EX3DV4-SN:3846 December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.28 | 9.28 | 9.28 | 0.44 | 0.85 | ± 12.0 % | | 850 | 55.2 | 0.99 | 9.04 | 9.04 | 9.04 | 0.28 | 1.12 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.01 | 9.01 | 9.01 | 0.59 | 0.76 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.63 | 7.63 | 7.63 | 0.33 | 0.96 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.46 | 0.77 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.37 | 7.37 | 7.37 | 0.54 | 0.73 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 7.56 | 7.56 | 7.56 | 0.45 | 0.77 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.37 | 0.90 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 7.64 | 7.64 | 7.64 | 0.35 | 0.90 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.20 | 7.20 | 7.20 | 0.61 | 0.67 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.00 | 7.00 | 7.00 | 0.76 | 0.56 | ± 12.0 % | | 2550 | 52.6 | 2.09 | 6.89 | 6.89 | 6.89 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.72 | 6.72 | 6.72 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.39 | 6.39 | 6.39 | 0.45 | 1.04 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 6.17 | 6.17 | 6.17 | 0.53 | 0.92 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.37 | 4.37 | 4.37 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.89 | 3.89 | 3.89 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4-SN:3846 December 20, 2012 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.3 Frequency response (normalized) 1.0 0.9 0.8 0.7 0.6 0.5-1500 f [MHz] 500 1000 2000 2500 3000 * R22 Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4— SN:3846 December 20, 2012 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ # f=600 MHz,TEM # f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3846 December 20, 2012 # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3846 December 20, 2012 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid EX3DV4-SN:3846 December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 58.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | # **ANNEX H** Dipole Calibration Certificate # 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | ALIBRATION O | CERTIFICATE | | | |--|--|---|---| | ALIDIATION | JENTIFICATE | | | | Dbject | D835V2 - SN: 44 | 3 | NEW YORK WILLIAM | | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 03, 2012 | | | | | nents the traceability to nati | ional standards, which realize the physical un | its of measurements (SI). | | he measurements and the unco | ertainties with confidence p | probability are given on the following pages an
ry facility: environment temperature $(22 \pm 3)^{\circ}$ | | | he measurements and the unco
ill calibrations have been condu-
calibration Equipment used (M& | ertainties with confidence p
acted in the closed laborator
acted for calibration) | ry facility: environment temperature (22 \pm 3) $^\circ$ (| C and humidity < 70%. | | The measurements and the uncould calibrations have been conducted all bration Equipment used (M& Primary Standards | ertainties with confidence p ucted in the closed laborator TE critical for calibration) | ry facility: environment temperature $(22 \pm 3)^{\circ}$ (Cal Date (Certificate No.) | C and humidity < 70%. Scheduled
Calibration | | he measurements and the unco
ill calibrations have been condu-
talibration Equipment used (M&
rimary Standards
ower meter EPM-442A | ertainties with confidence p ucted in the closed laborator TE critical for calibration) ID # GB37480704 | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) | C and humidity < 70%. Scheduled Calibration Oct-12 | | he measurements and the uncollicalibrations have been conducted in the con | ertainties with confidence p ucted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) | Scheduled Calibration Oct-12 Oct-12 | | The measurements and the uncollicalibrations have been conducted in Equipment used (M& Primary Standards Dower meter EPM-442A Dower sensor HP 8481A Reference 20 dB Attenuator | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) | Scheduled Calibration Oct-12 Oct-12 Apr-13 | | The measurements and the unco- calibrations have been condu- calibration Equipment used (M&- Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ertainties with confidence p icted in the closed laborator ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | Calibrations have been conductallibration Equipment used (M&Calibration Equipment used (M&CALIBRATION STANDARD) Cover meter EPM-442A Cover sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ertainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) | Scheduled Calibration Oct-12 Oct-12 Apr-13 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | ertainties with confidence p icted in the closed laborator ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | ertainties with confidence p acted in the closed laborator i | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 | | Calibrations have been conductable and the uncomplete uncomple | ertainties with confidence p acted in the closed laborator i | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibrations have been conducted in the unconducted | ertainties with confidence p acted in the closed laborator i | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 | | Calibrations have been conducted in the unconducted | ertainties with confidence p icted in the closed laborator ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibrations have been conductall calibrations have been conductall calibration Equipment used (M&Primary Standards Cower meter EPM-442A Cower sensor HP 8481A Reference 20 dB Attenuator Compension Management of the combination Reference Probe ES3DV3 COAE4 Secondary Standards Cower sensor HP 8481A Reference PR&S SMT-06 | ertainties with confidence p icted in the closed laborator ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | The measurements and the unco | ertainties with confidence p icted in the closed laborator ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to
a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | *** | **** | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.07 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 700 | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.36 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 mW / g ± 16.5 % (k=2) | Page 3 of 8 #### **Appendix** ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 6.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.826 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.423 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g = 8.66 dB mW/g #### **DASY5 Validation Report for Body TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.758 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.514 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.82 mW/g 0 dB = 2.82 mW/g = 9.00 dB mW/g # 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | ALIBRATION C | ERTIFICATE | | o: D1900V2-5d101_Ju | |---|--|---|--| | Dbject | D1900V2 - SN: 56 | d101 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proces | dure for dipole validation kits ab | ove 700 MHz | | Calibration date: | July 09, 2013 | | | | | | ry facility: environment temperature (22 ± 3) | G and numidity < 70%. | | Calibration Equipment used (M&T | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | TE critical for calibration) | | Scheduled Calibration | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) | Scheduled Calibration Oct-13 Oct-13 Apr-14 | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No.
ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12) Function | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 66 M (60 pp. | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.4 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 2227 | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 41.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 W/kg ± 16.5 % (k=2) | ## Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $51.0 \Omega + 6.0 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.4 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.7 Ω + 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.5 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 28, 2008 | #### **DASY5 Validation Report for Head TSL** Date: 09.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.2 W/kg 0 dB = 12.2 W/kg = 10.86 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type:
D1900V2; Serial: D1900V2 - SN: 5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.43 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg # Impedance Measurement Plot for Body TSL # 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | CALIBRATION C | | | | |---|--|--|---| | Object | D2450V2 - SN: 8 | 53 | 1 1 1 1 1 | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | July 08, 2013 | | | | | | | | | The measurements and the unce
All calibrations have been conduct
Calibration Equipment used (M& | cted in the closed laborator | robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°(| | | All calibrations have been conducted that calibration Equipment used (M& Primary Standards Power meter EPM-442A | cted in the closed laborator | | | | All calibrations have been conductive Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | TE critical for calibration) ID # GB37480704 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 | | All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 | | All calibrations have been conducted and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check | | All calibrations have been conducted and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 | | All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check | | All calibrations have been conduc | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 | Certificate No: D2450V2-853_Jul13 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Accreditation No.: SCS 108 Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the
antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | *** | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $54.8 \Omega + 3.4 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 25.0 dB | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.6 \Omega + 4.7 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.6 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|-------------------|--|--| | Manufactured on | November 10, 2009 | | | #### **DASY5 Validation Report for Head TSL** Date: 08.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.672 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg 0 dB = 17.7 W/kg = 12.48 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 05.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\varepsilon_r = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.672 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 16.9 W/kg 0 dB = 16.9 W/kg = 12.28 dBW/kg # Impedance Measurement Plot for Body TSL # ANNEX I DIPOLE QUALIFICATION FOR THE EXTENDED 3-YEAR CALIBRATION INTERVAL # I1 Dipole 835 The information and documentation below are provided to qualify the extended 3-year calibration interval of dipole. # **I1.1 List of Equipment** | No. | Name | Туре | Serial Number | | |-----|-------------------------|--------------|---------------|--| | 01 | Network analyzer | E5071C | MY46110673 | | | 02 | Power meter | NRVD | 102083 | | | 03 | Power sensor NRV-Z5 | | 100542 | | | 04 | Signal Generator E4438C | | MY49070393 | | | 05 | Amplifier 60S1G4 | | 0331848 | | | 06 | E-field Probe | SPEAG EX3DV4 | 3846 | | | 07 | DAE | SPEAG DAE4 | 771 | | | 80 | Dipole Validation Kit | SPEAG D835V2 | 443 | | # I1.2 Results of Impedance, Return-loss and System validation Dipole 835 - Head | | | Year | | Daviotion | l imit | |-------------------|------------------------|------|-------|--------------|------------------------| | | | 2012 | 2013 | Deviation | Limit | | Impodonos | Real (Ω) | 50.8 | 53.6 | 2.8 Ω | Deviation $< 5 \Omega$ | | Impedance | Imaginary (Ω) | -6.7 | -2.2 | 4.5 Ω | Deviation $< 5 \Omega$ | | Return- | Return-loss (dB) | | -23.3 | 0.2dB | Deviate < 0.2dB | | System validation | 10g | 1.52 | 1.56 | 2.63% | Deviation < 10% | | | 1g | 2.33 | 2.38 | 2.15% | Deviation < 10% | ## Dipole 835 - Body | | | Year | | Doviction | l imit | | |-------------------|------------------------|------|-------|-----------|------------------------|--| | | | 2012 | 2013 | Deviation | Limit | | | Impodance | Real (Ω) | 46.8 | 49.1 | 2.3 Ω | Deviation $< 5 \Omega$ | | | Impedance | Imaginary (Ω) | -7.8 | -3.7 | 4.1 Ω | Deviation < 5 Ω | | | Return- | Return-loss (dB) | | -21.4 | -0.2dB | Deviate < 0.2dB | | | System validation | 10g | 1.59 | 1.61 | 1.26% | Deviation < 10% | | | | 1g | 2.42 | 2.42 | 0.00% | Deviation < 10% | | According to the above tables, it is not necessary to recalibration the dipoles in 2013. # ANNEX J SPOT CHECK TEST As the test lab for ALCATEL 3020D from TCT Mobile Limited, we, TMC Beijing, declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below. All the differences between spot check data and original data are within the measurement uncertainty. So it is acceptable to quote the test results of original sample. # J.1 Internal Identification of EUT used during the spot check test | EUT ID* | IMEI | HW Version | SW Version | |---------|-----------------|------------|------------| | EUT1 | 013816000001473 | Proto | VF15 | | EUT2 | 013816000000871 | Proto | VF15 | ^{*}EUT ID: is used to identify the test sample in the lab internally. Note: It is performed to test SAR of spot check with the EUT1 and conducted power with the EUT 2. # J.2 Conducted power of selected case Table J.1: The conducted power results for GSM850/1900 | GSM | Conducted Power (dBm) | | | | | | |----------|------------------------|-----------------------|------------------------|--|--|--| | 850MHz | Channel 251(848.8MHz) | Channel 190(836.6MHz) | Channel 128(824.2MHz) | | | | | 850IVID2 | 32.55 |
32.56 | \ | | | | | GSM | Conducted Power (dBm) | | | | | | | | Channel 810(1909.8MHz) | Channel 661(1880MHz) | Channel 512(1850.2MHz) | | | | | 1900MHz | 1 | \ | 29.51 | | | | Table J.2: The conducted power results for GPRS | GSM 850 | Measured Power (dBm) | | | | |-------------|----------------------|-------|-------|--| | GPRS (GMSK) | 251 | 190 | 128 | | | 1 Txslots | \ | 32.48 | \ | | | PCS1900 | Measured Power (dBm) | | | | | GPRS (GMSK) | 810 | 661 | 512 | | | 4 Txslots | \ | \ | 23.80 | | # J.3 Measurement results The tests were carried out at the same day of the original test. # SAR Values (GSM 850 MHz Band - Head) | Freque | ency | Side | Test | Battery Type SAR(1g) (W/kg) | | | |--------|------|------|----------|-----------------------------|---------------|-----------------| | MHz | Ch. | Side | Position | Battery Type | Original data | Spot check data | | 848.8 | 251 | Left | Touch | CAB3120000C1 | 0.782 | 0.760 | # SAR Values (GSM 850 MHz Band - Body) | Freque | ency | | Toct | Spacing | | SAR(1g) (W/kg) | | |--------|------|-----------|----------|-------------------|--------------|------------------|--------------------| | MHz | Ch. | Mode/Band | Position | Test Spacing (mm) | Battery Type | Original
data | Spot check
data | | 836.6 | 190 | GPRS | Rear | 10 | CAB3120000C1 | 0.787 | 0.731 | # SAR Values (PCS 1900 MHz Band - Head) | Freque | ency | Side | Test | Test SAR(1g) | | lg) (W/kg) | |--------|------|-------|----------|--------------|---------------|-----------------| | MHz | Ch. | Side | Position | Battery Type | Original data | Spot check data | | 1850.2 | 512 | Right | Touch | CAB3120000C1 | 0.630 | 0.644 | # SAR Values (PCS 1900 MHz Band - Body) | Freque | uency | | Test Spacing | | | SAR(1g) (W/kg) | | |--------|-------|-----------|--------------|-----------------|--------------|------------------|-----------------| | MHz | Ch. | Mode/Band | Position | Spacing
(mm) | Battery Type | Original
data | Spot check data | | 1850.2 | 512 | GPRS | Rear | 10 | CAB3120000C1 | 0.368 | 0.376 | # J.4 Reported SAR Comparison | Exposure Configuration | Technology Band | Reported SAR | Reported SAR | |----------------------------|-----------------|---------------------|-----------------------| | | | 1g (W/Kg): original | 1g (W/Kg): spot check | | Head | GSM 850 | 0.98 | 0.90 | | (Separation Distance 0mm) | PCS 1900 | 0.79 | 0.77 | | Body-worn | GSM 850 | 0.98 | 0.87 | | (Separation Distance 10mm) | PCS 1900 | 0.52 | 0.50 | # J.5 Graphic results # 850 Left Cheek High Date: 2013-8-24 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.905$ mho/m; $\epsilon r = 41.005$; $\rho =$ 1000 kg/m^3 Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18) Cheek High/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.808 W/kg Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.772 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.928 W/kg SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.572 W/kg Maximum value of SAR (measured) = 0.790 W/kg Fig.E.1 850MHz CH251 # 850 Body Rear Middle Date: 2013-8-24 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.989$ mho/m; $\epsilon r = 56.469$; $\rho =$ 1000 kg/m^3 Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(9.04, 9.04, 9.04) Rear Middle/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.769 W/kg Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.654 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.955 W/kg SAR(1 g) = 0.731 W/kg; SAR(10 g) = 0.527 W/kg Maximum value of SAR (measured) = 0.774 W/kg Fig.E.2 850 MHz CH190 # 1900 Right Cheek Low Date: 2013-8-25 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.344$ mho/m; $\epsilon r = 39.83$; $\rho = 1.344$ mho/m; $\epsilon r = 39.83$; $\epsilon = 1.344$ mho/m; $\epsilon r = 1.344$ mho/m; $\epsilon r = 1.344$ 1000 kg/m^3 Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(8.01, 8.01, 8.01) Cheek Low/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.735 W/kg Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.235 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.941 W/kg SAR(1 g) = 0.644 W/kg; SAR(10 g) = 0.378 W/kg Maximum value of SAR (measured) = 0.716 W/kg Fig.E.3 1900 MHz CH512 # 1900 Body Rear Low Date: 2013-8-25 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.476$ mho/m; $\epsilon r = 53.042$; $\rho = 1.476$ mho/m; $\epsilon r = 53.042$; $\epsilon r = 53.042$ 1000 kg/m^3 Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2 Probe: EX3DV4 - SN3846 ConvF(7.37, 7.37, 7.37) Rear Low/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.421 W/kg Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.722 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.563 W/kg SAR(1 g) = 0.376 W/kg; SAR(10 g) = 0.221 W/kg Maximum value of SAR (measured) = 0.418 W/kg Fig.E.4 1900 MHz CH512