No. I14Z47151-SEM01 Page 1 of 116

SAR TEST REPORT

No. I14Z47151-SEM01

For

TCT Mobile Limited

GSM Quad band UMTS Tri-band mobile phone

Model Name: A206G

With

Hardware Version: PIO

Software Version: D2B

FCC ID: RAD477

Issued Date: 2014-08-01

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Date	Memo
I14Z47151-SEM01	0	2014-08-01	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 Applicant Information	7
3.2 MANUFACTURER INFORMATION	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	8
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
5 TEST METHODOLOGY	9
5.1 Applicable Limit Regulations	9
5.2 Applicable Measurement Standards	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	
6.2 SAR DEFINITION	
7 TISSUE SIMULATING LIQUIDS	11
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	15
8.1 System Setup	
8.2 System Verification	16
9 MEASUREMENT PROCEDURES	17
9.1 Tests to be performed	
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH MEASUREMENT PROCEDURES FOR SAR	
9.5 Power Drift	
10 AREA SCAN BASED 1-G SAR	21
10.1 REQUIREMENT OF KDB	21
10.2 FAST SAR ALGORITHMS	
11 CONDUCTED OUTPUT POWER	22

11.1 M anu	FACTURING TOLERANCE	22
11.2 GSM 1	MEASUREMENT RESULT	24
11.3 WCDI	MA MEASUREMENT RESULT	25
11.4 BT MI	EASUREMENT RESULT	25
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	26
12.1 Intro	DUCTION	26
12.2 TRANS	SMIT ANTENNA SEPARATION DISTANCES	26
12.3 STANE	DALONE SAR TEST EXCLUSION CONSIDERATIONS	27
13 EVALU	ATION OF SIMULTANEOUS	28
14 SAR TE	ST RESULT	29
14.1 SAR R	ESULTS FOR FAST SAR	30
14.2 SAR R	ESULTS FOR STANDARD PROCEDURE	35
15 SAR ME	EASUREMENT VARIABILITY	37
16 MEASU	REMENT UNCERTAINTY	39
17 MAIN T	EST INSTRUMENTS	43
ANNEX A	GRAPH RESULTS	44
ANNEX B	SYSTEM VERIFICATION RESULTS	64
ANNEX C	SAR MEASUREMENT SETUP	71
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	77
ANNEX E	EQUIVALENT MEDIA RECIPES	80
ANNEX F	SYSTEM VALIDATION	81
ANNEX G	PROBE CALIBRATION CERTIFICATE	82
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	93

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	June 23, 2014
Testing End Date:	June 27, 2014

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

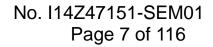
The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited GSM Quad band UMTS Tri-band mobile phone A206G are as follows:

Exposure Configuration	Technology Band Highest Reported SAR 1g (W/Kg)		Equipment Class
	GSM 850	1.13	
llood	PCS 1900	0.42	
Head (Separation Distance 0mm)	UMTS FDD 2	1.00	PCE
(Separation Distance on in)	UMTS FDD 4	1.06	
	UMTS FDD 5	1.31	
	GSM 850	0.93	
Redu worn	PCS 1900	0.87	
Body-worn (Separation Distance 10mm)	UMTS FDD 2	1.05	PCE
	UMTS FDD 4	0.96	
	UMTS FDD 5	0.98	

Table 2.1:	Hiahest	Reported	SAR (1g)
			•····(···)/

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.


The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.31 W/kg (1g)**.

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	1.31	0.26	1.57
Highest reported SAR value for Body	Rear Fold	1.05	0.13	1.18

BT* - Estimated SAR for Bluetooth (see the table 13.2)

According to the above tables, the maximum sum of reported SAR values is **1.57 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited	
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post.	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	China	
Contact:	Houhua.FAN	
Email:	houhua.fan@tcl.com	
Telephone:	+86(0)21 61460666	
Fax:	+86(0)21 61460602	

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited	
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post.	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	China	
Contact:	Houhua.FAN	
Email:	houhua.fan@tcl.com	
Telephone:	+86(0)21 61460666	
Fax:	+86(0)21 61460602	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT	
Description:	GSM Quad band UMTS Tri-band mobile phone
Mode Name:	A206G
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 850/1700/1900, BT
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	826.4-846.6 MHz (WCDMA850 Band V)
	1712.4 – 1752.6 MHz (WCDMA 1700 Band IV)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
GPRS/EGPRS Multislot Class:	10
GPRS capability Class:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Form factor:	98mm × 47.5mm

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	014052000001664	PIO	D2B
EUT2	014052000001771	PIO	D2B

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 and conducted power with the EUT2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB3120000C1	/	BYD
AE2	Headset	CCB3160A11C2	/	Lianyun

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v05r02: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled limits exposure limits are higher than the for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

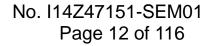
Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

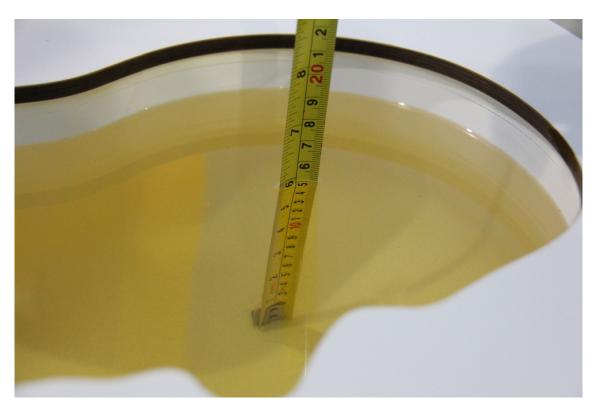
7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range			
835	Head	0.90	0.86~0.95	41.5	39.4~43.6			
835	Body	0.97	0.92~1.02	55.2	52.4~58.0			
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1			
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1			
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0			
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0			


Table 7.1: Targets for tissue simulating liquid

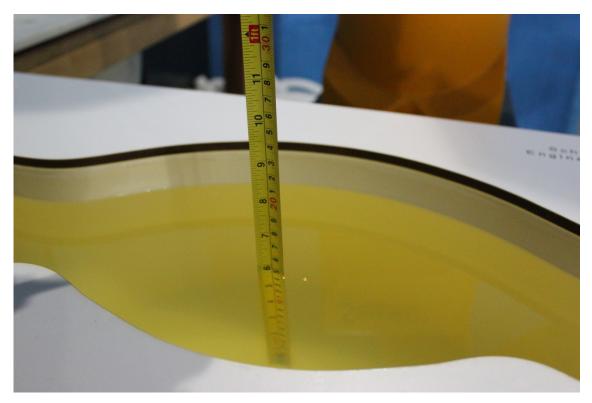
7.2 Dielectric Performance


Table 7.2: Dielectric Performance of Tissue Simulating Liquid

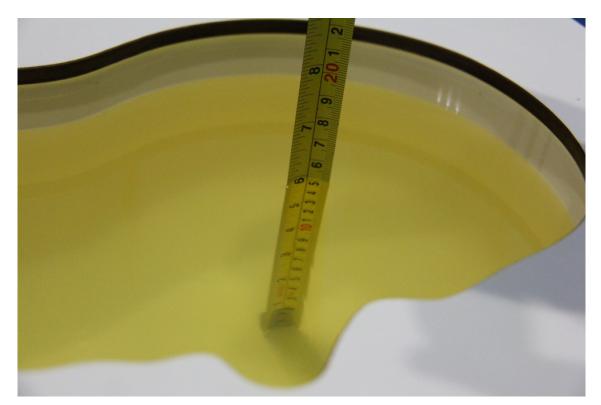
Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
(yyyy min aa)			-		. ,	
2014-06-23	Head	835 MHz	42.19	1.66	0.9173	1.92
2014-00-23	Body	835 MHz	55.96	1.38	0.986	1.65
2014-06-27	Head	1750 MHz	41.51	3.78	1.397	-0.21
2014-00-27	Body	1750 MHz	52.76	-1.01	1.533	0.86
2014-06-24	Head	1900 MHz	41.51	3.78	1.397	-0.21
	Body	1900 MHz	52.76	-1.01	1.533	0.86

Note: The liquid temperature is $22.0 \,^{\circ}C$

Picture 7-1: Liquid depth in the Head Phantom (835 MHz)



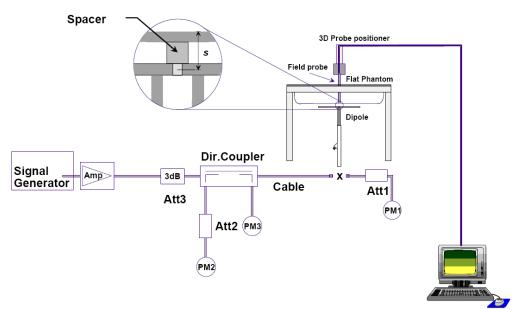
Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)


Picture 7-3: Liquid depth in the Head Phantom (1750 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1750MHz)

No. I14Z47151-SEM01 Page 14 of 116

Picture 7-5: Liquid depth in the Head Phantom (1900 MHz)


Picture 7-6Liquid depth in the Flat Phantom (1900MHz)


8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement		Target value (W/kg)		Measured	value (W/kg)	Deviation			
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average		
2014-06-23	835 MHz	6.16	9.44	6.00	9.32	-2.60%	-1.27%		
2014-06-27	1750 MHz	19.6	36.9	19.44	36.56	-0.82%	-0.92%		
2014-06-24	1900 MHz	21.3	40.4	21.24	40.00	-0.28%	-0.99%		

Table 8.1: System Verification of Head

Measuremen	t	Target value (W/kg)		Measured	value (W/kg)	Deviation			
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
(yyyy-mm-dd)	Average	Average	Average	Average	Average	Average		
2014-06-23	835 MHz	6.20	9.40	6.28	9.48	1.29%	0.85%		
2014-06-27	1750 MHz	20.6	38.2	19.92	36.96	-3.30%	-3.25%		
2014-06-24	1900 MHz	21.9	41.3	21.12	40.40	-3.56%	-2.18%		

Table 8.2: System Verification of Body

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

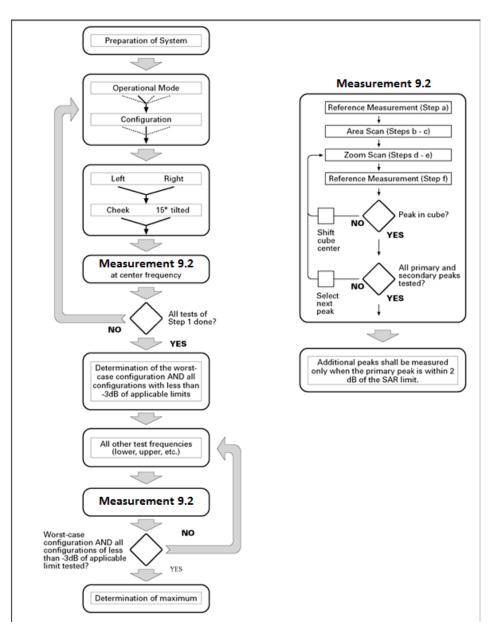
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of

the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro		•	$5 \pm 1 \text{ mm}$	$\frac{1}{2}$ ·δ·ln(2) ± 0.5 mm
Maximum probe angle f normal at the measurem	-	xis to phantom surface	30°±1°	20°±1°
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: $\Delta x_{Area}, \Delta y_{Area}$			When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device we point on the test device.	, is smaller than the above, the $e \leq $ the corresponding x or y
Maximum zoom scan sp	oatial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$
	uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	grid	∆z _{Zoom} (n>1): between subsequent points	≤ 1.5·Δ;	z _{Zcom} (n-1)
Minimum zoom scan volume x, y, z			\ge 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
2011 for details. * When zoom scan is re	equired and t , $\leq 8 \text{ mm}$, \leq	he <u>reported</u> SAR from th 7 mm and ≤ 5 mm zoom	ridence to the tissue medium; see the area scan based <i>1-g SAR estim</i> scan resolution may be applied, i	ation procedures of KDB

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	$oldsymbol{eta}_d$	β_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_{c}	$oldsymbol{eta}_d$	eta_d	$oldsymbol{eta}_{c}$ / $oldsymbol{eta}_{d}$	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	2.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	3.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.21 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

.1 Manufacturing tolerance							
	Table 11.1:	GSM Speech					
	GSI	V 850					
Channel	Channel 251	Channel 190	Channel 128				
Target (dBm)	31.5	31.5	31.5				
Tune-up (dBm)	32.5	32.5	32.5				
	GSN	/ 1900					
Channel	Channel 810	Channel 661	Channel 512				
Target (dBm)	28.5	28.5	28.5				
Tune-up (dBm)	29.5	29.5	29.5				

Table 11.2: GPRS and EGPRS

		GSM 850 GPRS (GN	/ISK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	31.5	31.5	31.5
I I XSIOL	Tune-up (dBm)	32.5	32.5	32.5
2 Txslots	Target (dBm)	30	30	30
2 1 2 2 1012	Tune-up (dBm)	31	31	31
		GSM 850 EGPRS (G	MSK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	31.5	31.5	31.5
1 1 2 5101	Tune-up (dBm)	32.5	32.5	32.5
2 Txslots	Target (dBm)	30	30	30
2 1 251015	Tune-up (dBm)	31	31	31
		GSM 1900 GPRS (G	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	28.5	28.5	28.5
1 1 2 5101	Tune-up (dBm)	29.5	29.5	29.5
2 Txslots	Target (dBm)	27.5	27.5	27.5
2 1 251015	Tune-up (dBm)	28.5	28.5	28.5
	(GSM 1900 EGPRS (G	MSK)	
Channel		810	661	512
1 Txslot	Target (dBm)	28.5	28.5	28.5
1 1 7 2101	Tune-up (dBm)	29.5	29.5	29.5
2 Txslots	Target (dBm)	27.5	27.5	27.5
2 1 2 2 1012	Tune-up (dBm)	28.5	28.5	28.5

Table 11.3: WCDMA

		A 850 CS		
Channel	Channel 4233	Channel 4182	Channel 4132	
Target (dBm)	23.5	23.5	23.5	
Tune-up (dBm)	24	24	24	
	HSUPA (S	ub-test 1~4)	1	
Channel	Channel 4233	Channel 4182	Channel 4132	
Target (dBm)	20	20	20	
Tune-up (dBm)	21	21	21	
	HSUPA (S	Sub-test 5)	·	
Channel	Channel 4233	Channel 4182	Channel 4132	
Target (dBm)	22	22	22	
Tune-up (dBm)	23	23	23	
	WCDMA	1700 CS	·	
Channel	Channel 1513	Channel 1412	Channel 1312	
Target (dBm)	23.5	23.5	23.5	
Tune-up (dBm)	24	24	24	
	HSUPA (S	ub-test 1~4)		
Channel	Channel 1513	Channel 1412	Channel 1312	
Target (dBm)	20	20	20	
Tune-up (dBm)	21	21	21	
	HSUPA (S	Sub-test 5)		
Channel	Channel 1513	Channel 1412	Channel 1312	
Target (dBm)	22	22	22	
Tune-up (dBm)	23	23	23	
	WCDMA	1900 CS		
Channel	Channel 9538	Channel 9400	Channel 9262	
Target (dBm)	22.2	22.2	22.2	
Tune-up (dBm)	23	23	23	
	HSUPA (Se	ub-test 1~4)		
Channel	Channel 9538	Channel 9400	Channel 9262	
Target (dBm)	19	19	19	
Tune-up (dBm)	20	20	20	
	HSUPA (S	Sub-test 5)		
Channel	Channel 9538	Channel 9400	Channel 9262	
Target (dBm)	21	21	21	
Tune-up (dBm)	22	22	22	

Table 11.4: Bluetooth

Bluetooth							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	> 0	> 0	> 0				
Tune-up (dBm)	8	8	8				

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM 850MHz	Conducted Power (dBm)						
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
	32.36	32.35	32.35				
GSM 1900MHz	Conducted Power (dBm)						
	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	29.06	29.12	29.12				

Table 11.5: The conducted power measurement results for GSM850/1900

Table 11.6: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measured Power (dBm)			calculation	Averaged Power (dBm)			
GPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.35	32.34	32.33	-9.03dB	23.32	23.31	23.30	
2 Txslots	30.98	30.97	30.96	-6.02dB	24.96	24.95	24.94	
GSM 850	Measu	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)	
EGPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.35	32.35	32.35	-9.03dB	23.32	23.32	23.32	
2 Txslots	30.99 30.98 30.9		30.97	-6.02dB	24.97	24.96	24.95	
PCS1900	Measu	ured Power	(dBm)	calculation	Avera	Averaged Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512	
1 Txslot	29.06	29.12	29.12	-9.03dB	20.03	20.09	20.09	
2 Txslots	28.05	28.11	28.11	-6.02dB	22.03	22.09	22.09	
PCS1900	Measu	ured Power	(dBm)	calculation	Avera	Averaged Power (dBm)		
EGPRS (GMSK)	810 661 51		512		810	661	512	
1 Txslot	29.07	29.13	29.13	-9.03dB	20.04	20.10	20.10	
2 Txslots	28.05	28.11	28.12	-6.02dB	22.03	22.09	22.10	

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

According to the conducted power as above, the body measurements are performed with 2Txslots for GSM850 and PCS1900.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

11.3 WCDMA Measurement result

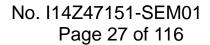
14 0 100	band		FDDV result	sult		
ltem	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)		
WCDMA	١	23.75	24.00	23.78		
	1	20.4	20.3	20.4		
	2	19.5	19.4	19.6		
HSUPA	3	19.9	19.9	20.2		
	4	20.4	20.4	20.7		
	5	22.4	22.3	22.6		
ltom	band	FDDIV result				
ltem	ARFCN	1513 (1752.6MHz)	1412 (1732.4MHz)	1312 (1712.4MHz)		
WCDMA	١	23.47	23.76	23.42		
	1	20.59	20.44	20.85		
	2	19.57	19.43	19.83		
HSUPA	3	20.07	19.91	20.36		
	4	20.56	20.41	20.84		
	5	22.53	22.39	22.8		
ltem	band		FDDII result			
item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz		
WCDMA	١	22.46	22.52	22.60		
	1	19.96	19.62	19.64		
	2	18.98	18.64	18.67		
HSUPA	3	19.48	19.12	19.18		
	4	19.97	19.64	19.67		
	5	21.99	21.62	21.67		

11.4 BT Measurement result

The output power of BT antenna is as following:

Mode	Conducted Power (dBm)				
wode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)		
GFSK	7.34	7.82	7.95		

12 Simultaneous TX SAR Considerations


12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT can transmit simultaneous with other transmitters.

2.75 6 6 7.66 15.26 15.26 15.26 15.26 12.63 3.2

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f}(GHz)$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Band/Mode	F(GHz)	Position	SAR test exclusion	RF output power		SAR test exclusion
			threshold (mW)	dBm	mW	
Plueteeth	2 4 4 4	Head	9.60	7.95	6.24	Yes
Bluetooth	2.441	Body	19.20	7.95	6.24	Yes

Table 12.1: Standalone SAR test exclusion considerations

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	1.31	0.26	1.57
Highest reported SAR value for Body	Rear Fold	1.05	0.13	1.18

BT* - Estimated SAR for Bluetooth (see the table 13.2)

Та	ble 13.2: Estimated	I SAR for Bluetooth

Position F (GHz)		Distance (mm)	Upper limi	Estimated _{1g}		
FOSILION	F (GHZ)	Distance (mm)	dBm	mW	(W/kg)	
Head	2.441	5	8	6.31	0.26	
Body	2.441	10	8	6.31	0.13	

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or > 1.2W/kg. The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:4
WCDMA850/1700/1900	1:1

14.1 SAR results for Fast SAR

Table 14.2: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C										
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	-	Side		Ū.	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(dBm) Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	/	32.36	32.5	0.445	0.46	0.675	0.70	0.08
836.6	190	Left	Touch	/	32.35	32.5	0.363	0.38	0.555	0.57	0.12
824.2	128	Left	Touch	/	32.35	32.5	0.293	0.30	0.448	0.46	0.06
848.8	251	Left	Tilt	/	32.36	32.5	0.191	0.20	0.281	0.29	-0.06
836.6	190	Left	Tilt	/	32.35	32.5	0.150	0.16	0.218	0.23	-0.03
824.2	128	Left	Tilt	/	32.35	32.5	0.127	0.13	0.185	0.19	-0.04
848.8	251	Right	Touch	Fig.1	32.36	32.5	0.583	0.60	1.09	1.13	0.14
836.6	190	Right	Touch	/	32.35	32.5	0.444	0.46	0.681	0.70	-0.06
824.2	128	Right	Touch	/	32.35	32.5	0.360	0.37	0.551	0.57	0.08
848.8	251	Right	Tilt	/	32.36	32.5	0.207	0.21	0.304	0.31	-0.07
836.6	190	Right	Tilt	/	32.35	32.5	0.159	0.16	0.233	0.24	0.11
824.2	128	Right	Tilt	/	32.35	32.5	0.133	0.14	0.194	0.20	-0.02

Table 14.3: SAR Values (GSM 850 MHz Band - Body)

			Amb	ient Temp	erature: 22.3 °	C Liquid T	emperature:	21.8°C			
Frequ	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (2)	Front Fold	/	30.98	31	0.169	0.17	0.246	0.25	-0.10
836.6	190	GPRS (2)	Front Fold	/	30.97	31	0.096	0.10	0.148	0.15	-0.06
824.2	128	GPRS (2)	Front Fold	/	30.96	31	0.111	0.11	0.167	0.17	0.10
848.8	251	GPRS (2)	Rear Fold	/	30.98	31	0.447	0.45	0.682	0.69	0.00
836.6	190	GPRS (2)	Rear Fold	/	30.97	31	0.584	0.59	0.871	0.88	0.08
824.2	128	GPRS (2)	Rear Fold	Fig.2	30.96	31	0.647	0.65	0.920	0.93	0.00
848.8	251	GPRS (2)	Rear Unfold	/	30.98	31	0.555	0.56	0.764	0.77	0.04
836.6	190	GPRS (2)	Rear Unfold	/	30.97	31	0.487	0.49	0.697	0.70	0.03
824.2	128	GPRS (2)	Rear Unfold	/	30.96	31	0.478	0.48	0.681	0.69	0.03
848.8	251	EGPRS (2)	Rear Fold	/	30.99	31	0.431	0.43	0.669	0.67	0.11
836.6	190	EGPRS (2)	Rear Fold	/	30.98	31	0.559	0.56	0.856	0.86	-0.04
824.2	128	EGPRS (2)	Rear Fold	/	30.97	31	0.643	0.65	0.911	0.92	-0.04
824.2	128	Speech	Rear Fold Headset	/	32.35	32.5	0.449	0.46	0.664	0.69	0.05

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C											
	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C Erequency Conducted Measured Reported Reported Power											
Freque	ency		Test	Figuro	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power	
	-	Side		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position No.		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1909.8	810	Left	Touch	/	29.06	29.5	0.141	0.16	0.263	0.29	0.06	
1880	661	Left	Touch	/	29.12	29.5	0.168	0.18	0.292	0.32	0.06	
1850.2	512	Left	Touch	Fig.3	29.12	29.5	0.234	0.26	0.381	0.42	0.12	
1909.8	810	Left	Tilt	/	29.06	29.5	0.019	0.02	0.032	0.04	0.06	
1880	661	Left	Tilt	/	29.12	29.5	0.024	0.03	0.040	0.04	-0.03	
1850.2	512	Left	Tilt	/	29.12	29.5	0.035	0.04	0.058	0.06	0.01	
1909.8	810	Right	Touch	/	29.06	29.5	0.087	0.10	0.210	0.23	-0.03	
1880	661	Right	Touch	/	29.12	29.5	0.088	0.10	0.213	0.23	0.18	
1850.2	512	Right	Touch	/	29.12	29.5	0.153	0.17	0.259	0.28	0.15	
1909.8	810	Right	Tilt	/	29.06	29.5	0.081	0.09	0.198	0.22	0.19	
1880	661	Right	Tilt	/	29.12	29.5	0.087	0.09	0.209	0.23	0.14	
1850.2	512	Right	Tilt	/	29.12	29.5	0.100	0.11	0.230	0.25	-0.09	

Table 14.4: SAR Values (GSM 1900 MHz Band - Head)

Table 14.5: SAR Values (GSM 1900 MHz Band - Body)

			Ambien	it Tempera	ture: 22.3 °C	Liquid T	emperature:	21.8°C			
Freque	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (2)	Front Fold	/	28.05	28.5	0.133	0.15	0.229	0.25	-0.06
1880	661	GPRS (2)	Front Fold	/	28.11	28.5	0.171	0.19	0.292	0.32	-0.01
1850.2	512	GPRS (2)	Front Fold	/	28.11	28.5	0.223	0.24	0.347	0.38	-0.05
1909.8	810	GPRS (2)	Rear Fold	/	28.05	28.5	0.403	0.45	0.713	0.79	0.02
1880	661	GPRS (2)	Rear Fold	/	28.11	28.5	0.432	0.47	0.760	0.83	-0.01
1850.2	512	GPRS (2)	Rear Fold	Fig.4	28.11	28.5	0.442	0.48	0.796	0.87	0.02
1909.8	810	GPRS (2)	Rear Unfold	/	28.05	28.5	0.230	0.26	0.385	0.43	-0.01
1880	661	GPRS (2)	Rear Unfold	/	28.11	28.5	0.276	0.30	0.460	0.50	-0.03
1850.2	512	GPRS (2)	Rear Unfold	/	28.11	28.5	0.325	0.36	0.506	0.55	0.03
1850.2	512	EGPRS (2)	Rear Fold	/	28.12	28.5	0.440	0.48	0.783	0.85	0.05
1850.2	512	Speech	Rear Fold Headset	/	29.12	29.5	0.238	0.26	0.447	0.49	0.09

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C													
	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C Example of the second secon													
Frequ	lency		Taat	Figure	Conducted	Max tune un	Measured	Reported	Measured	Reported	Power			
		Side	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
846.6	4233	Left	Touch	/	23.75	24	0.541	0.57	0.867	0.92	-0.08			
836.4	4182	Left	Touch	/	24.00	24	0.597	0.60	0.945	0.95	-0.04			
826.4	4132	Left	Touch	/	23.78	24	0.481	0.51	0.722	0.76	0.01			
846.6	4233	Left	Tilt	/	23.75	24	0.240	0.25	0.351	0.37	-0.06			
836.4	4182	Left	Tilt	/	24.00	24	0.237	0.24	0.345	0.35	-0.05			
826.4	4132	Left	Tilt	/	23.78	24	0.197	0.21	0.287	0.30	-0.04			
846.6	4233	Right	Touch	/	23.75	24	0.713	0.76	1.15	1.22	-0.03			
836.4	4182	Right	Touch	Fig.5	24.00	24	0.757	0.76	1.31	1.31	0.04			
826.4	4132	Right	Touch	/	23.78	24	0.602	0.63	0.967	1.02	-0.04			
846.6	4233	Right	Tilt	/	23.75	24	0.266	0.28	0.391	0.41	-0.04			
836.4	4182	Right	Tilt	/	24.00	24	0.251	0.25	0.367	0.37	0.15			
826.4	4132	Right	Tilt	/	23.78	24	0.213	0.22	0.311	0.33	-0.03			

Table 14.6: SAR Values (WCDMA 850 MHz Band - Head)

Table 14.7: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperature	:: 22.3°C L	iquid Temper	ature: 21.8°C	2		
Frequ	lency	Test	Figure	Conduct	Max. tune-up	Measured	Reported	Measured	Reported	Power
•	-	Position	No.	ed Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
846.6	4233	Front Fold	/	23.75	24	0.185	0.20	0.285	0.30	0.04
836.4	4182	Front Fold	/	24.00	24	0.265	0.27	0.405	0.41	0.03
826.4	4132	Front Fold	/	23.78	24	0.284	0.30	0.428	0.45	-0.06
846.6	4233	Rear Fold	/	23.75	24	0.401	0.42	0.605	0.64	-0.06
836.4	4182	Rear Fold	/	24.00	24	0.555	0.56	0.834	0.83	-0.02
826.4	4132	Rear Fold	Fig.6	23.78	24	0.665	0.70	0.935	0.98	0.06
846.6	4233	Rear Unfold	/	23.75	24	0.510	0.54	0.734	0.78	0.00
836.4	4182	Rear Unfold	/	24.00	24	0.557	0.56	0.800	0.80	0.01
826.4	4132	Rear Unfold	/	23.78	24	0.503	0.53	0.719	0.76	0.02
846.6	4233	Rear Fold	/	00 7 5	24	0.207	0.41	0.500	0.62	0.00
040.0	4233	Headset	/	23.75	24	0.387	0.41	0.592	0.63	0.08
026 4	4100	Rear Fold	/	24.00	24	0.475	0.49	0.821	0.92	0.10
836.4	6.4 4182 Headset		/	24.00	24	0.475	0.48	0.021	0.82	0.10
826.4	4132	Rear Fold	/	22.70	24	0.622	0.66	0.025	0.07	0.00
020.4	4132	Headset	/	23.78	24	0.632	0.66	0.925	0.97	0.00

	Ambient Temperature: 22.4 °C Liquid Temperature: 21.9 °C													
			ŀ	Ambient T	emperature: 2	2.4 °C Liqu	uid Temperatu	ure: 21.9 °C						
Frequ	ency		Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power			
	-	Side		Ũ	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1752.6	1513	Left	Touch	/	23.47	24	0.449	0.51	0.749	0.85	0.08			
1732.4	1412	Left	Touch	Fig.7	23.76	24	0.636	0.67	1	1.06	-0.06			
1712.4	1312	Left	Touch	/	23.42	24	0.429	0.49	0.717	0.82	0.12			
1752.6	1513	Left	Tilt	/	23.47	24	0.096	0.11	0.160	0.18	0.00			
1732.4	1412	Left	Tilt	/	23.76	24	0.101	0.11	0.168	0.18	-0.08			
1712.4	1312	Left	Tilt	/	23.42	24	0.086	0.10	0.142	0.16	0.04			
1752.6	1513	Right	Touch	/	23.47	24	0.330	0.37	0.739	0.83	-0.08			
1732.4	1412	Right	Touch	/	23.76	24	0.356	0.38	0.804	0.85	-0.02			
1712.4	1312	Right	Touch	/	23.42	24	0.254	0.29	0.600	0.69	0.13			
1752.6	1513	Right	Tilt	/	23.47	24	0.111	0.13	0.192	0.22	-0.02			
1732.4	1412	Right	Tilt	/	23.76	24	0.112	0.12	0.194	0.21	-0.19			
1712.4	1312	Right	Tilt	/	23.42	24	0.108	0.12	0.185	0.21	-0.10			

Table 14.8: SAR Values (WCDMA 1700 MHz Band - Head)

Table 14.9: SAR Values (WCDMA 1700 MHz Band - Body)

			Ambien	t Temperature	: 22.4 °C L	iquid Tempera	ature: 21.9°C			
Frequ	ency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
•		Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	POSITION	NO.	(dBm)	Fower (dBIII)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1752.6	1513	Front Fold	/	23.47	24	0.301	0.34	0.498	0.56	0.05
1732.4	1412	Front Fold	/	23.76	24	0.385	0.41	0.635	0.67	0.06
1712.4	1312	Front Fold	/	23.42	24	0.338	0.39	0.555	0.63	0.03
1752.6	1513	Rear Fold	/	23.47	24	0.481	0.54	0.842	0.95	0.08
1732.4	1412	Rear Fold	Fig.8	23.76	24	0.507	0.54	0.907	0.96	0.02
1712.4	1312	Rear Fold	/	23.42	24	0.481	0.55	0.777	0.89	0.08
1752.6	1513	Rear Unfold	/	23.47	24	0.484	0.55	0.780	0.88	0.04
1732.4	1412	Rear Unfold	/	23.76	24	0.542	0.57	0.867	0.92	0.07
1712.4	1312	Rear Unfold	/	23.42	24	0.516	0.59	0.844	0.96	0.05
1750.6	1510	Rear Fold	/	23.47	24	0.448	0.54	0.792	0.90	0.11
1752.6	1513	Headset	/	23.47	24	0.440	0.51	0.792	0.89	0.11
1722.4	1412	Rear Fold	/	23.76	24	0.474	0.50	0.837	0.00	0.01
1732.4	1412	Headset	/	23.70	۷4	0.474	0.50	0.037	0.88	0.01
1712.4	1312	Rear Fold	/	22.42	24	0.417	0.49	0.750	0.96	0.05
1712.4	1312	Headset	/	23.42	24	0.417	0.48	0.752	0.86	-0.05

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C													
	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C													
Freque	ency		Taat	Figure	Conducted		Measured	Reported	Measured	Reported	Power			
	,	Side	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1907.6	9538	Left	Touch	/	22.46	23	0.378	0.43	0.659	0.75	0.13			
1880	9400	Left	Touch	/	22.52	23	0.499	0.56	0.834	0.93	0.12			
1852.4	9262	Left	Touch	Fig.9	22.60	23	0.556	0.61	0.909	1.00	-0.02			
1907.6	9538	Left	Tilt	/	22.46	23	0.054	0.06	0.087	0.10	-0.14			
1880	9400	Left	Tilt	/	22.52	23	0.054	0.06	0.087	0.10	-0.11			
1852.4	9262	Left	Tilt	/	22.60	23	0.062	0.07	0.102	0.11	0.12			
1907.6	9538	Right	Touch	/	22.46	23	0.240	0.27	0.533	0.60	-0.11			
1880	9400	Right	Touch	/	22.52	23	0.233	0.26	0.514	0.57	-0.01			
1852.4	9262	Right	Touch	/	22.60	23	0.357	0.39	0.587	0.64	-0.06			
1907.6	9538	Right	Tilt	/	22.46	23	0.064	0.07	0.110	0.12	0.06			
1880	9400	Right	Tilt	/	22.52	23	0.062	0.07	0.105	0.12	-0.17			
1852.4	9262	Right	Tilt	/	22.60	23	0.074	0.08	0.127	0.14	0.07			

Table 14.10: SAR Values (WCDMA 1900 MHz Band - Head)

Table 14.11: SAR Values (WCDMA 1900 MHz Band - Body)

			Ambient	Temperature	: 22.3 °C L	iquid Tempera	ature: 21.8°C	2		
Frequ	ency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	~	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.			(dBm)		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Front Fold	/	22.46	23	0.171	0.19	0.299	0.34	0.07
1880	9400	Front Fold	/	22.52	23	0.208	0.23	0.356	0.40	0.01
1852.4	9262	Front Fold	/	22.60	23	0.256	0.28	0.435	0.48	0.03
1907.6	9538	Rear Fold	/	22.46	23	0.529	0.60	0.919	1.04	-0.04
1880	9400	Rear Fold	/	22.52	23	0.510	0.57	0.931	1.04	0.05
1852.4	9262	Rear Fold	Fig.10	22.60	23	0.541	0.59	0.956	1.05	0.06
1907.6	9538	Rear Unfold	/	22.46	23	0.376	0.43	0.627	0.71	-0.10
1880	9400	Rear Unfold	/	22.52	23	0.411	0.46	0.686	0.77	0.04
1852.4	9262	Rear Unfold	/	22.60	23	0.454	0.50	0.755	0.83	0.07
1907.6	9538	Rear Fold	1	22.46	23	0.517	0.59	0.893	1.01	-0.12
1907.0	9030	Headset	/	22.40	23	0.517	0.59	0.093	1.01	-0.12
1880	9400	Rear Fold	1	22.52	22	0.522	0.59	0.005	1 01	0.06
1000	9400	Headset	/	22.52	23	0.522	0.58	0.905	1.01	-0.06
1852.4	9262	Rear Fold	1	22.60	23	0.531	0.59	0.937	1 02	0.17
1002.4	9202	Headset	/	22.00	23	0.331	0.58	0.937	1.03	0.17

No. I14Z47151-SEM01 Page 35 of 116

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C														
Freque	ency		Test	Figure		Max. tune-up	Measured	Reported	Measured	Reported	Power				
	-	Side		U	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
848.8	251	Right	Touch	Fig.1	32.36	32.5	0.583	0.60	1.09	1.13	0.14				

Table 14.12: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C														
Freque	encv	Mode	Test	Figuro	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
- 1-	,	(number of		Figure	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
824.2	128	GPRS (2)	Rear Fold	Fig.2	30.96	31	0.647	0.65	0.920	0.93	0.00				

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.14: SAR Values (GSM 1900 MHz Band - Head)

Ambient Temperature: 22.3 °C Liquid Te								iquid Tempera	quid Temperature: 21.8 °C					
	Freque	ency		Test	Figuro	Conducted		Measured	Reported	Measured	Reported	Power		
-		,	Side	Position	Figure No.	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
	MHz	Ch.				(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
	1850.2	512	Left	Touch	Fig.3	29.12	29.5	0.234	0.26	0.381	0.42	0.12		

Table 14.15: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	t Tempera	ture: 22.3 °C	Liquid Temperature: 21.8 °C					
Freque	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1850.2	512	GPRS (2)	Rear Fold	Fig.4	28.11	28.5	0.442	0.48	0.796	0.87	0.02

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.16: SAR Values (WCDMA 850 MHz Band - Head)

				Ambient	Temperature:	22.3°C Li	quid Tempera	ture: 21.8 °C			
Frequency		Q: da	Test	Figure	Conducted _ Max. tune-up	Measured	Reported	Measured	Reported	Power	
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.4	4182	Right	Touch	Fig.5	24.00	24	0.757	0.76	1.31	1.31	0.04

			14						• y)					
	Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C													
Fr	equenc	ency Test		Figure	Conduct	Max. tune-up	Measured	Reported	Measured	Reported	Power			
	•	,		0	ed Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MH	z C	Ch.	Position	No.	(dBm)		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
826	.4 41	132	Rear Fold	Fig.6	23.78	24	0.665	0.70	0.935	0.98	0.06			

Table 14.17: SAR Values (WCDMA 850 MHz Band - Body)

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.18: SAR Values (WCDMA 1700 MHz Band - Head)

Ambient Temperature: 22.4 °C Liquid Temperature: 21.9 °C											
Frequency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side		-	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	n No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1732.4	1412	Left	Touch	Fig.7	23.76	24	0.636	0.67	1	1.06	-0.06

Table 14.19: SAR Values (WCDMA 1700 MHz Band - Body)

			Ambien	t Temperature	: 22.4 °C L	Liquid Temperature: 21.9 °C				
Frequ	encv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
			-	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1732.4	1412	Rear Fold	Fig.8	23.76	24	0.507	0.54	0.907	0.96	0.02

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.20: SAR Values (WCDMA 1900 MHz Band - Head)

Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C											
Frequ	Frequency		Test	Figuro	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	-	Side		Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4	9262	Left	Touch	Fig.9	22.60	23	0.556	0.61	0.909	1.00	-0.02

Table 14.21: SAR Values (WCDMA 1900 MHz Band - Body)

			Ambient Temperature: 22.3 °C Liquid Temperature: 21.8 °C									
Frequ	encv	Toot	Figure	Conducted	Max tuna un	Measured	Reported	Measured	Reported	Power		
Trequency	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1852.4	9262	Rear Fold	Fig.10	22.60	23	0.541	0.59	0.956	1.05	0.06		

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque MHz	ency Ch.	Side	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
848.8	251	Right	Touch	1.09	0.997	1.09	/

Table 15.1: SAR Measurement Variability for Head GSM 850 (1g)

Table 15.2: SAR Measurement Variability for Body GSM 850 (1g)

Frequency		Test	Spacing	Original	First Repeated	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	SAR (W/kg)	Ratio	Repeated SAR (W/kg)
824.2	128	Rear Fold	10	0.920	0.914	1.01	/

Table 15.3: SAR Measurement Variability for Head WCDMA 850 (1g)

Frequ	lency		Test	Original	Original First Repeated		Second
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
836.4	4182	Right	Touch	1.31	1.28	1.02	/

Table 15.4: SAR Measurement Variability for Body WCDMA 850 (1g)

Frequ	iency	Test	Spacing	Original	First Repeated	The	Second
MHz	Ch.	Position	Spacing (mm)	SAR (W/kg)	SAR (W/kg)	Ratio	Repeated SAR (W/kg)
826.4	4132	Rear Fold	10	0.935	0.928	1.01	/

	14		in moueu				
Frequency			Test	Original	First Repeated	Tho	Second
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
1732.4	1412	Left	Touch	1	0.979	1.02	/

Table 15.5: SAR Measurement Variability for Head WCDMA 1700 (1g)

Table 15.6: SAR Measurement Variability for Body WCDMA 1700 (1g)

Freque	ency	Toot	Spacing	Original SAR	First Papastod	The	Second
MHz	Ch.	Test Position	Spacing (mm)	(W/kg)	First Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1732.4	1412	Rear Fold	10	0.907	0.906	1.00	/

Table 15.7: SAR Measurement Variability for Head WCDMA 1900 (1g)

Frequ	ency		Test	Original	Original First Repeated		Second
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
1852.4	9262	Left	Touch	0.909	0.889	1.02	/

	Ia	ble 15.8: SA	R measure	ment variability	y for Body WCDI	IA 1900	(1g)
Frequ	ency	Test	Spacing	Original SAR	First Repeated	The	Second
MHz	Ch.	Position	(mm)	(W/kg)	SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1852.4	9262	Rear Fold	10	0.956	0.955	1.00	/

easurement Variability for Body WCDMA 1900 (1a)

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	i measurement u	100110			10313	1000	VII 12/~	50112	/	
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	~
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probepositioningwithrespecttophantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
		•	Test	sample related	ł	•	•			
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521

No. I14Z47151-SEM01 Page 40 of 116

			r	1				1	T
Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257
idence interval of	ι	$u_e = 2u_c$					18.5	18.2	
	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)	I		
Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedo
									m
surement system									
Probe calibration	В	6.5	Ν	1	1	1	6.5	6.5	∞
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	œ
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	œ
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
		Test	sample related	1					-
Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	œ
	I	Phan	tom and set-u	p	•	•	•	•	
Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
	nded uncertainty idence interval of) 2 Measurement Ui Error Description Error Description surement system Probe calibration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing Test sample positioning Device holder uncertainty Drift of output power Phantom uncertainty Liquid conductivity (target)	Inded uncertainty idence interval of iImage: construction iidence interval of iImage: construction iidence interval of iImage: construction iidence interval of iImage: construction iidence construction iImage: construction iisotropyImage: construction iImage: construction iidence construction iImage: construction iintegration limit iImage: construction iResponse time iImage: construction iRF iambient iRF iambient iRF iambient iRF iambient iProbe ipositioned iProbe ipositioning iProbe ipositioning iProbe ipositioning iProbe ipositioning iProbe ipositioning iDevice holder uncertaintyADevice holder iAIImage: conductivity iPhantom uncertaintyImage: conductivity iPhantom uncertaintyImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIImage: conductivity iIIma	uncertainty $u_c = \sqrt{\sum_{i=1}^{c} C_i^2 u_i^2}$ inded uncertainty fidence interval of) $u_c = 2u_c$ 2 Measurement Urcertainty for Not Error DescriptionTypeUncertainty valueProbe calibrationB6.5IsotropyB4.7Boundary effectB2.0LinearityB4.7Detection limitB0.3Response timeB0.3Response timeB0.3Response timeB0RFambient conditions-noiseBRFambient conditions-reflectionBProbe positioning with respect to phantom shellB4.0Prost-processingB4.0Device holder uncertaintyA3.3Device holder uncertaintyA3.4Drift of output powerB5.0Uniqui conductivity (target)B5.0	Inded uncertainty ifidence interval of) $u_e = 2u_e$ 2 Measurement Urcertainty rangeError DescriptionType u_e Uncertainty valueProbably DistributionSurement systemUncertainty valueProbably DistributionProbe calibrationB6.5NIsotropyB4.7RBoundary effectB2.0RLinearityB4.7RDetection limitB0.3RReadout electronicsB0.3RIntegration timeB2.6RRFambient conditions-noiseB0RFambient conditions-reflectionB0.8Probe positioned phantom shellB0.8RProbe positioning with respect to phantom shellB4.0RTest sample positioning positioningA3.3NDrift of output powerB5.0RPhantom uncertaintyB4.0RLiquid conductivity (target)B5.0RLiquid conductivity Liquid conductivityB5.0RLiquid conductivity Liquid conductivityA2.206N	Inded uncertainty idence interval of) $u_e = 2u_e$ Image: construct of the system 2 Measurement U-certainty Error DescriptionType TypeUncertainty valueProbably DistributionDiv. Surement system B6.5N1IsotropyB4.7R $\sqrt{3}$ Boundary effectB2.0R $\sqrt{3}$ Detection limitB1.0R $\sqrt{3}$ Readout electronicsB0.3R $\sqrt{3}$ Response timeB0.8R $\sqrt{3}$ Integration timeB0.8R $\sqrt{3}$ RFambient conditions-noiseB0.8R $\sqrt{3}$ RFambient conditions-reflectionB0.8R $\sqrt{3}$ Probe positioned mech restrictionsB0.8R $\sqrt{3}$ Probe positioning with respect toB6.7R $\sqrt{3}$ Probe positioning mith respect toB6.7R $\sqrt{3}$ Probe positioning positioningB4.0R $\sqrt{3}$ Device holder uncertaintyA3.4N1Drift of output powerB5.0R $\sqrt{3}$ Liquid conductivity (target)B5.0R $\sqrt{3}$	Inded uncertainty idence interval of) $u_e = 2u_e$ Image: Construct of the second seco	Inded uncertainty idence interval of) Image:	Inded uncertainty idence interval of) $u_e = 2u_e$ Image: mathematical structure (Ci) Image: mathematical structure (Ci) <thimage: mathmatexite<="" th=""> Image: mathematical structur</thimage:>	Inded uncertainty idence interval of) $u_e = 2u_e$ Image: matrix and the second stress of the sec

No. I14Z47151-SEM01 Page 41 of 116

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.8	10.7	257
-	nded uncertainty idence interval of	ı	$u_e = 2u_c$					21.6	21.4	
16.3	3 Measurement U	ncerta	inty for Fa	st SAR Tes	ts (30) OMH	z~3G	Hz)		
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedo m
Мези	surement system									111
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	Boundary effect	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probepositioningwithrespecttophantomshell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	l					
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-uj	p					

No. I14Z47151-SEM01 Page 42 of 116

$\sqrt{3}$	0.64	0.43	1.8	1.0	
				1.2	8
1	0.64	0.43	1.32	0.89	43
$\sqrt{3}$	0.6	0.49	1.7	1.4	8
1	0.6	0.49	1.0	0.8	521
			10.1	9.95	257
			20.2	19.9	
-		$\sqrt{3}$ 0.6 1 0.6	$\sqrt{3}$ 0.6 0.49 1 0.6 0.49	$\sqrt{3}$ 0.6 0.49 1.7 1 0.6 0.49 1.0 1 0.6 0.49 1.0 1 0.6 0.49 20.2	$\sqrt{3}$ 0.6 0.49 1.7 1.4 1 0.6 0.49 1.0 0.8 10.1 9.95

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Measurement system										
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	FastSARz-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	œ
Test sample related										
15	Test sample	А	3.3	Ν	1	1	1	3.3	3.3	71

No. I14Z47151-SEM01 Page 43 of 116

	positioning									
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty $u_c^{1} = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$						13.3	13.2	257		
Expanded uncertainty (confidence interval of $u_e = 2u_c$ 95 %)		$u_e = 2u_c$					26.6	26.4		

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	February 15, 2014	One year	
02	Power meter	NRVD	102083	September 11, 2013	One year	
03	Power sensor	NRV-Z5	100542	September 11, 2013		
04	Signal Generator	E4438C	MY49070393	November 08, 2013	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 30, 2014	One year	
07	E-field Probe	SPEAG EX3DV4	3846	September 03, 2013	One year	
08	DAE	SPEAG DAE4	771	November 12, 2013	One year	
09	Dipole Validation Kit	SPEAG D835V2	443	August 29, 2013	One year	
10	Dipole Validation Kit	SPEAG D1750V2	1003	September 03, 2013	One year	
11	Dipole Validation Kit	SPEAG D1900V2	5d101	July 09, 2013	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek High

Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.932$ S/m; $\epsilon_r = 42.002$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek High/Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.963 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.178 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.583 W/kg Maximum value of SAR (measured) = 1.29 W/kg

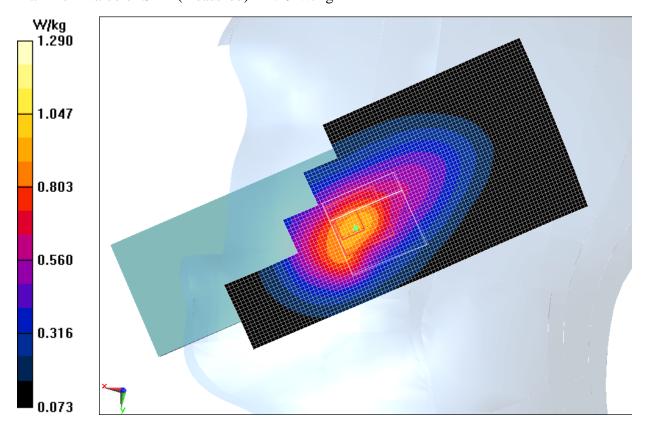


Fig.1 850MHz CH251

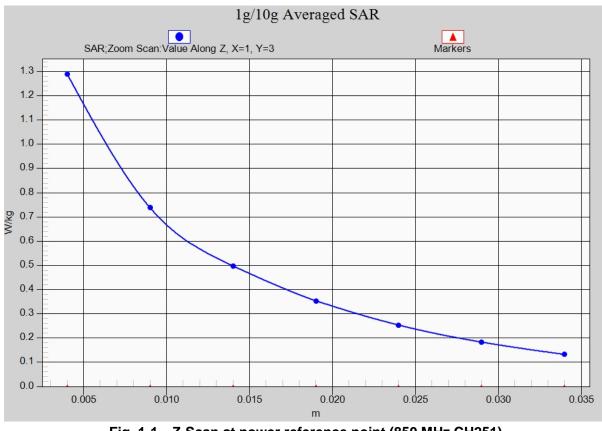


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Rear Low

Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.978$ S/m; $\epsilon_r = 56.065$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Low/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.989 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 26.987 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.920 W/kg; SAR(10 g) = 0.647 W/kg Maximum value of SAR (measured) = 0.965 W/kg

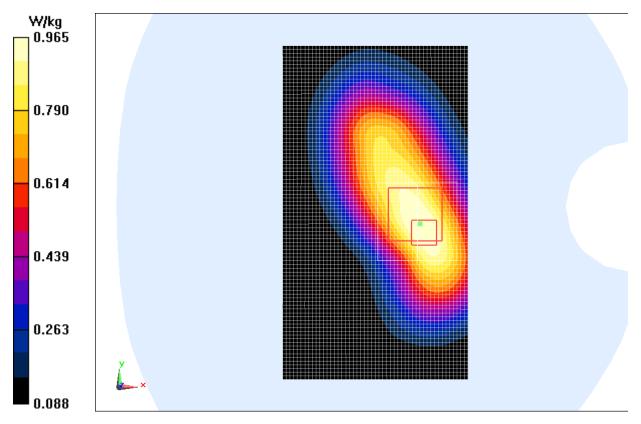


Fig.2 850 MHz CH128

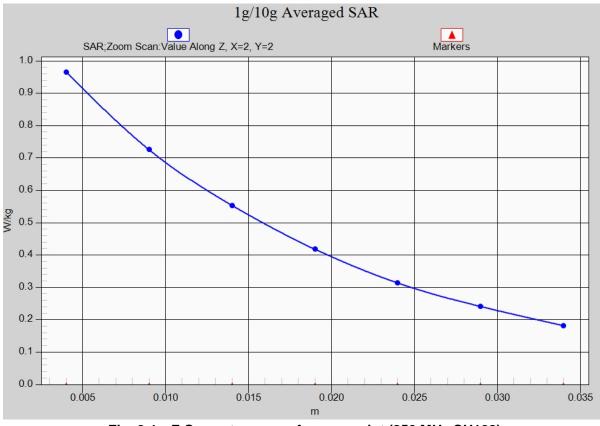


Fig. 2-1 Z-Scan at power reference point (850 MHz CH128)

GSM1900 Left Cheek Low

Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.348$ S/m; $\epsilon_r = 41.738$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.449 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 2.727 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.524 W/kg SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.234 W/kg

Maximum value of SAR (measured) = 0.419 W/kg

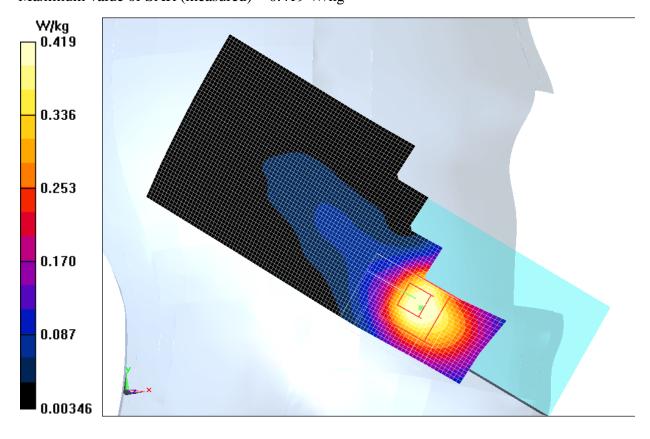


Fig.3 1900 MHz CH512

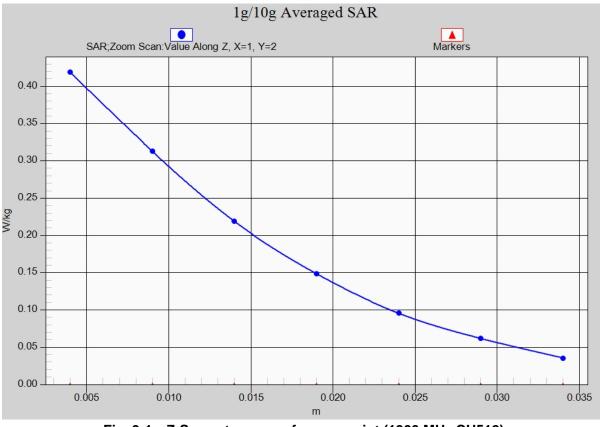


Fig. 3-1 Z-Scan at power reference point (1900 MHz CH512)

GSM1900 Body Rear Low

Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.491$ S/m; $\epsilon r = 52.958$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear Low/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.890 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 19.165 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.796 W/kg; SAR(10 g) = 0.442 W/kg

Maximum value of SAR (measured) = 0.883 W/kg

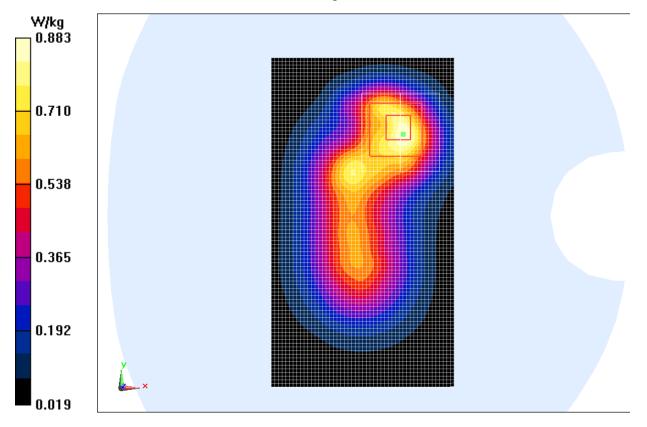


Fig.4 1900 MHz CH512

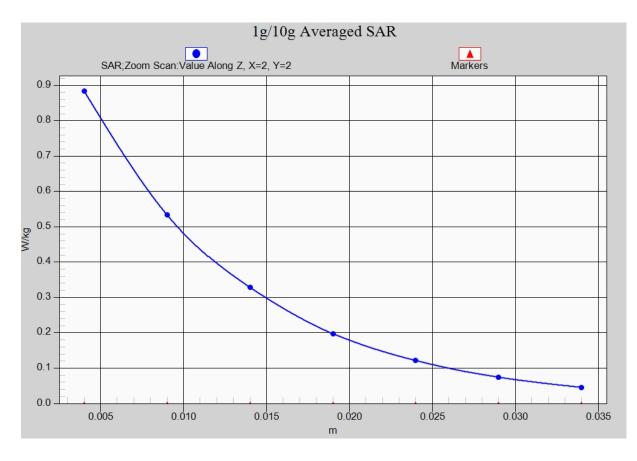


Fig.4-1 Z-Scan at power reference point (1900 MHz CH512)

WCDMA 850 Right Cheek Middle

Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.919$ S/m; $\epsilon_r = 42.17$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.50 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 11.403 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.28 W/kg SAR(1 g) = 1.31 W/kg; SAR(10 g) = 0.757 W/kg

Maximum value of SAR (measured) = 1.52 W/kg

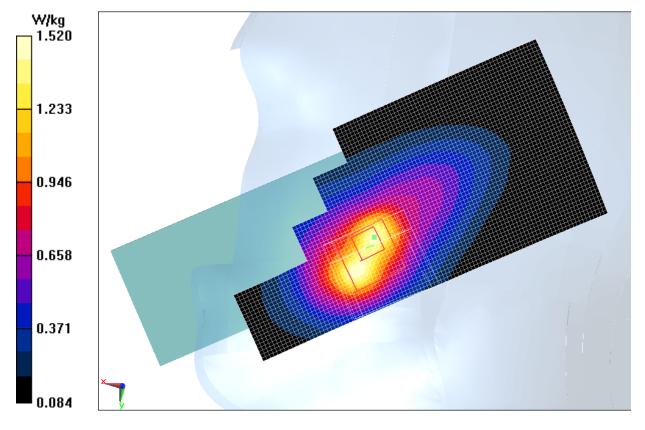


Fig.5 WCDMA 850 CH4182

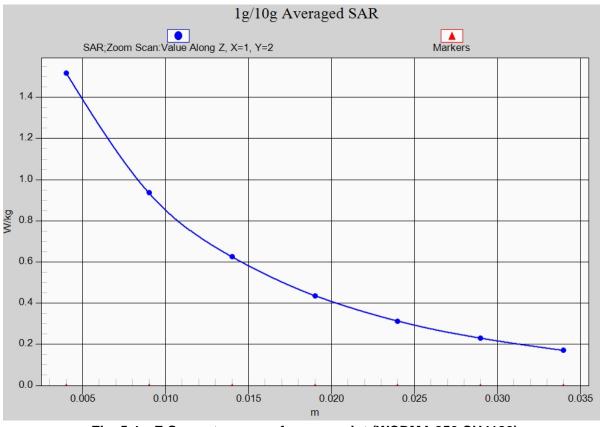


Fig. 5-1 Z-Scan at power reference point (WCDMA 850 CH4182)

WCDMA 850 Body Rear Low

Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.979$ S/m; $\epsilon_r = 56.053$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Low/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=100000 mm Maximum value of SAR (interpolated) = 1.00 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 30.049 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.935 W/kg; SAR(10 g) = 0.665 W/kg

Maximum value of SAR (measured) = 0.987 W/kg

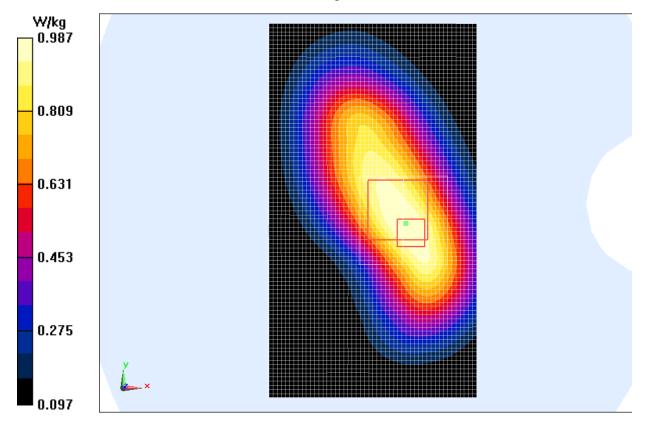


Fig.6 WCDMA 850 CH4132

Fig. 6-1 Z-Scan at power reference point (WCDMA850 CH4132)

WCDMA 1700 Left Cheek Middle

Date: 2014-6-27 Electronics: DAE4 Sn771 Medium: Head 1750 MHz Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.357$ S/m; $\epsilon_r = 40.77$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: WCDMA 1700 Frequency: 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.85, 7.85, 7.85)

Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.17 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.781 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.33 W/kg SAR(1 g) = 1 W/kg; SAR(10 g) = 0.636 W/kg

Maximum value of SAR (measured) = 1.08 W/kg

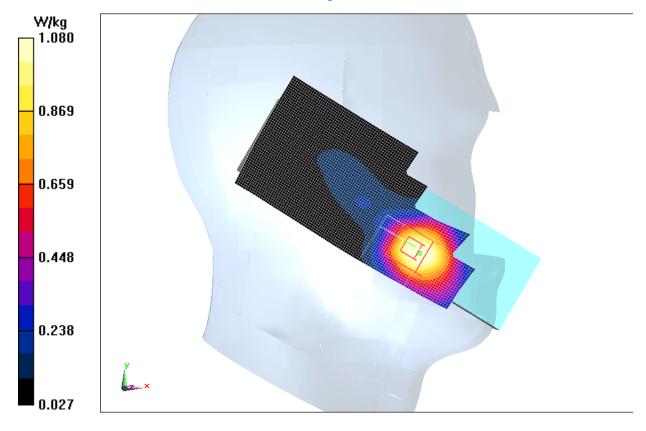


Fig.7 WCDMA1700 CH1412

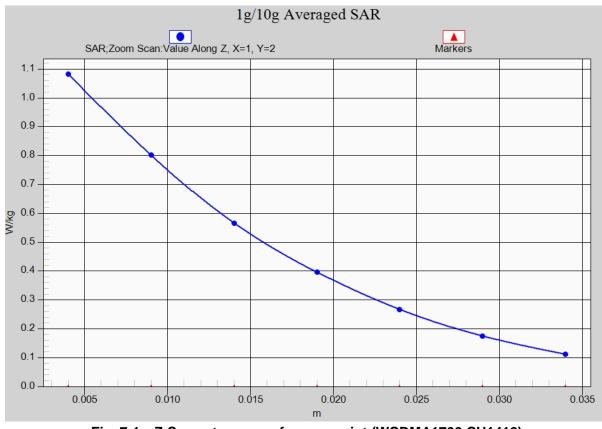


Fig. 7-1 Z-Scan at power reference point (WCDMA1700 CH1412)

WCDMA 1700 Body Rear Middle

Date: 2014-6-27 Electronics: DAE4 Sn771 Medium: Body 1750 MHz Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.495$ S/m; $\epsilon_r = 54.09$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: WCDMA 1700 Frequency: 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.56, 7.56, 7.56)

Rear Middle/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.05 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.391 V/m; Power Drift = 0.02 Peak SAR (extrapolated) = 1.51 W/kg SAR(1 g) = 0.907 W/kg; SAR(10 g) = 0.507 W/kg

Maximum value of SAR (measured) = 0.989 W/kg

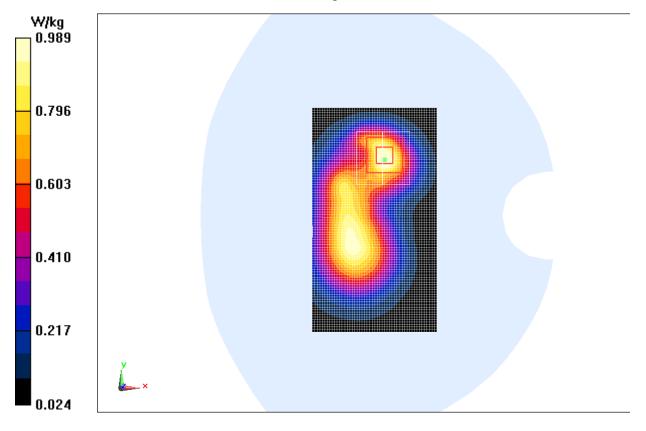


Fig.8 WCDMA1700 CH1412

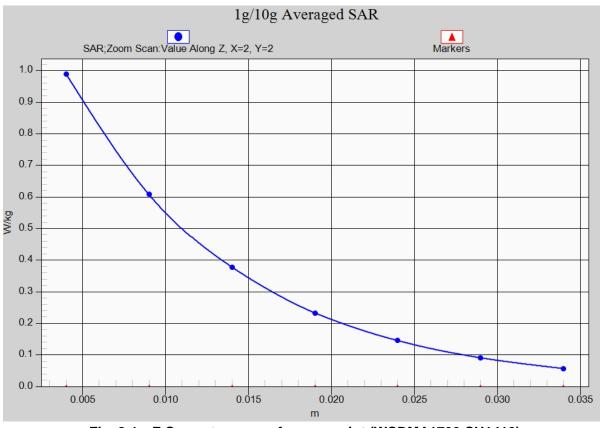


Fig. 8-1 Z-Scan at power reference point (WCDMA1700 CH1412)

WCDMA 1900 Left Cheek Low

Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.35$ S/m; $\epsilon_r = 41.728$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.10 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.367 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.909 W/kg; SAR(10 g) = 0.556 W/kg

Maximum value of SAR (measured) = 0.988 W/kg

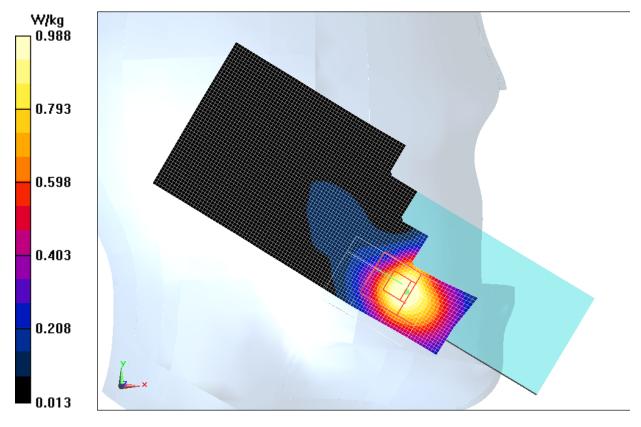


Fig.9 WCDMA1900 CH9262

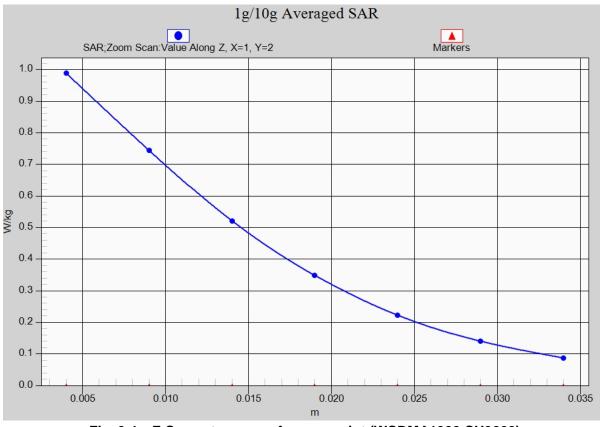


Fig. 9-1 Z-Scan at power reference point (WCDMA1900 CH9262)

WCDMA 1900 Body Rear Low

Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.491$ S/m; $\epsilon_r = 52.948$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear Low/Area Scan (51x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.15 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.283 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.61 W/kg SAR(1 g) = 0.956 W/kg; SAR(10 g) = 0.541 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

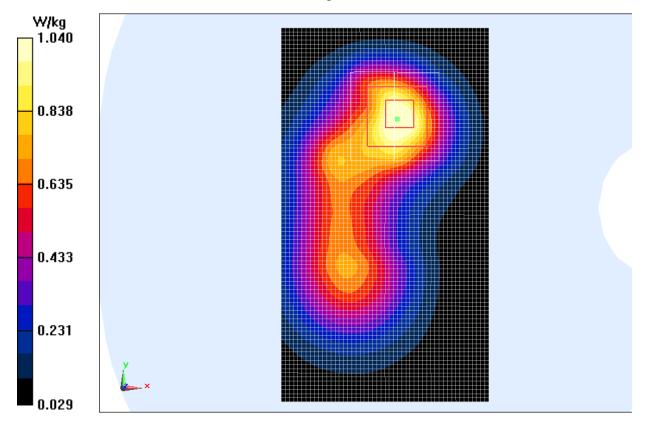


Fig.10 WCDMA1900 CH9262

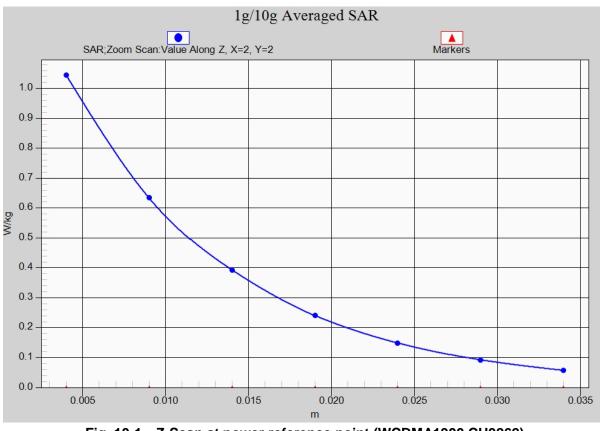
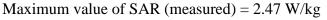
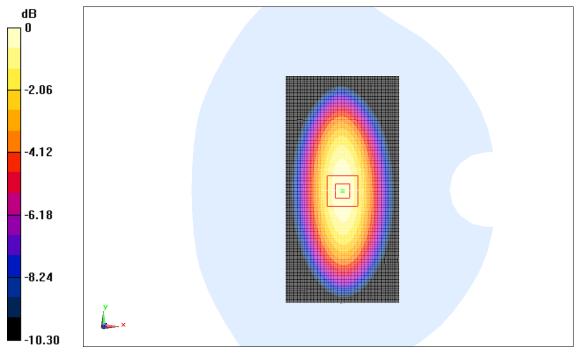


Fig. 10-1 Z-Scan at power reference point (WCDMA1900 CH9262)

ANNEX B System Verification Results

835MHz


Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.917$ S/m; $\epsilon_r = 42.19$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)


System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.988 V/m; Power Drift = 0.09 dB Fast SAR: SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (interpolated) = 2.51 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

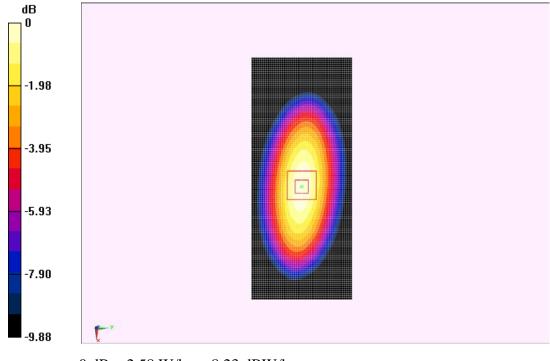
Reference Value = 51.988 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.49 W/kg SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.50 W/kg

0 dB = 2.51 W/kg = 7.99 dBW/kg

Fig.B.1 validation 835MHz 250mW

Date: 2014-6-23 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\epsilon_r = 55.96$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 51.801 V/m; Power Drift = -0.11dB Fast SAR: SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (interpolated) = 2.58 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.801 V/m; Power Drift = -0.11dB

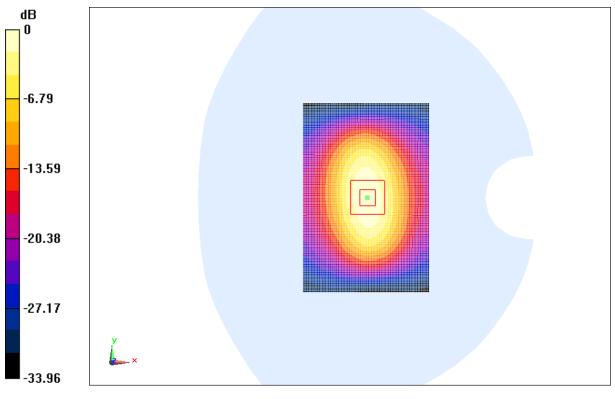
Peak SAR (extrapolated) = 3.41 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.59 W/kg

0 dB = 2.58 W/kg = 8.23 dBW/kg

Fig.B.2 validation 835MHz 250mW



Date: 2014-6-27 Electronics: DAE4 Sn771 Medium: Head 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.374 mho/m; ϵ r = 40.67; ρ = 1000 kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.85, 7.85, 7.85)

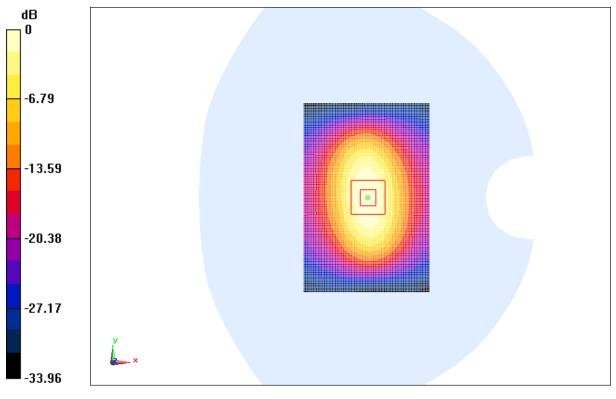
System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 89.736 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.87 W/kg Maximum value of SAR (interpolated) = 10.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.736 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.22 W/kg SAR(1 g) = 9.14 W/kg; SAR(10 g) = 4.86 W/kg Maximum value of SAR (measured) = 10.4 W/kg

0 dB = 10.4 W/kg = 20.34 dB W/kg

Fig.B.3 validation 1750MHz 250mW



Date: 2014-6-27 Electronics: DAE4 Sn771 Medium: Body 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.515 mho/m; ϵ r = 53.98; ρ = 1000 kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 21.9°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.56, 7.56, 7.56)

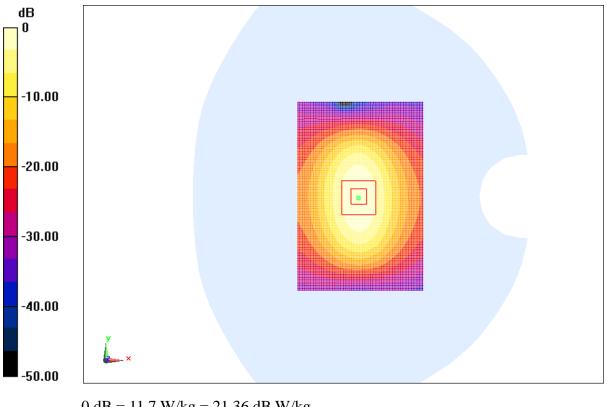
System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 92.008 V/m; Power Drift = 0.12 dB Fast SAR: SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.97 W/kg Maximum value of SAR (interpolated) = 10.5 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.008 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 14.91 W/kg SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.98 W/kg Maximum value of SAR (measured) = 10.5 W/kg

0 dB = 10.5 W/kg = 20.42 dB W/kg

Fig.B.4 validation 1750MHz 250mW



Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.397$ S/m; $\epsilon_r = 41.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 97.753 V/m; Power Drift = -0.06 dB Fast SAR: SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (interpolated) = 11.7 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.753 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 18.08 W/kg SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.31 W/kg Maximum value of SAR (measured) = 11.8 W/kg

 $0 \ dB = 11.7 \ W/kg = 21.36 \ dB \ W/kg$ Fig.B.5 validation 1900MHz 250mW

Date: 2014-6-24 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.533$ S/m; $\epsilon_r = 52.76$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 77.191 V/m; Power Drift = 0.09 dB Fast SAR: SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.42 W/kg Maximum value of SAR (interpolated) = 11.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.191 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 16.45 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 11.2 W/kg

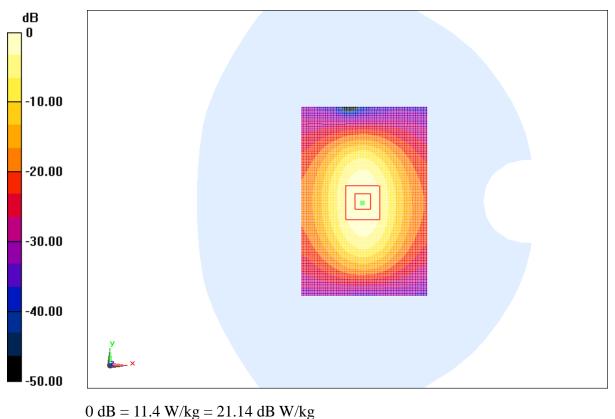
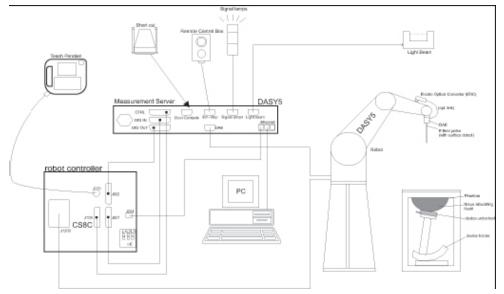


Fig.B.6 validation 1900MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
835	Head	2.38	2.33	2.15
835	Body	2.35	2.37	-0.84
1750	Head	9.16	9.14	0.22
1750	Body	9.21	9.24	-0.32
1900	Head	10.0	9.89	1.11
1900	Body	10.3	10.1	1.98


Table B.1 Comparison between area scan and zoom scan for system verification

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4				
Frequency	10MHz — 6.0GHz(EX3DV4)				
Range:	10MHz — 4GHz(ES3DV3)				
Calibration:	In head and body simulating tissue at				
	Frequencies from 835 up to 5800MHz				
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4				
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3				
Dynamic Range: 10 mW/kg — 100W/kg					
Probe Length:	330 mm				
Probe Tip					
Length:	20 mm				
Body Diameter:	12 mm				
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)				
Tip-Center:	1 mm (2.0mm for ES3DV3)				
Application:	SAR Dosimetry Testing				
	Compliance tests of mobile phones				
	Dosimetry in strong gradient fields				

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE