EX3DV4-SN:3846 September 3, 2013 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3846 September 3, 2013 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3846 September 3, 2013 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4-- SN:3846 September 3, 2013 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 3.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | # **ANNEX H** Dipole Calibration Certificate # 835 MHz Dipole Calibration Certificate # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Clien TMC-BJ (Auden) Accreditation No.: SCS 108 Certificate No: D835V2-443_Aug13 | pject | D835V2 - SN: 44 | 3 | | |--|---|--|--| | alibration procedure(s) | QA CAL-05.v9 | | | | | Calibration proce | dure for dipole validation kits ab | ove 700 MHz | | | | | | | alibration date: | August 29, 2013 | | | | | | | | | | | | | | | | onal standards, which realize the physical u
robability are given on the following pages a | | | no modouromente ana tre ancor | | 3, | | | Il calibrations have been conduct | ed in the closed laborator | y facility: environment temperature (22 \pm 3) | °C and humidity < 70%. | | | | | | | | E critical for calibration) | | | | Calibration Equipment used (M&T | E critical for calibration) | | | | Calibration Equipment used (M&T | E critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | alibration Equipment used (M&T | | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) | Oct-13 | | alibration Equipment used (M&T
rimary Standards
ower meter EPM-442A | ID# | | | | alibration Equipment used (M&T
rimary Standards
ower meter EPM-442A
ower sensor HP 8481A | ID #
GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | rimary Standards ower meter EPM-442A tower sensor HP 8481A teference 20 dB Attenuator | ID #
GB37480704
US37292783 | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640) | Oct-13
Oct-13 | | alibration Equipment used (M&T
rimary Standards
ower meter EPM-442A
ower sensor HP 8481A
eference 20 dB Attenuator
ype-N mismatch combination | ID #
GB37480704
US37292783
SN: 5058 (20k) | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736) | Oct-13
Oct-13
Apr-14 | | rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739) | Oct-13
Oct-13
Apr-14
Apr-14 | | | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12) | Oct-13
Oct-13
Apr-14
Apr-14
Dec-13 | | Calibration Equipment used (M&T crimary Standards Cower meter EPM-442A Cower sensor HP 8481A Reference 20 dB Attenuator Cype-N mismatch combination Reference Probe ES3DV3 CAE4 Recondary Standards | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check | | alibration Equipment used (M&T rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator ype-N mismatch combination deference Probe ES3DV3 AE4 decondary Standards ower sensor HP 8481A | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13)
Check Date (in house)
18-Oct-02 (in house check Oct-11) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # | 01-Nov-12 (No. 217-01640)
01-Nov-12 (No. 217-01640)
04-Apr-13 (No. 217-01736)
04-Apr-13 (No. 217-01739)
28-Dec-12 (No. ES3-3205_Dec12)
25-Apr-13 (No. DAE4-601_Apr13) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | calibration Equipment used (M&T rimary Standards rower meter EPM-442A rower sensor HP 8481A deference 20 dB Attenuator rype-N mismatch combination deference Probe ES3DV3 pAE4 decondary Standards rower sensor HP 8481A dR generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Leif Klysner | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | rimary Standards Tower meter EPM-442A Tower sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 RAE4 Recondary Standards Tower sensor HP 8481A Ref generator R&S SMT-06 Retwork Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | #### Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.5 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.44 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.16 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.40 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 W/kg ± 16.5 % (k=2) | #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.4 Ω - 7.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.3 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 51.0 Ω - 9.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.5 dB | #### **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 29.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.828 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 29.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.828 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.82 W/kg 0 dB = 2.82 W/kg = 4.50 dBW/kg # Impedance Measurement Plot for Body TSL ### 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates TMC-BJ (Auden) Accreditation No.: SCS 108 Certificate No: D1900V2-5d101 Jul13 #### **CALIBRATION CERTIFICATE** D1900V2 - SN: 5d101 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 09, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration ID # GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power meter EPM-442A 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Type-N mismatch combination 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 SN: 3205 Reference Probe ES3DV3 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Scheduled Check Secondary Standards Check Date (in house) ID# In house check: Oct-13 18-Oct-02 (in house check Oct-11) Power sensor HP 8481A MY41092317 In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Network Analyzer HP 8753E Name Calibrated by: Leif Klysner Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: July 9, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.