

12.3 SAR results for Standard procedure

There is not zoom scan measurement to be added except the highest measured SAR in each exposure configuration and band, because all SAR values are < 1.2 W/kg.

	Ambient Temperature: 22.8 °C Liquid Temperature: 22.3 °C											
Frequency		icy -		Figure	Conducted	Measured	Reported	Measured	Reported	Power		
	-	Side	Side Test	U	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.	Ch. Position		No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
848.8	251	Right	Touch	Fig.1	31.76	0.712	0.95	1.02	1.36	-0.04		

Table 12.10: SAR Values (GSM 850 MHz Band - Head) with battery CAB24Q0000C1

Table 12.11: SAR Values (GSM 850 MHz Band - Body) with battery CAB24Q0000C1

			Ambient Ten	nperature:	22.8 °C	Liquid Temperature: 22.3 °C				
Frequency		Toot		Figuro	Conducted	Measured	Reported	Measured	Reported	Power
	1 3 1630		Headset	Figure No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position			(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	Ground	/	Fig.2	31.74	0.523	0.70	0.721	0.96	0.00

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 12.12: SAR Values (GSM 1900 MHz Band - Head) with battery CAB24Q0000C1

			Ambient	Temperat	ure: 22.6 °C	C Liquid Temperature: 22.2 °C				
Freque	encv		Teat	Figure	Conducted	Measured	Reported	Measured	Reported	Power
		Side	Test	Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	Right	Touch	Fig.3	29.26	0.478	0.61	0.866	1.10	-0.04

Table 12.13: SAR Values (GSM 1900 MHz Band - Body) with battery CAB24Q0000C1

			Ambient Tem	perature:	22.6 °C	Liquid Temp	erature: 22.2	2°C		
Frequency		Test	Headset	Figure	Conducted Power	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1q)	Reported SAR(1a)	Power Drift
MHz	Ch.	Position	TreadSet	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	Ground	/	Fig.4	29.26	0.485	0.62	0.839	1.07	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

13 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

			5.1. SAR IVI	easurement va	anability for nead	G2101 020	(ig)
Frequ	Frequency	Side	e Test Original First Repeated Position SAR (W/kg) SAR (W/kg)		The	Second Repeated	
MHz	Ch.	Side			Ratio	SAR (W/kg)	
848.8	251	Right	Touch	1.02	0.993	1.03	/

Table 13.1: SAR Measurement Variability for Head GSM 850 (1g)

-	Table 13	8.2: SAR M	easurement Va	riability for Head	PCS 190	0 (1g)

Frequ	ency	Side	TestOriginalFirst RepeatedSidePositionSAR (W/kg)SAR (W/kg)		The	Second Repeated	
MHz	Ch.	Side			SAR (W/kg)	Ratio	SAR (W/kg)
1880	661	Right	Touch	0.866	0.847	1.02	1

Frequ	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1880	661	Ground	10	0.839	0.833	1.01	1

14 Measurement Uncertainty

14.1 Measurement Uncertainty for Normal SAR Tests

14.	i measurement U				10313					
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probepositioningwithrespecttophantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	1				•	
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phant	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521

No. 2013SAR00176 Page 27 of 116

Combined standard uncertainty	$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.25	9.12	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			18.5	18.2	

14.2 Measurement Uncertainty for Fast SAR Tests

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	FastSARz-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	1					
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8

No. 2013SAR00176 Page 28 of 116

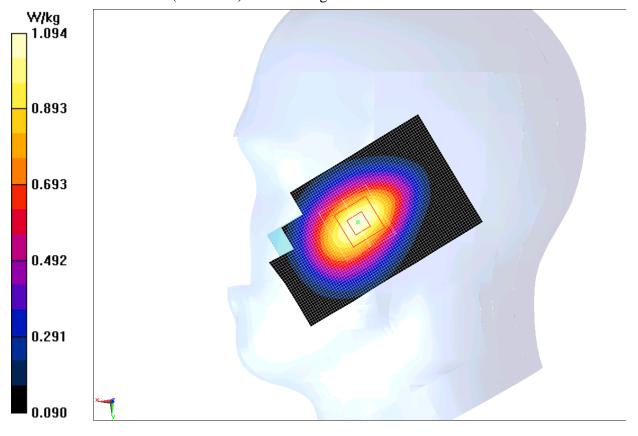
20	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		u' _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.1	9.95	257
Expanded uncertainty (confidence interval of 95 %)		l	$u_e = 2u_c$					20.2	19.9	

15 MAIN TEST INSTRUMENTS

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	February 15, 2013	One year	
02	Power meter	NRVD	102083	Sentember 11, 2012	One year	
03	Power sensor	NRV-Z5	100542	September 11, 2013		
04	Signal Generator	E4438C	MY49071430	February 08, 2013	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 30, 2013	One year	
07	E-field Probe	SPEAG ES3DV3	3149	April 24, 2012	One year	
08	E-field Probe	SPEAG EX3DV4	3846	September 03, 2013	One year	
09	DAE	SPEAG DAE4	771	November 12, 2013	One year	
10	Dipole Validation Kit	SPEAG D835V2	443	May 03, 2012	One year	
11	Dipole Validation Kit	SPEAG D835V2	443	August 29, 2013	One year	
12	Dipole Validation Kit	SPEAG D1900V2	541	May 09, 2012	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 09, 2013	One year	

Table	15.1: L	ist of N	lain Ins	struments
-------	---------	----------	----------	-----------

END OF REPORT BODY


ANNEX A GRAPH RESULTS

850 Right Cheek High

Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Head 835 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.914$ mho/m; $\epsilon r = 40.598$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.07 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.574 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.712 W/kg Maximum value of SAR (measured) = 1.09 W/kg

Fig. A.1 850 MHz CH251

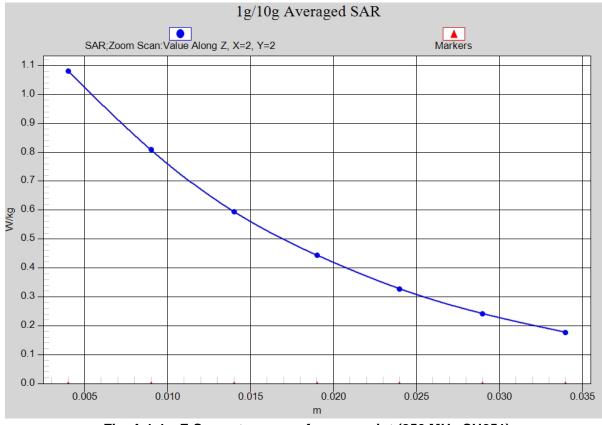


Fig. A.1-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Toward Ground Middle

Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Body 835 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.992$ mho/m; $\epsilon r = 56.491$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.763 W/kg

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.409 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.921 W/kg SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.523 W/kg Maximum value of SAR (measured) = 0.760 W/kg

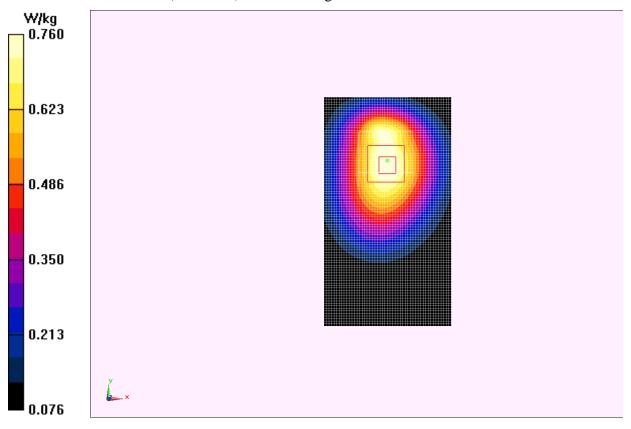


Fig. A.2 850 MHz CH190

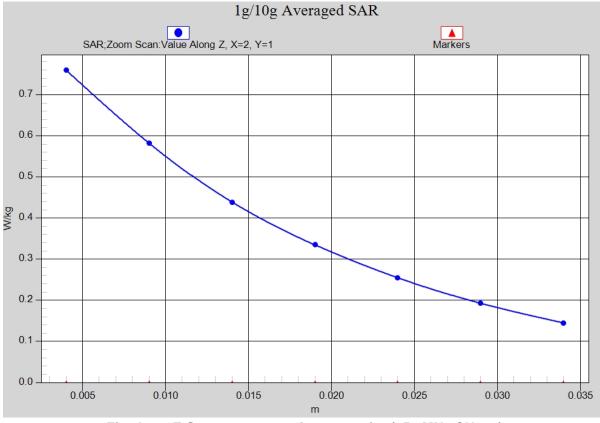


Fig. A.2-1 Z-Scan at power reference point (850 MHz CH190)

1900 Right Cheek Middle

Date: 2013-3-7 Electronics: DAE4 Sn771 Medium: Head GSM1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.397$ mho/m; $\epsilon r = 39.488$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.988 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 5.962 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.532 W/kg SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.478 W/kg Maximum value of SAR (measured) = 0.975 W/kg

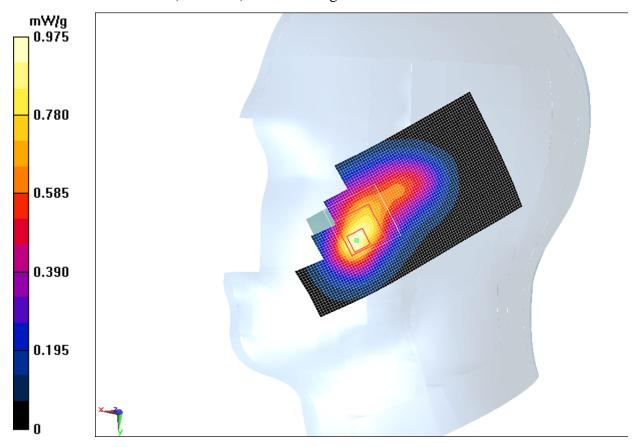


Fig. A.3 1900 MHz CH661

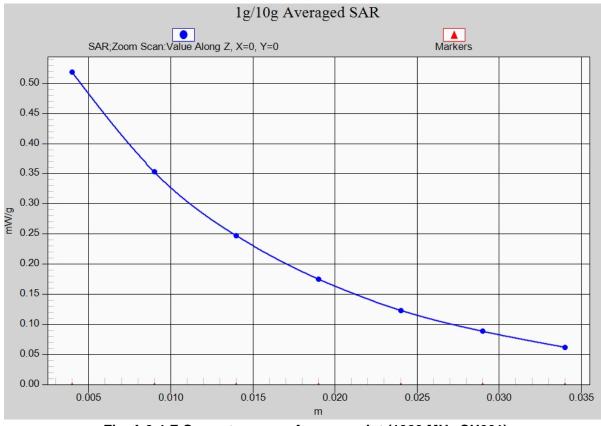


Fig. A.3-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Toward Ground Middle

Date: 2013-3-7 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.515$ mho/m; $\epsilon r = 52.897$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Middle/Area Scan (41x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.890 W/kg

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.496 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.366 W/kg SAR(1 g) = 0.839 W/kg; SAR(10 g) = 0.485 W/kg Maximum value of SAR (measured) = 0.912 W/kg

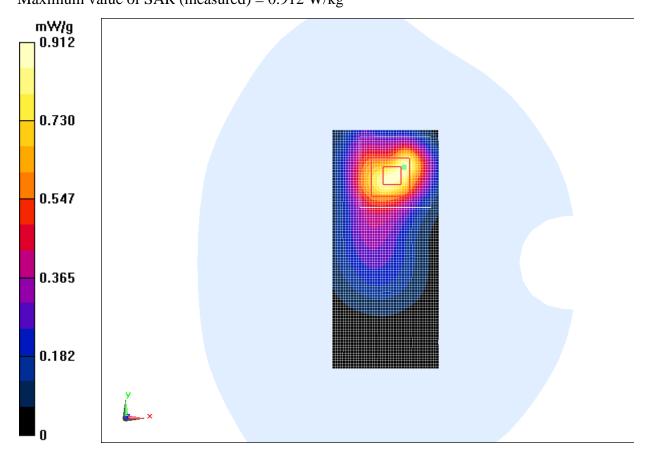


Fig. A.4 1900 MHz CH661

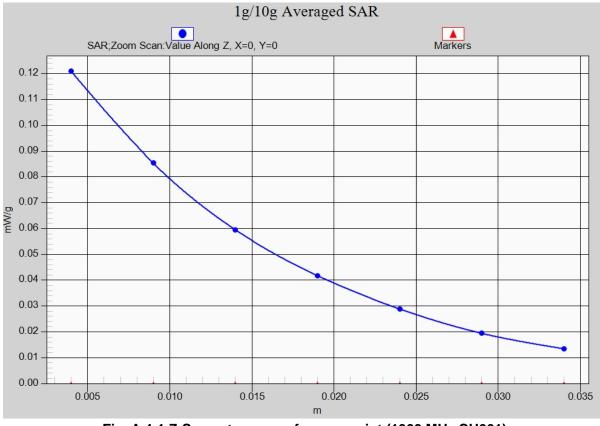
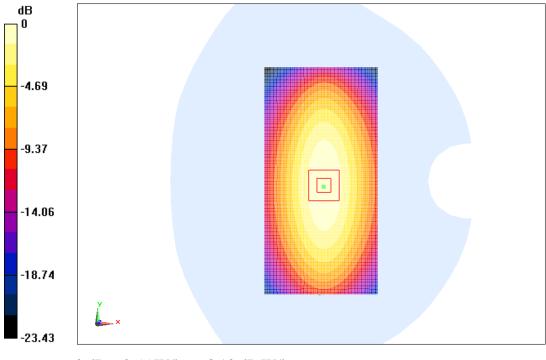


Fig. A.4-1 Z-Scan at power reference point (1900 MHz CH661)

ANNEX B System Verification Results

835MHz


Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.891$ mho/m; $\epsilon_r = 40.78$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

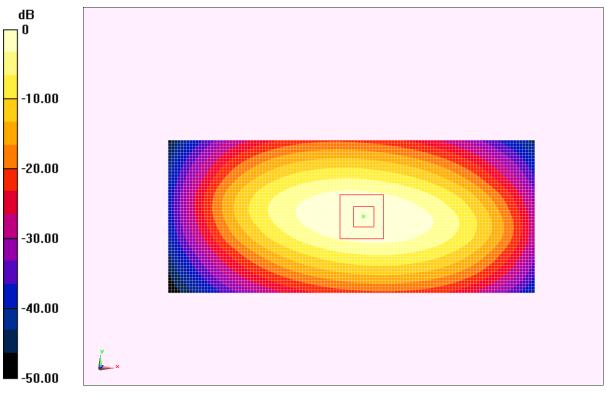
System Validation /Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 52.613 V/m; Power Drift = 0.101 dB Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.50 W/kg Maximum value of SAR (interpolated) = 2.55 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.613 V/m; Power Drift = 0.101 dB Peak SAR (extrapolated) = 3.514 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.56 W/kg

0 dB = 2.55 W/kg = 8.13 dB W/kg


Fig.B.1 validation 835MHz 250mW

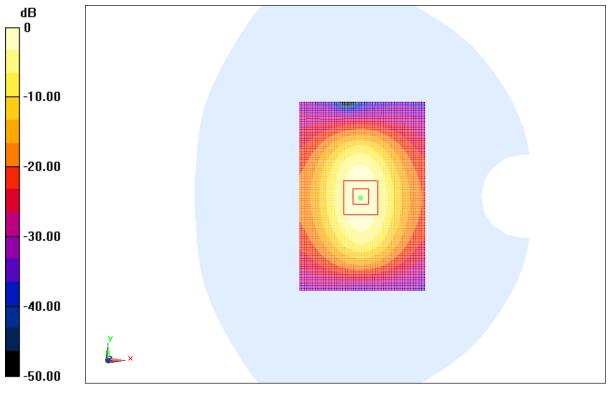
Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.985$ mho/m; $\varepsilon_r = 56.47$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

System Validation /Area Scan (81x171x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 46.775 V/m; Power Drift = 0.09 dB Fast SAR: SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (interpolated) = 2.61 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.775 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.603 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 8.33 dB W/kg

Fig.B.2 validation 835MHz 250mW



Date: 2013-3-7 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.414$ mho/m; $\epsilon_r = 39.41$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

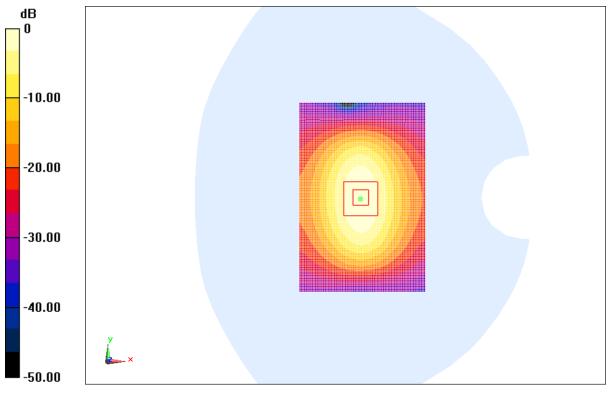
System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 94.017 V/m; Power Drift = -0.075 dB Fast SAR: SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (interpolated) = 11.0 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.017 V/m; Power Drift = -0.075 dB Peak SAR (extrapolated) = 17.963 W/kg SAR(1 g) = 9.64 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 10.9 W/kg

0 dB = 11.0 W/kg = 20.83 dB W/kg

Fig.B.3 validation 1900MHz 250mW



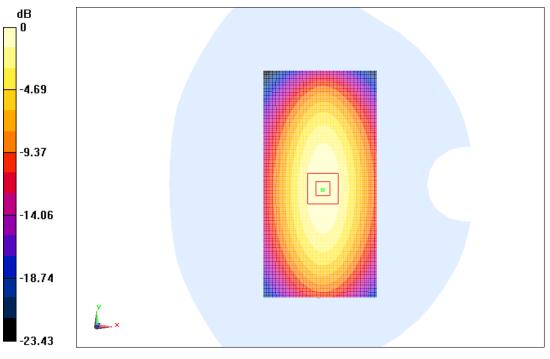
Date: 2013-3-7 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.543$ mho/m; $\epsilon_r = 52.88$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 88.248 V/m; Power Drift = 0.04 dB Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (interpolated) = 11.6 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.248 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.691 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.45 W/kg Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.6 W/kg = 21.29 dB W/kg

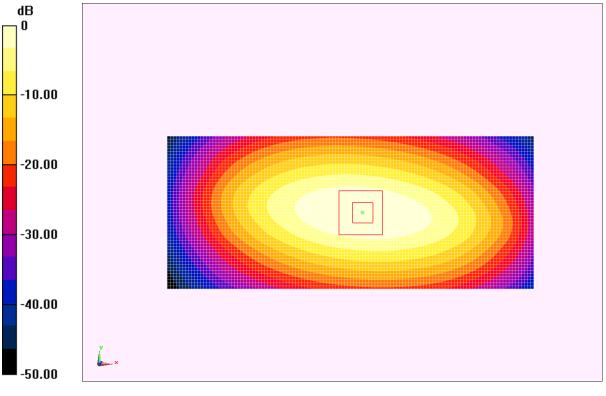

Fig.B.4 validation 1900MHz 250mW

Date: 2014-1-3 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_r = 42.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

System Validation /Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 53.366 V/m; Power Drift = -0.15 dB Fast SAR: SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 2.63 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.366 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 3.581 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.64 W/kg

0 dB = 2.63 W/kg = 8.40 dB W/kg



Date: 2014-1-3 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.979$ mho/m; $\varepsilon_r = 55.42$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

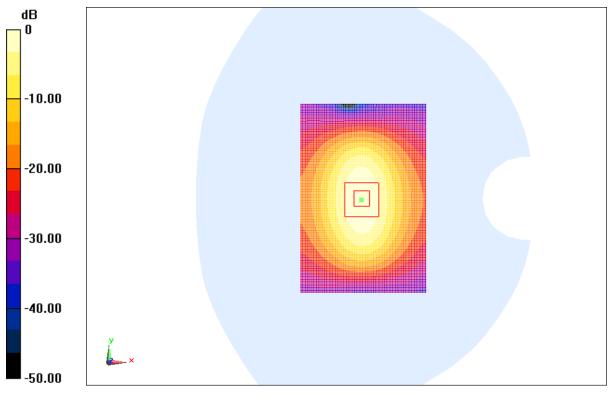
System Validation /Area Scan (81x171x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 46.498 V/m; Power Drift = -0.11 dB Fast SAR: SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (interpolated) = 2.60 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.498 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

0 dB = 2.60 W/kg = 8.30 dB W/kg

Fig.B.6 validation 835MHz 250mW



Date: 2014-1-2 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ mho/m; $\epsilon_r = 39.27$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

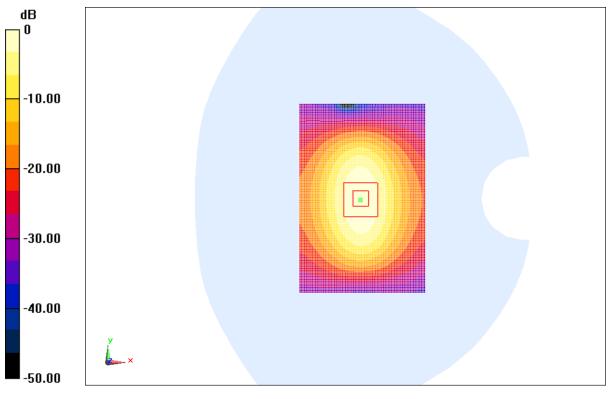
System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 96.387 V/m; Power Drift = -0.12 dB Fast SAR: SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.26 W/kg Maximum value of SAR (interpolated) = 11.2 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.387 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 18.23 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.20 W/kg Maximum value of SAR (measured) = 11.1 W/kg

0 dB = 11.2 W/kg = 20.98 dB W/kg

Fig.B.7 validation 1900MHz 250mW



Date: 2014-1-2 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.526$ mho/m; $\epsilon_r = 53.01$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

System Validation/Area Scan (81x121x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 84.152 V/m; Power Drift = -0.07 dB Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg Maximum value of SAR (interpolated) = 11.5 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

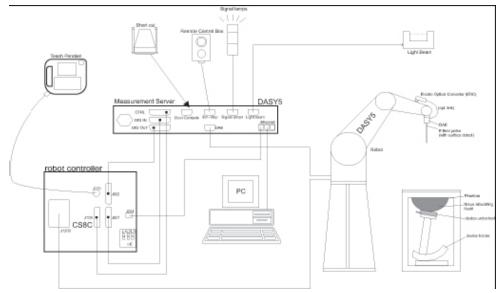
Reference Value = 84.152 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.67 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.40 W/kg Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.5 W/kg = 21.21 dB W/kg

Fig.B.8 validation 1900MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.T Comparison between area scan and zoom scan for system vernication								
Date	Band	Position	Area scan	Zoom scan	Drift (%)			
			(1g)	(1g)				
2013-03-06	835	Head	2.34	2.37	-1.27			
2013-03-06	835	Body	2.38	2.41	-1.24			
2012 02 07	1900	Head	9.75	9.64	1.14			
2013-03-07	1900	Body	10.1	10.2	-0.98			
2014-01-03	835	Head	2.43	2.45	-0.82			
2014-01-03	835	Body	2.42	2.39	1.26			
2014-01-02	1900	Head	9.86	9.79	0.72			
2014-01-02	1900	Body	10.1	10.2	-0.98			


Table B.1 Comparison between area scan and zoom scan for system verification

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.