Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal ABC modulation dependent linearization parameters Polarization o φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. December 20, 2012 # Probe EX3DV4 SN:3846 Manufactured: Calibrated: October 25, 2011 December 20, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) December 20, 2012 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.49 | 0.44 | 0.46 | ± 10.1 % | | DCP (mV) ^B | 98.5 | 98.3 | 99.4 | - 1011 10 | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | 31 | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|------|----|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 | X | 0.0 | 0.0 | 1.0 | 120.0 | ±1.9 % | | | | | Y | 0.0 | 0.0 | 1.0 | 110.6 | | | | | | Z | 0.0 | 0.0 | 1.0 | 115.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NomX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. December 20, 2012 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.53 | 9.53 | 9.53 | 0.55 | 0.72 | ± 12.0 % | | 850 | 41.5 | 0.92 | 9.18 | 9.18 | 9.18 | 0.80 | 0.59 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.01 | 9.01 | 9.01 | 0.55 | 0.71 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.39 | 8.39 | 8.39 | 0.46 | 0.78 | ± 12.0 9 | | 1810 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.43 | 0.83 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.01 | 8.01 | 8.01 | 0.46 | 0.75 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.73 | 7.73 | 7.73 | 0.33 | 0.90 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.65 | 0.64 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.06 | 8.06 | 8.06 | 0.65 | 0.63 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.56 | 7.56 | 7.56 | 0.49 | 0.71 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.13 | 7.13 | 7.13 | 0.51 | 0.74 | ± 12.0 9 | | 2550 | 39.1 | 1.91 | 6.78 | 6.78 | 6.78 | 0.42 | 0.81 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.00 | 7.00 | 7.00 | 0.42 | 0.86 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.63 | 6.63 | 6.63 | 0.35 | 1.20 | ± 13.1 9 | | 3700 | 37.7 | 3.12 | 6.55 | 6.55 | 6.55 | 0.32 | 1.10 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 4.68 | 4.68 | 4.68 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.43 | 4.43 | 4.43 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.28 | 4.28 | 4.28 | 0.45 | 1.80 | ± 13.1 % | $^{^{\}circ}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. December 20, 2012 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.28 | 9.28 | 9.28 | 0.44 | 0.85 | ± 12.0 % | | 850 | 55.2 | 0.99 | 9.04 | 9.04 | 9.04 | 0.28 | 1.12 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.01 | 9.01 | 9.01 | 0.59 | 0.76 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.63 | 7.63 | 7.63 | 0.33 | 0.96 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.46 | 0.77 | ± 12.0 9 | | 1900 | 53.3 | 1.52 | 7.37 | 7.37 | 7.37 | 0.54 | 0.73 | ± 12.0 9 | | 1950 | 53.3 | 1.52 | 7.56 | 7.56 | 7.56 | 0.45 | 0.77 | ± 12.0 9 | | 2000 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.37 | 0.90 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 7.64 | 7.64 | 7.64 | 0.35 | 0.90 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.20 | 7.20 | 7.20 | 0.61 | 0.67 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.00 | 7.00 | 7.00 | 0.76 | 0.56 | ± 12.0 9 | | 2550 | 52.6 | 2.09 | 6.89 | 6.89 | 6.89 | 0.80 | 0.50 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 6.72 | 6.72 | 6.72 | 0.80 | 0.50 | ± 12.0 9 | | 3500 | 51.3 | 3.31 | 6.39 | 6.39 | 6.39 | 0.45 | 1.04 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 6.17 | 6.17 | 6.17 | 0.53 | 0.92 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.37 | 4.37 | 4.37 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.89 | 3.89 | 3.89 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. December 20, 2012 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3846 December 20, 2012 ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) December 20, 2012 #### Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3846 December 20, 2012 #### **Conversion Factor Assessment** #### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz December 20, 2012 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### Other Probe Parameters | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 58.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | #### **ANNEX H** Dipole Calibration Certificate #### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Certificate No: D835V2-443 May12 TMC Beijing **CALIBRATION CERTIFICATE** D835V2 - SN: 443 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz May 03, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 Type-N mismatch combination SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) Apr-13 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 04-Jul-11 (No. DAE4-601_Jul11) SN: 601 Jul-12 DAE4 Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Signature Laboratory Technician Calibrated by: Jeton Kastrati Approved by: Katia Pokovic Technical Manager Issued: May 3, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue ConvF sens N/A not a tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.07 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 7777 | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.36 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 mW / g ± 16.5 % (k=2) | Page 3 of 8 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 6.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.8 Ω - 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.007 113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|---------------|--| | Manufactured on | July 26, 2001 | | #### **DASY5 Validation Report for Head TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.826 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.423 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g = 8.66 dB mW/g #### **DASY5 Validation Report for Body TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.758 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.514 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/gMaximum value of SAR (measured) = 2.82 mW/g Page 7 of 8 0 dB = 2.82 mW/g = 9.00 dB mW/g #### 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Certificate No: D1900V2-541_May12 TMC Beijing **CALIBRATION CERTIFICATE** D1900V2 - SN: 541 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz May 09, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Scheduled Calibration Cal Date (Certificate No.) Primary Standards Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 27-Mar-12 (No. 217-01533) Apr-13 SN: 5047.2 / 06327 Type-N mismatch combination Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 ID# Check Date (in house) Scheduled Check Secondary Standards Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 04-Aug-99 (in house check Oct-11) In house check: Oct-13 100005 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Israe El-Naouq Laboratory Technician Calibrated by: Katja Pokovic Technical Manager Approved by: Issued: May 9, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-541_May12 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.62 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.1 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.11 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 7575 | 113 | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 39.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW / g ± 16.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.7 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.6 \Omega + 6.9 j\Omega$ | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | - 23.0 dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 09.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.763 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.071 mW/g SAR(1 g) = 9.62 mW/g; SAR(10 g) = 5.11 mW/g Maximum value of SAR (measured) = 12.0 mW/g 0 dB = 12.0 mW/g = 21.58 dB mW/g #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 04.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.165 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.442 mW/g SAR(1 g) = 10 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 12.7 mW/g 0 dB = 12.7 mW/g = 22.08 dB mW/g #### Impedance Measurement Plot for Body TSL # ANNEX I DIPOLE QUALIFICATION FOR THE EXTENDED 3-YEAR CALIBRATION INTERVAL #### I1 Dipole 835 The information and documentation below are provided to qualify the extended 3-year calibration interval of dipole. #### **I1.1 List of Equipment** | No. | Name | Туре | Serial Number | |-----|-----------------------|--------------|---------------| | 01 | Network analyzer | E5071C | MY46110673 | | 02 | Power meter | NRVD | 102083 | | 03 | Power sensor | NRV-Z5 | 100542 | | 04 | Signal Generator | E4438C | MY49070393 | | 05 | Amplifier | 60S1G4 | 0331848 | | 06 | E-field Probe | SPEAG EX3DV4 | 3846 | | 07 | DAE | SPEAG DAE4 | 771 | | 80 | Dipole Validation Kit | SPEAG D835V2 | 443 | ## I1.2 Results of Impedance, Return-loss and System validation Dipole 835 - Head | | | Year 2012 2013 | | Daviotion | Limit | |------------------|------------------------|----------------|-------|--------------|------------------------| | | | | | Deviation | | | Impedance | Real (Ω) | 50.8 | 53.6 | 2.8 Ω | Deviation $< 5 \Omega$ | | | Imaginary (Ω) | -6.7 | -2.2 | 4.5 Ω | Deviation $< 5 \Omega$ | | Return-loss (dB) | | -23.5 | -23.3 | 0.2dB | Deviate < 0.2dB | | System | 10g | 1.52 | 1.56 | 2.63% | Deviation < 10% | | validation | 1g | 2.33 | 2.38 | 2.15% | Deviation < 10% | #### Dipole 835 - Body | | | Year | | Deviation | Limit | |------------------|------------------------|-------|-------|--------------|------------------------| | | | 2012 | 2013 | | | | l | Real (Ω) | 46.8 | 49.1 | 2.3 Ω | Deviation $< 5 \Omega$ | | Impedance | Imaginary (Ω) | -7.8 | -3.7 | 4.1 Ω | Deviation $< 5 \Omega$ | | Return-loss (dB) | | -21.2 | -21.4 | -0.2dB | Deviate < 0.2dB | | System | 10g | 1.59 | 1.61 | 1.26% | Deviation < 10% | | validation | 1g | 2.42 | 2.42 | 0.00% | Deviation < 10% | According to the above tables, it is not necessary to recalibration the dipoles in 2013. #### **12 Dipole 1900** The information and documentation below are provided to qualify the extended 3-year calibration interval of dipole. **I2.1 List of Equipment** | No. | Name | Туре | Serial Number | |-----|-----------------------|---------------|---------------| | 01 | Network analyzer | E5071C | MY46110673 | | 02 | Power meter | NRVD | 102083 | | 03 | Power sensor | NRV-Z5 | 100542 | | 04 | Signal Generator | E4438C | MY49070393 | | 05 | Amplifier | 60S1G4 | 0331848 | | 06 | E-field Probe | SPEAG EX3DV4 | 3846 | | 07 | DAE | SPEAG DAE4 | 771 | | 08 | Dipole Validation Kit | SPEAG D1900V2 | 541 | ## I2.2 Results of Impedance, Return-loss and System validation Dipole 1900 - Head | | | | Year | | Limit | |------------------|------------------------|-------|-------|---------------|------------------------| | | | 2012 | 2013 | Deviation | Limit | | Impedance | Real (Ω) | 52.6 | 50.7 | -1.9 Ω | Deviation $< 5 \Omega$ | | | Imaginary (Ω) | 6.2 | 2.5 | -3.7 Ω | Deviation $< 5 \Omega$ | | Return-loss (dB) | | -23.7 | -23.5 | 0.2dB | Deviate < 0.2dB | | System | 10g | 5.11 | 5.07 | -0.78% | Deviation < 10% | | validation | 1g | 9.62 | 9.61 | -0.10% | Deviation < 10% | #### Dipole 1900 - Body | | | Year | | Deviation | Limit | |------------------|------------------------|-------|-------|---------------|------------------------| | | | | 2013 | | | | Impedance | Real (Ω) | 48.6 | 47.1 | -1.5 Ω | Deviation $< 5 \Omega$ | | | Imaginary (Ω) | 6.9 | 3.3 | -3.6 Ω | Deviation $< 5 \Omega$ | | Return-loss (dB) | | -23.0 | -23.1 | -0.1dB | Deviate < 0.2dB | | System | 10g | 5.33 | 5.46 | 2.44% | Deviation < 10% | | validation | 1g | 10 | 10.3 | 3.00% | Deviation < 10% | According to the above tables, it is not necessary to recalibration the dipoles in 2013.