Frequency Response of H-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of H-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM,0° f=2500 MHz,R22,0° # Receiving Pattern (ϕ), $9 = 90^{\circ}$ f=600 MHz,TEM,90° f=2500 MHz,R22,90° # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(H-field) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) January 27, 2014 H3DV6- SN:6260 # DASY/EASY - Parameters of Probe: H3DV6 - SN:6260 #### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | -152.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 20 mm | | Tip Diameter | 6 mm | | Probe Tip to Sensor X Calibration Point | 3 mm | | Probe Tip to Sensor Y Calibration Point | 3 mm | | Probe Tip to Sensor Z Calibration Point | 3 mm | | | | ### ANNEX E DIPOLE CALIBRATION CERTIFICATE ### Dipole 835 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | PALIBITATION | CERTIFICAT | Electronic de la companya del companya del companya de la | | |--|---|--|--| | Object | CD835V3 - SN: | 1156 | | | Calibration procedure(s) | QA CAL-20.v6
Calibration proc | edure for dipoles in air | | | Calibration date: | September 02, 2 | 2013 | | | The measurements and the unc | ertainties with confidence purchased in the closed laborate | tional standards, which realize the physical units probability are given on the following pages and ory facility: environment temperature $(22 \pm 3)^{\circ}$ C | are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | filliary otariuarus | 10 # | | Scheduled Calibration | | Power meter EPM-442A | GR37480704 | | Oct 12 | | | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A
Reference 10 dB Attenuator | US37292783
SN: 5047.2 (10q) | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01731) | Oct-13
Apr-14 | | Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ER3DV6 | US37292783
SN: 5047.2 (10q)
SN: 2336 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12) | Oct-13
Apr-14
Dec-13 | | Power sensor HP 8481A
Reference 10 dB Attenuator
Probe ER3DV6
Probe H3DV6 | US37292783
SN: 5047.2 (10q) | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01731) | Oct-13
Apr-14 | | Power meter EPM-442A Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards | US37292783
SN: 5047.2 (10q)
SN: 2336
SN: 6065 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Oct-13
Apr-14
Dec-13
Dec-13 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B | US37292783
SN: 5047.2 (10q)
SN: 2336
SN: 6065
SN: 781 | 01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01731)
28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12)
03-Jun-13 (No. DAE4-781_Jun13) | Oct-13
Apr-14
Dec-13
Dec-13
Jun-14 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | US37292783
SN: 5047.2 (10q)
SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 US37390585 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 US37390585 SN: 832283/011 Name | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 Signature | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 US37390585 SN: 832283/011 | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 Signature | | Power sensor HP 8481A Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | US37292783 SN: 5047.2 (10q) SN: 2336 SN: 6065 SN: 781 ID # SN: GB42420191 SN: MY41495277 SN: US37295597 US37390585 SN: 832283/011 Name | 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01731) 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) | Oct-13 Apr-14 Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 | Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References - [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. - [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm (15 mm for [2]) above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accurracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1] and [2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (15 mm for [2]) (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD835V3-1156 Sep13 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |---------------------------------------|-----------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 10 mm
15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 835 MHz | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured | 100 mW input power | 0.461 A / m ± 8.2 % (k=2) | | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 169.8 V / m | | Maximum measured above low end | 100 mW input power | 167.7 V / m | | Averaged maximum above arm | 100 mW input power | 168.8 V / m ± 12.8 % (k=2) | | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 109.5 V / m | | Maximum measured above low end | 100 mW input power | 108.0 V / m | | Averaged maximum above arm | 100 mW input power | 108.8 V / m ± 12.8 % (k=2) | #### Appendix #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|------------------| | 800 MHz | 17.8 dB | 46.8 Ω - 12.1 jΩ | | 835 MHz | 28.0 dB | 48.3 Ω + 3.5 jΩ | | 900 MHz | 15.9 dB | 59.7 Ω - 14.9 jΩ | | 950 MHz | 22.0 dB | 42.7 Ω - 1.0 jΩ | | 960 MHz | 21.4 dB | 45.7 Ω + 7.0 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. #### Impedance Measurement Plot #### **DASY5 H-field Result** Date: 02.09.2013 Test Laboratory: SPEAG Lab2 # DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1156 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: H3DV6 SN6065; ; Calibrated: 28.12.2012 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 03.06.2013 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole H-Field measurement @ 835MHz/H-Scan - 835MHz d=10mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.4890 A/m; Power Drift = 0.00 dB PMR not calibrated. PMF = 1.000 is applied. H-field emissions = 0.4612 A/m Near-field category: M4 (AWF 0 dB) #### PMF scaled H-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------------|-----------|-----------| | 0.380 A/m | 0.409 A/m | 0.394 A/m | | Grid 4 M4
0.426 A/m | | | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 0.377 A/m | 0.413 A/m | 0.400 A/m | 0 dB = 0.4612 A/m = -6.72 dBA/m #### **DASY5 E-field Result** Date: 02.09.2013 Test Laboratory: SPEAG Lab2 DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1156 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 28.12.2012; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 03.06.2013 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=10mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 107.8 V/m; Power Drift = 0.02 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 169.8 V/m Near-field category: M4 (AWF 0 dB) #### PMF scaled E-field | Grid 1 M4 | | | |------------------|------------------|-----------| | 162.6 V/m | 169.8 V/m | 166.1 V/m | | | Grid 5 M4 | | | 86.01 V/m | 89.06 V/m | 87.46 V/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 157.4 V/m | 167.7 V/m | 166.3 V/m | Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 107.9 V/m; Power Drift = -0.00 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 109.5 V/m Near-field category: M4 (AWF 0 dB) #### PMF scaled E-field | Grid 2 M4
109.5 V/m | | |-------------------------------|--| | Grid 5 M4
63.94 V/m | | | Grid 8 M4
108.0 V/m | | 0 dB = 169.8 V/m = 44.60 dBV/m ### Dipole 1880 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Tejet-SH (Auden) Certificate No: CD1880V3-1140 Sep13 Accreditation No.: SCS 108 | CALIBRATION | CERTIFICAT | | eate No: CD1880V3-1140_Sep13 | |--|---|---|--| | Object | CD1880V3 - SN | | | | | | | | | Calibration procedure(s) | QA CAL-20.v6
Calibration proc | edure for dipoles in air | | | Calibration date: | September 02, 2 | 2013 | | | The measurements and the unc | pertainties with confidence ucted in the closed laborate | tional standards, which realize the phys
probability are given on the following pa
ory facility: environment temperature (22 | ges and are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | | ONL FOUT O HOL | 04-Apr-13 (No. 217-01731) | | | | SN: 5047.2 (10q) | 07 Apr 10 (110, 217-01701) | Apr-14 | | Probe ER3DV6 | SN: 2336 | 28-Dec-12 (No. ER3-2336_Dec12) | Apr-14
Dec-13 | | Probe ER3DV6
Probe H3DV6 | SN: 2336
SN: 6065 | 28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Dec-13
Dec-13 | | Probe ER3DV6
Probe H3DV6 | SN: 2336 | 28-Dec-12 (No. ER3-2336_Dec12) | Dec-13 | | Probe ER3DV6
Probe H3DV6
DAE4
Secondary Standards | SN: 2336
SN: 6065
SN: 781 | 28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12) | Dec-13
Dec-13 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191 | 28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12)
03-Jun-13 (No. DAE4-781_Jun13)
Check Date (in house)
09-Oct-09 (in house check Oct-12) | Dec-13
Dec-13
Jun-14 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277 | 28-Dec-12 (No. ER3-2336_Dec12)
28-Dec-12 (No. H3-6065_Dec12)
03-Jun-13 (No. DAE4-781_Jun13)
Check Date (in house)
09-Oct-09 (in house check Oct-12)
01-Apr-08 (in house check Oct-12) | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Probe ER3DV6 Probe H3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585
SN: 832283/011 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) Function | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 Signature | | Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585
SN: 832283/011 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 Signature | | Reference 10 dB Attenuator Probe ER3DV6 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A Network Analyzer HP 8753E RF generator R&S SMT-06 Calibrated by: | SN: 2336
SN: 6065
SN: 781
ID #
SN: GB42420191
SN: MY41495277
SN: US37295597
US37390585
SN: 832283/011 | 28-Dec-12 (No. ER3-2336_Dec12) 28-Dec-12 (No. H3-6065_Dec12) 03-Jun-13 (No. DAE4-781_Jun13) Check Date (in house) 09-Oct-09 (in house check Oct-12) 01-Apr-08 (in house check Oct-12) 09-Oct-09 (in house check Oct-12) 18-Oct-01 (in house check Oct-12) 27-Aug-12 (in house check Oct-12) Function | Dec-13 Dec-13 Jun-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 In house check: Oct-14 Signature | Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References - [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. - [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm (15 mm for [2]) above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1] and [2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (15 mm for [2]) (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD1880V3-1140 Sep13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |---------------------------------------|------------------|---------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe
Center | 10 mm
15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 1880 MHz | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured | 100 mW input power | 0.470 A / m ± 8.2 % (k=2) | | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|----------------------------| | Maximum measured above high end | 100 mW input power | 142.9 V / m | | Maximum measured above low end | 100 mW input power | 138.1 V / m | | Averaged maximum above arm | 100 mW input power | 140.5 V / m ± 12.8 % (k=2) | | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|---------------------------| | Maximum measured above high end | 100 mW input power | 91.7 V / m | | Maximum measured above low end | 100 mW input power | 89.7 V / m | | Averaged maximum above arm | 100 mW input power | 90.7 V / m ± 12.8 % (k=2) | #### Appendix #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------| | 1730 MHz | 24.9 dB | 48.8 Ω + 5.5 jΩ | | 1880 MHz | 21.6 dB | 49.7 Ω + 8.3 jΩ | | 1900 MHz | 21.8 dB | 52.1 Ω + 8.1 jΩ | | 1950 MHz | 27.6 dB | 54.2 Ω + 1.1 jΩ | | 2000 MHz | 23.0 dB | 43.4 Ω + 0.0 jΩ | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. #### Impedance Measurement Plot #### **DASY5 H-field Result** Date: 02.09.2013 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1140 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: H3DV6 - SN6065; ; Calibrated: 28.12.2012 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 03.06.2013 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole H-Field measurement @ 1880MHz/H-Scan - 1880MHz d=10mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.4940 A/m; Power Drift = 0.00 dB PMR not calibrated. PMF = 1.000 is applied. H-field emissions = 0.4699 A/m Near-field category: M2 (AWF 0 dB) #### PMF scaled H-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |-----------|-----------|-----------| | 0.397 A/m | 0.427 A/m | 0.417 A/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 0.435 A/m | 0.470 A/m | 0.458 A/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 0.397 A/m | 0.434 A/m | 0.421 A/m | 0 dB = 0.4699 A/m = -6.56 dBA/m #### **DASY5 E-field Result** Date: 02.09.2013 Test Laboratory: SPEAG Lab2 # DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1140 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 28.12.2012; - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 03.06.2013 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=10mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 159.8 V/m; Power Drift = -0.04 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 142.9 V/m Near-field category: M2 (AWF 0 dB) #### PMF scaled E-field | Grid 2 M2
138.1 V/m | | |------------------------|--| | Grid 5 M3
91.80 V/m | | | Grid 8 M2
142.9 V/m | | Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 159.3 V/m; Power Drift = 0.02 dB PMR not calibrated. PMF = 1.000 is applied. E-field emissions = 91.75 V/m Near-field category: M3 (AWF 0 dB) #### PMF scaled E-field | Grid 2 M3
91.75 V/m | | |------------------------|--| | Grid 5 M3
71.52 V/m | | | Grid 8 M3
89.70 V/m | | 0 dB = 142.9 V/m = 43.10 dBV/m