TEST REPORT No. 2013TAR882 for ## **TCT Mobile Limited** # HSDPA/HSUPA/UMTS Tri bands / GSM quad bands/LTE 5 bands mobile phone Model Name: Diablo HD LTE EMEA 1.2GHz Marketing Name: ONE TOUCH 6034R FCC ID: RAD468 with **Hardware Version: PIO1** Software Version: v1B28 Issued Date: 2014-01-13 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing. #### **Test Laboratory:** DAkks accreditation (DIN EN ISO/IEC 17025): No. 12123-01-01 FCC 2.948 Listed: No.733176 IC O.A.T.S listed: No.6629A-1 TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0) 10-62304633-2561, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com ©Copyright. All rights reserved by TMC Beijing. # **CONTENTS** | 1. TEST LABORATORY | 3 | |--|----| | 1.1. TESTING LOCATION | 3 | | 1.2. TESTING ENVIRONMENT | 3 | | 1.3. PROJECT DATA | 3 | | 1.4. SIGNATURE | 3 | | 2. CLIENT INFORMATION | 4 | | 2.1. APPLICANT INFORMATION | 4 | | 2.2. MANUFACTURER INFORMATION | 4 | | 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUI | | | 3.1. ABOUT EUT | | | 3.2. INTERNAL IDENTIFICATION OF EUT USED DURING TH | | | | | | 3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE | | | 3.4. NORMAL ACCESSORY SETTING | 6 | | 3.5. GENERAL DESCRIPTION | 6 | | 4. REFERENCE DOCUMENTS | 7 | | 4.1. REFERENCE DOCUMENTS FOR TESTING | 7 | | 5. LABORATORY ENVIRONMENT | 8 | | 6. SUMMARY OF TEST RESULTS | 9 | | 6.1. SUMMARY OF TEST RESULTS | | | 6.2. STATEMENTS | 9 | | 7. TEST EQUIPMENTS UTILIZED | | | ANNEX A: MEASUREMENT RESULTS | | | A.1 OUTPUT POWER | | | A.2 EMISSION LIMIT | | | A.3 CONDUCTED EMISSION | | | A.4 FREQUENCY STABILITY | | | A.5 OCCUPIED BANDWIDTH | | | A.6 EMISSION BANDWIDTH | | | A.7 BAND EDGE COMPLIANCE | | | A 8 CONDUCTED SPURIOUS EMISSION | 48 | # 1. Test Laboratory #### 1.1. Testing Location Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: 3/F Shou Xiang Technology Building, No.51 Xueyuan Road, Hai Dian District, Beijing, P. R. China Postal Code: 100191 Telephone: 00861062304633 Fax: 00861062304633 ## 1.2. <u>Testing Environment</u> Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75% 1.3. Project data Testing Start Date: 2014-01-09 Testing End Date: 2014-01-13 # 1.4. Signature 登晚刚 Zi Xiaogang (Prepared this test report) Sun Xiangqian 别何前 (Reviewed this test report) Lu Bingsong 路城村 **Deputy Director of the laboratory** (Approved this test report) # 2. Client Information #### 2.1. Applicant Information Company Name: TCT Mobile Limited! Address /Post: 5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203 City: Shanghai Postal Code: 201203 Country: China Contact Person: Gong Zhizhou Contact Email zhizhou.gong@jrdcom.com Telephone: 0086-21-61460890 Fax: 0086-21-61460602 #### 2.2. Manufacturer Information Company Name: TCT Mobile Limited! Address /Post: 5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203 City: Shanghai Postal Code: 201203 Country: China Contact Person: Gong Zhizhou Contact Email zhizhou.gong@jrdcom.com Telephone: 0086-21-61460890 Fax: 0086-21-61460602 # 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) #### 3.1. About EUT Description HSDPA/HSUPA/UMTS Tri bands / GSM quad bands/LTE 5 bands mobile phone Model Name Diablo HD LTE EMEA 1.2GHz Marketing Name ONE TOUCH 6034R FCC ID RAD468 Frequency GSM 850MHz; PCS 1900MHz; WCDMA Band V;LTE BAND 7 Antenna Integrated Power supply Battery or Charger (AC Adaptor) Output power 26.98dBm maximum EIRP measured for LTE Band 7 Extreme vol. Limits 3.5VDC to 4.2VDC (nominal: 3.9VDC) Extreme temp. Tolerance -30° C to $+50^{\circ}$ C Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China. #### 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | |-------------|---------------------------|---------------------------|------------| | N04 | 862780020000208 | PIO1 | v1B28 | | N03 | 862780020000083 | PIO1 | v1B28 | | *EUT ID: is | used to identify the test | sample in the lab interna | ally. | #### 3.3. Internal Identification of AE used during the test | AE ID* | Description | | | |-----------|----------------|--------------|---| | AE1 | Battery | | / | | AE2 | Battery | | / | | AE3 | Travel charger | | / | | AE4 | Travel charger | | / | | AE1 | | | | | Model | | CAC2000005C2 | | | Manufacti | urer | SCUD | | | Nominal v | oltage | 3.8V | | | AE2 | | | | | Model | | CAC2000008C1 | | | Manufacti | urer | BYD | | | Nominal v | oltage · | 3.8V | | | AE3 | | | | | Model | | CBA3000AG0C1 | | Tenpao Manufacturer Length of cable / AE4 Model CBA3000AG0C2 Manufacturer BYD Length of cable / # 3.4. Normal Accessory setting Fully charged battery was used during the test. #### 3.5. General Description The Equipment Under Test (EUT) is a model of HSDPA/HSUPA/UMTS Tri bands / GSM quad bands/LTE 5 bands with integrated antenna. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client. ^{*}AE ID: is used to identify the test sample in the lab internally. # 4. Reference Documents # 4.1. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | |----------------|--|---------| | FCC Part 27 | MISCELLANEOUS WIRELESS COMMUNICATIONS | 10-1-12 | | | SERVICES | Edition | | ANSI/TIA-603-C | Land Mobile FM or PM Communications Equipment | 2004 | | | Measurement and Performance Standards | | | ANSI C63.4 | Methods of Measurement of Radio-Noise Emissions from | 2009 | | | Low-Voltage Electrical and Electronic Equipment in the | | | | Range of 9 kHz to 40 GHz | | | KDB 971168 D01 | Measurement Guidance for Certification of Licensed Digital | v02r01 | | | Transmitters | | # 5. LABORATORY ENVIRONMENT Control room / conducted chamber did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |--------------------------|----------------------------| | Relative humidity | Min. =20 %, Max. = 80 % | | Shielding effectiveness | > 110 dB | | Electrical insulation | > 2 MΩ | | Ground system resistance | < 0.5 Ω | **Fully-anechoic chamber 2** (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 30 °C | |---|---| | Relative humidity | Min. = 35 %, Max. = 60 % | | Shielding effectiveness | > 110 dB | | Electrical insulation | > 2 MΩ | | Ground system resistance | <1 Ω | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 4000 MHz | **Semi-anechoic chamber 2 / Fully-anechoic chamber 3** (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C | |---|--| | Relative humidity | Min. = 35 %, Max. = 60 % | | Shielding effectiveness | > 100 dB | | Electrical insulation | > 2 MΩ | | Ground system resistance | < 0.5 Ω | | Normalised site attenuation (NSA) | < ±3.5 dB, 3 m distance | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 3000 MHz | # 6. SUMMARY OF TEST RESULTS # 6.1. Summary of test results | Abbreviations use | ed in this clause: | | |-------------------|--------------------|----------------| | | Р | Pass | | Verdict Column | F | Fail | | | NA | Not applicable | | | NM | Not measured | #### LTE Band 7 | Items | ns Test Name Clause in FCC rules | | Section in this report | Verdict | |-------|----------------------------------|------------------|------------------------|---------| | 1 | Output Power | 27.50(h)(2) | A.1 | Р | | 2 | Emission Limit | 27.53(m), 2.1051 | A.2 | Р | | 3 | Conducted Emission | 15.107/15.207 | A.3 | Р | | 4 | Frequency Stability | 27.54, 2.1055 | A.4 | Р | | 5 | Occupied Bandwidth | 2.1049(h)(i) | A.5 | Р | | 6 | Emission Bandwidth | 27.53(m) | A.6 | Р | | 7 | Band Edge Compliance | 27.53(m) | A.7 | Р | | 8 | Conducted Spurious
Emission | 27.53(m), 2.1057 | A.8 | Р | #### 6.2. Statements The test cases listed in section 6.1 of this report for the EUT specified in section 3 were performed by TMC according to the standards or reference documents in section 4.1 The EUT met all applicable requirements of the standards or reference documents in section 4.1. This report only deals with the LTE functions among the features described in section 3. # 7. Test Equipments Utilized | NO. | Description | TYPE | SERIES
NUMBER | MANUFACTURE | CAL DUE
DATE | |-----|--|-----------|------------------|--------------|-----------------| | 1. | Test Receiver | ESCI | 100344 | R&S | 2014-03-28 | | 2. | Spectrum
Analyzer | E4440A | MY48250642 | Agilent | 2014-03-04 | | 3. | LISN | ESH2-Z5 | 829991/012 | R&S | 2014-04-14 | | 4. | EMI Antenna | VULB 9163 | 9163-482 | Schwarzbeck | 2014-02-17 | | 5. | EMI Antenna | 3117 | 00119024 | ETS-Lindgren | 2014-02-02 | | 6. | EMI Antenna | 3117 | 00058889 | ETS-Lindgren | 2014-02-02 | | 7. | EMI Antenna | VUBA 9117 | 177 | Schwarzbeck | 2014-06-29 | | 8. | Signal Generator | N5183A | MY49060052 | Agilent | 2014-03-19 | | 9. | Climatic
chamber | SH-241 | 92003546 | ESPEC | 2014-05-11 | | 10. | Universal Radio
Communication
Tester | CMW500 | 116588 | R&S | 2014-11-04 | # **ANNEX A: MEASUREMENT RESULTS** #### **A.1 OUTPUT POWER** #### Reference FCC: CFR Part 27.50(d)(4), 27.50(h)(2). #### A.1.1 Summary During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains peak output power and ERP/EIRP measurements for the EUT. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. The power was measured with spectrum analyzer's RMS detector. These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth. #### A.1.2.2 Measurement result #### LTE band 7 | Bandwidth | RB size/offset | Fraguency (MHz) | Power(dBm) | | |-----------|----------------|-----------------|------------|-------| | Danuwidin | RD SIZE/OIISEL | Frequency (MHz) | QPSK | 16QAM | | | | 2502.5 | 20.92 | 19.51 | | | 1 RB high | 2535.0 | 21.15 | 20.06 | | | | 2567.5 | 21.29 | 19.91 | | | | 2502.5 | 20.82 | 19.45 | | | 1 RB low | 2535.0 | 21.00 | 19.81 | | 5141 | | 2567.5 | 21.12 | 19.68 | | 5MHz | 50% RB mid | 2502.5 | 19.82 | 18.88 | | | | 2535.0 | 20.15 | 19.28 | | | | 2567.5 | 20.24 | 19.27 | | | | 2502.5 | 19.80 | 18.95 | | | 100% RB | 2535.0 | 20.08 | 19.33 | | | | 2567.5 | 20.23 | 19.44 | (continued) | (continued) | | | | | |-------------|------------|--------|--------|-------| | | | 2505.0 | 20.57 | 20.45 | | | 1 RB high | 2535.0 | 21.18 | 21.01 | | | | 2565.0 | 21.36 | 20.82 | | | | 2505.0 | 20.92 | 20.74 | | | 1 RB low | 2535.0 | 21.08 | 20.90 | | 10MHz | | 2565.0 | 21.07 | 20.58 | | TOWN 12 | | 2505.0 | 19.90 | 18.93 | | | 50% RB mid | 2535.0 | 20.08 | 19.10 | | | | 2565.0 | 20.38 | 19.42 | | | | 2505.0 | 19.78 | 18.83 | | | 100% RB | 2535.0 | 19.97 | 19.15 | | | | 2565.0 | 20.29 | 19.22 | | | | 2507.5 | 20.60 | 20.42 | | | 1 RB high | 2535.0 | 21.29 | 21.07 | | | | 2562.5 | 21.26 | 21.11 | | | | 2507.5 | 20.98 | 20.84 | | | 1 RB low | 2535.0 | 20.98 | 20.77 | | 451411 | | 2562.5 | 21.21 | 20.91 | | 15MHz | | 2507.5 | 19.87 | 19.17 | | | 50% RB mid | 2535.0 | 20.06 | 19.38 | | | | 2562.5 | 20.26 | 19.52 | | | | 2507.5 | 19.71 | 18.76 | | | 100% RB | 2535.0 | 19.91 | 19.07 | | | | 2562.5 | 20.19 | 19.16 | | | | 2510.0 | 20.64 | 19.53 | | | 1 RB high | 2535.0 | 21.36 | 20.17 | | | | 2560.0 | 21.19 | 20.55 | | | | 2510.0 | 21.16 | 19.99 | | | 1 RB low | 2535.0 | 20.99 | 19.86 | | | | 2560.0 | 21.17 | 20.53 | | 20MHz | | 2510.0 | 19.92 | 18.88 | | | 50% RB mid | 2535.0 | 19.97 | 19.12 | | | | 2560.0 | 20.23 | 19.23 | | | | 2510.0 | 19.90 | 19.00 | | | 100% RB | 2535.0 | 20.02 | 19.13 | | 1 | 1.0070110 | 2560.0 | 20.21 | 19.15 | | <u> </u> | | 2000.0 | ۷٠.۷ ا | 13.23 | Note: Expanded measurement uncertainty is U = 0.83 dB, k = 2. #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Rule Part 27.50(d) specifies "Fixed, mobile, and portable (handheld) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP". Rule Part 27.50(h)(2) specifies "Mobile stations are limited to 2.0 watts EIRP.". #### A.1.3.2 Method of Measurement The measurements procedures in TIA-603C-2004 are used. 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. An amplifier should be connected to the Signal Source output port. And the cable should be connected between the amplifier and the substitution antenna. - The cable loss (P_{cl}), the substitution antenna Gain (G_a) and the amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power (EIRP) = $P_{Mea} - P_{Ag} - P_{cl} - G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15. #### A.1.3.3 Measurement result ## LTE Band 7_5MHz_QPSK | Frequency
(MHz) | P _{Mea} (dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2502.50 | -25.91 | 3.59 | -50.00 | -5.41 | 25.91 | Н | | 2535.00 | -25.47 | 3.62 | -50.00 | -5.49 | 26.40 | Н | | 2567.50 | -26.71 | 3.65 | -50.00 | -5.58 | 25.22 | Н | # LTE Band 7_10MHz_QPSK | Frequency
(MHz) | P _{Mea}
(dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|---------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2505.00 | -27.38 | 3.59 | -50.00 | -5.41 | 24.44 | Н | | 2535.00 | -25.23 | 3.62 | -50.00 | -5.49 | 26.64 | Н | | 2565.00 | -26.93 | 3.65 | -50.00 | -5.57 | 24.99 | Н | ## LTE Band 7_15MHz_QPSK | Frequency
(MHz) | P _{Mea} (dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2507.50 | -27.95 | 3.59 | -50.00 | -5.42 | 23.88 | I | | 2535.00 | -25.12 | 3.62 | -50.00 | -5.49 | 26.75 | Н | | 2562.50 | -24.94 | 3.64 | -50.00 | -5.56 | 26.98 | Н | ## LTE Band 7_20MHz_QPSK | Frequency
(MHz) | P _{Mea} (dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2510.00 | -29.13 | 3.59 | -50.00 | -5.43 | 22.71 | I | | 2535.00 | -25.14 | 3.62 | -50.00 | -5.49 | 26.73 | Н | | 2560.00 | -27.90 | 3.64 | -50.00 | -5.56 | 24.02 | Н | #### LTE Band 7_5MHz_16QAM | Frequency
(MHz) | P _{Mea}
(dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|---------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2502.50 | -25.63 | 3.59 | -50.00 | -5.41 | 26.19 | Н | | 2535.00 | -25.83 | 3.62 | -50.00 | -5.49 | 26.04 | Н | | 2567.50 | -27.18 | 3.65 | -50.00 | -5.58 | 24.75 | Н | #### LTE Band 7_10MHz_16QAM | Frequency
(MHz) | P _{Mea} (dBm) | Cable
Loss
(dB) | P _{Ag}
(dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|------------------------|-----------------------|-------------------------|----------------------|-----------|--------------| | 2505.00 | -27.80 | 3.59 | -50.00 | -5.41 | 24.02 | Н | | 2535.00 | -25.67 | 3.62 | -50.00 | -5.49 | 26.20 | Н | | 2565.00 | -27.27 | 3.65 | -50.00 | -5.57 | 24.65 | Н | #### LTE Band 7_15MHz_16QAM | Frequency
(MHz) | P _{Mea}
(dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | |--------------------|---------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | 2507.50 | -28.61 | 3.59 | -50.00 | -5.42 | 23.22 | H | | 2535.00 | -25.70 | 3.62 | -50.00 | -5.49 | 26.17 | Н | | 2562.50 | -27.54 | 3.64 | -50.00 | -5.56 | 24.38 | Н | #### LTE Band 7 20MHz 16QAM |
u | | | | | | | |--------------------|---------------------------|-----------------------|----------------------|----------------------|-----------|--------------| | Frequency
(MHz) | P _{Mea}
(dBm) | Cable
Loss
(dB) | P _{Ag} (dB) | Antenna
Gain(dBi) | EIRP(dBm) | Polarization | | 2510.00 | -29.62 | 3.59 | -50.00 | -5.43 | 22.22 | Н | | 2535.00 | -25.91 | 3.62 | -50.00 | -5.49 | 25.96 | Н | | 2560.00 | -28.11 | 3.64 | -50.00 | -5.56 | 23.81 | Н | $\begin{aligned} \text{Peak EIRP(dBm)} &= P_{\text{Mea}}(\text{-24.94dBm}) - G_{\text{a}} \; (\text{-5.56dBi}) - P_{\text{Ag}} \; (\text{-50.00dB}) - P_{\text{cl}} \; (3.64dB) \\ &= 26.98dBm \end{aligned}$ #### **ANALYZER SETTINGS:** RBW = VBW = 8MHz for occupied bandwdiths equal to or less than 5MHz. RBW = VBW = 20MHz for occupied bandwidths equal to or greater than 10MHz. Note: Expanded measurement uncertainty is U = 0.96 dB, k = 2. #### A.2 EMISSION LIMIT #### Reference FCC: CFR 2.1051, Part 27.53(h), 27.53(m). #### A.2.1 Measurement Method The measurements procedures in TIA-603C-2004 are used. This measurement is carried out in fully-anechoic chamber FAC-3. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in, Part 27.53(h) and Part 27.53(m). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Band 7. #### The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test. - An amplifier should be connected in for the test. - The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier. - The measurement results are obtained as described below: - Power (EIRP)= P_{Mea} + P_{pl} + G_a - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### A.2.2 Measurement Limit Part 27.53(h) and 27.53(m) all specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Band 7. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Band 7 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. ## LTE Band 7, 5 MHz, QPSK, Channel 20775 | Frequency | P _{Mea} | Path | Antenna | Peak | Limit | Polarization | |-----------|------------------|----------|-----------|-----------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | EIRP(dBm) | (dBm) | Polarization | | 5000.58 | -46.30 | 5.17 | -9.70 | -41.77 | -13.00 | Н | | 7501.02 | -50.59 | 6.61 | -11.40 | -45.80 | -13.00 | Н | | 10001.33 | -58.28 | 7.99 | -12.40 | -53.87 | -13.00 | Н | | 12501.76 | -35.16 | 8.83 | -12.70 | -31.29 | -13.00 | Н | | 15002.31 | -42.66 | 9.64 | -13.50 | -38.80 | -13.00 | Н | | 17587.23 | -53.76 | 10.67 | -13.35 | -51.08 | -13.00 | V | # LTE Band 7, 5 MHz, QPSK, Channel 21100 | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP(dBm) | Limit
(dBm) | Polarization | |--------------------|---------------------------|------------------|----------------------|-------------------|----------------|--------------| | 5065.72 | -49.95 | 5.22 | -9.74 | -45.43 | -13.00 | Н | | 7598.54 | -47.12 | 6.88 | -11.50 | -42.50 | -13.00 | Н | | 10528.18 | -58.64 | 8.04 | -12.49 | -54.19 | -13.00 | V | | 12664.07 | -37.37 | 8.87 | -12.90 | -33.34 | -13.00 | Н | | 15056.66 | -55.20 | 9.66 | -13.49 | -51.37 | -13.00 | V | | 17730.02 | -48.26 | 11.06 | -13.44 | -45.88 | -13.00 | Н | #### LTE Band 7, 5 MHz, QPSK, Channel 21425 | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP(dBm) | Limit
(dBm) | Polarization | |--------------------|---------------------------|------------------|----------------------|-------------------|----------------|--------------| | 5130.78 | -43.40 | 5.25 | -9.78 | -38.87 | -13.00 | Н | | 7695.92 | -45.77 | 6.56 | -11.60 | -40.73 | -13.00 | Н | | 10261.21 | -55.39 | 7.55 | -12.45 | -50.49 | -13.00 | Н | | 12826.64 | -37.52 | 9.05 | -13.09 | -33.48 | -13.00 | Н | | 15391.80 | -44.25 | 9.72 | -13.42 | -40.55 | -13.00 | Н | | 17720.00 | -55.05 | 10.86 | -13.43 | -52.48 | -13.00 | V | #### LTE Band 7, 5 MHz, 16QAM, Channel 20775 | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP(dBm) | Limit
(dBm) | Polarization | |--------------------|---------------------------|------------------|----------------------|-------------------|----------------|--------------| | 5000.64 | -45.85 | 5.17 | -9.70 | -41.32 | -13.00 | Н | | 7500.82 | -51.69 | 6.61 | -11.40 | -46.90 | -13.00 | Н | | 10001.61 | -58.29 | 7.99 | -12.40 | -53.88 | -13.00 | Н | | 12501.60 | -34.65 | 8.83 | -12.70 | -30.78 | -13.00 | Н | | 15002.40 | -44.27 | 9.64 | -13.50 | -40.41 | -13.00 | Н | | 17502.76 | -45.91 | 11.02 | -13.30 | -43.63 | -13.00 | Н | #### LTE Band 7, 5 MHz, 16QAM, Channel 21100 | Frequency | P _{Mea} | Path | Antenna | Peak | Limit | Dolorization | |-----------|------------------|----------|-----------|-----------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | EIRP(dBm) | (dBm) | Polarization | | 5065.69 | -51.99 | 5.22 | -9.74 | -47.47 | -13.00 | Н | | 7598.52 | -47.09 | 6.88 | -11.50 | -42.47 | -13.00 | Н | | 9947.87 | -57.86 | 7.67 | -12.42 | -53.11 | -13.00 | V | | 12664.20 | -36.91 | 8.87 | -12.90 | -32.88 | -13.00 | Н | | 14851.12 | -54.38 | 9.84 | -13.53 | -50.69 | -13.00 | V | | 17729.85 | -48.49 | 11.05 | -13.44 | -46.10 | -13.00 | Н | #### LTE Band 7, 5 MHz, 16QAM, Channel 21425 | <u>-</u> | • | • | | | | | |-----------|------------------|----------|-----------|-----------|--------|--------------| | Frequency | P _{Mea} | Path | Antenna | Peak | Limit | Polarization | | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | EIRP(dBm) | (dBm) | Polarization | | 5130.78 | -44.43 | 5.25 | -9.78 | -39.90 | -13.00 | Н | | 7696.26 | -46.25 | 6.55 | -11.60 | -41.20 | -13.00 | Н | | 10261.48 | -56.84 | 7.55 | -12.45 | -51.94 | -13.00 | Н | | 12826.72 | -37.81 | 9.06 | -13.09 | -33.78 | -13.00 | Н | | 15736.79 | -54.70 | 10.06 | -13.21 | -51.55 | -13.00 | V | | 17605.73 | -52.95 | 10.69 | -13.36 | -50.28 | -13.00 | Н | Note: The maximum value of expanded measurement uncertainty for this test item is U = 4.2 dB, k = 2. # A.3 CONDUCTED EMISSION #### Reference FCC: CFR Part 15.107/207 The measurement procedure in ANSI C63.4-2009 is used. Conducted emission is measured with travel charger. The EUT is working under LTE FDD bands 7 traffic mode which is the worst case of conducted emission measurement. For test layout photo, please refer to Pic.2 in Annex B. #### A.3.1 Limit | Frequency of Emission | Conducted Limit (dBµV) | | | | |-----------------------------------|------------------------|-----------|--|--| | (MHz) | Quasi -Peak | Average | | | | 0.15 – 0.5 | 66 to 56* | 56 to 46* | | | | 0.5 – 5 | 56 | 46 | | | | 5 – 30 | 60 | 50 | | | | * Decreases with logarithm of the | e frequency | | | | # A.3.2 Measurement result LTE Band 7 # **Final Result 1** | Frequency (MHz) | QuasiPeak
(dBµV) | PE | Line | Corr.
(dB) | Margin
(dB) | Limit
(dBµV) | | | | |-----------------|---------------------|-----|------|---------------|----------------|-----------------|--|--|--| | 1.837500 | 34.6 | GND | L1 | 9.7 | 21.4 | 56.0 | | | | | 1.963500 | 31.8 | GND | L1 | 9.7 | 24.2 | 56.0 | | | | | 2.476500 | 35.5 | GND | L1 | 9.7 | 20.5 | 56.0 | | | | | 2.607000 | 37.5 | GND | L1 | 9.7 | 18.5 | 56.0 | | | | | 2.697000 | 41.2 | GND | L1 | 9.7 | 14.8 | 56.0 | | | | | 3.061500 | 36.2 | GND | L1 | 9.7 | 19.8 | 56.0 | | | | # Final Result 2 | Frequency (MHz) | Average
(dBµV) | PE | Line | Corr.
(dB) | Margin
(dB) | Limit
(dBµV) | |-----------------|-------------------|-----|------|---------------|----------------|-----------------| | 2.652000 | 27.7 | GND | L1 | 9.7 | 18.3 | 46.0 | | 2.769000 | 26.6 | GND | L1 | 9.7 | 19.4 | 46.0 | | 2.782500 | 27.5 | GND | L1 | 9.7 | 18.5 | 46.0 | | 2.899500 | 28.7 | GND | L1 | 9.7 | 17.3 | 46.0 | | 3.075000 | 27.3 | GND | L1 | 9.7 | 18.7 | 46.0 | | 3.336000 | 26.4 | GND | L1 | 9.7 | 19.6 | 46.0 | #### MP3 | Frequency | Level | Transd | Limit | Margin | Line | PE | |--|--|--------------------------------|------------------------------|------------------------------|---------------------|--------------------------| | MHz | $dB\mu V$ | dB | dΒμV | / (| iΒ | | | | | | | | | | | 1.698000 | 38.30 | 9.7 | 56 | 17.7 | L1 | GND | | 1.747500 | 40.70 | 9.7 | 56 | 15.3 | L1 | GND | | 1.792500 | 40.30 | 9.7 | 56 | 15.7 | N | GND | | 1.869000 | 39.30 | 9.7 | 56 | 16.7 | N | GND | | 2.648000 | 39.10 | 9.7 | 56 | 16.9 | L1 | GND | | 2.693000 | 38.30 | 9.7 | 56 | 17.7 | L1 | GND | Frequency | Level | Transd | Limit | Margin | Line | PE | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | • | Line
lB | PE | | | | | | • | | PE | | | | | | • | | PE
GND | | MHz | dBμV | dB | dΒμV | / (| iΒ | | | MHz
1.752000 | dBμV
27.90 | dB
9.7 | dBμV
46 | 18.1 | iB
N | GND | | MHz
1.752000
1.761000 | dBμV
27.90
27.10 | dB
9.7
9.7 | dBμV
46
46 | 18.1
18.9 | iB
N
L1 | GND
GND | | MHz 1.752000 1.761000 1.792500 | dBμV
27.90
27.10
27.60 | dB
9.7
9.7
9.7 | dBμV
46
46
46 | 18.1
18.9
18.4 | N
L1
L1 | GND
GND
GND | | MHz 1.752000 1.761000 1.792500 1.828500 | dBμV
27.90
27.10
27.60
27.80 | dB
9.7
9.7
9.7
9.7 | dBμV
46
46
46
46 | 18.1
18.9
18.4
18.2 | N
L1
L1
L1 | GND
GND
GND
GND | #### Camera | Frequency | Level | Transd | Limit | Margin | Line | PE | |---------------------------------|---------------------------------|-------------------------|------------------------|----------------------|---------------|-------------------| | MHz | $dB\mu V$ | dB | dΒμV | V c | iΒ | | | | | | | | | | | 1.747500 | 40.70 | 9.7 | 56 | 15.3 | L1 | GND | | 1.779000 | 40.70 | 9.7 | 56 | 15.3 | L1 | GND | | 1.801500 | 38.00 | 9.7 | 56 | 18.0 | L1 | GND | | 1.824000 | 39.90 | 9.7 | 56 | 16.1 | N | GND | | 1.833000 | 39.30 | 9.7 | 56 | 16.7 | N | GND | | 1.869000 | 38.70 | 9.7 | 56 | 17.3 | N | GND | | | | | | | | | | | | | | | | | | Frequency | Level | Transd | Limit | Margin | Line | PE | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Ū | Line
dB | PE | | 1 . | | | | Ū | | PE | | 1 . | | | | Ū | | PE
GND | | MHz | dBμV | dB | dΒμV | V (| dΒ | | | MHz
1.747500 | dBμV
28.00 | dB
9.7 | dBμV
46 | V 18.0 | iB
N | GND | | MHz 1.747500 1.779000 | dBμV
28.00
27.80 | dB
9.7
9.7 | dBμV
46
46 | 18.0
18.2 | dB
N
L1 | GND
GND | | MHz 1.747500 1.779000 1.824000 | dBμV
28.00
27.80
27.90 | dB
9.7
9.7
9.7 | dBμV
46
46
46 | 18.0
18.2
18.1 | N
L1
L1 | GND
GND
GND | Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.9 dB, k = 2. # A.4 FREQUENCY STABILITY #### Reference FCC: CFR Part 2.1055, 27.54. #### A.4.1 Method of Measurement In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30℃. - 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 7, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at $+50^{\circ}$ C. - 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10 °C increments from +50 °C to -30 °C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure. #### A.4.2 Measurement Limit According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d) (2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.2VDC, with a nominal voltage of 3.9VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -14.3 %. For the purposes of measuring frequency stability these voltage limits are to be used. #### A.4.3 Measurement results ## LTE Band 7, 5 MHz ## Frequency Error vs Voltage | Voltago | QF | PSK | 16QAM | | | |---------|------------|-------------|------------|-------------|--| | Voltage | Frequency | Frequency | Frequency | Frequency | | | (V) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | | 3.5 | 1 | 0.000 | -27 | 0.011 | | | 3.9 | -6 | 0.002 | -23 | 0.009 | | | 4.2 | 13 | 0.005 | -18 | 0.007 | | #### **Frequency Error vs Temperature** | requestoy Error vo remperature | | | | | | | | | |--------------------------------|------------|-------------|------------|-------------|--|--|--|--| | Tomporoturo | QF | PSK | 16QAM | | | | | | | Temperature | Frequency | Frequency | Frequency | Frequency | | | | | | (℃) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | | | | | 50° | -14 | 0.006 | -17 | 0.007 | | | | | | 40° | -11 | 0.004 | -17 | 0.007 | | | | | | 30° | 1 | 0.000 | 2 | 0.001 | | | | | | 20° | 13 | 0.005 | -21 | 0.008 | | | | | | 10° | -1 | 0.001 | 0 | 0.000 | | | | | | 0° | -21 | 0.008 | -20 | 0.008 | | | | | | - 10° | -11 | 0.004 | -7 | 0.003 | | | | | | - 20° | 4 | 0.001 | 1 | 0.000 | | | | | | - 30° | -17 | 0.007 | -8 | 0.003 | | | | | ## LTE Band 7, 10 MHz #### Frequency Error vs Voltage | Voltage | QF | PSK | 16QAM | | | |----------------|------------|-------------|------------|-------------|--| | Voltage
(V) | Frequency | Frequency | Frequency | Frequency | | | (V) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | | 3.5 | -20 | 0.008 | 10 | 0.004 | | | 3.9 | -20 | 0.008 | -17 | 0.007 | | | 4.2 | -20 | 0.008 | -3 | 0.001 | | #### **Frequency Error vs Temperature** | Tomporoturo | QF | PSK | 160 | MAQ | |-------------|------------|-------------|------------|-------------| | Temperature | Frequency | Frequency | Frequency | Frequency | | (℃) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | 50° | -14 | 0.006 | 0 | 0.000 | | 40° | -15 | 0.006 | 5 | 0.002 | | 30° | -11 | 0.004 | -4 | 0.001 | | 20° | -6 | 0.002 | -12 | 0.005 | | 10° | 8 | 0.003 | -20 | 0.008 | | 0° | -19 | 0.007 | 9 | 0.004 | | - 10° | 4 | 0.002 | 2 | 0.001 | | - 20° | 8 | 0.003 | -11 | 0.004 | |-------|----|-------|-----|-------| | - 30° | 13 | 0.005 | -8 | 0.003 | # LTE Band 7, 15 MHz ## Frequency Error vs Voltage | Voltago | QPSK | | 16QAM | | |---------|------------|-------------|------------|-------------| | Voltage | Frequency | Frequency | Frequency | Frequency | | (V) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | 3.5 | -19 | 0.008 | -14 | 0.006 | | 3.9 | 5 | 0.002 | -6 | 0.002 | | 4.2 | -11 | 0.004 | 8 | 0.003 | **Frequency Error vs Temperature** | Tomorofuro | QF | QPSK | | 16QAM | | |-------------|------------|-------------|------------|-------------|--| | Temperature | Frequency | Frequency | Frequency | Frequency | | | (℃) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | | 50° | 12 | 0.005 | -19 | 0.008 | | | 40° | 1 | 0.001 | -16 | 0.006 | | | 30° | 0 | 0.000 | 11 | 0.004 | | | 20° | -1 | 0.000 | -9 | 0.004 | | | 10° | 1 | 0.000 | 12 | 0.005 | | | 0° | -2 | 0.001 | -16 | 0.006 | | | - 10° | -3 | 0.001 | 9 | 0.003 | | | - 20° | -12 | 0.005 | 12 | 0.005 | | | - 30° | 7 | 0.003 | -15 | 0.006 | | #### LTE Band 7, 20 MHz ## Frequency Error vs Voltage | Valtaria | | PSK | 16QAM | | |----------------|------------|-------------|------------|-------------| | Voltage
(V) | Frequency | Frequency | Frequency | Frequency | | (V) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | 3.5 | 10 | 0.004 | -15 | 0.006 | | 3.9 | 14 | 0.006 | 0 | 0.000 | | 4.2 | -18 | 0.007 | -19 | 0.008 | **Frequency Error vs Temperature** | ODOM 400AM | | | | | | |-------------|------------|-------------|------------|-------------|--| | Temperature | QI | QPSK | | 16QAM | | | • | Frequency | Frequency | Frequency | Frequency | | | (℃) | error (Hz) | error (ppm) | error (Hz) | error (ppm) | | | 50° | -13 | 0.005 | 9 | 0.003 | | | 40° | -3 | 0.001 | 0 | 0.000 | | | 30° | -22 | 0.008 | -19 | 0.008 | | | 20° | -13 | 0.005 | -26 | 0.010 | | | 10° | -1 | 0.000 | 1 | 0.000 | | | 0° | -12 | 0.005 | -9 | 0.003 | |-------|-----|-------|-----|-------| | - 10° | 4 | 0.002 | -23 | 0.009 | | - 20° | 7 | 0.003 | 6 | 0.003 | | - 30° | -13 | 0.005 | -13 | 0.005 | Expanded measurement uncertainty for this test item is 10 Hz, k = 2. #### A.5 OCCUPIED BANDWIDTH #### Reference FCC: CFR Part 2.1049(h)(i) #### A.5.1 Occupied Bandwidth Results Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. #### LTE band 7, 5MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|---------| | 2535.0 | QPSK | 16QAM | | | 4471.15 | 4487.18 | #### LTE band 7, 5MHz Bandwidth, QPSK (99% BW) Date: 9.JAN.2014 11:25:05 ## LTE band 7, 5MHz Bandwidth,16QAM (99% BW) Date: 9.JAN.2014 11:25:18 #### LTE band 7, 10MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|---------| | 2535.0 | QPSK | 16QAM | | | 8966.35 | 8966.35 | ## LTE band 7, 10MHz Bandwidth, QPSK (99% BW) Date: 9.JAN.2014 11:30:40 #### LTE band 7, 10MHz Bandwidth, 16QAM (99% BW) Date: 9.JAN.2014 11:30:54 #### LTE band 7, 15MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2535.0 | QPSK | 16QAM | | | 13493.59 | 13461.54 | #### LTE band 7, 15MHz Bandwidth, QPSK (99% BW) Date: 9.JAN.2014 11:36:17 #### LTE band 7, 15MHz Bandwidth, 16QAM (99% BW) Date: 9.JAN.2014 11:36:31 #### LTE band 7, 20MHz (99%) | Frequency(MHz) | Occupied Bandwidth (99%)(kHz) | | |----------------|--------------------------------|----------| | 2535.0 | QPSK | 16QAM | | | 17932.69 | 17932.69 | #### LTE band 7, 20MHz Bandwidth, QPSK (99% BW) Date: 9.JAN.2014 11:42:25 #### LTE band 7, 20MHz Bandwidth, 16QAM (99% BW) Date: 9.JAN.2014 11:42:39 ## A.6 EMISSION BANDWIDTH #### Reference FCC: CFR Part 27.53(h) #### A.6.1Emission Bandwidth Results Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages. #### LTE band 7, 5MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|---------| | 2535.0 | QPSK | 16QAM | | | 4903.85 | 4935.90 | #### LTE band 7, 5MHz Bandwidth, QPSK (-26dBc BW) Date: 9.JAN.2014 10:43:30 ## LTE band 7, 5MHz Bandwidth,16QAM (-26dBc BW) Date: 9.JAN.2014 10:43:46 ## LTE band 7, 10MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|---------| | 2535.0 | QPSK | 16QAM | | | 9855.77 | 9759.62 | #### LTE band 7, 10MHz Bandwidth, QPSK (-26dBc BW) Date: 9.JAN.2014 10:52:25 #### LTE band 7, 10MHz Bandwidth, 16QAM (-26dBc BW) Date: 9.JAN.2014 10:52:41 # LTE band 7, 15MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2535.0 | QPSK | 16QAM | | | 14775.64 | 14807.69 | ## LTE band 7, 15MHz Bandwidth, QPSK (-26dBc BW) Date: 9.JAN.2014 11:01:54 ## LTE band 7, 15MHz Bandwidth, 16QAM (-26dBc BW) # LTE band 7, 20MHz (-26dBc) | Frequency(MHz) | Occupied Bandwidth (-26dBc)(kHz) | | |----------------|-----------------------------------|----------| | 2535.0 | QPSK | 16QAM | | | 19278.85 | 19375.00 | ## LTE band 7, 20MHz Bandwidth, QPSK (-26dBc BW) Date: 9.JAN.2014 11:16:57 ## LTE band 7, 20MHz Bandwidth, 16QAM (-26dBc BW) # A.7 BAND EDGE COMPLIANCE #### Reference FCC: CFR Part 22.917(b), 24.238(a), 27.53(h). #### A.7.1 Measurement limit On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. #### A.7.2 Measurement result # LTE band 7, 5MHz LOW BAND EDGE BLOCK-QPSK ### **HIGH BAND EDGE BLOCK-QPSK** Date: 9.JAN.2014 10:45:45 #### **LOW BAND EDGE BLOCK-16QAM** ## **HIGH BAND EDGE BLOCK-16QAM** Date: 9.JAN.2014 10:45:56 # LTE band 7, 10MHz LOW BAND EDGE BLOCK-QPSK Date: 9.JAN.2014 10:51:20 ### HIGH BAND EDGE BLOCK-QPSK Date: 9.JAN.2014 10:54:40 ### **LOW BAND EDGE BLOCK-16QAM** Date: 9.JAN.2014 10:51:30 # **HIGH BAND EDGE BLOCK-16QAM** Date: 9.JAN.2014 10:54:50 # LTE band 7, 15MHz LOW BAND EDGE BLOCK-QPSK Date: 9.JAN.2014 11:00:19 ### HIGH BAND EDGE BLOCK-QPSK ### **LOW BAND EDGE BLOCK-16QAM** Date: 9.JAN.2014 11:00:29 # **HIGH BAND EDGE BLOCK-16QAM** # LTE band 7, 20MHz LOW BAND EDGE BLOCK-QPSK Date: 9.JAN.2014 11:14:52 ### HIGH BAND EDGE BLOCK-QPSK ### **LOW BAND EDGE BLOCK-16QAM** Date: 9.JAN.2014 11:15:02 # **HIGH BAND EDGE BLOCK-16QAM** ### A.8 CONDUCTED SPURIOUS EMISSION #### Reference FCC: CFR Part 2.1057, 22.917, 24.238, 27.53(h). #### A.8.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz. - 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. #### A. 8.2 Measurement Limit Part 22.917, Part 24.238 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A. 8.3 Measurement result # LTE band 7, 5MHz bandwidth ### QPSK: 30MHz - 1GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:26:04 ## QPSK: 1GHz - 2.5GHz Spurious emission limit -13dBm. ### **QPSK: 2.5GHz - 7.5GHz** Spurious emission limit -13dBm. Date: 9.JAN.2014 11:26:20 ### QPSK: 7.5GHz -10GHz Spurious emission limit -13dBm. ### QPSK: 10GHz -15GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:26:36 ## QPSK: 15GHz -20GHz Spurious emission limit -13dBm. ### QPSK: 20GHz -26GHz Spurious emission limit -13dBm. ### 16QAM: 30MHz - 1GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:28:01 ### 16QAM: 1GHz - 2.5GHz Spurious emission limit -13dBm. ### 16QAM: 2.5GHz - 7.5GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:28:17 ### 16QAM: 7.5GHz -10GHz Spurious emission limit -13dBm. #### 16QAM: 10GHz -15GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:28:33 ## 16QAM: 15GHz -20GHz Spurious emission limit -13dBm. ### 16QAM: 20GHz -26GHz Spurious emission limit -13dBm. Date: 9.JAN.2014 11:28:49 ***END OF REPORT***