

TEST REPORT

No. I14Z47766-GTE01

for

TCT Mobile Limited
HSUPA/HSDPA/UMTS dual-band/GSM quad-band mobile phone
Model Name: 4015A,4016A
FCC ID: RAD406

with

Hardware Version: PIO
Software Version: v6CGK

Issued Date: 2014-12-01
Note:
The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:
DAR accreditation (DIN EN ISO/IEC 17025): No. D-PL-12123-01-01
FCC 2.948 Listed: No. 733176
IC O.A.T.S listed: No.6629B
CTTL,Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT
3/F Shou Xiang Technology Building, No. 51 Xueyuan Road, Hai Dian District, Beijing, P. R. China
Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504
Email: cttl terminals@catr.cn, website: www.chinattl.com

CONTENTS

1. TEST LABORATORY 3
1.1. TESTING LOCATION 3
1.2. TESTING ENVIRONMENT 3
1.3. PROJECT DATA 3
1.4. SIGNATURE 3
2. CLIENT INFORMATION 4
2.1. APPLICANT INFORMATION 4
2.2. MANUFACTURER INFORMATION 4
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) 5
3.1. ABOUT EUT 5
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST 5
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 5
3.4. NORMAL ACCESSORY SETTING 7
3.5. GENERAL DESCRIPTION 7
4. REFERENCE DOCUMENTS 8
4.1. REFERENCE DOCUMENTS FOR TESTING 8
5. LABORATORY ENVIRONMENT 9
6. SUMMARY OF TEST RESULTS 10
7. TEST EQUIPMENTS UTILIZED 11
ANNEX A: MEASUREMENT RESULTS 12
A. 1 OUTPUT POWER 12
A. 2 EMISSION LIMIT. 16
A. 3 FREQUENCY STABILITY 22
A. 4 OCCUPIED BANDWIDTH 24
A. 5 EMISSION BANDWIDTH 29
A. 6 BAND EDGE COMPLIANCE 33
A. 7 CONDUCTED SPURIOUS EMISSION 36
A. 8 PEAK-TO-AVERAGE POWER RATIO 52

1. Test Laboratory

1.1. Testing Location

Company Name:	CTTL,Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT
Address:	3/F Shoo Kiang Technology Building, No. 51 Xueyuan Road, Mai Dian District, Beijing, P. R. China
Postal Code:	100191
Telephone:	00861062304633
Fax:	00861062304793

1.2. Testing Environment

Normal Temperature: $\quad 15-35^{\circ} \mathrm{C}$
Relative Humidity: 20-75\%

1.3. Project data

Testing Start Date: 2014-10-09
Testing End Date: 2014-11-05

1.4. Signature

Xi Xiaogang
(Prepared this test report)

Sun Xiangqian
(Reviewed this test report)

Lu Singsong
Deputy Director of the laboratory
(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
City:	Pudong Area Shanghai, P.R. China.
Postal Code:	Shanghai
Country:	201203
Contact Person:	China
Contact Email	Gong Zhizhou
Telephone:	zhizhou.gong@jrdcom.com
Fax:	0086-21-61460890
	$0086-21-61460602$

2.2. Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
	Pudong Area Shanghai, P.R. China.
City:	Shanghai
Postal Code:	201203
Country:	China
Telephone:	$0086-21-61460890$
Fax:	$0086-21-61460602$

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description
Model Name
FCC ID
Frequency
Antenna
Output power
Extreme vol. Limits
Extreme temp. Tolerance

HSUPA/HSDPA/UMTS dual-band/GSM quad-band mobile phone 4015A,4016A
RAD406
GSM850; PCS1900; WCDMA Band II;WCDMA Band V Integrated
24.18dBm maximum EIRP measured for Band II
3.5 VDC to 4.2 VDC (nominal: 3.8 VDC) $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
UT06a	014199007784618	PIO	v6CGK
UT07a	014199007790516	PIO	v6CGK

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Remarks
AE1	Battery	1	14TCT-BA-1583
AE2	Battery	1	1
AE3	Battery	1	1
AE4	Travel charger	1	14TCT-CH-0336
AE5	Travel charger	1	14TCT-CH-0082
AE6	Travel charger	1	14TCT-CH-1913
AE7	USB cable	1	14TCT-DC-0675
AE8	USB cable	1	14TCT-DC-0669
AE9	USB cable	1	14TCT-DC-0024
AE10	USB cable	1	14TCT-DC-0123
AE21	Battery	1	14TCT-BA-0093
AE22	Battery	1	14TCT-BA-0090
AE23	Battery	1	14TCT-BA-0109
AE24	Travel charger	1	14TCT-CH-0349
AE25	Travel charger	1	14TCT-CH-0583
AE26	Travel charger	1	14TCT-CH-0086

AE1, AE21, AE22, AE23	
Model	CAB31P0000C1
Manufacturer	BYD
Capacitance	1300 mAh
Nominal voltage	3.7 V
AE2	
Model	CAB31P0000C2
Manufacturer	BAK
Capacitance	1300 mAh
Nominal voltage	3.7 V
AE3	
Model	CAB31P0000C3
Manufacturer	SCUD
Capacitance	1300 mAh
Nominal voltage	3.7 V
AE4, AE24	
Model	CBA3007AG0C2
Manufacturer	TENPAO
Length of cable	1
AE5, AE25	
Model	CBA3007AG0C3
Manufacturer	YINGJU
Length of cable	1
AE6, AE26	
Model	CBA3007AG0C1
Manufacturer	BYD
Length of cable	/
AE7	
Model	CDA3122002C1
Manufacturer	JUWEI
Length of cable	100 cm
AE8	
Model	CDA3122002C2
Manufacturer	Shenghua
Length of cable	100 cm
AE9	
Model	CDA3122005C1
Manufacturer	JUWEI
Length of cable	1
AE10	
Model	CDA3122005C2
Manufacturer	Shenghua
Length of cable	1

3.4. Normal Accessory setting

Fully charged battery was used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of HSUPA/HSDPA/UMTS dual-band/GSM quad-band mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	$10-1-13$
FCC Part 22	PUBLIC MOBILE SERVICES	Edition
		Edition
ANSI/TIA-603-C	Land Mobile FM or PM Communications Equipment	2004
	Measurement and Performance Standards	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2003
	Low-Voltage Electrical and Electronic Equipment in the	
KDB 971168 D01	Range of 9 kHz to 40 GHz	
	Measurement Guidance for Certification of Licensed Digital	v02r01

5. LABORATORY ENVIRONMENT

Control room / conducted chamber did not exceed following limits along the EMC testing:

Temperature	Min. $=15{ }^{\circ} \mathrm{C}$, Max. $=35{ }^{\circ} \mathrm{C}$
Relative humidity	Min. $=20 \%$, Max. $=80 \%$
Shielding effectiveness	$>110 \mathrm{~dB}$
Electrical insulation	$>2 \mathrm{M} \Omega$
Ground system resistance	$<0.5 \Omega$

Fully-anechoic chamber 2 (8.6 meters $\times 6.1$ meters $\times 3.85$ meters) did not exceed following limits along the EMC testing:

Temperature	Min. $=15{ }^{\circ} \mathrm{C}$, Max. $=30{ }^{\circ} \mathrm{C}$
Relative humidity	Min. $=35 \%$, Max. $=60 \%$
Shielding effectiveness	$>110 \mathrm{~dB}$
Electrical insulation	$>2 \mathrm{M} \Omega$
Ground system resistance	$<1 \Omega$
Site voltage standing-wave ratio $\left(S_{\mathrm{Vswr}}\right)$	Between 0 and 6 dB, from 1 GHz to 18 GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

Semi-anechoic chamber 2 I Fully-anechoic chamber 3 (10 meters $\times 6.7$ meters $\times 6.15$ meters) did not exceed following limits along the EMC testing:

Temperature	Min. $=15{ }^{\circ} \mathrm{C}$, Max. $=30{ }^{\circ} \mathrm{C}$
Relative humidity	Min. $=35 \%$, Max. $=60 \%$
Shielding effectiveness	$>100 \mathrm{~dB}$
Electrical insulation	$>2 \mathrm{M} \Omega$
Ground system resistance	$<0.5 \Omega$
Normalised site attenuation (NSA)	$< \pm 3.5 \mathrm{~dB}, 3 \mathrm{~m}$ distance
Site voltage standing-wave ratio $\left(S_{\mathrm{VswR}}\right)$	Between 0 and 6 dB, from 1 GHz to 18 GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

6. SUMMARY OF TEST RESULTS

Items	List	Clause in FCC rules	Verdict
1	Output Power	$22.913(\mathrm{a}) / 24.232(\mathrm{c})$	P
2	Emission Limit	$2.1051 / 22.917 / 24.238$	P
3	Frequency Stability	$2.1055 / 24.235$	P
4	Occupied Bandwidth	$2.1049(\mathrm{~h})(\mathrm{i})$	P
5	Emission Bandwidth	$22.917(\mathrm{~b}) / 24.238(\mathrm{~b})$	P
6	Band Edge Compliance	$22.917(\mathrm{~b}) / 24.238(\mathrm{~b})$	P
7	Conducted Spurious Emission	$2.1057 / 22.917 / 24.238$	P
8	Peak to Average Ratio	$24.232(\mathrm{~d})$	P

7. Test Equipments Utilized

NO.	Description	TYPE	series number	MANUFACTURE	CAL DUE DATE	Calibration interval
1	Test Receiver	ESCI	100344	R\&S	$2015-03-03$	1 year
2	Test Receiver	ESU26	100376	R\&S	$2015-10-29$	1 year
3	EMI Antenna	VULB 9163	302	Schwarzbeck	$2017-1-3$	3 year
4	EMI Antenna	3117	00119024	ETS-Lindgren	$2016-01-20$	3 year
5	LISN	NV216	101200	R\&S	$2015-07-07$	1 year
6	Universal Radio Communication Tester	CMU200	108646	R\&S	$2014-11-04$	1 year
7	Universal Radio Communication Tester	E5515C	MY48361083	Agilent	$2015-02-27$	1 year
8	Spectrum Analyzer	E4440A	MY48250642	Agilent	$2015-02-27$	1 year
9	EMI Antenna	9117	167	Schwarzbeck	$2016-04-01$	3 year
10	EMI Antenna	VULB	9163175	Schwarzbeck	$2015-07-15$	3 year
11	EMI Antenna	3117	00119024	ETS-Lindgren	$2016-01-20$	3 year
12	Signal Generator	N5183A	MY49060052	Agilent	$2015-03-02$	1 year
13	Climate chamber	SH-241	92007454	ESPEC	$2015-12-14$	2 year
14	Loop Antenna	HFH2-Z2	$829324 / 007$	R\&S	$2014-12-12$	3 year

ANNEX A: MEASUREMENT RESULTS

A. 1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode \& Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation.
This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.
These measurements were done at 3 frequencies, $1852.4 \mathrm{MHz}, 1880.0 \mathrm{MHz}$ and 1907.6 MHz for WCDMA Band $\mathrm{II} ; 826.4 \mathrm{MHz}, 836.6 \mathrm{MHz}$ and 846.6 MHz for WCDMA Band V (bottom, middle and top of operational frequency range).
Limit
According to FCC§2.1046.
WCDMA Band II
Measurement result

WCDMA (Band II)	CH	Frequency(MHz)	output power(dBm)
	9262	1852.4	22.09
	9400	1880.0	22.90
	9538	1907.6	22.51

WCDMA Band V

Measurement result

WCDMA (Band $V)$	CH	Frequency (MHz)	output power(dBm)
	4132	826.4	23.05
	4183	836.6	23.32
	4233	846.6	23.25

A.1.3 Radiated

A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.
Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.1.3.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5 m . The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere
with the radiation pattern of the antenna. A power ($\mathrm{P}_{\text {mea }}$) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_{r}). The power of signal source ($\mathrm{P}_{\text {mea }}$) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.
The cable loss $\left(\mathrm{P}_{\mathrm{cl}}\right)$, the Substitution Antenna Gain $\left(\mathrm{G}_{\mathrm{a}}\right)$ and the Amplifier Gain $\left(\mathrm{P}_{\mathrm{Ag}}\right)$ should be recorded after test.
The measurement results are obtained as described below:
Power(EIRP) $=\mathrm{P}_{\text {Mea }}-\mathrm{P}_{\mathrm{Ag}}-\mathrm{P}_{\mathrm{cl}}-\mathrm{G}_{\mathrm{a}}$
5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP $=$ EIRP -2.15 dBi .

WCDMA Band II-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band II	$\leq 33 \mathrm{dBm}(2 \mathrm{~W})$

Measurement result

Frequency (MHz)	$P_{\text {Mea }}(\mathrm{dBm})$	$\mathrm{P}_{\mathrm{cl}}(\mathrm{dB})$	$\mathrm{P}_{\mathrm{Ag}}(\mathrm{dB})$	G_{a} Antenna Gain (dB)	EIRP (dBm)	Limit(dBm)	Margin (dB)	Polarization
1852.40	-23.14	2.84	-43.75	-4.55	22.32	33.00	10.68	H
1880.00	-22.01	2.85	-43.75	-4.43	23.32	33.00	9.68	H
1907.60	-21.02	2.88	-43.77	-4.31	24.18	33.00	8.82	H

Frequency: 1907.60 MHz
Peak EIRP $(\mathrm{dBm})=\mathrm{P}_{\mathrm{Mea}}(-21.02 \mathrm{dBm})-\mathrm{P}_{\mathrm{cl}}(2.88 \mathrm{~dB})-\mathrm{P}_{\mathrm{Ag}}(-43.77 \mathrm{~dB})-\mathrm{G}_{\mathrm{a}}(-4.31 \mathrm{~dB})=24.18 \mathrm{dBm}$
ANALYZER SETTINGS: RBW $=$ VBW $=5 \mathrm{MHz}$

WCDMA Band V-ERP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band V	$\leq 38.45 \mathrm{dBm}$

Measurement result

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}(\mathrm{dBm})$	$\mathrm{P}_{\mathrm{cl}}(\mathrm{dB})$	$\mathrm{P}_{\mathrm{Ag}}(\mathrm{dB})$	G_{a} Antenna Gain (dB)	Correction (dB)	ERP(dBm)	Limit(dBm)	Margin(dB)	Polarization
826.40	-19.33	2.25	-45.76	0.85	2.15	21.18	38.45	17.27	H
836.60	-18.43	2.26	-45.66	0.90	2.15	21.92	38.45	16.53	H
846.60	-19.28	2.26	-45.56	0.94	2.15	20.93	38.45	17.52	H

Frequency: 836.60 MHz
Peak ERP $(\mathrm{dBm})=\mathrm{P}_{\mathrm{Mea}}(-18.43 \mathrm{dBm})-\mathrm{P}_{\mathrm{cl}}(2.26 \mathrm{~dB})-\mathrm{P}_{\mathrm{Ag}}(-45.66 \mathrm{~dB})-\mathrm{G}_{\mathrm{a}}(0.90 \mathrm{~dB})-2.15 \mathrm{~dB}=21.92 \mathrm{dBm}$
ANALYZER SETTINGS: RBW $=$ VBW $=5 \mathrm{MHz}$

Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

A. 2 EMISSION LIMIT

A.2.1 Measurement Method

The measurements procedures in TIA-603C-2004 are used.
The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238, Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5 m . The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power ($\mathrm{P}_{\text {mea }}$) is applied to the input of the
substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_{r}). The power of signal source ($\mathrm{P}_{\text {mea) }}$) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
4. The Path loss $\left(\mathrm{P}_{\mathrm{pl}}\right)$ between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain $\left(\mathrm{G}_{\mathrm{a}}\right)$ should be recorded after test.
A amplifier should be connected in for the test.
The Path loss $\left(\mathrm{P}_{\mathrm{pl}}\right)$ is the summation of the cable loss and the gain of the amplifier.
The measurement results are obtained as described below:
Power(EIRP) $=\mathrm{P}_{\text {Mea }}-\mathrm{P}_{\mathrm{pl}}-\mathrm{G}_{\mathrm{a}}$
5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP $=$ EIRP $-2.15 d B i$.

A.2.2 Measurement Limit

Part 24.238 , Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (P) d B$.
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 $+10 \log (\mathrm{P}) \mathrm{dB}$, translates in the relevant power range (1 to 0.001 W) to -13 dBm . At 1 W the specified minimum attenuation becomes 43 dB and relative to a $30 \mathrm{dBm}(1 \mathrm{~W})$ carrier becomes a limit of -13 dBm . At $0.001 \mathrm{~W}(0 \mathrm{dBm})$ the minimum attenuation is 13 dB , which again yields a limit of -13 dBm . In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II ($1852.4 \mathrm{MHz}, 1880.0 \mathrm{MHz}$ and 1907.6MHz), WCDMA Band $\mathrm{V}(826.4 \mathrm{MHz}, 836.6 \mathrm{MHz}$ and 846.6 MHz$)$. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II and WCDMA Band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
WCDMA Band V	Low	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass
	Middle	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass
	High	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass
WCDMA Band II	Low	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass
	Middle	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass
	High	$30 \mathrm{MHz}-10 \mathrm{GHz}$	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
WCDMA Band V	$0.03 \sim 1$	100 KHz	300 KHz	10
	$1-2$	1 MHz	3 MHz	2
	$2 \sim 5$	1 MHz	3 MHz	3
	$5 \sim 8$	1 MHz	3 MHz	3
	$8 \sim 10$	1 MHz	3 MHz	3
	$0.03 \sim 1$	100 KHz	300 KHz	10
	$1-2$	1 MHz	3 MHz	2
	$2 \sim 5$	1 MHz	3 MHz	3
	$5 \sim 8$	1 MHz	3 MHz	3
	$8 \sim 11$	1 MHz	3 MHz	3
	$11 \sim 14$	1 MHz	3 MHz	3
	$14 \sim 18$	1 MHz	3 MHz	3
	$18 \sim 20$	1 MHz	3 MHz	2

WCDMA BAND II Mode Channel 9262/1852.4MHz

Frequency(MHz)	$P_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Margin(dB)	Polarization
3702.61	-52.33	4.43	-8.14	-48.62	-13.00	35.62	H
5555.02	-55.09	5.45	-10.02	-50.52	-13.00	37.52	H
7414.94	-49.27	6.40	-11.35	-44.32	-13.00	31.32	V
9266.93	-57.84	7.68	-12.60	-52.92	-13.00	39.92	V
11254.53	-57.86	8.40	-12.40	-53.86	-13.00	40.86	H
13216.02	-54.85	9.10	-13.52	-50.43	-13.00	37.43	H

WCDMA BAND II Mode Channel 9400/1880MHz

Frequency(MHz)	$\mathrm{P}_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3761.98	-53.76	4.52	-8.21	-50.07	-13.00	37.07	V
5642.59	-55.15	5.45	-10.06	-50.54	-13.00	37.54	H
7523.15	-49.90	6.87	-11.42	-45.35	-13.00	32.35	H
9441.97	-58.07	7.45	-12.60	-52.92	-13.00	39.92	H
11364.22	-57.46	8.64	-12.40	-53.70	-13.00	40.70	H
13219.63	-54.02	9.10	-13.52	-49.60	-13.00	36.60	V

WCDMA BAND II Mode Channel 9538/1907.6MHz

Frequency(MHz)	$P_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3813.56	-53.48	4.49	-8.28	-49.69	-13.00	36.69	V
5726.56	-46.28	5.54	-10.09	-41.73	-13.00	28.73	H
7635.14	-51.26	6.79	-11.54	-46.51	-13.00	33.51	H
9540.23	-58.20	7.76	-12.58	-53.38	-13.00	40.38	V
11430.14	-56.70	8.54	-12.40	-52.84	-13.00	39.84	V
13343.81	-52.82	9.05	-13.64	-48.23	-13.00	35.23	H

WCDMA BAND V Mode Channel 4132/826.4MHz

Frequency(MHz)	$P_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Correction (dB)	Peak ERP (dBm)	Limit (dBm)	Margin(dB)	Polarization
1655.32	-40.00	2.93	-5.42	2.15	-39.66	-13.00	26.66	V
2517.00	-52.31	3.60	-5.44	2.15	-52.62	-13.00	39.62	H
3310.05	-53.46	4.15	-7.44	2.15	-52.32	-13.00	39.32	V
4133.17	-47.88	4.68	-8.58	2.15	-46.13	-13.00	33.13	V
4988.56	-60.28	5.17	-9.68	2.15	-57.92	-13.00	44.92	V
5835.41	-60.37	5.75	-10.13	2.15	-58.14	-13.00	45.14	V

WCDMA BAND V Mode Channel 4183/836.6MHz

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Correction (dB)	Peak ERP (dBm)	Limit (dBm)	Margin(dB)	Polarization
1671.45	-40.00	2.98	-5.35	2.15	-39.78	-13.00	26.78	V
2496.13	-51.87	3.59	-5.39	2.15	-52.22	-13.00	39.22	H
3341.30	-54.16	4.20	-7.52	2.15	-52.99	-13.00	39.99	V
4176.82	-48.87	4.69	-8.61	2.15	-47.10	-13.00	34.10	V
5078.37	-61.48	5.20	-9.75	2.15	-59.08	-13.00	46.08	H
5919.65	-59.68	5.57	-10.17	2.15	-57.23	-13.00	44.23	H

WCDMA BAND V Mode Channel 4233/846.6MHz

Frequency (MHz)	$\mathrm{P}_{\text {Mea }}(\mathrm{dBm})$	Path Loss	Antenna Gain	Correction (dB)	Peak ERP (dBm)	Limit (dBm)	Margin(dB)	Polarization
1690.83	-34.84	2.95	-5.26	2.15	-34.68	-13.00	21.68	V
2535.46	-52.25	3.62	-5.49	2.15	-52.53	-13.00	39.53	H
3381.57	-50.49	4.23	-7.62	2.15	-49.25	-13.00	36.25	H
4226.69	-47.68	4.69	-8.64	2.15	-45.88	-13.00	32.88	V
5078.76	-59.26	5.20	-9.75	2.15	-56.86	-13.00	43.86	V
5946.39	-58.22	5.51	-10.18	2.15	-55.70	-13.00	42.70	V

A. 3 FREQUENCY STABILITY

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R\&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the EUT to overnight soak at $-30^{\circ} \mathrm{C}$.
3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of WCDMA Band II and WCDMA Band V, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
4. Repeat the above measurements at $10^{\circ} \mathrm{C}$ increments from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Allow at least $11 / 2$ hours at each temperature, unpowered, before making measurements.
5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1 Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for $11 / 2$ hours unpowered, to allow any self-heating to stabilize, before continuing.
6. Subject the EUT to overnight soak at $+60^{\circ} \mathrm{C}$.
7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
8. Repeat the above measurements at 10 C increments from $+60^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$. Allow at least $11 / 2$ hours at each temperature, unpowered, before making measurements.
9. At all temperature levels hold the temperature to $+/-0.5^{\circ} \mathrm{C}$ during the measurement procedure.

A.3.2 Measurement Limit

A.3.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.2VDC, with a nominal voltage of 3.8 VDC . Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10% and $+12.5 \%$. For the purposes of measuring frequency stability these voltage limits are to be used.

A.3.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the
fundamental emission stays within the authorized frequency block. For this EUT section $2.1055(\mathrm{~d})(1)$ applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

A.3.3 Measurement results

WCDMA Band II
Frequency Error vs Voltage

Voltage (V)	Frequency error(Hz)	Frequency error(ppm)
3.5	12	0.006
3.8	12	0.006
4.2	12	0.006

Frequency Error vs Temperature

temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency error(Hz)	Frequency error(ppm)
-30	9	0.005
-20	9	0.005
-10	7	0.003
0	10	0.006
10	13	0.007
20	12	0.006
30	8	0.004
40	8	0.004
50	9	0.005
60	9	0.005

WCDMA Band V

Frequency Error vs Voltage

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	5	0.007
3.8	-3	0.004
4.2	-9	0.011

Frequency Error vs Temperature

temperature $\left({ }^{\circ} \mathrm{C}\right)$	Frequency error(Hz)	Frequency error(ppm)
-30	4	0.004
-20	-6	0.007
-10	-4	0.005
0	-5	0.006
10	5	0.006
20	-4	0.005
30	19	0.022
40	6	0.007
50	5	0.006
60	4	0.004

A. 4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049(h)(i)

A.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.
The measurement method is from KDB 971168 v02r01 4.2:
a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5% of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least $10 \log$ (OBW / RBW) below the reference level.
e) Set the detection mode to peak, and the trace mode to max hold.
d) Use the 99% power bandwidth function of the spectrum analyzer and report the measured bandwidth.

WCDMA Band II (99\% BW)

Frequency(MHz)	Occupied Bandwidth $(99 \% \mathrm{BW})(\mathrm{MHz})$
1852.4	4.167
1880.0	4.183
1907.6	4.183

WCDMA Band II
Channel 9262-Occupied Bandwidth (99\% BW)

Date: 9.OCT. 2014 15:21:23

Channel 9400-Occupied Bandwidth (99\% BW)

Channel 9538-Occupied Bandwidth (99\% BW)

Date: 9.OCT. 2014 15:22:31

WCDMA Band V(99\% BW)

Frequency (MHz)	Occupied Bandwidth $(99 \% \mathrm{BW})(\mathrm{MHz})$
826.4	4.199
836.6	4.183
846.6	4.167

WCDMA Band V

Channel 4132-Occupied Bandwidth (99\% BW)

Date: 9.OCT. 2014 15:46:42

Channel 4183-Occupied Bandwidth (99\% BW)

Channel 4233-Occupied Bandwidth (99\% BW)

Date: 9.OCT. 2014 15:47:52

A. 5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 22.917(b), 24.238(a)

A.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured 100% BW. Spectrum analyzer plots are included on the following pages.

WCDMA Band II (100\% BW)

Frequency(MHz)	Emission Bandwidth $(100 \% \mathrm{BW})(\mathrm{MHz})$
1852.4	4.503
1880.0	4.471
1907.6	4.535

WCDMA Band II

Channel 9262-Emission Bandwidth (100\% BW)

Channel 9400-Emission Bandwidth (100\% BW)

Date: 9.OCT. 2014 15:23:42

Channel 9538-Emission Bandwidth (100\% BW)

WCDMA Band V(100% BW)

Frequency (MHz)	Emission Bandwidth $(100 \% \mathrm{BW})(\mathrm{MHz})$
826.40	4.503
836.60	4.471
846.60	4.487

WCDMA Band V
Channel 4132-Emission Bandwidth (100\% BW)

Channel 4183-Emission Bandwidth (100\% BW)

Date: 9.OCT. 2014 15:49:02

Channel 4233-Emission Bandwidth (100\% BW)

Date: 9.0Ст. 2014 15:49:37

A. 6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 22.917(b), 24.238(a).

A.6.1 Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P , in Watts) by at least 43+10Log (P) dB . For all power levels +30 dBm to 0 dBm , this becomes a constant specification limit of -13 dBm . According to KDB 971168 v02r01 6.0, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency
block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

A.6.2 Measurement result

WCDMA Band II

LOW BAND EDGE BLOCK-A (WCDMA Band II)-Channel 9262

HIGH BAND EDGE BLOCK-C (WCDMA Band II) -Channel 9538

Date: 9.OCT. 2014 15:26:34

WCDMA Band V

LOW BAND EDGE BLOCK-A (WCDMA Band V)-Channel 4132

Date: 9.0CT. 2014 15:49:48

HIGH BAND EDGE BLOCK-C (WCDMA Band V) -Channel 4233

A. 7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1057, 22.917, 24.238.

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz , data taken from 10 MHz to 25 GHz .
2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
3. According to KDB 971168 v02r01 6.0, the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz)

WCDMA Band II Transmitter

Channel	Frequency (MHz)
9262	1852.40
9400	1880.00
9538	1907.60

WCDMA Band V Transmitter

Channel	Frequency (MHz)
4132	826.40
4183	836.60
4233	846.60

A.7.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (P) d B$.
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 $+10 \log (P) \mathrm{dB}$, translates in the relevant power range (1 to 0.001 W) to -13 dBm . At 1 W the specified minimum attenuation becomes 43 dB and relative to a $30 \mathrm{dBm}(1 \mathrm{~W})$ carrier becomes a limit of -13 dBm . At $0.001 \mathrm{~W}(0 \mathrm{dBm})$ the minimum attenuation is 13 dB , which again yields a limit of -13 dBm . In this way a translation of the specification from relative to absolute terms is carried out.

A.7.3 Measurement result

WCDMA Band II

Channel 9262: 30MHz -1GHz

Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:29:17

Channel 9262: 1GHz -2.5GHz
Spurious emission limit -13dBm.
NOTE: peak above the limit line is the carrier frequency.

Channel 9262: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:30:14

Channel 9262: 7.5GHz-10GHz
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:30:42

Channel 9262: $10 \mathrm{GHz}-15 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:31:10

Channel 9262: 15GHz-20GHz
Spurious emission limit -13dBm.

Channel 9400: 30MHz-1GHz

Spurious emission limit -13dBm.

Date: 9.0Ст. 2014 15:32:10

Channel 9400: 1GHz -2.5GHz
Spurious emission limit-13dBm.
NOTE: peak above the limit line is the carrier frequency.

Channel 9400: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.0Ст. 2014 15:33:07

Channel 9400: 7.5GHz -10GHz
Spurious emission limit -13dBm.

Channel 9400: $10 \mathrm{GHz}-15 \mathrm{GHz}$

Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:34:04

Channel 9400: 15GHz-20GHz
Spurious emission limit -13dBm.

Channel 9538: 30MHz-1GHz

Spurious emission limit -13dBm.

Date: 9.0СT. 2014 15:35:04

Channel 9538: 1GHz -2.5GHz
Spurious emission limit -13dBm.
NOTE: peak above the limit line is the carrier frequency.

Channel 9538: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.0Ст. 2014 15:36:00

Channel 9538: 7.5GHz -10GHz
Spurious emission limit -13dBm.

Channel 9538: $10 \mathrm{GHz}-15 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:36:56

Channel 9538: $15 \mathrm{GHz}-20 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:37:24

WCDMA Band V
Channel 4132: $30 \mathrm{MHz}-1 \mathrm{GHz}$
Spurious emission limit -13dBm.
NOTE: peak above the limit line is the carrier frequency.

Date: 9.OCT. 2014 15:54:37

Channel 4132: $1 \mathrm{GHz}-2.5 \mathrm{GHz}$

Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:55:05

Channel 4132: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:55:33

Channel 4132: 7.5 GHz - 10GHz
Spurious emission limit - 13 dBm .

Channel 4183: 30MHz-1GHz

Spurious emission limit -13dBm.
NOTE: peak above the limit line is the carrier frequency.

Date: 9.OCT. 2014 15:56:32

Channel 4183: 1GHz-2.5GHz

Spurious emission limit -13dBm.

Date: 9.0CT. 2014 15:57:00

Channel 4183: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:57:28

Channel 4183: 7.5GHz-10GHz
Spurious emission limit - 13 dBm .

Channel 4233: 30MHz-1GHz

Spurious emission limit -13dBm.
NOTE: peak above the limit line is the carrier frequency.

Date: 9.OCT. 2014 15:58:28

Channel 4233: $1 \mathrm{GHz} \mathbf{- 2 . 5 G H z}$

Spurious emission limit -13dBm.

Channel 4233: $2.5 \mathrm{GHz}-7.5 \mathrm{GHz}$
Spurious emission limit -13dBm.

Date: 9.OCT. 2014 15:59:24

Channel 4233: 7.5 GHz - 10GHz
Spurious emission limit -13 dBm .

A. 8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232 (d)
The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB . The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.
According to KDB 971168 v02r01 5.7.1:
a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
b) Set resolution/measurement bandwidth \geqslant signal' s occupied bandwidth;
c) Set the number of counts to a value that stabilizes the measured CCDF curve;
d) Set the measurement interval to 1 ms
e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

not exceed 13 dB

A.8.2 Measurement results

WCDMA Band II

Measurement result

	CH	Frequency(MHz)	PAPR(dB)
WCDMA	9262	1852.4	3.75
(Band II)	9400	1880.0	3.59
	9538	1907.6	3.72

