	0.761	1.02	0.773	1
			Test p	osition of I	Body (Distan	ce 10mm)	L			
	4233/846.6	RMC 12.2K	1:1	23.5	23.43	-0.040	0.956	1.02	0.972	1
Back Side	4183/836.6	RMC 12.2K	1:1	23.5	23.05	-0.130	0.832	1.11	0.923	1
	4132/826.4	RMC 12.2K	1:1	23.5	23.15	-0.060	0.968	1.08	1.049	1
Front Side	4183/836.6	RMC 12.2K	1:1	23.5	23.05	-0.010	0.609	1.11	0.675	1
Left Edge	4183/836.6	RMC 12.2K	1:1	23.5	23.05	-0.050	0.394	1.11	0.437	1
Right Edge	4183/836.6	RMC 12.2K	1:1	23.5	23.05	-0.040	0.447	1.11	0.496	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	4183/836.6	RMC 12.2K	1:1	23.5	23.05	0.050	0.098	1.11	0.109	1
		Worst Cas	se Posi	tion of Bod	y With Batter	y 2 (Distanc	e 10mm)			
Back Side	4132/826.4	RMC 12.2K	1:1	23.5	23.15	-0.050	0.968	1.08	1.049	1

Report No.: RXA1404-0098SAR01R1

Page 50 of 152

	Worst Case Position of SAR (1 st Repeated SAR, Distance 10mm)												
Back Side	Back Side 4132/826.4 RMC 12.2K 1:1 23.5 23.15 -0.040 0.969 1.08 1.050 Figure24												
Note: 1.The va	lue with blue co	olor is the max	imum S	AR Value of	each test ba	nd.			·				
2. Per FC	C KDB Publica	tion 447498 D	01, if th	e reported (scaled) SAR r	measured at t	the middle c	hannel or	highest out	tput power			
channel fo	or each test cor	nfiguration is ≤	0.8 W/	kg then testi	ng at the othe	er channels is	s optional for	such test	t configurat	ion(s).			
3. WCDM	A mode were te	ested under RI	MC 12.2	2kbps withou	ut HSPA (HSI	OPA/HSUPA)	inactive per	KDB Pub	olication 94	1225 D01.			
HSPA (HS	HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests												
was not m	ore than 0.25 o	dB higher than	the RM	IC level and	the maximun	n SAR for 12.	2kbps RMC	was less	than 75% 3	SAR limit.			
4. HSPA +	SAR for body	was not requir	ed sinc	e the averag	e output pow	er of the HSF	PA (HSDPA/H	HSUPA) s	ubtests was	s not more			
than 0.25	dB higher than	the RMC leve	l or the	maximum re	eported SAR	for 12.2kbps	RMC was le	ss than 7	5% SAR lin	nit.			
5. Per FC	5. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported												
SAR was	≤ 1.2 W/kg, no	additional SA	R evalu	ations using	g a headset c	able were rec	uired.						
6. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon													
KDB9412	25 D06, when	the antenna-to	o-edge	distance is g	reater than 2	.5cm, such p	osition does	not need	to be teste	d			

Table 23: SAR Measurement Variability Results [UMTS Band V (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Back Side	4132/826.4	0.968	0.969	1.00	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Page 51 of 152

7.3.3. WIFI (802.11b)

Table 24: SAR Values(802.11b)

	Channel/			Maximum	Conducted	Drift ± 0.21dB	Limit of SAR 1.6 W]
Test Position	Frequency (MHz)	Service	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
				Test I	Position of H	ead				
Left Cheek	11/2462	DSSS	1:1	17	16.24	-0.150	0.224	1.19	0.267	/
Left/Tilt	11/2462	DSSS	1:1	17	16.24	0.030	0.196	1.19	0.233	/
Right Cheek	11/2462	DSSS	1:1	17	16.24	0.170	0.403	1.19	0.480	/
Right/Tilt	11/2462	DSSS	1:1	17	16.24	0.075	0.331	1.19	0.394	/
	1	L	Wors	t Case Pos	ition of Head	With Batte	ry 2			
Right Cheek	11/2462	DSSS	1:1	17	16.24	0.160	0.405	1.19	0.482	Figure25
			Tes	st position	of Body (Dist	ance 10mm	ı)			
Back Side	11/2462	DSSS	1:1	17	16.24	0.032	0.069	1.19	0.083	/
Front Side	11/2462	DSSS	1:1	17	16.24	0.170	0.083	1.19	0.099	Figure26
Left Edge	11/2462	DSSS	1:1	17	16.24	0.036	0.058	1.19	0.070	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	11/2462	DSSS	1:1	17	16.24	-0.160	0.059	1.19	0.071	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		Worst	Case P	osition of B	ody With Bat	ttery 2 (Dist	ance 10mm)	<u>. </u>	
Front Side	11/2462	DSSS	1:1	17	16.24	0.150	0.082	1.19	0.098	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5. WWAN antenna is located at bottom edge; antenna-to-top edge distance is more than 2.5 cm (see ANNEX I). Based upon KDB941225 D06, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested

Page 52 of 152

7.3.4. Bluetooth

Table 25: SAR Values(Bluetooth)

Test	Channel/		Dute	Maximum	Conducted	Drift \pm 0.21dB	L	imit of S	AR 1.6 W/kç	9
Test Position	Frequency (MHz)	Service	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	SAR _{1g} Scaling Factor		Graph Results
				Test I	Position of H	ead				
Right Cheek	39/2441	DSSS	1:1	7.00	6.73	0.170	0.005	1.06	0.005	Figure27
cl	•	form star	ndalone	SAR meas	estimated SAF urements and					

Page 53 of 152

7.4. Simultaneous Transmission Conditions

Air- Interface	Band (MHz)	Туре	Simultaneous Transmissions Note: Not to be tested	Voice Over Digital Transport (Data)
	850	Voice	Yes	NA
GSM	1900	Voice	GPRS, EGPRS,WIFI and BT	NA
	GPRS/EGPRS	Data	Yes BT	NA
	Band II	Voice	Yes WIFI and BT	NA
	Band IV	Voice	Yes WIFI and BT	NA
WCDMA	Band V	Voice	Yes WIFI and BT	NA
	HSDPA/HSUPA/ RMC/HSPA+/ DC-HSDPA	Data	Yes BT	NA
WIFI	2480	Data	Yes GSM, WCDMA(RMC) ,BT	Yes
Bluetooth (BT)	2480	Data	Yes GSM,GPRS,EGPRS, HSDPA/HSUPA/RMC/HSPA+/ DC-HSDPA, WIFI	NA

Report No.: RXA1404-0098SAR01R1

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=	(max. power of channel, including tune-up tolerance, mW) *	\sqrt{f} (GHz)
LStimated OAN-	(min. test separation distance, mm)	7.5

Band	Configuration	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR (W/kg)
Bluetooth	Head	2480	7	5	0.210
Bidotootii	Body	2480	7	10	0.105

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{(\text{peak location separation, mm})} < 0.04$

SAR _{1g} (W/kg)	GSM	GSM	UMTS	UMTS	UMTS		MAX.	Peak location
	850	1900	Band II	Band IV	Band V	Bluetooth	ΣSAR _{1g}	separation
Test Position							, J	ratio
Left, Touch	0.999	0.453	0.898	1.040	0.764	0.210	1.250	NA
Left, Tilt	0.707	0.128	0.239	0.187	0.566	0.210	0.917	NA
Right, Touch	1.090	0.409	0.773	0.777	0.806	0.005	1.095	NA
Right, Tilt	0.747	0.146	0.258	0.248	0.588	0.210	0.957	NA
Back Side	0.994	0.687	0.978	0.864	1.050	0.105	1.155	NA
Front Side	0.694	0.636	0.850	1.014	0.675	0.105	1.119	NA
Left Edge	0.455	0.223	0.456	0.289	0.437	0.105	0.561	NA
Right Edge	0.432	0.118	0.215	0.210	0.496	0.105	0.601	NA
Top Edge	NA	NA	NA	NA	NA	0.105	0.105	NA
Bottom Edge	0.082	0.948	1.184	1.167	0.109	0.105	1.289	NA
Bottom Edge					0.109	0.105	1.289	NA

Simultaneous transimition SAR For Bluetooth and GSM/UMTS

Note: 1. The value with blue color is the maximum ΣSAR_{1q} Value.

2. MAX. Σ SAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. Σ SAR_{1g} = 1.289 W/kg <1.6 W/kg, So the Simultaneous transimition SAR with volum scan are not required for BT and GSM/UMTS antenna.

Report No.: RXA1404-0098SAR01R1

Page 55 of 152

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	WIFI	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Touch	0.999	0.453	0.898	1.040	0.894	0.267	1.307	NA
Left, Tilt	0.707	0.128	0.239	0.187	0.662	0.233	0.94	NA
Right, Touch	1.090	0.409	0.773	0.777	0.942	0.482	1.572	NA
Right, Tilt	0.747	0.146	0.258	0.248	0.688	0.394	1.141	NA

Simultaneous transimition SAR For WIFI and GSM/UMTS

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

2. MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. Σ SAR_{1g} = 1.572 W/kg <1.6 W/kg, So the Simultaneous transimition SAR with volum scan are not required for WIFI and GSM/UMTS

Simultaneous transimition SAR For WIFI & Bluetooth

SAR _{1g} (W/kg)	Bluetooth	WIFI	MAX. ΣSAR _{1α}	Peak location			
Test Position	Bideloolii		MAX. ZSAN _{1g}	separation ratio			
Left, Touch	0.210	0.267	0.477	NA			
Left, Tilt	0.210	0.233	0.443	NA			
Right, Touch	0.005	0.482	0.487	NA			
Right, Tilt	0.210	0.394	0.604	NA			
Back Side	0.105	0.083	0.188	NA			
Front Side	0.105	0.099	0.204	NA			
Left Edge	0.105	0.070	0.175	NA			
Right Edge	0.105	NA	0.105	NA			
Top Edge	0.105	0.071	0.176	NA			
Bottom Edge	0.105	NA	0.105	NA			
Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value.							
2. MAX. ΣSAR _{1g} = Blu	2. MAX. Σ SAR _{1g} = Bluetooth SAR _{MAX} +WifiSAR _{MAX}						

MAX. Σ SAR_{1g} = 0.604 W/kg <1.6 W/kg, So the Simultaneous transimition SAR with volum scan are not required for WIFI and Bluetooth antenna.

Report No.: RXA1404-0098SAR01R1

Page 56 of 152

Simultaneous transimition SAR For WIFI , Bluetooth and GSM/UMTS

SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	Bluetooth	WIFI	MAX. ΣSAR _{1g}	Peak location separation ratio
Left, Touch	0.999	0.453	0.898	1.040	0.764	0.210	0.267	1.517	NA
Left, Tilt	0.707	0.128	0.239	0.187	0.566	0.210	0.233	1.150	NA
Right, Touch	1.090	0.409	0.773	0.777	0.806	0.005	0.482	1.577	NA
Right, Tilt	0.747	0.146	0.258	0.248	0.588	0.210	0.394	1.351	NA
Note: 1 The value with blue color is the maximum ΣSAR_{ℓ} Value									

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

2. MAX. Σ SAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. Σ SAR_{1g} = 1.577 W/kg <1.6 W/kg, So the Simultaneous transimition SAR with volum scan are not required for WIFI, Bluetooth and GSM/UMTS.

Page 57 of 152

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i'(\%)$	Degree of freedom V _{eff} or v _i	
1	System repetivity	A	0.5	Ν	1	1	0.5	9	
	Measurement system								
2	-probe calibration	В	6.0	N	1	1	6.0	∞	
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞	
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞	
5	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞	
6	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞	
7	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	œ	
8	-readout Electronics	В	1.0	N	1	1	1.0	∞	
9	-response time	В	0.8	R	$\sqrt{3}$	1	0.5	8	
10	-integration time	В	4.3	R	$\sqrt{3}$	1	2.5	8	
11	-RF Ambient noise	В	3.0	R	$\sqrt{3}$	1	1.7	∞	
12	-RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞	
13	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞	
14	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	×	
15	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	œ	
		Tes	t sample Relate	ed					
16	-Test Sample Positioning	А	2.9	N	1	1	2.9	71	
17	-Device Holder Uncertainty	А	4.1	N	1	1	4.1	5	
18	- Power drift	В	5.0	R	$\sqrt{3}$	1	2.9	œ	
		Ph	ysical paramete	er					
19	-phantom Uncertainty	В	4.0	R	$\sqrt{3}$	1	2.3	œ	

Report No.: RXA1404-0098SAR01R1

Page 58 of 152

20	Algorithm for correcting SAR for deviations in permittivity and conductivity	В	1.9	N	1	0.84	0. 9	8
21	-Liquid conductivity (measurement uncertainty)	В	2.5	N	1	0.71	1.8	9
22	-Liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.26	0. 7	9
23	-Liquid conductivity -temperature uncertainty	В	1.7	R	$\sqrt{3}$	0.71	0. 7	8
24	-Liquid permittivity -temperature uncertainty	В	0.3	R	$\sqrt{3}$	0.26	0.05	8
Comb	ined standard uncertainty	u _c =	$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.34	
Expan 95 %)	•	u	$u_e = 2u_c$	N	k=	=2	22.68	

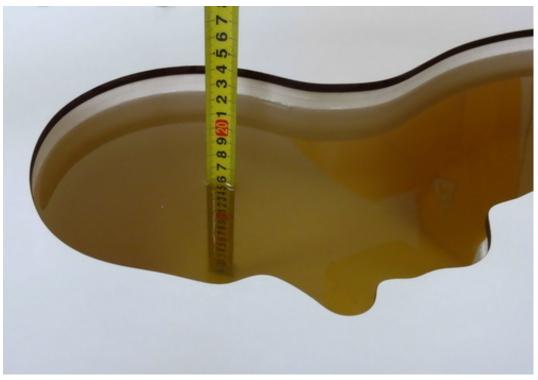
9. Main Test Instruments

Table 26: List of Main Instrumen

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 10, 2013	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration R	equested
03	Power meter	Agilent E4417A	GB41291714	March 9, 2014	One year
04	Power sensor	Agilent N8481H	MY50350004	September 23, 2013	One year
05	Power sensor	E9327A	US40441622	January 1, 2014	One year
06	Signal Generator	HP 8341B	2730A00804	September 9, 2013	One year
07	Dual directional coupler	778D-012	50519	March 24, 2014	One year
08	Dual directional coupler	777D	50146	March 24, 2014	One year
09	Amplifier	IXA-020	0401	No Calibration R	equested
10	BTS	E5515C	MY48360988	November 30, 2013	One year
11	BT Base Station Simulator	CBT	100271	June 29, 2013	One year
12	E-field Probe	EX3DV4	3677	November 28, 2013	One year
13	DAE	DAE4	1317	January 16, 2014	One year
14	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Three years
15	Validation Kit 1750MHz	D1750V2	1033	January 26, 2014	Three years
16	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Three years
17	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Three years
18	Temperature Probe	JM222	AA1009129	March 13, 2014	One year
19	Hygrothermograph	WS-1	64591	September 26, 2013	One year

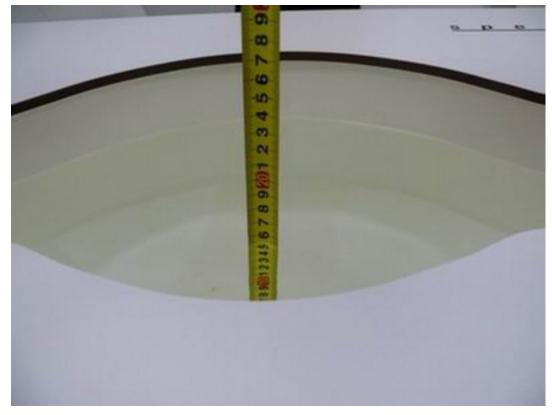
*****END OF REPORT *****

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout

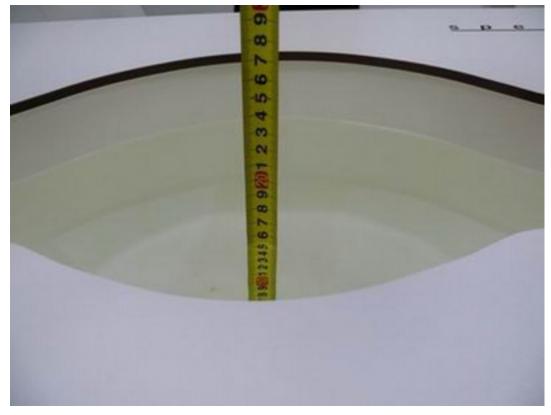
Report No.: RXA1404-0098SAR01R1


Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Report No.: RXA1404-0098SAR01R1

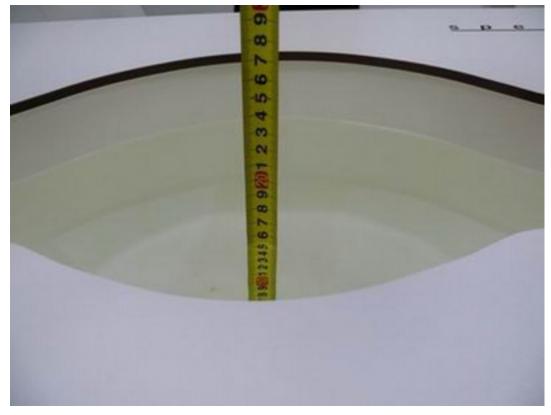
Page 62 of 152


Picture 4: Liquid depth in the flat Phantom (1750 MHz, 15.1cm depth)

Picture 5: liquid depth in the head Phantom (1750 MHz, 15.3cm depth)

Report No.: RXA1404-0098SAR01R1

Page 63 of 152


Picture 6: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 7: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Report No.: RXA1404-0098SAR01R1

Page 64 of 152

Picture 8: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

Picture 9: Liquid depth in the head Phantom (2450 MHz, 15.4cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date: 5/4/2014 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ε_r = 41.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.64 mW/g d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

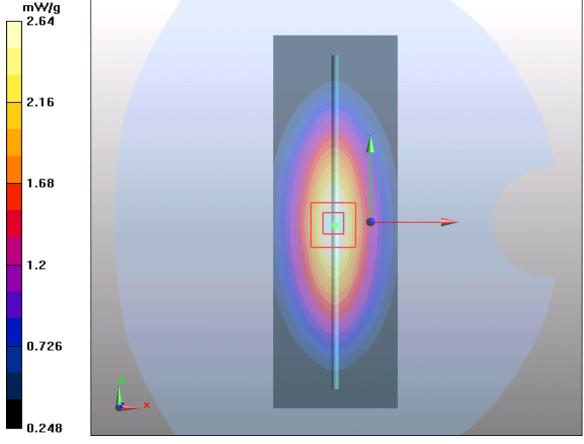


Figure 7 System Performance Check 835MHz 250mW

System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 5/5/2014 Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ε_r = 55.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 – SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.58 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.6 mW/g

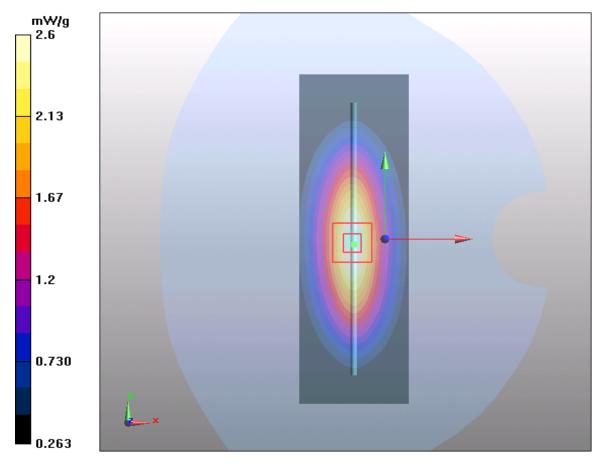


Figure 8 System Performance Check 835MHz 250Mw

TA Technology (Shanghai) Co.,	Ltd.
Test Report	

System Performance Check at 1750 MHz Head TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Date: 5/12/2014 Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.37 mho/m; ε_r = 39.85; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 11/28/2013 Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 9.78 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 8.45 mW/g; SAR(10 g) = 4.5 mW/g

Maximum value of SAR (measured) = 9.46 mW/g

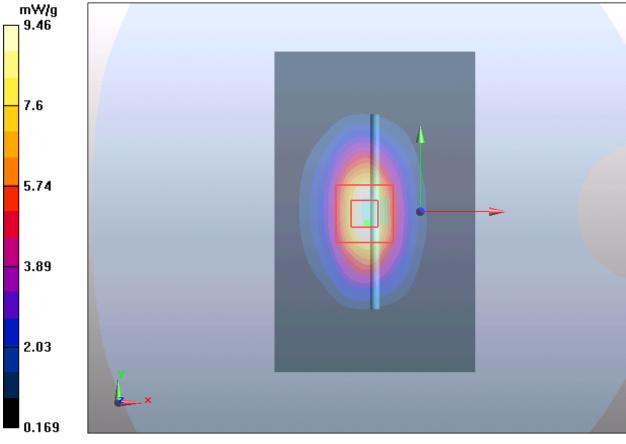


Figure 9 System Performance Check 1750MHz 250mW

Page 68 of 152

System Performance Check at 1750 MHz Body TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Date: 5/12/2014

Communication System: CW; Frequency: 1750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.50 mho/m; ε_r = 52.88; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.7 °C DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/28/2013 Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 10.6 mW/g

d=10mm, Pin=250mW/Area Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 mW/g; SAR(10 g) = 4.9 mW/g Maximum value of SAR (measured) = 10.3 mW/g

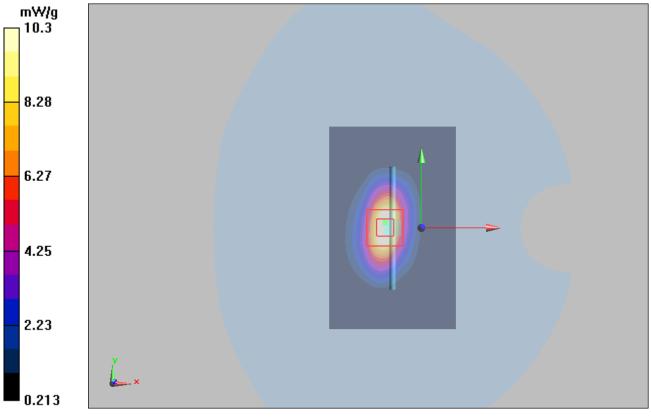


Figure 10 System Performance Check 1750MHz 250mW

TA Technology (Shanghai)	Co.,	Ltd.
Test Report		

System Performance Check at 1900 MHz Head TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 5/10/2014 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.34 mho/m; ϵ_r = 40.5; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 – SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 85.5 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.48 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

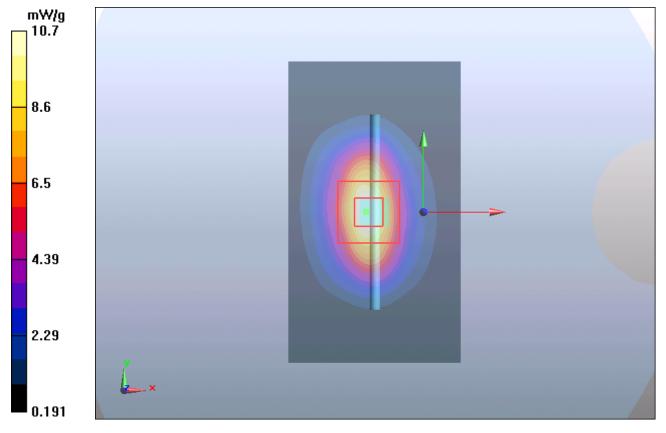


Figure 11 System Performance Check 1900MHz 250mW

System Performance Check at 1900 MHz Body TSL

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date: 5/11/2014 Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 – SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

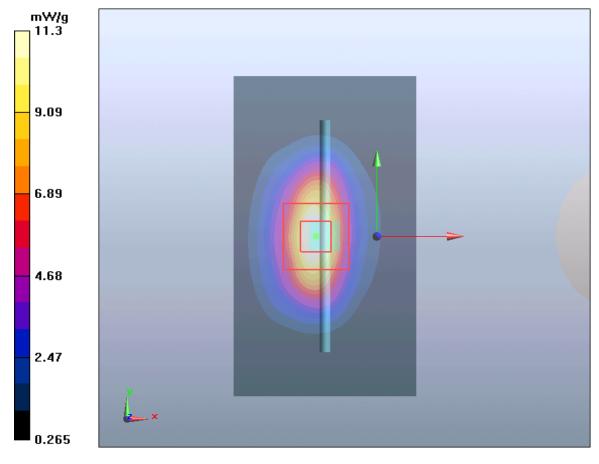


Figure 12 System Performance Check 1900MHz 250mW

System Performance Check at 2450 MHz Head TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 5/21/2014 Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.80 mho/m; ϵ_r = 39.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 – SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.075 dB

Peak SAR (extrapolated) = 30 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

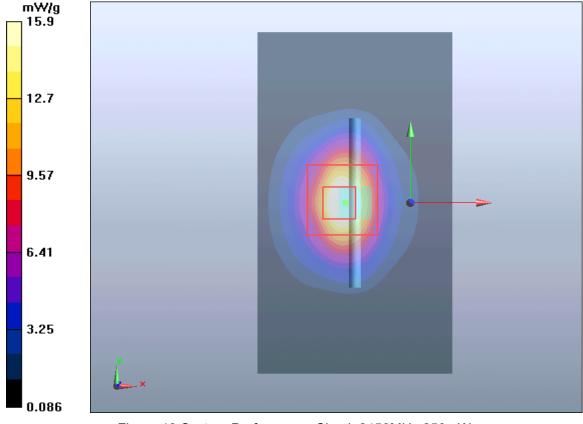


Figure 13 System Performance Check 2450MHz 250mW

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 5/21/2014 Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.99 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 – SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM2; Type: SAM; Serial: TP-1524 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

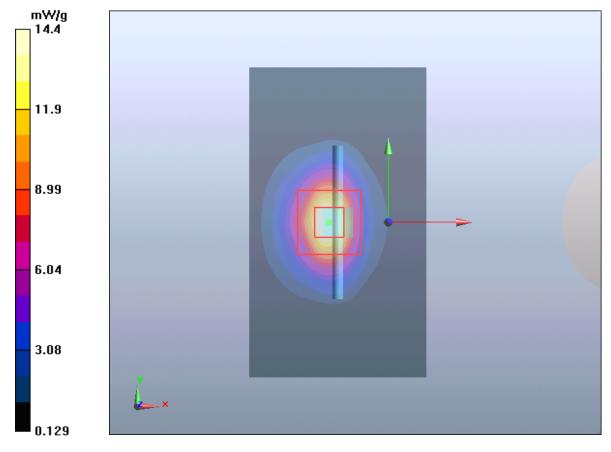
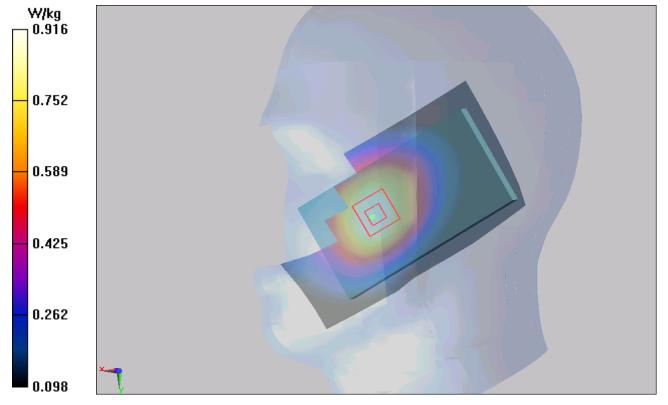


Figure 14 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

GSM 850 Right Cheek High


Date: 5/4/2014 Communication System: UID 0, GSM (0); Frequency: 848.8 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 849 MHz; σ = 0.943 S/m; ϵ_r = 41.271; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.930 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.707 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.890 W/kg; SAR(10 g) = 0.679 W/kg

Maximum value of SAR (measured) = 0.916 W/kg

Report No.: RXA1404-0098SAR01R1

Page 74 of 152

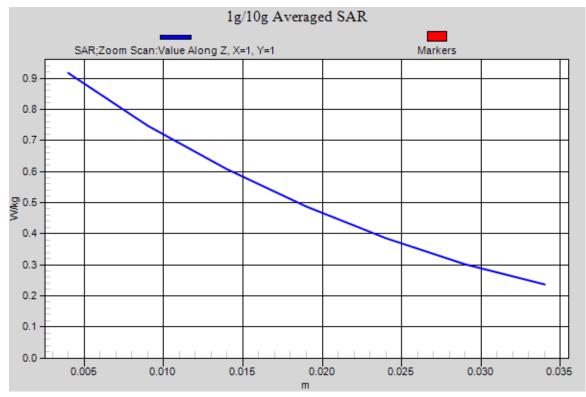
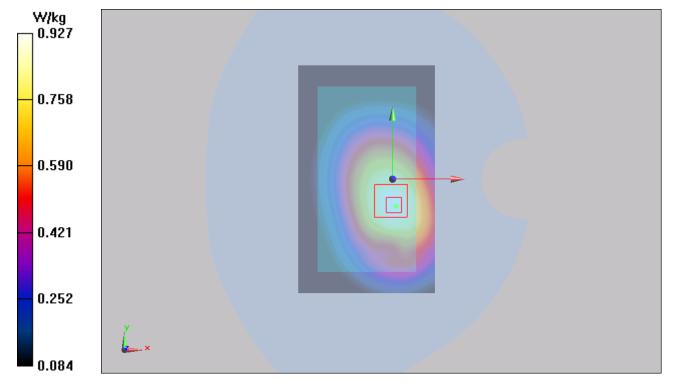
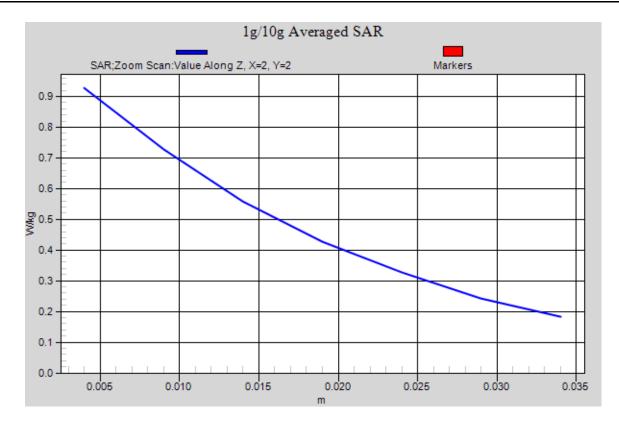


Figure 15 Right Hand Touch Cheek GSM 850 Channel 251


TA Technology (Shanghai) Co., Lt	d
Test Report	

GSM 850 EGPRS (4Txslots) Back Side High (Battery 2)

Date: 5/5/2014 Communication System: UID 0, GPRS 4TX (0); Frequency: 848.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 849 MHz; σ = 1.006 S/m; ε_r = 55.736; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

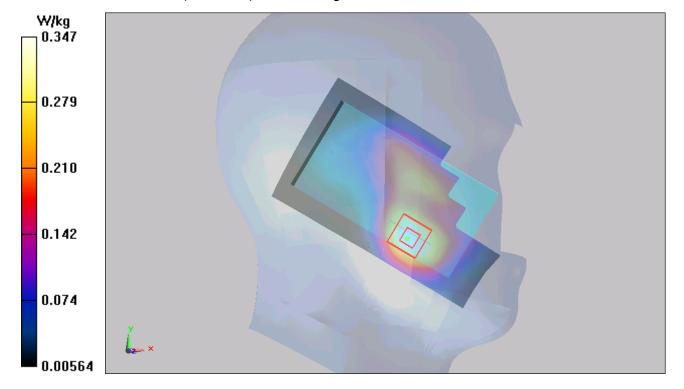

Back Side High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.938 W/kg

Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.019 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.896 W/kg; SAR(10 g) = 0.660 W/kg Maximum value of SAR (measured) = 0.927 W/kg

Report No.: RXA1404-0098SAR01R1

Page 76 of 152

Figure 16 Body, Back Side, GSM 850 GPRS (4Txslots) Channel 251


TA Technolog	y (Shanghai)	Co.,	Ltd
Т	est Report		

GSM 1900 Left Cheek High (Battery 2)

Date: 5/10/2014 Communication System: UID 0, GSM (0); Frequency: 1909.8 MHz;Duty Cycle: 1:8.30042 Medium parameters used: f = 1910 MHz; σ = 1.44 S/m; ϵ_r = 39.607; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.379 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.076 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.547 W/kg SAR(1 g) = 0.342 W/kg; SAR(10 g) = 0.205 W/kg Maximum value of SAR (measured) = 0.347 W/kg

Report No.: RXA1404-0098SAR01R1

Page 78 of 152

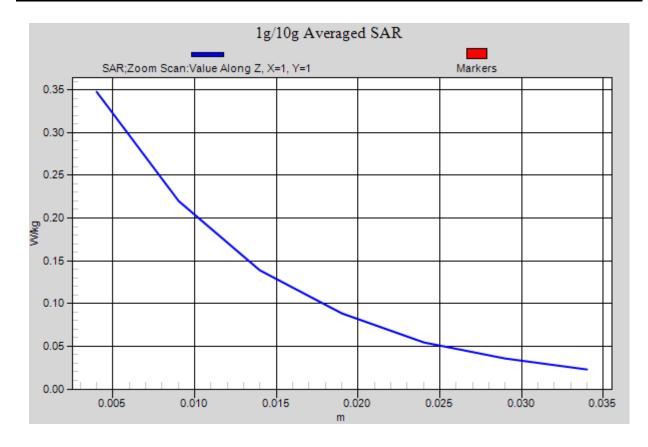
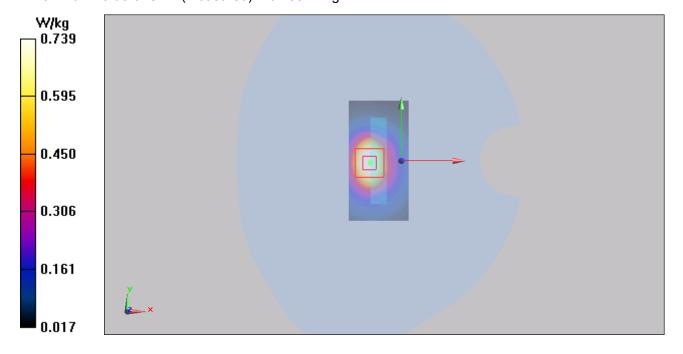


Figure 17 Left Hand Touch Cheek GSM 1900 Channel 810


TA Technology (Shanghai) Co	o., Ltd
Test Report	

GSM 1900 EGPRS (4Txslots) Bottom Edge High (Battery 2)

Date: 5/11/2014 Communication System: UID 0, GPRS 4TX (0); Frequency: 1909.8 MHz;Duty Cycle: 1:2.07491 Medium parameters used: f = 1910 MHz; σ = 1.535 S/m; ε_r = 52.981; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Bottom Edge High/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.833 W/kg

Bottom Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.705 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.739 W/kg; SAR(10 g) = 0.415 W/kg Maximum value of SAR (measured) = 0.739 W/kg

Report No.: RXA1404-0098SAR01R1

Page 80 of 152

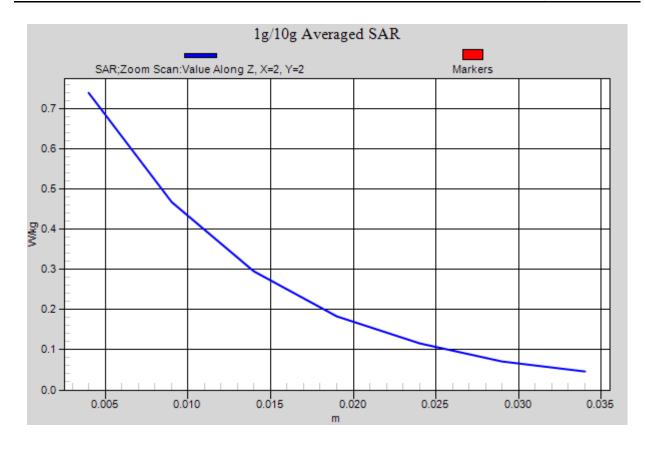
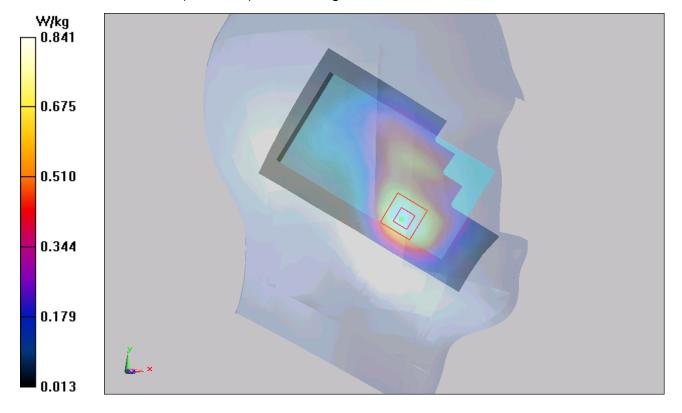


Figure 18 Body, Bottom Edge, GSM 1900 GPRS (4Txslots) Channel 810


Report No.: RXA1404-0098SAR01R1

UMTS Band II Left Cheek Middle

Date: 5/10/2014 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.413 S/m; ϵ_r = 39.689; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.15, 8.15, 8.15); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.895 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.049 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.819 W/kg; SAR(10 g) = 0.493 W/kg Maximum value of SAR (measured) = 0.841 W/kg

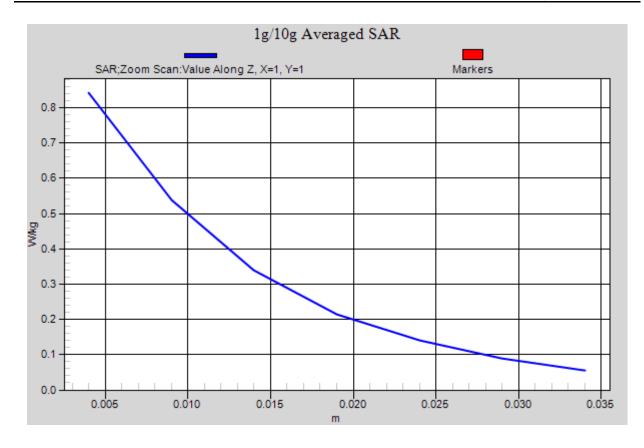


Figure 19 Left Hand Touch Cheek UMTS Band II Channel 9400

TA Techno	logy (Shangha	i) Co.,	Ltd
	Test Report		

UMTS Band II Bottom Edge Middle

Date: 5/11/2014 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ϵ_r = 53.137; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Bottom Edge Middle/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.26 W/kg

Bottom Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.190 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.601 W/kg

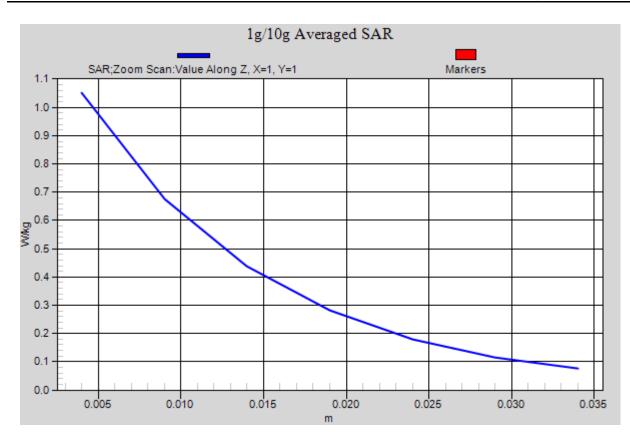
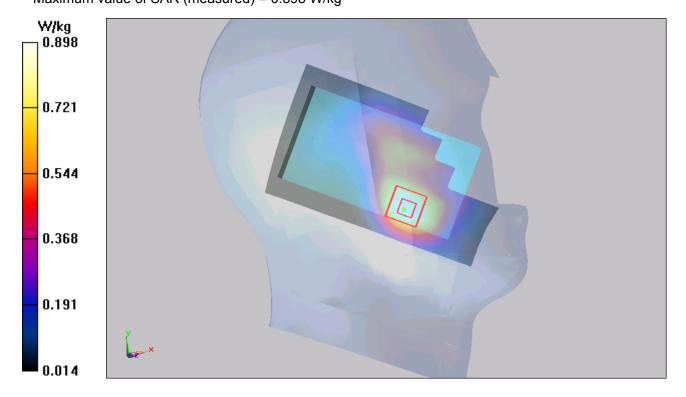


Figure 20 Body, Bottom Edge, UMTS Band II Channel 9400


Report No.: RXA1404-0098SAR01R1

UMTS Band IV Left Cheek Middle (Battery 2)

Date: 5/12/2014 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1733 MHz; σ = 1.489 S/m; ϵ_r = 52.919; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.22, 8.22, 8.22); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.954 W/kg

Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.111 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 0.873 W/kg; SAR(10 g) = 0.526 W/kg Maximum value of SAR (measured) = 0.898 W/kg

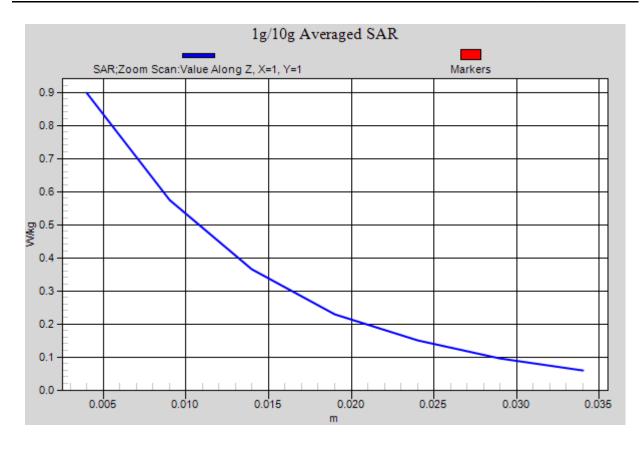
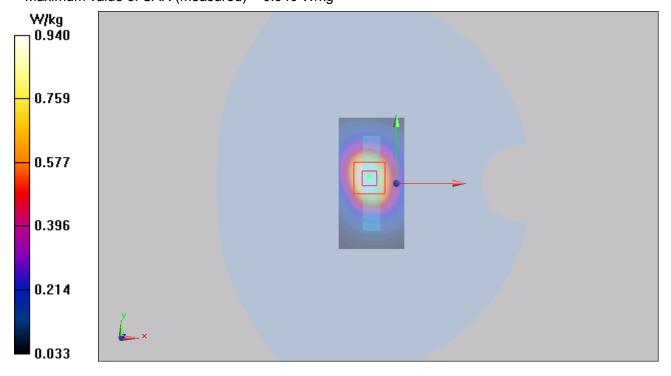


Figure 21 Left Hand Touch Cheek UMTS Band IV Channel 1413


TA Technology (Shanghai)	Co.,	Ltd
Test Report		

UMTS Band IV Bottom Edge Middle (Battery 2)

Date: 5/12/2014 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1733 MHz; σ = 1.489 S/m; ϵ_r = 52.919; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Bottom Edge Middle/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.11 W/kg

Bottom Edge Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.583 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.980 W/kg; SAR(10 g) = 0.563 W/kg Maximum value of SAR (measured) = 0.940 W/kg

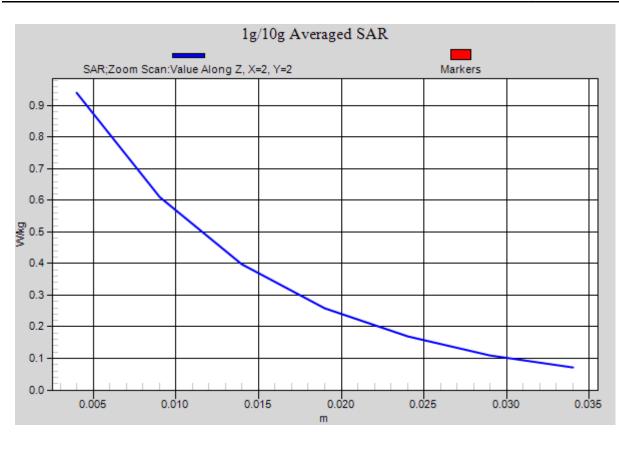
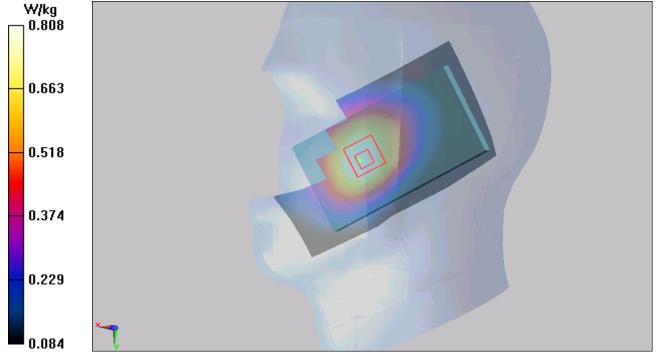


Figure 22 Body, Bottom Edge, UMTS Band IV Channel 1413


ՐA Technology (Shanghai) (Co.,	Ltd.
Test Report		

UMTS Band V Right Cheek High

Date/Time: 5/4/2014 5:44:24 PM Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; σ = 0.943 S/m; ε_r = 41.323; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.41, 9.41, 9.41); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek High/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.829 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.337 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.967 W/kg SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.602 W/kg Maximum value of SAR (measured) = 0.808 W/kg

Report No.: RXA1404-0098SAR01R1

Page 90 of 152

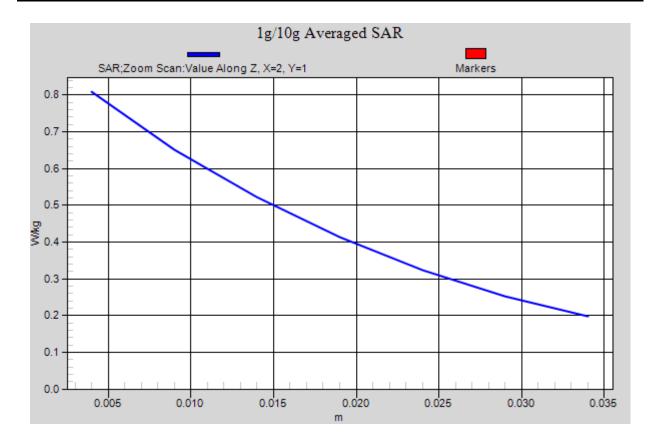
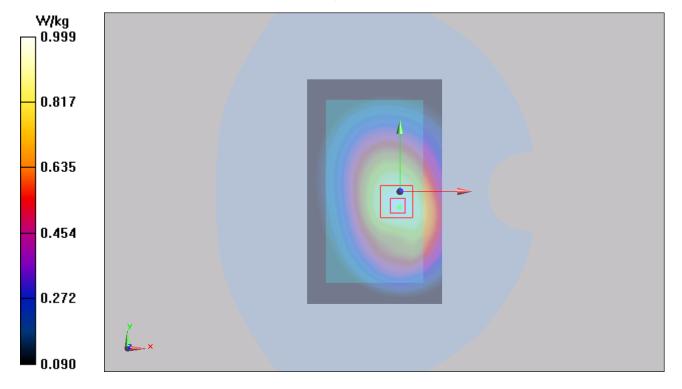


Figure 23 Righ Hand Touch Cheek UMTS Band V Channel 4233


ГА Technology (Shanghai) Co.,	, Ltd.
Test Report	

UMTS Band V Back Side Low (1st Repeated SAR)

Date: 5/5/2014 Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.98 S/m; ε_r = 55.933; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.02 W/kg

Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.107 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.969 W/kg; SAR(10 g) = 0.709 W/kg Maximum value of SAR (measured) = 0.999 W/kg

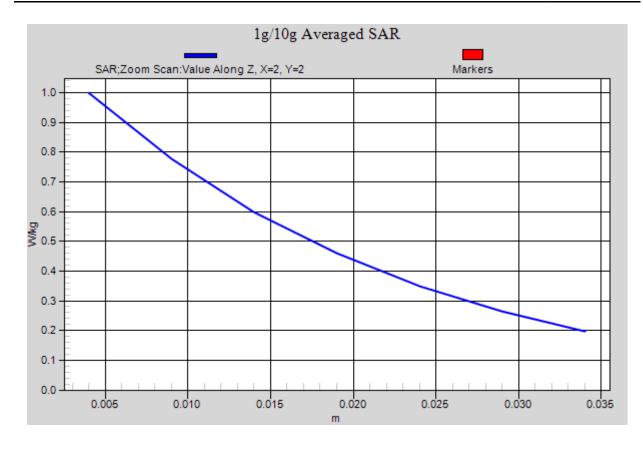
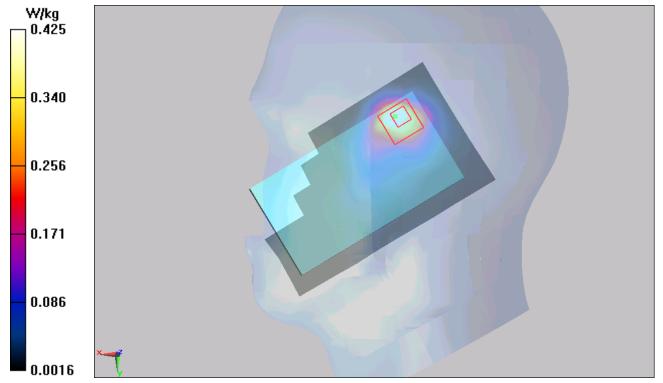


Figure 24 Body, Back Side, UMTS Band V Channel 4132


TA Technology (Shanghai)	Co.,	Ltd
Test Report		

802.11b Right Cheek High (Battery 2)

Date: 5/21/2014 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.818 S/m; ϵ_r = 39.076; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek High/Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.515 W/kg

Right Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.025 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.929 W/kg Maximum value of SAR (measured) = 0.425 W/kg

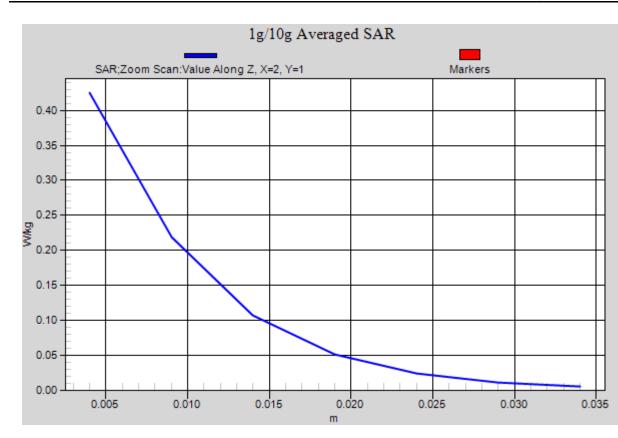
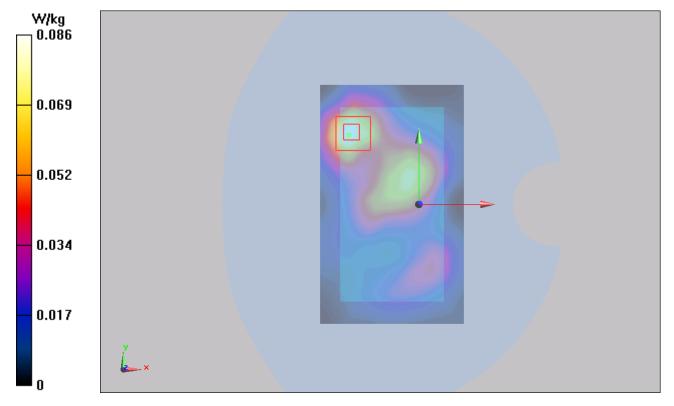


Figure 25 Right Hand Touch Cheek 802.11b Channel 11


Report No.: RXA1404-0098SAR01R1

802.11b Front Side High

Date: 5/21/2014 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 2.009 S/m; ε_r = 52.109; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Front Side High/Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0938 W/kg

Front Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.214 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.164 W/kg SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.0860 W/kg

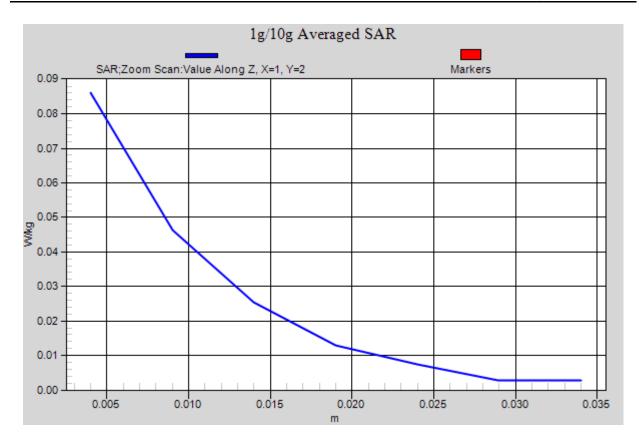
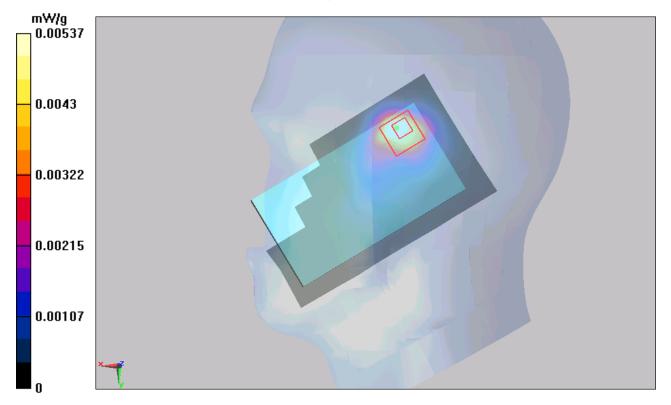


Figure 26 Body, Front Side, 802.11b Channel 11


ГА Technology (Shanghai) Co.,	Ltd.
Test Report	

Bluetooth Right Cheek Middle

Date: 5/21/2014 Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; σ = 1.82 S/m; ε_r = 39.55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 11/28/2013; Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Right Cheek Middle/Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.00781 W/kg

Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.414 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.014 W/kg SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.002 mW/g Maximum value of SAR (measured) = 0.005 W/kg

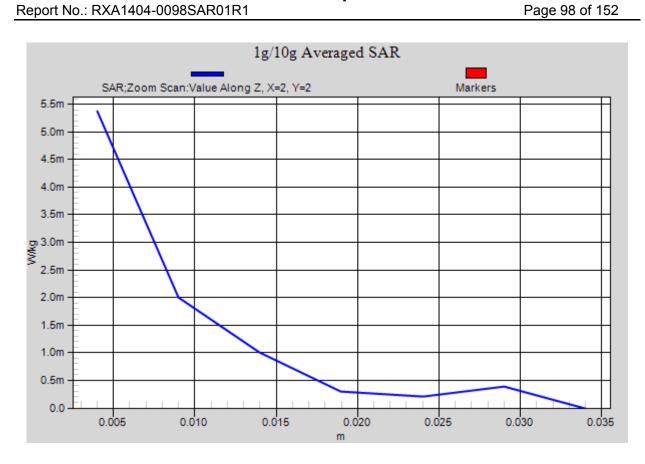


Figure 27 Right Hand Touch Cheek Bluetooth Channel 39

ANNEX D: Probe Calibration Certificate

Tel: +86-10-6230463 E-mail: Info@emcite	.com Http://	www.emcite.com	
	hangHai	102-1021-2017 VERSION	3-2-2971
CALIBRATION CE			
Object			
object	EX3DV	4 - SN:3677	
Calibration Procedure(s)	THE	S E 02 105	
		S-E-02-195 tion Procedures for Dosimetric E-field Probe	· ·
- m	CallUla	tion Procedures for Dosimetric E-field Probe	5
Calibration date:	Novem	ber 28, 2013	
pages and are part of the ce	rtificate.	the uncertainties with confidence probability	•
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environment	
All calibrations have been humidity<70%. Calibration Equipment used	conducted in	the closed laboratory facility: environment	
All calibrations have been humidity<70%. Calibration Equipment used	conducted in (M&TE critical fe	the closed laboratory facility: environment or calibration)	t temperature(22±3)℃ and
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards	Conducted in (M&TE critical for ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.)	t temperature(22±3)℃ and Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	Conducted in (M&TE critical for ID # 101919	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044)	t temperature(22±3)℃ and Scheduled Calibration Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	Conducted in (M&TE critical for ID # 101919 101547	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044)	t temperature(22±3)℃ and Scheduled Calibration Jun-14 Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	Conducted in (M&TE critical for ID # 101919 101547 101548	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866)	t temperature(22±3)℃ and Scheduled Calibration Jun-14 Jun-14 Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	Conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3846	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	Conducted in (M&TE critical for ID # 101919 101547 101548 BT0520 BT0267	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866)	Scheduled Calibration Jun-14 Jun-14 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	Conducted in (M&TE critical fe ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Feb -14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Feb -14 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	conducted in (M&TE critical fe ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID # 6201052605	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Feb -14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fa ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID # 6201052605 MY46110673	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045)	Scheduled Calibration Jun-14 Jun-14 Dec-14 Dec-14 Dec-14 Sep-14 Feb -14 Scheduled Calibration Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fe ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID # 6201052605	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045) 15-Feb-13 (TMC, No.JZ13-781)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Dec-14 Sep-14 Feb-14 Scheduled Calibration Jun-14 Feb-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID # 6201052605 MY46110673 Name	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045) 15-Feb-13 (TMC, No.JW13-045) 15-Feb-13 (TMC, No.JZ13-781) Function	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Dec-14 Sep-14 Feb -14 Scheduled Calibration Jun-14 Feb-14

Certificate No: J13-2-2971

Page 1 of 11

Report No.: RXA1404-0098SAR01R1

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
Φ rotation around probe axis
θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
θ=0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 11

Page 100 of 152

Page 101 of 152

Probe EX3DV4

SN: 3677

Calibrated: November 28, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2971

Page 3 of 11

DASY – Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.38	0.44	0.38	±10.8%
DCP(mV) ^B	99.8	100.9	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	cw	X	0.0	0.0	1.0	0.00	93.3	±2.6%
		Y	0.0	0.0	1.0		101.7	
		Z	0.0	0.0	1.0		92.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
 ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

DASY – Parameters of Probe: EX3DV4 - SN: 3677

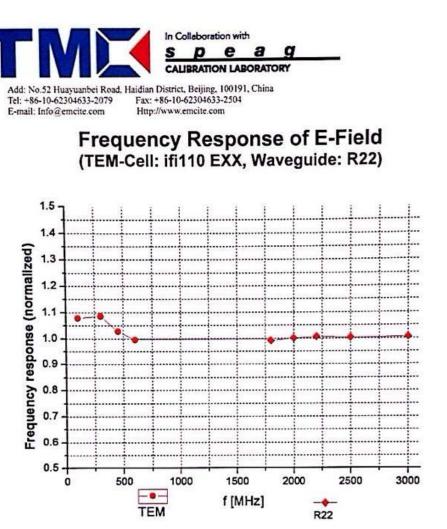
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.94	9.94	9.94	0.16	1.13	± 12%
850	41.5	0.92	9.41	9.41	9.41	0.11	1.47	±12%
1750	40.1	1.37	8.22	8.22	8.22	0.14	2.11	±12%
1900	40.0	1.40	8.15	8.15	8.15	0.14	2.34	±12%
2100	39.8	1.49	7.87	7.87	7.87	0.13	3.21	±12%
2450	39.2	1.80	7.64	7.64	7.64	0.39	0.95	±12%
5200	36.0	4.66	5.73	5.73	5.73	0.95	0.62	±13%
5300	35.9	4.76	5.68	5.68	5.68	0.87	0.67	±13%
5500	35.6	4.96	5.62	5.62	5.62	0.97	0.62	±13%
5600	35.5	5.07	5.29	5.29	5.29	0.89	0.63	±13%
5800	35.3	5.27	5.29	5.29	5.29	1.02	0.61	±13%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page 5 of 11

DASY – Parameters of Probe: EX3DV4 - SN: 3677


Relative Unct. Conductivity Depth f [MHz]^C ConvF X ConvF Y ConvF Z Alpha Permittivity^F (S/m)F (mm) (k=2) 750 55.5 0.96 1.97 ±12% 9.72 9.72 0.11 9.72 850 55.2 0.99 9.51 9.51 9.51 0.15 1.55 ±12% 1750 53.4 ±12% 1.49 7.77 0.14 3.23 7.77 7.77 1900 53.3 1.52 7.63 7.63 7.63 0.15 2.81 ±12% 2100 53.2 1.62 7.97 7.97 7.97 0.16 4.09 ±12% 2450 52.7 1.95 7.61 7.61 7.61 0.92 ±12% 0.45 5200 49.0 5.30 4.72 4.72 ±13% 4.72 0.66 1.10 5300 48.9 5.42 4.67 4.67 4.67 1.19 ±13% 0.64 5500 48.6 5.65 4.34 4.34 4.34 0.73 0.80 ±13% 5600 48.5 5.77 4.29 4.29 4.29 0.74 0.81 ±13% 5800 48.2 6.00 4.46 4.46 4.46 0.78 0.80 ±13%

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page 6 of 11

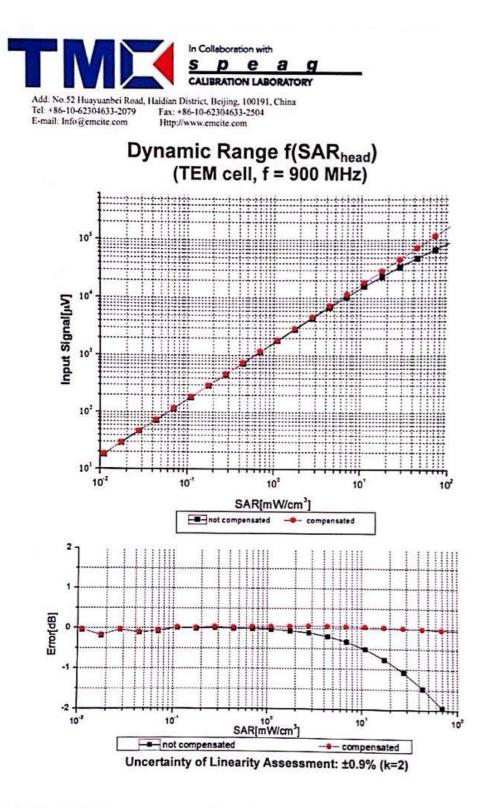
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Page 7 of 11

Page 105 of 152

In Collaboration with S p e а CALIBRATION LABORATORY
 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

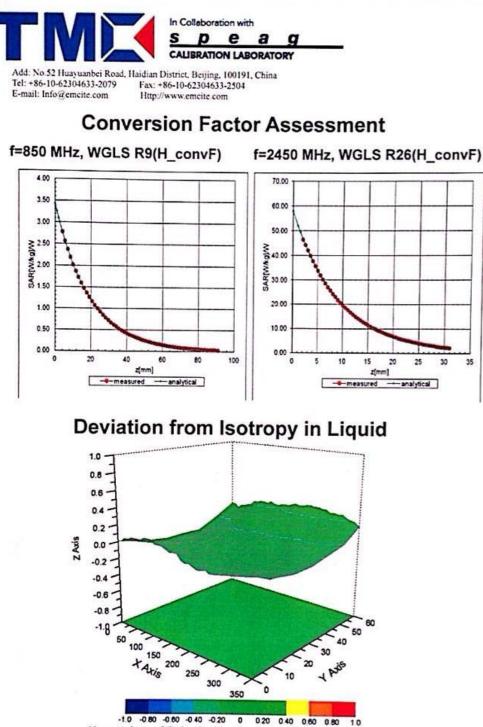
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504


 E-mail: Info@emcite.com
 Http://www.emcite.com
 E-mail: Info@emcite.com Receiving Pattern (Φ), θ=0° f=600 MHz, TEM f=1800 MHz, R22 1.0 0.5 Error(dB) 0.0 -0.5 -1.0 -150 -100 -50 Ó 50 100 150 Roll[•] --- 2500MHz Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

Certificate No: J13-2-2971

Page 8 of 11

Page 106 of 152



Certificate No: J13-2-2971

Page 9 of 11

Page 107 of 152

Report No.: RXA1404-0098SAR01R1

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: J13-2-2971

Page 10 of 11

35

Report No.: RXA1404-0098SAR01R1

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Page 11 of 11

Page 110 of 152

ANNEX E: D835V2 Dipole Calibration Certificate

accredited by the Swiss Accredite the Swiss Accreditation Servic fultilateral Agreement for the r	e is one of the signatorie	s to the EA	n No.: SCS 108
Illent TA-Shanghai (Auden)	Certificate N	o: D835V2-4d020_Aug11
CALIBRATION O	CERTIFICATE		
Object	D835V2 - SN: 4d	020	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 26, 2011		
	그는 아파는 아파가 지않는 아파가 아파 친구가 많은 것이 없다.	onal standards, which realize the physical ur robability are given on the following pages a	
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ortainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages as y facility: environment temperature (22 \pm 3)°	nd are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ortainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages any facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ortainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages as y facility: environment temperature (22 \pm 3)°	nd are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ortainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages as y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	nd are part of the certificate. 'C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages at y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 5047 SN: 3205 SN: 601 * ID # MY41092317	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (20b) SN: S047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047 2 / 06327 SN: 3205 SN: 601 - ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	Artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (20b) SN: S5047 2 / 06327 SN: S5047 2 / 06327 SN: 3205 SN: 601 - ID # - MY41092317 100006 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D835V2-4d020_Aug11

Page 1 of 8

Report No.: RXA1404-0098SAR01R1

Page 111 of 152

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS BRD

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1404-0098SAR01R1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Contraction of the second states of the second stat	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.52 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	1
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW inpút power	1.59 mW / g

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1404-0098SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ	
Return Loss	- 25.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

ź

Manufactured by	SPEAG	
Manufactured on	April 22, 2004	

Certificate No: D835V2-4d020_Aug11

Page 4 of 8

Report No.: RXA1404-0098SAR01R1

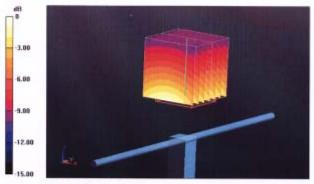
Page 114 of 152

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

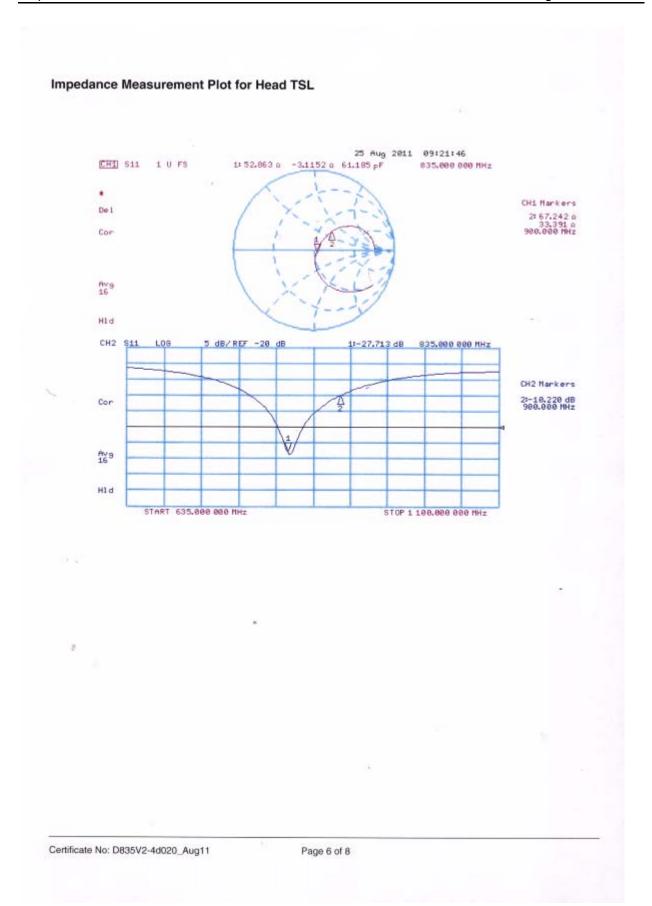

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

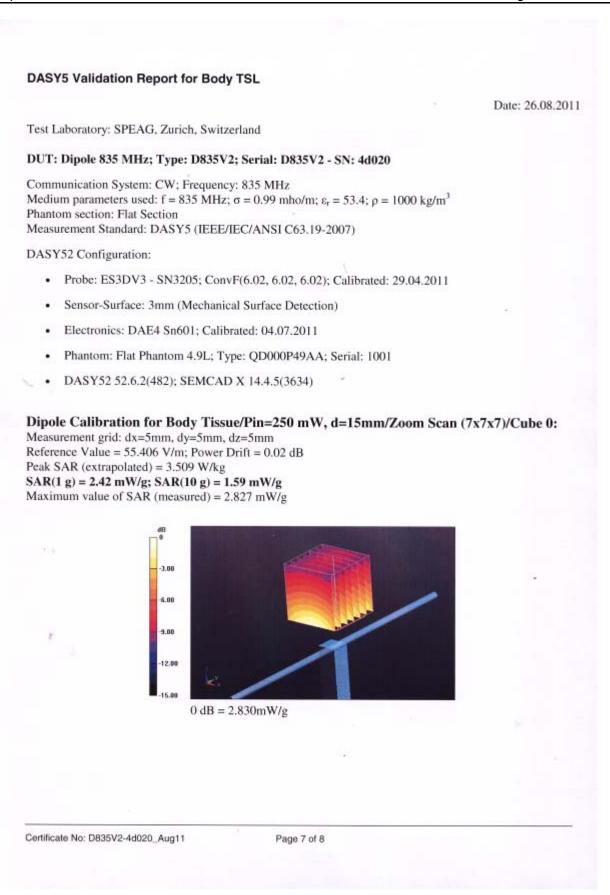
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.930 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.421 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.708 mW/g

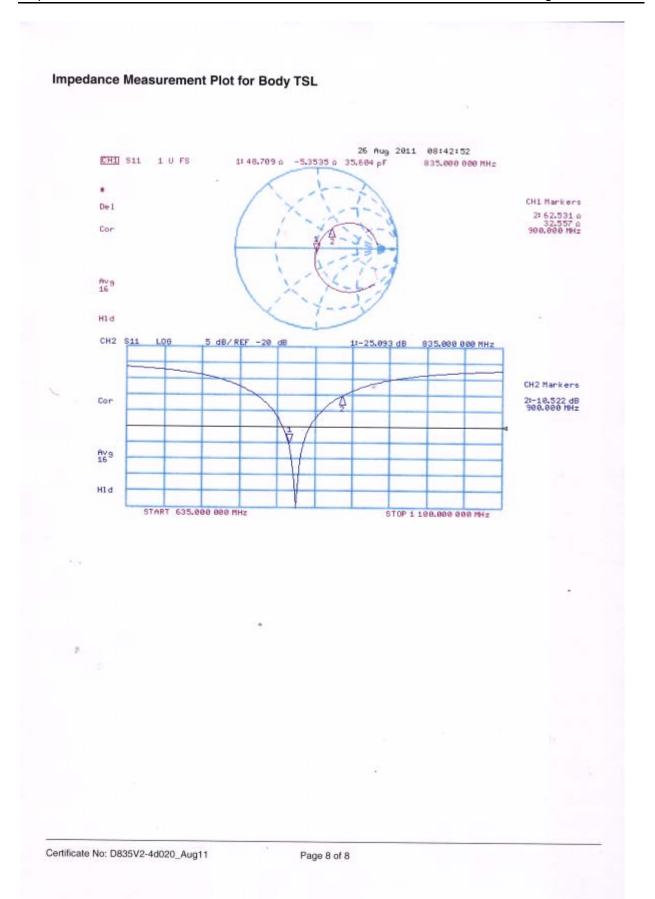


 $0 \, dB = 2.710 \, mW/g$

Certificate No: D835V2-4d020_Aug11


Page 5 of 8

Report No.: RXA1404-0098SAR01R1

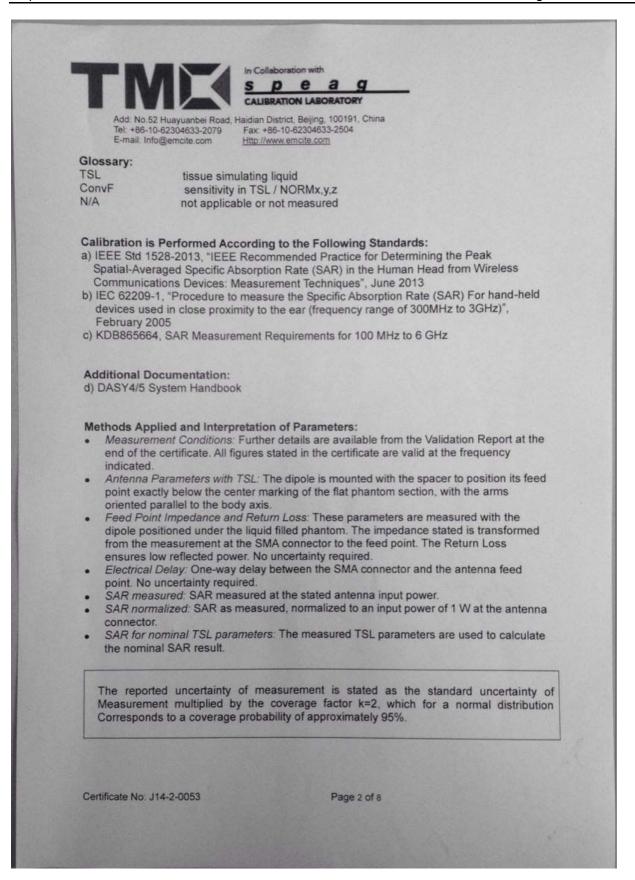

Report No.: RXA1404-0098SAR01R1

Page 116 of 152

Report No.: RXA1404-0098SAR01R1

Page 117 of 152

ANNEX F: D1750V2 Dipole Calibration Certificate


	uanbel Road, Haidian District,	e a g IN LABORATORY Beijing, 100191, China	Alum
Tel: +86-10-62304 E-mail: Info@emo			
Client TA(Sh	hanghai)	Certificate No: J14-2-0053	
CALIBRATIO	N CERTIFICATE		
Object	D1750V2	- SN: 1033	1000
Calibration Procedure	IMC-OS-	E-02-194 n procedure for dipole validation kits	
Calibration date:	January 2		
units of measuremen given on the following	nts(SI). The measurements of the pages and are part of the	ceability to national standards, which realize hts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment temper	obability ar
units of measuremen given on the following All calibrations have and humidity<70%.	nts(SI). The measurement pages and are part of the been conducted in the of ht used (M&TE critical for o	nts and the uncertainties with confidence pro e certificate. closed laboratory facility: environment temper calibration)	obability ar
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen	nts(SI). The measurements pages and are part of the been conducted in the of the used (M&TE critical for of ID# Cal Date	nts and the uncertainties with confidence pro e certificate. closed laboratory facility: environment temper calibration)	obability ar ature(22±3)
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRVI Power sensor NRV	nts(SI). The measurements pages and are part of the been conducted in the of ht used (M&TE critical for of ID # Cal Date D 102083 1-25 100595	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment temper calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443)	d Calibratic Sep-14 Sep -14
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRV Power sensor NRV Reference Probe EX	nts(SI). The measuremen pages and are part of the been conducted in the of nt used (M&TE critical for of ID # Cal Date D 102083 7-Z5 100595 (3DV4 SN 3846	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment tempera- calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No. EX3-3846_Sep13)	d Calibratic Sep-14 Sep-14 Sep-14
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRVI Power sensor NRV Reference Probe EX DAE4	nts(SI). The measuremen pages and are part of the been conducted in the of it used (M&TE critical for of ID # Cal Date D 102083 /-Z5 100595 (3DV4 SN 3846 SN 777	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment tempera- calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13)	d Calibratic Sep-14 Sep-14 Sep-14 Feb -14
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRV Power sensor NRV Reference Probe EX	nts(SI). The measuremen pages and are part of the been conducted in the of it used (M&TE critical for of ID # Cal Date D 102083 /-Z5 100595 (3DV4 SN 3846 SN 777 E4438C MY49070393	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment tempera- calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No. EX3-3846_Sep13)	d Calibratic Sep-14 Sep-14 Sep-14
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRVI Power sensor NRV Reference Probe EX DAE4 Signal Generator E	nts(SI). The measuremen pages and are part of the been conducted in the of it used (M&TE critical for of ID # Cal Date D 102083 /-Z5 100595 (3DV4 SN 3846 SN 777 E4438C MY49070393	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment tempera- calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No. JZ13-394) 19-Oct-13 (TMC, No.JZ13-278)	d Calibratic Sep-14 Sep-14 Sep-14 Feb -14 Nov-14
units of measuremen given on the following All calibrations have and humidity<70%. Calibration Equipmen Primary Standards Power Meter NRVI Power sensor NRV Reference Probe EX DAE4 Signal Generator E	nts(SI). The measurements pages and are part of the been conducted in the of the used (M&TE critical for of ID # Cal Date D 102083 /-Z5 100595 (3DV4 SN 3846 SN 777 E4438C MY49070393 3362B MY43021135	nts and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment tempera- calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No. JZ13-443) 11-Sep-13 (TMC, No. JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No. JZ13-394) 19-Oct-13 (TMC, No.JZ13-278)	d Calibratic Sep-14 Sep-14 Sep-14 Feb -14 Nov-14 Oct-14
units of measuremer given on the following All calibrations have and humidity<70%. Calibration Equipment Primary Standards Power Meter NRV Power sensor NRV Reference Probe EX DAE4 Signal Generator E Network Analyzer E	hts(SI). The measurement pages and are part of the been conducted in the of it used (M&TE critical for of ID# Cal Date D 102083 7-Z5 100595 (3DV4 SN 3846 SN 777 E4438C MY49070393 3362B MY43021135	this and the uncertainties with confidence pro- e certificate. closed laboratory facility: environment temperation (calibration) e(Calibrated by, Certificate No.) Scheduled 11-Sep-13 (TMC, No.JZ13-443) 11-Sep-13 (TMC, No.JZ13-443) 3- Sep-13 (SPEAG, No.EX3-3846_Sep13) 22-Feb-13 (SPEAG, DAE4-777_Feb13) 13-Nov-13 (TMC, No.JZ13-394) 19-Oct-13 (TMC, No.JZ13-278) Function S	d Calibratic Sep-14 Sep-14 Sep-14 Feb -14 Nov-14 Oct-14

Certificate No: J14-2-0053

Page 1 of 8

Report No.: RXA1404-0098SAR01R1

Page 119 of 152

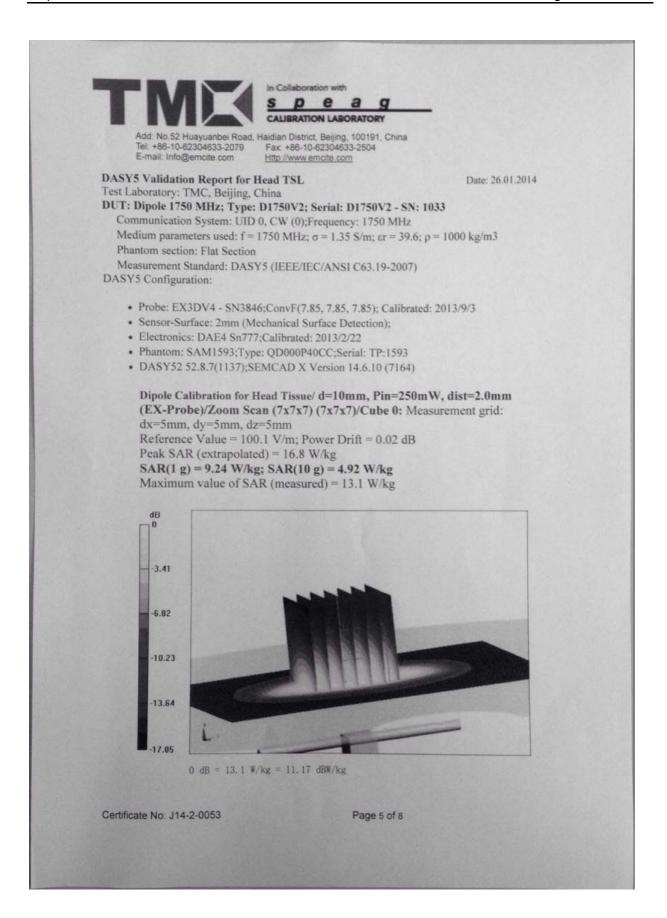
Report No.: RXA1404-0098SAR01R1

Page	120	of	152	
i ugo	120	0.	102	

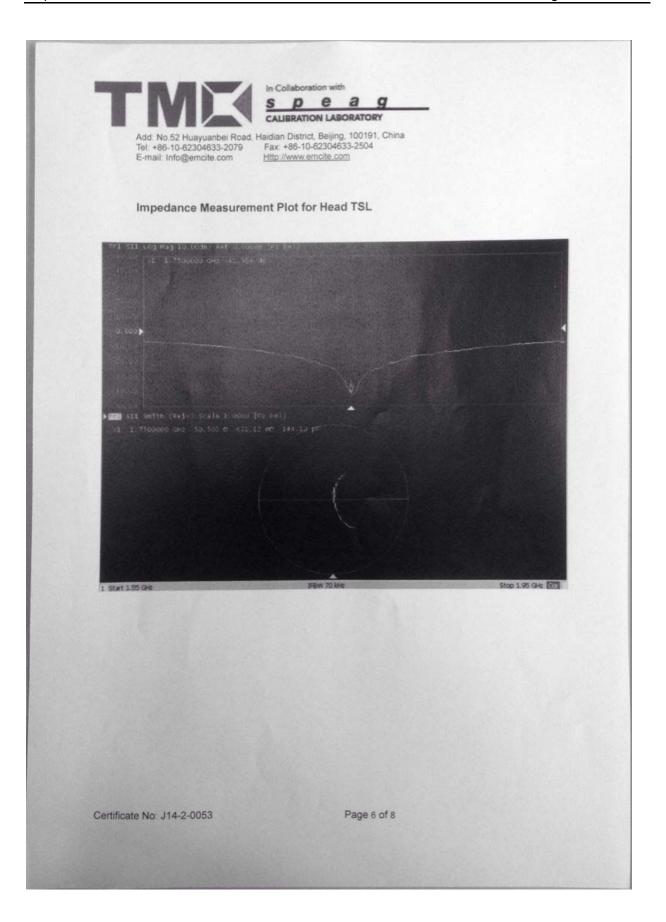
TM	Collaboration D	e a g			
	ALIBRATION	I LABORATORY			
Add: No.52 Huayuanbei Road, Haid Tel: +86-10-62304633-2079 Fa		Beijing, 100191, Ch 2304633-2504	nina		
	tp://www.em				
Measurement Conditions					
DASY system configuration, as far as n		Contractory of the second			
DASY Version		DASY52			52.8.7.1137
Extrapolation	Advanc	ed Extrapolation			Carlo State President
Phantom	Tv	vin Phantom			
Distance Dipole Center - TSL	1944 A	10 mm		wit	h Spacer
Zoom Scan Resolution	dx, d	iy, dz = 5 mm			
Frequency	1750) MHz ± 1 MHz			
Head TSL parameters		1125100			
The following parameters and calculation	ons were ap		0		Conductivity
	-	Temperature	Permitti	vity	Conductivity
Nominal Head TSL parameters		22.0 °C	40.1		1.37 mho/m
Measured Head TSL parameters		(22.0 ± 0.2) °C	39.6 ± 0	5 %	1.35 mho/m ± 6 %
Head TSL temperature change dur	ring test	<1.0 °C	****		
SAR result with Head TSL		Condi		-	In the second
SAR averaged over 1 cm ³ (1 g) of SAR measured	Head TSL	Condit 250 mW in			0.24 mW/a
		250 mW in		07.0	9.24 mW/g
SAR for nominal Head TSL parameter		normalize	The second s	31.2	mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g)	of Head TSL				
SAR measured	110000	250 mW in	put power		4.92 mW / g
SAR for nominal Head TSL parameter	ers	normalized to 1W		19.8	mW /g ± 20.4 % (k=2)
Body TSL parameters The following parameters and calculation	ons were ac	oplied.			
		Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters	10.00.	22.0 °C	53.4		1.49 mho/m
Measured Body TSL parameters		(22.0 ± 0.2) °C	52.8 ±	5 %	1.47 mho/m ± 6 %
Body TSL temperature change dur	ring test	<1.0 °C			
SAR result with Body TSL	- 1				
SAR averaged over 1 cm ³ (1 g) of	Body TSL	Condit	tion		THE STATE
SAR measured	all a start	250 mW in	put power		9.63 mW / g
SAR for nominal Body TSL parameter	ers	normalize	d to 1W	38.8	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm ³ (10 g) o			1993 (C.C.	1000	

Certificate No: J14-2-0053

Page 3 of 8

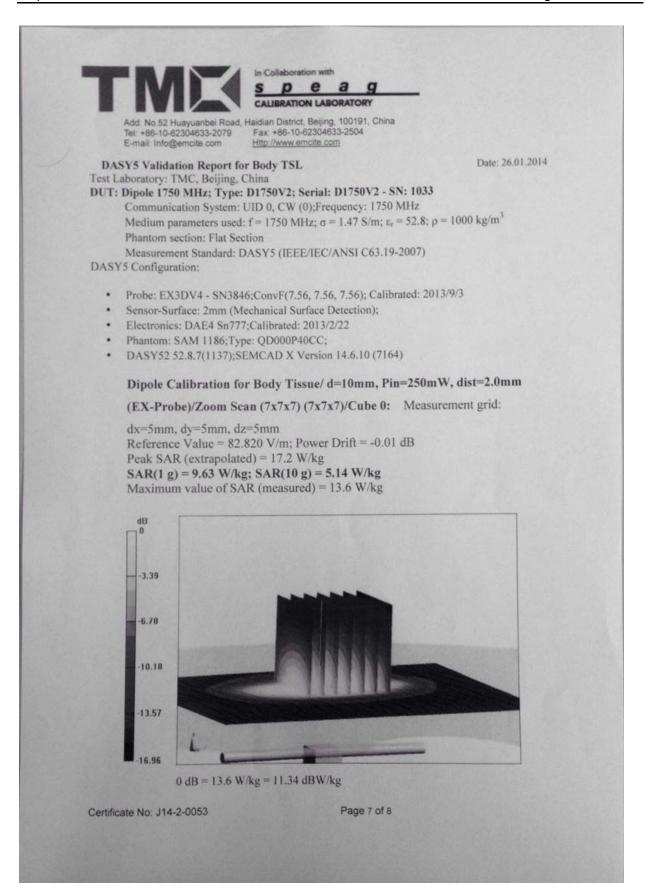

Report No.: RXA1404-0098SAR01R1

Appendix	
Antenna Parameters with Head TSL	50.50 0.520
Impedance, transformed to feed point Return Loss	50.5Ω- 0.63jΩ - 41.9dB
Antenna Parameters with Body TSL	45.00.2.08:0
Impedance, transformed to feed point Return Loss	45.8Ω- 3.98jΩ - 24.3dB
After long term use with 100W radiated power, only be measured.	a slight warming of the dipole near the feedpoint ca
The dipole is made of standard semirigid coaxial cat directly connected to the second arm of the dipole. T DC-signals. On some of the dipoles, small end caps matching when loaded according to the position as e	The antenna is therefore short-circuited for are added to the dipole arms in order to improve
the Standard. No excessive force must be applied to the dipole arm connections near the feedpoint may be damaged.	ms, because they might bend or the soldered
the Standard. No excessive force must be applied to the dipole arm	ms, because they might bend or the soldered

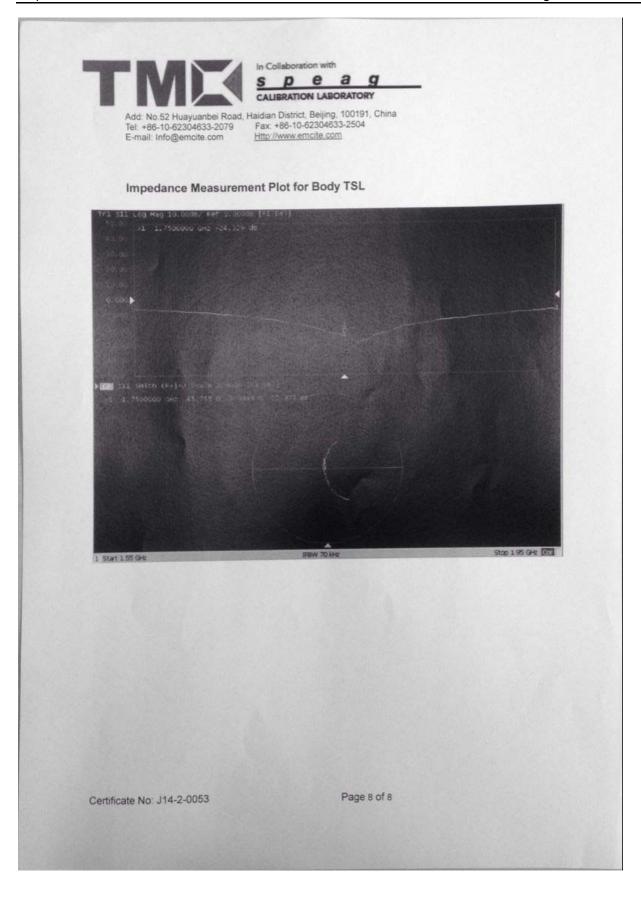

Page 121 of 152

Report No.: RXA1404-0098SAR01R1

Page 122 of 152


Report No.: RXA1404-0098SAR01R1

Page 123 of 152


Report No.: RXA1404-0098SAR01R1

Page 124 of 152

Report No.: RXA1404-0098SAR01R1

Page 125 of 152

ANNEX G: D1900V2 Dipole Calibration Certificate

Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A UB37292783 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A UB37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5005 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01367) Apr-12 Standards SN: 6047 2 / 06327 29-Mar-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Prover sensor HP 8481A M41092317 18-Oct-02 (in house check Oct-09)	The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-Shanghal (Auden) Certificate No: D1900V2-5d060_A CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration procedure(s) QA CAL-05,v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), the measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power sensor HP 4811A US3726273 06-0C+10 (No. 217-01266) 0C+11 Power sensor HP 4813 Sh: 5007.2 29-Mar-11 (No. 537.205.300.5 Apr11) Apr-12 Sh: 601 04-Jul-11 (No. DAE4-601_Jul/11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Poweresensor HP 4811A MY41092317	Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zuricl	y of h, Switzerland	HAC MRA (2 V Z)	S Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service
Mate Certificate No: D1900V2-5d060_Aug1 Calibration D1900V2 - SN: 5d060 Calibration procedure(s) QA CAL-05,v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 Chies calibration certificate documents the traceability to national standards, which realize the physical units of measurements (s)). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration fave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (MATE critical for calibration) Ymean Standards 10 # Cal Date (Certificate No.) Scheduled Calibration Ymear whether EPM-442A B337480704 06-Oct-10 (No. 217-01286) Oct-11 Ymear whether EPM-442A B337480704 06-Oct-10 (No. 217-01286) Oct-11 Ymear Meter EPM-442A B337480704 06-Oct-10 (No. 217-01286) Oct-11 Ymear Meter EPM-442A B337480704 06-Oct-10 (No. 217-01286) Oct-11 Ymear Mismath combination SN: 55047 2 / 08327 29-Mar-11 (No. 217-01387) Apr-12 Ymear Meter EPM-442A B337480704 06-Oct-10 (No. 217-01371) Apr-12 Ymear Standards	Main Textificate No: D1900V2-5d060_A CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration procedure(s) QA CAL-05,v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Al calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Oct-111 Prover meter FPM-442A GB37480704 G-Oct-10 (No. 217-01266) Oct-111 Priver sansor HP 481A UB37282783 G-Oct-10 (No. 217-01266) Oct-111 Priver Sinsor HP 481A UB37480704 G-Oct-10 (No. 217-01266) Oct-111 Priver sansor HP 481A UB37480704 G-Oct-10 (No. 217-01266) Oct-111 Priver Sinsor HP 481A UB37480704 G-Oct-10 (No. 217-01266) Oct-111 Ski 5006 (200) 29-Mar-11 (No. 217-01367) Apr-12 Ski 601	he Swiss Accreditation Service	e is one of the signatorie	es to the EA	on No.: SCS 108
Display Display 2 - SN: 5d060 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5058 (20b) 29-Mar-11 (No. 217-01266) Oct-11 SN: 5057 29-Mar-11 (No. 217-01367) Apr-12 SN: 5057 SN: 601 04-Jul-11 (No. 217-01367) Apr-12 SN: 5057 SN: 601 04-Jul-11 (No. 283-3205_Apr11) Apr-12 SN: 601 SN: 604-Jul-11 (No. DAE4-601_Jul-11) Jul-12 Secondary Standards ID # Check Date (in house check Oct-09) In house check: Oct-11 Now check: Oct-11	Object D1900V2 - SN: 5d060 Calibration procedure(s) OA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US 37282783 06-Oct-10 (No. 217-01266) Oct-11 Reference 2 0Rb ES3DV3 SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) <th></th> <th></th> <th></th> <th>No: D1900V2-5d060_Aug1</th>				No: D1900V2-5d060_Aug1
Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37282783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5066 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Nice Solo 20 a Standards D # Check Date (in house) Scheduled Check Power sensor HP 8481A D # Check Date (in house) Scheduled Check Solo 20 A Date Atta 20 (in house check Oct-09) In house check: Oct-11 Natr 10/23317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Solo 20 A Date Atta 20 (in house check Oct-10) In house check: Oct-11 In house	Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Oct-11 Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power sensor HP 8481A US37282783 06-Oct-10 (No. 217-01266) Oct-11 Nate Coli Check Date (in house) Scheduled Check SN: 5047.2 / 06327 29-Mar-11 (No. 217-01367) Apr-12 SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 SN: 601 04-Jul-11 (No. ES3-3205_Apr11) Apr-12 SN: 601 04-Jul-11 (No. ES3-3205_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A INY 1092317 18-Oct-02 (in house check Oc	CALIBRATION C	ERTIFICATE		
Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prover meter EPM-442A GB37480704 Ge-Oct-10 (No. 217-01266) Oct-11 Power meter FPM-442A GB37480704 Ge-Oct-10 (No. 217-01266) Oct-11 Power sensor HP B481A US37292783 Ge-Oct-10 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5005 (20b) 29-Mar-11 (No. 217-01367) Apr-12 SN: 6001 O4-Jul-11 (No. DAE4-601_Jul-11) Jul-12 Scheduled Check Power sensor HP B481A ID # Check Date (in house) Scheduled Check Power sensor HP B481A ID # Check Date (in house check Oct-09) In house check: Oct-11 Socodary Standards ID # Chec	Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 31, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A ID 87292783 06-Oct-10 (No. 217-01266) Oct-11 Power meter EPM-442A ID 87292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 56086 (20b) 29-Mar-11 (No. 237-01367) Apr-12 Reference Probe ES3DV3 SN: 601 04-Jut-11 (No. E33-205_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 6481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 6481A MY41092317 18-Oct-02 (in house c	Dbject	D1900V2 - SN: 5	d060	Constant of the second second
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)		dure for dipole validation kits at	pove 700 MHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	August 31, 2011		
Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01267) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11	The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 <t< th=""><th></th><th></th><th>·</th><th></th></t<>			·	
Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 601 04-Jul-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Signature	Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: \$5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: \$5086 (20b) 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: \$205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Signature	The measurements and the uncer	rtainties with confidence p	robability are given on the following pages a	and are part of the certificate.
Power sensor HP 8481A US37292783 06-Oct.10 (No. 217-01266) Oct.11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 5047.2 / 06327 29-Mar-11 (No. 253-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11	Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 55086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 55086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference Probe ES3DV3 SN: 5047.2 / 06327 29-Mar-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11	The measurements and the uncer	rtainties with confidence p	robability are given on the following pages a	and are part of the certificate.
Reference 20 dB Attenuator SN: \$5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: \$5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference Probe ES3DV3 SN: \$5086 (20b) 29-Mar-11 (No. 217-01371) Apr-12 DAE4 SN: \$205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul/11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Signature	Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: S5085 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Mar-11 (No. 237-01371) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	rtainties with confidence p ted in the closed laborato "E critical for calibration)	robability are given on the following pages i ry facility: environment temperature (22 \pm 3)	and are part of the certificate. °C and humidity < 70%.
Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 6481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p ted in the closed laborato (E critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	and are part of the certificate. (°C and humidity < 70%. Scheduled Calibration Oct-11
Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Signature	Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	ttainties with confidence p ted in the closed laborato E critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ttainties with confidence p ted in the closed laborato E critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	tainties with confidence p ted in the closed laborato E critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	and are part of the certificate. I ^o C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 -
Power sensor HP 8481A MY41092317 18-Oct-02 (In house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	tainties with confidence p ted in the closed laborato (E critical for calibration) (D #) (BB37480704 US37292783 SN: S5086 (20b) SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	and are part of the certificate. I ^o C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 -
AF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	AF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	tainties with confidence p ted in the closed laborato (E critical for calibration) (D #) (BB37480704 US37292783 SN: S5086 (20b) SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	and are part of the certificate. I ^o C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 -
Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	tainties with confidence p ted in the closed laborator (E critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55086 (20b) SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	and are part of the certificate. y°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
Name Function Signature	Name Function Signature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	tainties with confidence p ted in the closed laborato (E critical for calibration) (D # (BB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 (D # (MY41092317)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	and are part of the certificate. y°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
Cognitive Cognitive	egnature egnature	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Reference R&S SMT-06	rtainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	and are part of the certificate. y°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Cognition Congression	and the second	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Reference R&S SMT-06	rtainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	and are part of the certificate. y°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Subrated by: Direce llies	Laboratory Technician D-Ritt	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Reference R&S SMT-06	tainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	and are part of the certificate. (*C and humidity < 70%, Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Laboratory rechnician D-Riter		The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Reference R&S SMT-06 Retwork Analyzer HP 8753E	tainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	and are part of the certificate. (*C and humidity < 70%, Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
	Approved by: Katja Pokovic Technical Manager	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A Reference R&S SMT-06 Retwork Analyzer HP 8753E	tainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	and are part of the certificate. (*C and humidity < 70%, Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Approved by: Katja Pokovic Technical Manager	for and	The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E Calibrated by:	tainties with confidence p ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	and are part of the certificate. (*C and humidity < 70%, Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

Report No.: RXA1404-0098SAR01R1

Page 127 of 152

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
- reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060_Aug11

Report No.: RXA1404-0098SAR01R1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.30 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhō/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Aug11

Report No.: RXA1404-0098SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 7.5 jΩ	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG
Manufactured on	December 10, 2004

Page 4 of 8

Report No.: RXA1404-0098SAR01R1

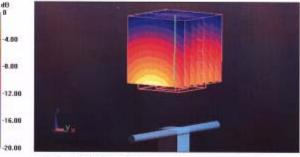
Page 130 of 152

Date: 30.08.2011

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

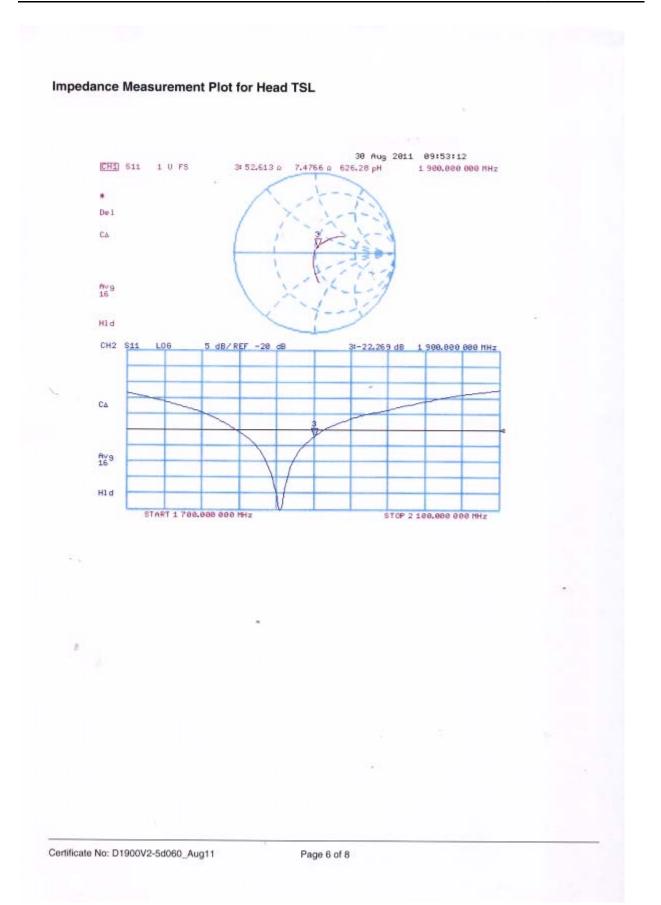

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.636 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.535 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 12.600 mW/g


 $0 \, dB = 12.600 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

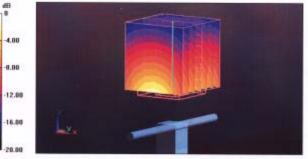
Page 5 of 8

Report No.: RXA1404-0098SAR01R1

Page 131 of 152

Report No.: RXA1404-0098SAR01R1

٠

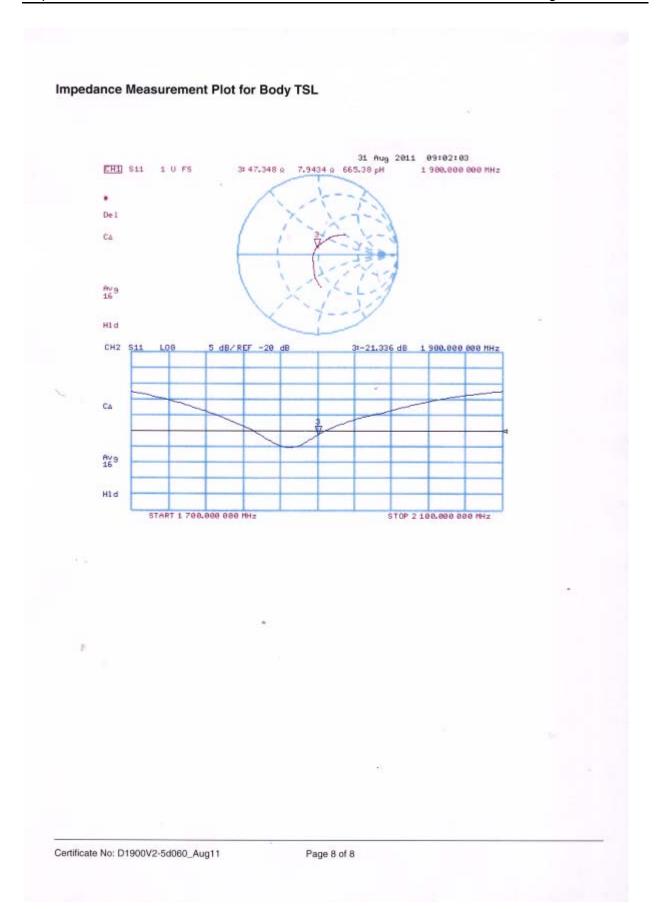

Page 132 of 152

DASY5 Validation Report for Body TSL Date: 31.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn601; Calibrated: 04.07.2011 ٠
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 ٠
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) .

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = -0.0099 dB Peak SAR (extrapolated) = 18.663 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g Maximum value of SAR (measured) = 13.397 mW/g


 $0 \, dB = 13.400 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

Page 7 of 8

Report No.: RXA1404-0098SAR01R1

Page 133 of 152

ANNEX H: D2450V2 Dipole Calibration Certificate

Schmid & Partner Engineering AG Reughausstrasse 43, 8004 Zuric	y of	INISS SOURCE SUNISS	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Service	e is one of the signatorie	s to the EA	on No.: SCS 108
Multilateral Agreement for the re- Client TA-Shanghai (A			No: D2450V2-786_Aug11
CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 7	86	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits ab	oove 700 MHz
Calibration date:	August 29, 2011		STATE OF STREET, STREET
-		-	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T	rtainties with confidence p sted in the closed laborato rE critical for calibration)	robability are given on the following pages a	and are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	rtainties with confidence p sted in the closed laborato FE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p sted in the closed laborato (E critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence p sted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p sted in the closed laborato (E critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p sted in the closed laborator rE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Dct-11 Oct-11 Apr-12 Apr-12 -
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reterence Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 = ID # ID # MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: \$5086 (20b) SN: \$5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 \$4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Chack Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	and are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: \$5086 (20b) SN: \$5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 \$4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Chack Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	and are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	and are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	and are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-786_Aug11

Page 1 of 8

Report No.: RXA1404-0098SAR01R1

Page 135 of 152

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS C Z Z RIBRATO

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-786_Aug11

Report No.: RXA1404-0098SAR01R1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.41 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mhơ/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.10 mW / g

Certificate No: D2450V2-786_Aug11

Report No.: RXA1404-0098SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.4 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 3.5 jΩ		
Return Loss	- 29.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	May 06, 2005		

Page 4 of 8

Report No.: RXA1404-0098SAR01R1

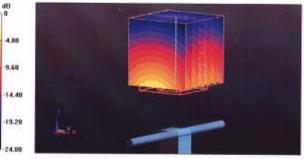
Page 138 of 152

Date: 29.08.2011

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

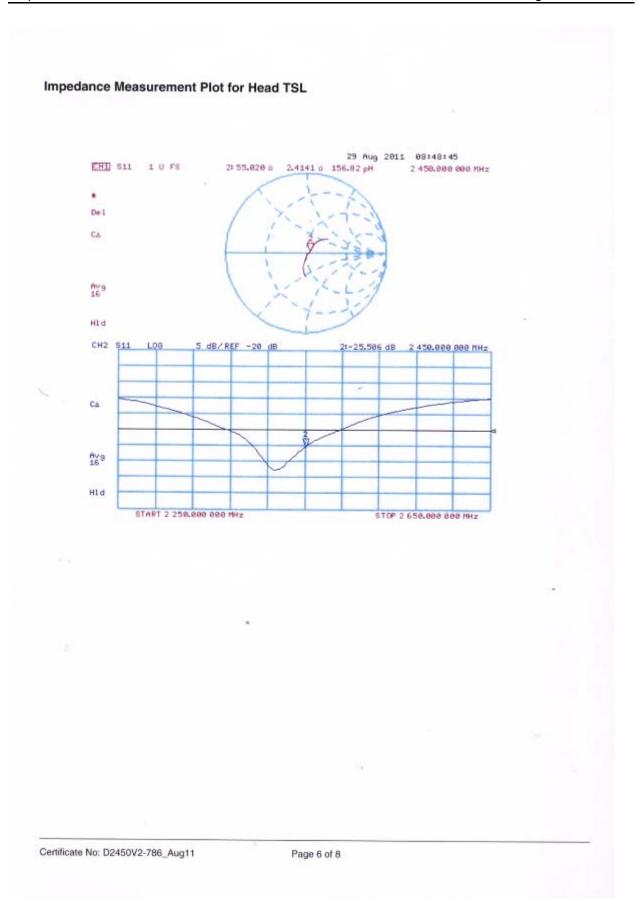

Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

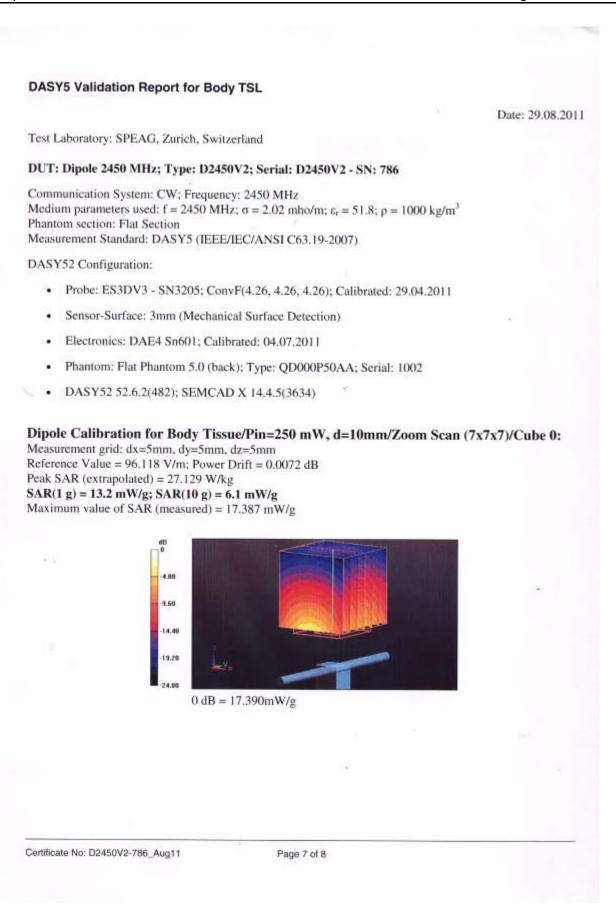
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.303 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g Maximum value of SAR (measured) = 17.561 mW/g

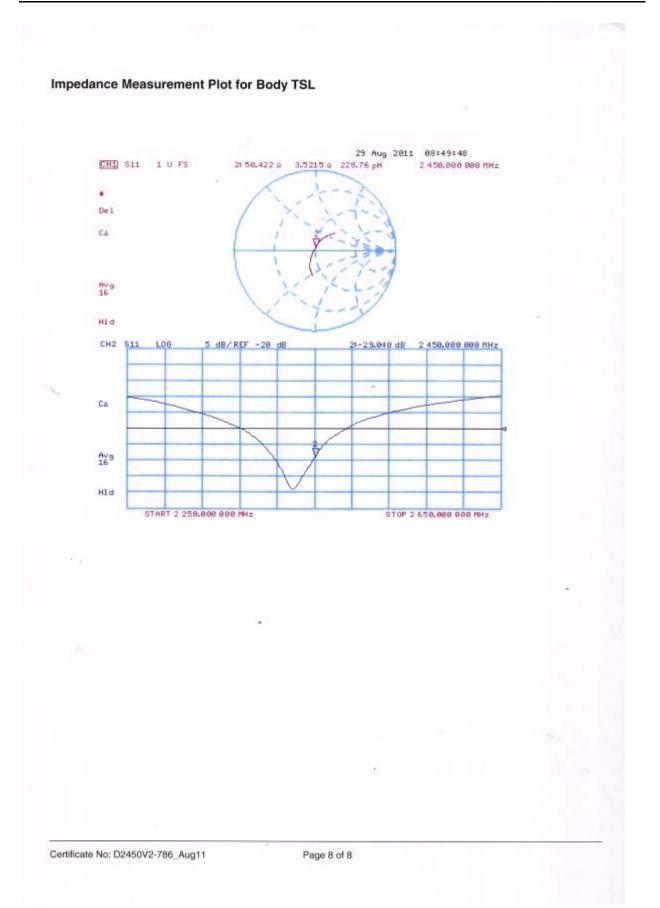

0 dB = 17.560 mW/g

Certificate No: D2450V2-786_Aug11

Page 5 of 8


Report No.: RXA1404-0098SAR01R1

Page 139 of 152


Report No.: RXA1404-0098SAR01R1

Page 140 of 152

Report No.: RXA1404-0098SAR01R1

Page 141 of 152

ANNEX I: DAE4 Calibration Certificate

Client : TA	104633-2079 Fax: +86-10-62304633-2504 104633-2
the liter was a state of the st	CERTIFICATE
bject	DAE4 - SN: 1317
alibration Procedure(s)	TNO 00 5 01 100
	TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics
	(DAEx)
Calibration date:	January 16, 2014
measurements(SI). The pages and are part of the All calibrations have be	ate documents the traceability to national standards, which realize the physical units measurements and the uncertainties with confidence probability are given on the followi e certificate. eeen conducted in the closed laboratory facility: environment temperature(22±3)°C a
measurements(SI). The pages and are part of the All calibrations have be humidity<70%.	measurements and the uncertainties with confidence probability are given on the following ecertificate. The conducted in the closed laboratory facility: environment temperature(22±3)°C and used (M&TE critical for calibration)
measurements(SI). The pages and are part of the All calibrations have be humidity<70%.	measurements and the uncertainties with confidence probability are given on the following ecertificate.
measurements(SI). The pages and are part of the All calibrations have be humidity<70%. Calibration Equipment u	measurements and the uncertainties with confidence probability are given on the following ecertificate. The conducted in the closed laboratory facility: environment temperature(22±3)°C and used (M&TE critical for calibration)
measurements(SI). The bages and are part of the All calibrations have be numidity<70%. Calibration Equipment u Primary Standards Documenting	measurements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the uncertainties with confidence probability are given on the uncertainties are dependent and the uncertainties are dep
neasurements(SI). The bages and are part of the All calibrations have be numidity<70%. Calibration Equipment u Primary Standards Documenting Process Calibrator 753	measurements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the closed laboratory facility: environment temperature(22±3)°C a used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 01-July-13 (TMC, No:JW13-049) July-14
neasurements(SI). The bages and are part of the All calibrations have be numidity<70%. Calibration Equipment u Primary Standards Documenting	measurements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given on the following elements and the uncertainties with confidence probability are given and the uncertainties with confidence probability environment temperature (22±3)°C a used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 01-July-13 (TMC, No:JW13-049) July-14 Name Function Signature

Certificate No: J14-2-0052

Page 1 of 3

Report No.: RXA1404-0098SAR01R1

		4	S	D	tion wit	a	a	
			CAL	BRATH	ON LAS	ORAT	ORY	
	Add No.52 Huayuan	bei Road, I	Haidian	District	Beijing	10019	I, China	
	Tel. +86-10-6230463.	3-2079	Fax:	+86-10-	6230463	3-2504		
	E-mail: Infogemeite	com	Http	liwww.	emcite.co	om		
Glos	sary:							
DAE		data	aco	uisiti	on el	ectro	onics	
Conr	ector angle			and the second second			ASY system to a	alig

information used in DASY system to align probe sensor X to the robot coordinate system.

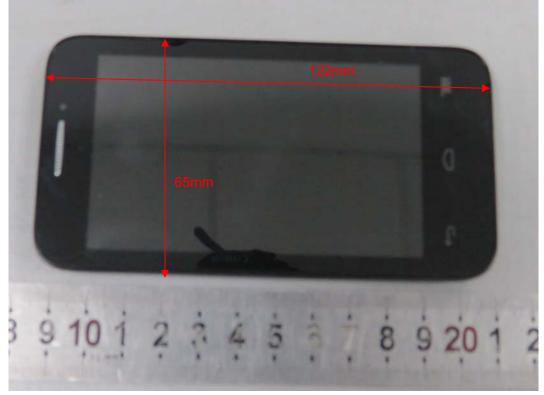
Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Page 2 of 3

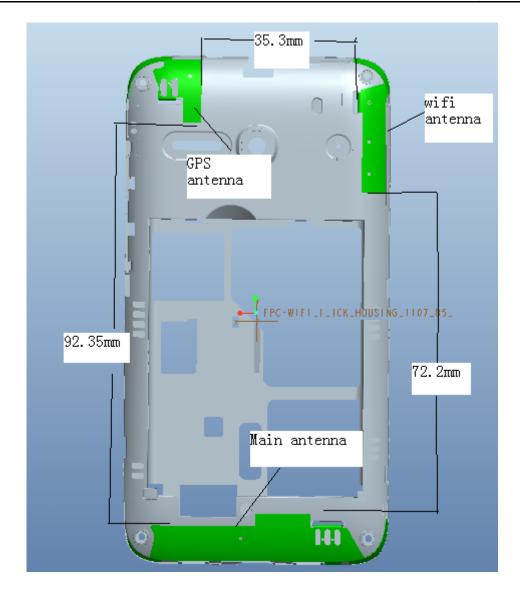
DC Voltage Measurement

A/D - Converter Re	solution nomi	nal		
High Range:	1LSB =	6 1µV.	full range =	-100+300 mV
Low Range	1LSB =	61nV .	full range =	-1+3mV
DASY measurement	nt parameters	Auto Zero	Time: 3 sec; Meas	suring time: 3 sec


Calibration Factors	x	Y	z
High Range	404.058 ± 0.15% (k=2)	404.060 ± 0.15% (k=2)	403.954 ± 0.15% (k=2)
Low Range	3.99002 ± 0.7% (k=2)	3.99910 ± 0 7% (k=2)	3 98303 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	119° ± 1 °
---	------------


Page 3 of 3

ANNEX J: The EUT Appearances and Test Configuration

a: EUT

Report No.: RXA1404-0098SAR01R1

b: Antenna

Report No.: RXA1404-0098SAR01R1

Page 147 of 152

Battery 2 c: Battery

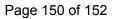
Picture 10: Constituents of EUT

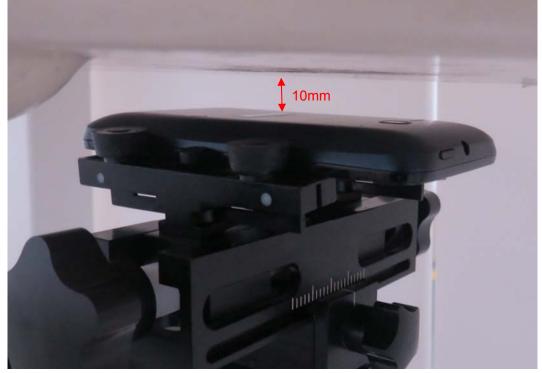
Report No.: RXA1404-0098SAR01R1

Picture 11: Left Hand Touch Cheek Position

Picture 12: Left Hand Tilt 15 Degree Position

Report No.: RXA1404-0098SAR01R1




Picture 13: Right Hand Touch Cheek Position

Picture 14: Right Hand Tilt 15 Degree Position

Report No.: RXA1404-0098SAR01R1

Picture 15: Back Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 16: Front Side, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1404-0098SAR01R1

Picture 17: Left Edge, the distance from handset to the bottom of the Phantom is 10mm

Picture 18: Right Edge, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1404-0098SAR01R1

Picture 19: Top Edge, the distance from handset to the bottom of the Phantom is 10mm

Picture 20: Bottom Edge, the distance from handset to the bottom of the Phantom is 10mm