No.2013SAR00098 Page 1 of 88

No. 2013SAR00098

For

TCT Mobile Limited

GSM dual band mobile phone

Mode Name: Tango Plus US

Marketing Name: ALCATEL 2001A

With

Hardware Version: Proto

Software Version: vA15

FCC ID: RAD379

Issued Date: 2013-07-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. <u>www.emcite.com</u> ©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Date	Memo
2013SAR00098	00	2013-07-26	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 Applicant Information	7
3.2 MANUFACTURER INFORMATION	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	8
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
5 TEST METHODOLOGY	9
5.1 Applicable Limit Regulations	9
5.2 Applicable Measurement Standards	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	10
6.2 SAR DEFINITION	10
7 TISSUE SIMULATING LIQUIDS	11
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	11
7.2 DIELECTRIC PERFORMANCE	11
8 SYSTEM VERIFICATION	14
8.1 System Setup	14
8.2 System Verification	15
9 MEASUREMENT PROCEDURES	16
9.1 Tests to be performed	16
9.2 GENERAL MEASUREMENT PROCEDURE	17
9.3 Power Drift	
10 AREA SCAN BASED 1-G SAR	19
10.1 REQUIREMENT OF KDB	19
10.2 FAST SAR ALGORITHMS	19
11 CONDUCTED OUTPUT POWER	20
11.1 MANUFACTURING TOLERANCE	
11.2 GSM MEASUREMENT RESULT	21

No. 2013SAR00098 Page 4 of 88

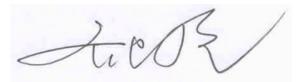
11.3 BT M	EASUREMENT RESULT	21
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	22
12.1 Intro	DUCTION	22
	SMIT ANTENNA SEPARATION DISTANCES	
12.3 SAR N	Measurement Positions	22
12.4 Stane	DALONE SAR TEST EXCLUSION CONSIDERATIONS	23
13 EVALU	ATION OF SIMULTANEOUS	24
14 SAR TE	ST RESULT	25
14.1 The e	VALUATION OF MULTI-BATTERIES	25
14.2 SAR F	RESULTS FOR FAST SAR	26
14.2 SAR F	RESULTS FOR STANDARD PROCEDURE	29
15 SAR MI	EASUREMENT VARIABILITY	30
16 MEASU	REMENT UNCERTAINTY	31
17 MAIN T	EST INSTRUMENTS	35
ANNEX A	GRAPH RESULTS	36
ANNEX B	SYSTEM VERIFICATION RESULTS	44
ANNEX C	SAR MEASUREMENT SETUP	49
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	55
ANNEX E	EQUIVALENT MEDIA RECIPES	58
ANNEX F	SYSTEM VALIDATION	59
ANNEX G	PROBE CALIBRATION CERTIFICATE	60
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	71
	DIPOLE QUALIFICATION FOR THE EXTENDED 3-YEAR CALIBRATION INTER	
•••••		07

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment


Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan	
Test Engineer:	Lin Xiaojun	
Testing Start Date:	July 10, 2013	
Testing End Date:	July 11, 2013	

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited GSM dual band mobile phone Tango Plus US / ALCATEL 2001A are as follows:

Exposure Configuration	Technology Band	Highest Reported SAR 1g (W/Kg)	Equipment Class	
Head	GSM 850	0.64	PCE	
(Separation Distance 0mm)	PCS 1900	1.26	FGE	
Body-worn	GSM 850	0.74	PCE	
(Separation Distance 10mm)	PCS 1900	1.28	FUE	

Table 2.1: Highest Reported SAR (1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.28 W/kg (1g)**.

	Position	GSM	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.74	0.26	1.00
Highest reported SAR value for Body	Rear	1.28	0.26	1.54

Table 2.2: The sum of reported SAR values for GSM and Bluetooth

BT* - Estimated SAR for Bluetooth (see the table 13.2)

According to the above tables, the maximum sum of reported SAR values is **1.54 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post.	Pudong Area Shanghai, P.R. China. 201203
City:	ShangHai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post.	Pudong Area Shanghai, P.R. China. 201203
City:	ShangHai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

escription: GSM dual band mobile phone	
Model name:	Tango Plus US
Marketing name:	ALCATEL 2001A
Operating mode(s):	GSM 850/1900, BT
Tested Ty Frequency	825 – 848.8 MHz (GSM 850)
Tested Tx Frequency:	1850.2 – 1910 MHz (GSM 1900)
GPRS Multislot Class:	12
GPRS capability Class:	В
Release Version:	GSM: Rel5
	GPRS: Rel5
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Form factor:	112mm \times 61.5mm

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	013765000000482	Proto	vA15
EUT2	013765000000508	Proto	vA15

 $^{\ast}\text{EUT}$ ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 and conducted power with the EUT2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB31L0000C1	/	BYD
AE2	Battery	CAB31L0000C2	/	BAK
AE3	Headset	CCB3160A11C1	/	Juwei
AE4	Headset	CCB3160A11C4	/	Meihao
AE5	Headset	CCB3160A15C1	/	Juwei
AE6	Headset	CCB3160A15C4	/	Meihao

*AE ID: is used to identify the test sample in the lab internally.

Note: AE3 is same as AE5, so they can use the same results. AE4 is same as AE6, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB447498 D01: General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1. Targete for tissue simulating inquia								
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range			
835	Head	0.90	0.86~0.95	41.5	39.4~43.6			
835	Body	0.97	0.92~1.02	55.2	52.4~58.0			
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0			
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0			

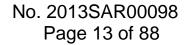
Table 7.1: Targets for tissue simulating liquid

7.2 Dielectric Performance

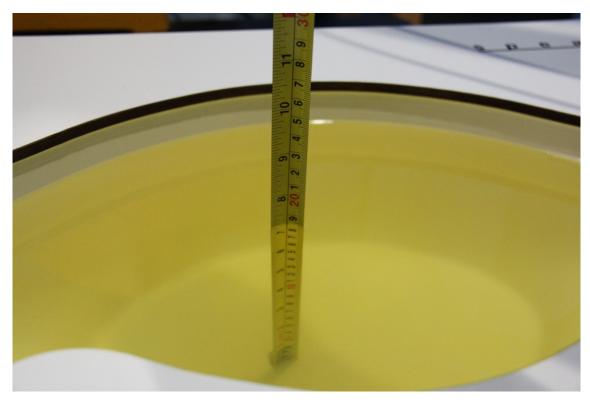
Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Turno	Frequency	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Туре	Frequency	ε	(%)	σ (S/m)	(%)
2013-07-10	Head	835 MHz	42.41	2.19	0.914	1.56
	Body	835 MHz	54.65	-1.00	0.967	-0.31
2013-07-11	Head	1900 MHz	39.22	-1.95	1.412	0.86
2013-07-11	Body	1900 MHz	52.08	-2.29	1.534	0.92

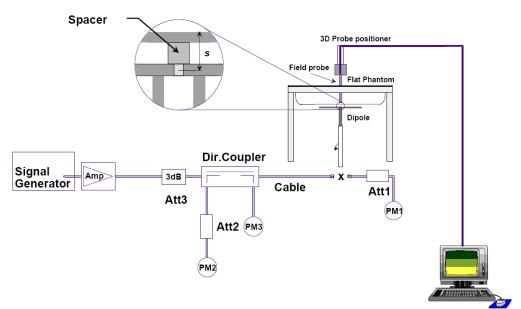
Note: The liquid temperature is 22.0 $^{\rm o}{\rm C}$

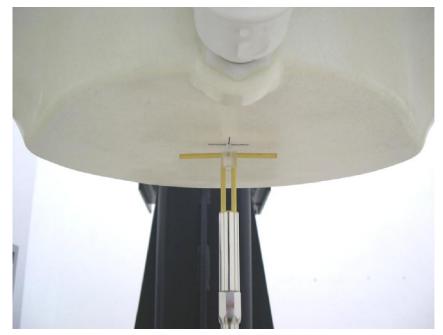



Picture 7-1: Liquid depth in the Head Phantom (835 MHz)


Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)


Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)


8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement		Target val	ue (W/kg)	Measured	/alue (W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-07-10	835 MHz	6.07	9.30	6.20	9.40	2.14%	1.08%
2013-07-11	1900 MHz	20.6	39.1	20.08	38.40	-2.52%	-1.79%

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured	value (W/kg)	Devia	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-07-10	835 MHz	6.20	9.36	6.36	9.56	2.58%	2.14%
2013-07-11	1900 MHz	21.3	39.9	21.56	40.80	1.22%	2.26%

Table 8.2: System Verification of Body

9 Measurement Procedures

9.1 Tests to be performed

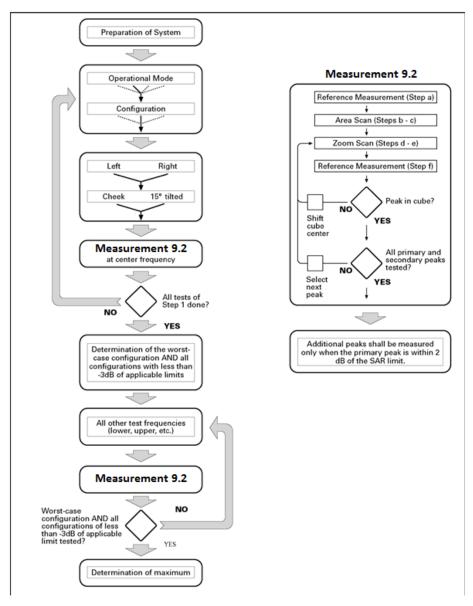
In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of

the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and


c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle f normal at the measurem			30°±1°	20°±1°	
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^4$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^4$	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
surface	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	X V Z		≥ 30 mm	$3 - 4 \text{ GHz}$: $\geq 28 \text{ mm}$ $4 - 5 \text{ GHz}$: $\geq 25 \text{ mm}$ $5 - 6 \text{ GHz}$: $\geq 22 \text{ mm}$	
2011 for details.	-	-	idence to the tissue medium; see		

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.15 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech								
	GSM	M 850						
Channel	Channel Channel 251 Channel 190 Channel 128							
Target (dBm)	32.0	32.0	32.0					
Tolerance \pm (dB)	1	1	1					
	GSM	1 1900						
Channel	Channel 810	Channel 661	Channel 512					
Target (dBm)	29.2	29.2	29.2					
Tolerance \pm (dB)	1	1	1					

Table 11.2: GPRS

		GSM 850 GPRS (GM	ISK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	32.0	32.0	32.0
TIXSIOL	Tolerance \pm (dB)	1	1	1
2 Txslots	Target (dBm)	29	29	29
2 1 251015	Tolerance \pm (dB)	1	1	1
3Txslots	Target (dBm)	27	27	27
31 X SIOLS	Tolerance \pm (dB)	1	1	1
4 Txslots	Target (dBm)	26	26	26
4 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tolerance \pm (dB)	1	1	1
		GSM 1900 GPRS (GN	MSK)	
	Channel	810	661	512
1 Typlat	Target (dBm)	29.2	29.2	29.2
1 Txslot	Tolerance \pm (dB)	1	1	1
0 Typlata	Target (dBm)	27	27	27
2 Txslots	Tolerance \pm (dB)	1	1	1
2Tvalata	Target (dBm)	25	25	25
3Txslots	Tolerance \pm (dB)	1	1	1
4 Typlata	Target (dBm)	24	24	24
4 Txslots	Tolerance \pm (dB)	1	1	1

Table 11.3: Bluetooth

Bluetooth							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	10	10	10				
Tolerance \pm (dB)	1	1	1				

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM		Conducted Power (dBm)	
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
85010112	32.14	32.15	32.13
COM		Conducted Power (dBm)	
GSM	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900MHz -	29.84	29.75	29.78

Table 11.4: The conducted power measurement results for GSM850/1900

Table 11.5: The conducted power measurement results for GPRS

GSM 850	Measured Power (dBm)			calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.15	32.12	32.12	-9.03dB	23.12	23.09	23.09
2 Txslots	29.12	29.05	28.96	-6.02dB	23.10	23.03	22.94
3Txslots	27.18	27.11	27.03	-4.26dB	22.92	22.85	22.77
4 Txslots	26.05	25.98	26.06	-3.01dB	23.04	22.97	23.05
PCS1900	Measu	ured Power	(dBm)	calculation	Averaged Power (dBm)		(dBm)
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.89	29.85	29.78	-9.03dB	20.86	20.82	20.75
2 Txslots	26.81	26.82	26.71	-6.02dB	20.79	20.80	20.69
3Txslots	24.68	24.73	24.59	-4.26dB	20.42	20.47	20.33
		23.67	23.56	-3.01dB	20.62	20.66	20.55

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

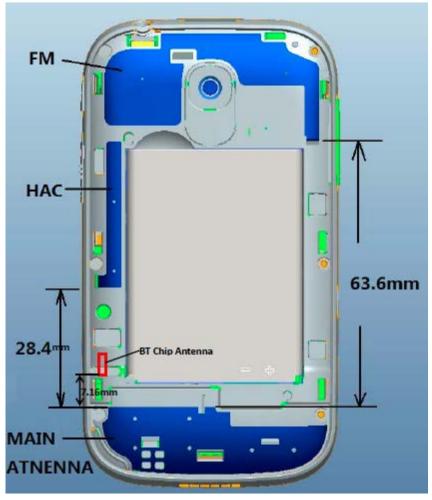
3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 1Txslots for GPRS.

11.3 BT Measurement result

The output power of BT antenna is as following:


Mode	Conducted Power (dBm)				
wode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)		
GFSK	10.10	10.30	10.06		
EDR2M-4_DQPSK	9.88	10.18	9.98		
EDR3M-8DPSK	10.15	10.40	10.19		

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

	SAR measurement positions										
Mode	Front	Rear	Left edge	Right edge	Top edge	Bottom edge					
GSM850/1900	Yes	Yes	Yes	Yes	No	Yes					

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f}(GHz)$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10mm test separation distances is 19mW.

Appendix A

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \leq 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 12.2 Power Thresholds

Band/Mode	F(GHz)		RF outp	SAR test	
Band/Mode	F(GHZ)	threshold (mW)	dBm	mW	exclusion
Bluetooth	2.441	19	10.40	10.96	Yes

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for GSM and Bluetooth

	Position	GSM	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.74	0.26	1.00
Highest reported SAR value for Body	Rear	1.28	0.26	1.54

BT* - Estimated SAR for Bluetooth (see the table 13.2)

Table 13.2: Estimated \$	SAR for Bluetooth
--------------------------	-------------------

Mode/Pand	F (GHz)	Distance (mm)	Upper limi	Estimated _{1g}	
Mode/Band	г (Сп2)	Distance (mm)	dBm	mW	(W/kg)
Bluetooth	2.441	10	11	12.59	0.26

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Table 14 1. Duty Cycle

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

	14.1: Duty Cycle
Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS for GSM850/1900	1:8.3

14.1 The evaluation of multi-batteries

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries and retest on highest value point with other batteries. Then, repeat the measurement in the Body test.

Frequency		Side	Test	Potton (Type	SAR(1g)	Power	
MHz	Ch.	Side	Position	Battery Type	(W/kg)	Drift(dB)	
1880	661	Right	Touch	CAB31L0000C1	0.668	0.04	
1880	661	Right	Touch	CAB31L0000C2	0.658	0.02	

Table 14.2: The evaluation of multi-batteries for Head Test

Note: According to the values in the above table, the battery, CAB31L0000C1, is the primary battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Frequency		Mada	Test	Spacing	Potton / Tupo	SAR(1g)	Power
MHz	Ch.	Mode	Position (mm)		Battery Type	(W/kg)	Drift(dB)
1850.2	512	GPRS	Rear	10	CAB31L0000C1	1.16	0.00
1850.2	512	GPRS	Rear	10	CAB31L0000C2	1.14	0.04

Table 14.3: The evaluation of multi-batteries for Body Test

Note: According to the values in the above table, the battery, CAB31L0000C1, is the primary battery. We'll perform the Body measurement with this battery and retest on highest value point with others.

14.2 SAR results for Fast SAR

Table 14.4: SAR Values (GSM 850 MHz Band - Head) with battery CAB31L0000C1

	Ambient Temperature: 22.7 °C Liquid Temperature: 22.2 °C										
Frequ	Frequency Test Figure Conducted Max. tune-u		Max. tune-up	Measured	Reported	Measured	Reported	Power			
	-	Side		Figure	Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	Fig.1	32.14	33.0	0.398	0.49	0.528	0.64	-0.05
836.6	190	Left	Touch	/	32.15	33.0	0.311	0.38	0.457	0.56	-0.10
824.2	128	Left	Touch	/	32.13	33.0	0.278	0.34	0.407	0.50	0.05
848.8	251	Left	Tilt	/	32.14	33.0	0.221	0.27	0.322	0.39	0.04
836.6	190	Left	Tilt	/	32.15	33.0	0.198	0.24	0.288	0.35	0.07
824.2	128	Left	Tilt	/	32.13	33.0	0.179	0.22	0.260	0.32	0.06
848.8	251	Right	Touch	/	32.14	33.0	0.343	0.42	0.455	0.55	-0.10
836.6	190	Right	Touch	/	32.15	33.0	0.268	0.33	0.389	0.47	0.04
824.2	128	Right	Touch	/	32.13	33.0	0.252	0.31	0.367	0.45	-0.17
848.8	251	Right	Tilt	/	32.14	33.0	0.217	0.26	0.317	0.39	0.05
836.6	190	Right	Tilt	/	32.15	33.0	0.200	0.24	0.290	0.35	-0.02
824.2	128	Right	Tilt	/	32.13	33.0	0.185	0.23	0.268	0.33	0.03

Table 14.5: SAR Values (GSM 850 MHz Band - Body) with battery CAB31L0000C1

	Ambient Temperature: 22.7 °C Liquid Temperature: 22.2 °C												
Frequ	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
848.8	251	GPRS (1)	Front	/	32.15	33.0	0.359	0.44	0.478	0.58	0.11		
836.6	190	GPRS (1)	Front	/	32.12	33.0	0.261	0.32	0.348	0.43	0.09		
824.2	128	GPRS (1)	Front	/	32.12	33.0	0.263	0.32	0.352	0.43	0.16		
848.8	251	GPRS (1)	Rear	Fig.2	32.15	33.0	0.765	0.93	1.04	1.26	0.01		
836.6	190	GPRS (1)	Rear	/	32.12	33.0	0.567	0.69	0.833	1.02	-0.06		
824.2	128	GPRS (1)	Rear	/	32.12	33.0	0.599	0.73	0.824	1.01	-0.05		
848.8	251	Speech	Rear Headset1	/	32.14	33.0	0.691	0.84	0.948	1.16	-0.05		
848.8	251	Speech	Rear Headset2	/	32.14	33.0	0.687	0.84	0.946	1.15	0.08		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The type of Headset1 is CCB3160A11C1; the type of Headset2 is CCB3160A11C4.

Table 14.6: SAR Values (GSM 1900 MHz Band - Head) with battery CAB31L0000C1

				Ambient	Temperature:	22.8°C L	iquid Tempera	ture: 22.3 °C			
Test Figure Max tune-up								Measured	Reported	Power	
	-	Side		Ū.	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	/	29.84	30.2	0.234	0.25	0.395	0.43	-0.10
1880	661	Left	Touch	/	29.75	30.2	0.279	0.31	0.441	0.49	0.01
1850.2	512	Left	Touch	/	29.78	30.2	0.212	0.23	0.362	0.40	0.03
1909.8	810	Left	Tilt	/	29.84	30.2	0.095	0.10	0.171	0.19	0.02
1880	661	Left	Tilt	/	29.75	30.2	0.068	0.08	0.121	0.13	0.01
1850.2	512	Left	Tilt	/	29.78	30.2	0.072	0.08	0.124	0.14	0.04
1909.8	810	Right	Touch	/	29.84	30.2	0.331	0.36	0.607	0.66	-0.14
1880	661	Right	Touch	Fig.3	29.75	30.2	0.373	0.41	0.668	0.74	0.04
1850.2	512	Right	Touch	/	29.78	30.2	0.350	0.39	0.641	0.71	0.02
1909.8	810	Right	Tilt	/	29.84	30.2	0.112	0.12	0.199	0.22	0.02
1880	661	Right	Tilt	/	29.75	30.2	0.099	0.11	0.173	0.19	0.06
1850.2	512	Right	Tilt	/	29.78	30.2	0.105	0.12	0.181	0.20	-0.04

Table 14.7: SAR Values (GSM 1900 MHz Band - Body) with battery CAB31L0000C1

Freque	encv	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	,	(number of	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	FUSILION	INO.	(dBm)	Fower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (1)	Front	/	29.89	30.2	0.283	0.30	0.458	0.49	-0.01
1880	661	GPRS (1)	Front	/	29.85	30.2	0.304	0.33	0.487	0.53	0.11
1850.2	512	GPRS (1)	Front	/	29.78	30.2	0.291	0.32	0.464	0.51	-0.07
1909.8	810	GPRS (1)	Rear	/	29.89	30.2	0.541	0.58	0.888	0.95	0.05
1880	661	GPRS (1)	Rear	/	29.85	30.2	0.629	0.68	1.04	1.13	0.02
1850.2	512	GPRS (1)	Rear	Fig.4	29.78	30.2	0.686	0.76	1.16	1.28	0.00
1909.8	810	Speech	Rear	1	29.84	30.2	0.433	0.47	0.718	0.78	0.03
1303.0	010	Opecci	Headset1	,	29.04	50.2	0.435	0.47	0.710	0.70	0.05
1880	661	Speech	Rear	/	29.75	30.2	0.537	0.60	0.914	1.01	0.19
1000	001	Opecen	Headset1	,	20.70	00.2	0.007	0.00	0.014	1.01	0.10
1850.2	512	Speech	Rear	/	29.78	30.2	0.622	0.69	1.04	1.15	0.04
1000.2	012	Opecen	Headset1	,	20.70	50.2	0.022	0.00	1.04	1.10	0.04
1909.8	810	Speech	Rear	/	29.84	30.2	0.534	0.58	0.873	0.95	-0.02
1303.0	010	Opecci	Headset2	,	23.04	50.2	0.004	0.50	0.075	0.95	-0.02
1880	661	Speech	Rear	/	29.75	30.2	0.644	0.71	1.07	1.19	-0.01
1000	001	opoeon	Headset2	,	23.15	50.2	0.044	0.71	1.07	1.13	-0.01
1850.2	512	Speech	Rear	/	29.78	30.2	0.670	0.74	1.13	1.24	-0.04
1050.2	512	Opeecil	Headset2	/	29.10	30.2	0.070	0.74	1.15	1.24	-0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The type of Headset1 is CCB3160A11C1; the type of Headset2 is CCB3160A11C4.

Table 14.8: SAR Values (GSM 1900 MHz Band - Head) with battery CAB31L0000C2

				Ambient	Temperature:	22.8°C L	iquid Tempera	ture: 22.3 °C			
Freque	ency	Ċ	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	661	Right	Touch	/	29.75	30.2	0.368	0.41	0.658	0.73	0.02

Table 14.9: SAR Values (GSM 1900 MHz Band - Body) with battery CAB31L0000C2

			A	mbient Te	mperature: 22	2.8 °C Liqu	id Temperature	e: 22.3 °C				
Freque	Frequency Mode Test Figure Conducted Max. tune-up Measured Reported Measured Reported Power											
	1	(number of		°,	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1850.2 512 GPRS (1) Rear / 29.78 30.2 0.675 0.74 1.14 1.26 0.04												

Note1: The distance between the EUT and the phantom bottom is 10mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

		14		0/11/10				nun battor	ONBOILD			
Ambient Temperature: 22.7 °C Liquid Temperature: 22.2 °C												
Freque	ency		Toot	Figuro	Conducted	Max tuno un	Measured	Reported	Measured	Reported	Power	
Side Basitian No Power Bawar (dBm) SAR(10g) SAR(10g) SAR(1g) SAR(1g) Drift												
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
848.8	251	Left	Touch	Fig.1	32.14	33.0	0.398	0.49	0.528	0.64	-0.05	
Table 14.11: SAR Values (GSM 850 MHz Band - Body) with battery CAB31L0000C1												
Ambient Temperature: 22.7° C Liquid Temperature: 22.2° C												

Table 14.10: SAR Values (GSM 850 MHz Band - Head) with battery CAB31L0000C1

			Aı	mbient Te	mperature: 22	2.7 °C Liqui	id Temperature	e: 22.2 °C						
Frequ	Frequency Mode Test Figure Conducted Max. tune-up Measured Reported Measured Reported Power													
		(number of		U U	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
848.8	848.8 251 GPRS (1) Rear Fig.2 32.15 33.0 0.765 0.93 1.04 1.26 0.01													

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.12: SAR Values (GSM 1900 MHz Band - Head) with battery CAB31L0000C1

				Ambient	Temperature:	22.8°C L	iquid Tempera	ture: 22.3 °C			
Frequency Test Figure Conducted Max. tune-up Measured Reported Measured Reported Power											
	Side			Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	Right	Touch	Fig.3	29.75	30.2	0.373	0.41	0.668	0.74	0.04

Table 14.13: SAR Values (GSM 1900 MHz Band - Body) with battery CAB31L0000C1

	Ambient Temperature: 22.8 °C Liquid Temperature: 22.3 °C													
Freque	Frequency Mode Test Figure Conducted Max. tune-up Measured Reported Reported Power													
Tioque	onoy	(number of		U U	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1850.2 512 GPRS (1) Rear Fig.4 29.78 30.2 0.686 0.76 1.16 1.28 0.00														

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.14: SAR Values (GSM 1900 MHz Band - Head) with battery CAB31L0000C2

					Ambient	Temperature:	22.8°C L	iquid Tempera	ture: 22.3 °C			
	Freque	ency		Teet	Figure	Conducted	Max tune un	Measured	Reported	Measured	Reported	Power
Side Power SAR(10g) SAR(10g									SAR(1g)	SAR(1g)	Drift	
	MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880 661 Right Touch / 29.75 30.2 0.368 0.41 0.658 0.73 0.0								0.02				

Table 14.15: SAR Values (GSM 1900 MHz Band - Body) with battery CAB31L0000C2

			A	mbient Te	mperature: 22	2.8 °C Liqu	id Temperature	e: 22.3 °C			
Frequency Mode Test Figure Conducted Max. tune-up Measured Reported Measured Reported Power											
	1	(number of		Ū	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1850.2	512	GPRS (1)	Rear	/	29.78	30.2	0.675	0.74	1.14	1.26	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
848.8	251	Rear	10	1.04	1.03	1.01	1

Table 15.1: SAR Measurement Variability for Body GSM 850 (1g)

			SAR Weas	liement varia	Dility for Body G	SIVI 1900	(19)
Freque	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1850.2	512	Rear	10	1.16	1.14	1.02	1

Table 15.2: SAR Measurement Variability for Body GSM 1900 (1g)

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	i weasurement u	100110			10313	1000	VII 12~		/	
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	1					
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р		•			
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521

Combined standard uncertainty	$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.25	9.12	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			18.5	18.2	

16.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)

16.	2 Measurement U	ncerta	ainty for No	rmai SAR	lests	(3~6	GHZ)			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	ł					
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p	•			•	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.8	10.7	257
(cont	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					21.6	21.4	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	surement system						-	-	-		
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8	
	Test sample related										
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8	

			Phant	tom and set-uj	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22}}$							10.1	9.95	257
(cont	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.2	19.9	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree			
			value	Distribution		1g	10g	Unc.	Unc.	of			
								(1g)	(10g)	freedo			
										m			
Mea	Measurement system												
1	Probe calibration	В	6.5	Ν	1	1	1	6.5	6.5	∞			
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞			
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞			
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8			
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8			
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8			
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8			
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8			
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8			
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ			
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ			
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞			
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8			

			Test	sample related	l							
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71		
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5		
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8		
	Phantom and set-up											
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8		
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8		
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43		
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8		
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521		
(Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$							13.3	13.2	257		
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					26.6	26.4			

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	February 15, 2013	One year		
02	Power meter	NRVD	102083	September 11, 2012			
03	Power sensor	NRV-Z5	100542	September 11, 2012	One year		
04	Signal Generator	E4438C	MY49070393	November 13, 2012	One Year		
05	Amplifier	60S1G4	0331848	No Calibration Requested			
06	BTS	E5515C	MY50263375	January 30, 2013	One year		
07	E-field Probe	SPEAG EX3DV4	3846	December 20, 2012	One year		
08	DAE	SPEAG DAE4	771	November 20, 2012	One year		
09	Dipole Validation Kit	SPEAG D835V2	443	May 03, 2012	Three years		
10	Dipole Validation Kit	SPEAG D1900V2	541	May 09, 2012	Three years		

END OF REPORT BODY

ANNEX A Graph Results

850 Left Cheek High

Date: 2013-7-10 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.929$ mho/m; $\epsilon r = 42.222$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Cheek High/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.569 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 9.705 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.648 W/kg SAR(1 g) = 0.528 W/kg; SAR(10 g) = 0.398 W/kg Maximum value of SAR (measured) = 0.549 W/kg

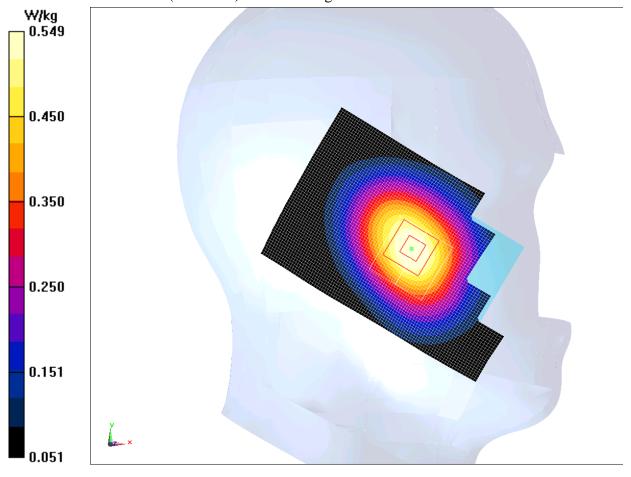


Fig.1 850MHz CH251

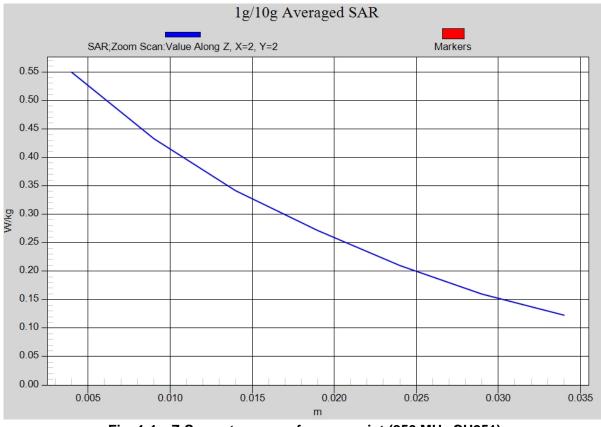


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Rear High

Date: 2013-7-10 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 54.479$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(9.04, 9.04, 9.04)

Rear High/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.14 W/kg

Rear High/Zoom Scan (7x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 32.262 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.765 W/kg Maximum value of SAR (measured) = 1.08 W/kg

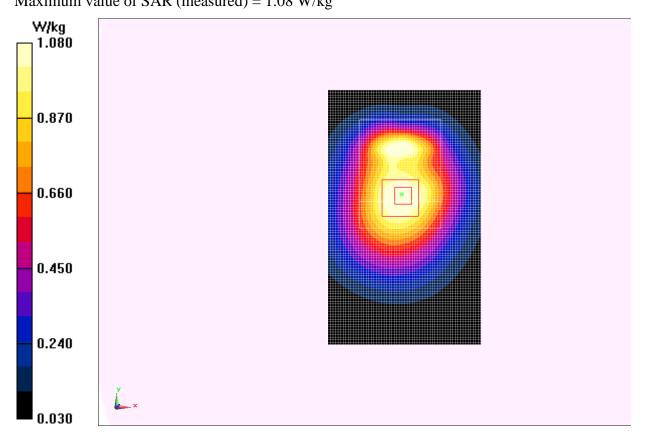


Fig.2 850 MHz CH251

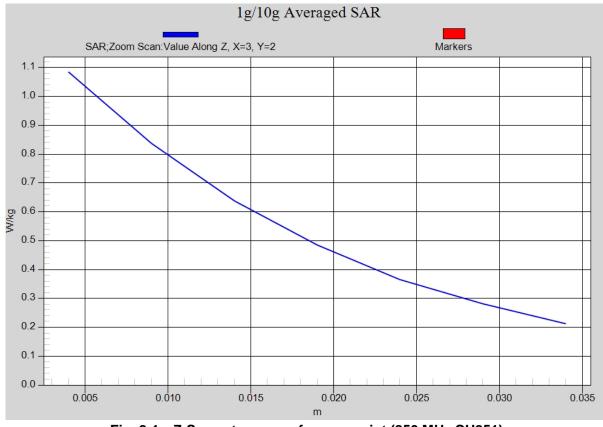


Fig. 2-1 Z-Scan at power reference point (850 MHz CH251)

1900 Right Cheek Middle

Date: 2013-7-11 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.396$ mho/m; $\epsilon r = 39.228$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(8.01, 8.01, 8.01)

Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.752 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 8.450 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.668 W/kg; SAR(10 g) = 0.373 W/kg Maximum value of SAR (measured) = 0.738 W/kg

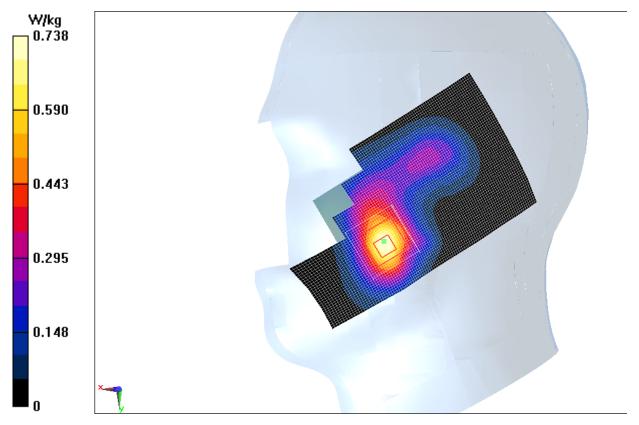


Fig.3 1900 MHz CH661

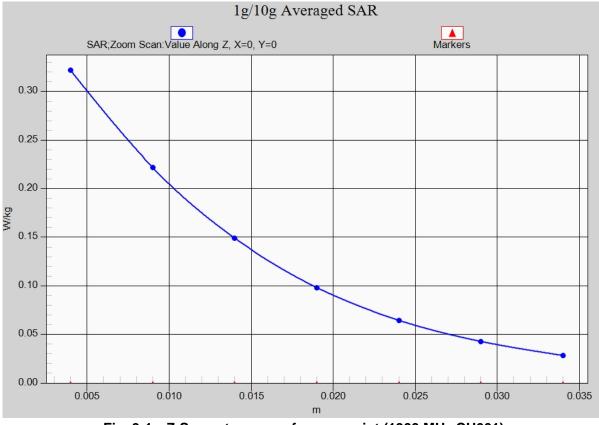


Fig. 3-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Rear Low

Date: 2013-7-11 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.485$ mho/m; $\epsilon r = 52.28$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN3846 ConvF(7.37, 7.37, 7.37)

Rear Low/Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.429 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.85 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.686 W/kg Maximum value of SAR (measured) = 1.24 W/kg

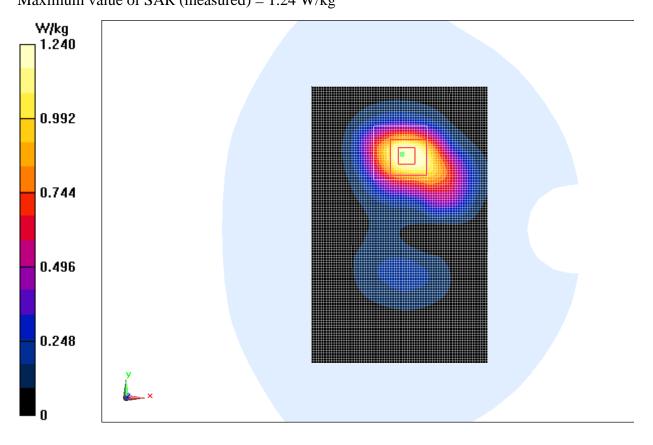


Fig.4 1900 MHz CH661

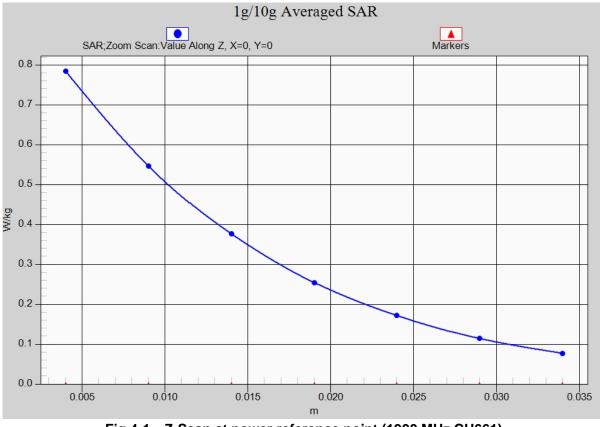
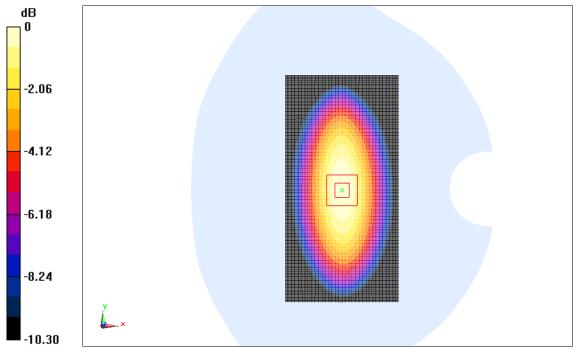


Fig.4-1 Z-Scan at power reference point (1900 MHz CH661)

ANNEX B System Verification Results

835MHz

Date: 2013-7-10 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 42.41$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)


System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 54.104 V/m; Power Drift = 0.13 dBFast SAR: SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (interpolated) = 2.60 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.104 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.55 W/kg

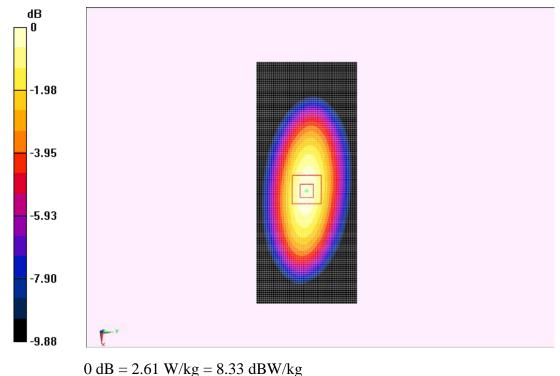
Maximum value of SAR (measured) = 2.59 W/kg

0 dB = 2.60 W/kg = 8.30 dBW/kg

Fig.B.1 validation 835MHz 250mW

835MHz

Date: 2013-7-10 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 54.65$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(9.04, 9.04, 9.04)


System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.875 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 2.61 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.875 V/m; Power Drift = -0.08 dB

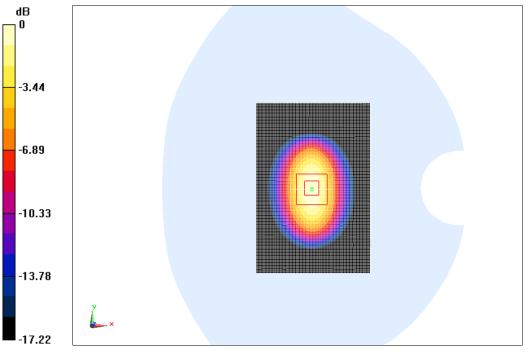
Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.63 W/kg

B = 2.01 W/Kg = 6.55 uB W/Kg

Fig.B.2 validation 835MHz 250mW

1900MHz


Date: 2013-7-11 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ mho/m; $\epsilon_r = 39.22$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(8.01, 8.01, 8.01)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.297 V/m; Power Drift = -0.06 dB Fast SAR: SAR(1 g) = 9.63 mW/g; SAR(10 g) = 5.04 mW/g Maximum value of SAR (interpolated) = 11.0 mW/g

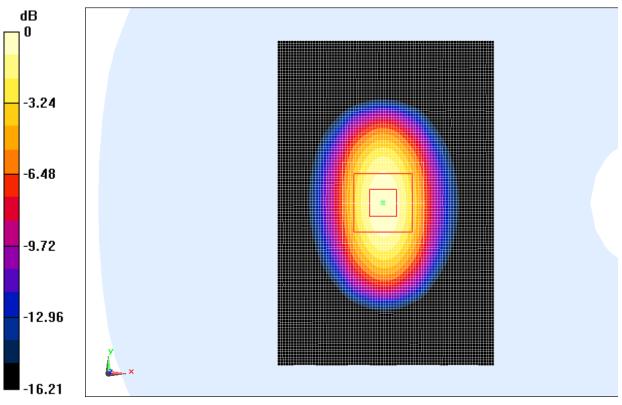
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.297 V/m; Power Drift = -0.06 dBPeak SAR (extrapolated) = 17.56 mW/g SAR(1 g) = 9.60 mW/g; SAR(10 g) = 5.02 mW/g Maximum value of SAR (measured) = 11.0 mW/g

0 dB = 11.0 mW/g = 20.83 dB mW/g

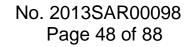
Fig.B.3 validation 1900MHz 250mW

1900MHz


Date: 2013-7-11 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.534$ mho/m; $\epsilon_r = 52.08$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(7.37, 7.37, 7.37)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 85.618 V/m; Power Drift = 0.05 dB Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.32 W/kg Maximum value of SAR (interpolated) = 11.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

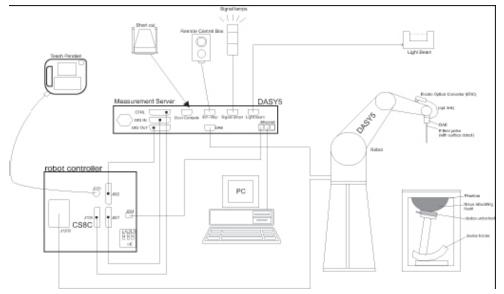
Reference Value = 85.618 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.39 W/kg Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.5 W/kg = 21.21 dBW/kg

Fig.B.4 validation 1900MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
835	Head	2.38	2.35	1.28
835	Body	2.35	2.39	-1.67
1900	Head	9.63	9.60	0.31
1900	Body	10.1	10.2	-0.98


Table B.1 Comparison between area scan and zoom scan for system verification

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

· · · · · · · · · · · · · · · · · · ·	
Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.


PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 4

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

No. 2013SAR00098 Page 53 of 88

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

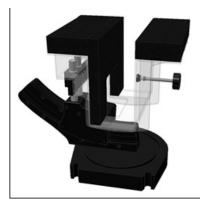
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

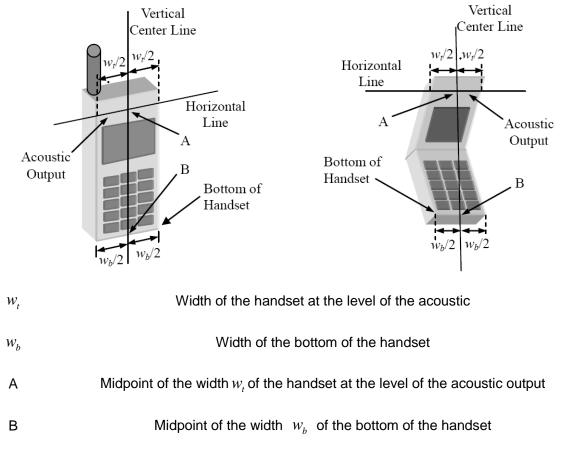
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

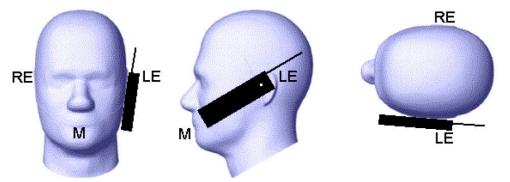
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation

No. 2013SAR00098 Page 54 of 88

of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

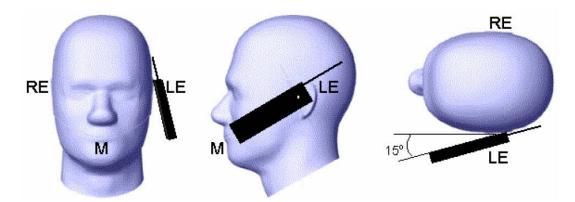
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture C.10: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

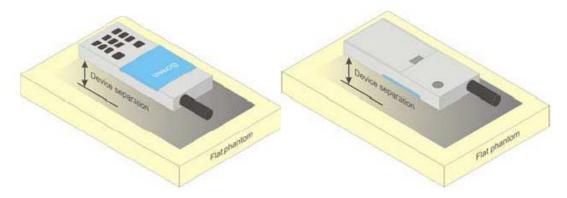
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

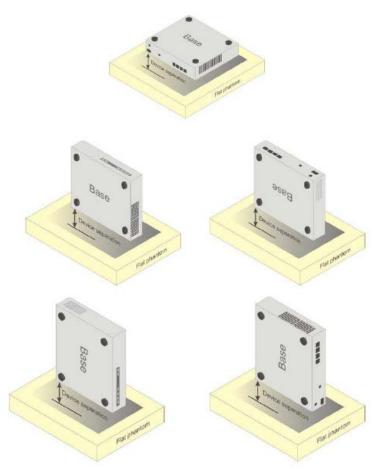
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

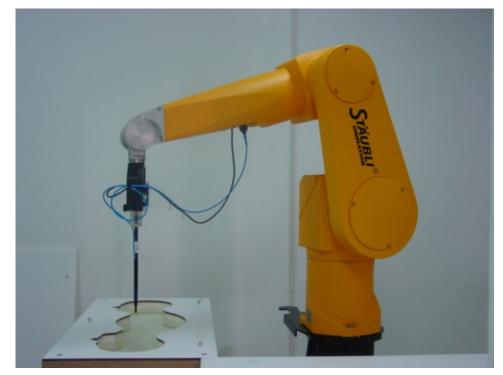
D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.


The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

				•••••••			-	
Frequency	835	835	1900	1900	2450	2450	5800	5800
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by	v weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	\	١	\	١	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١
Preventol	0.1	0.1	١	\	١	\	١	١
Cellulose	1.0	1.0	١	\	١	١	١	١
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	١	١
Diethylenglycol monohexylether	١	١	١	١	١	١	17.24	17.24
Triton X-100	١	١	١	\	١	١	17.24	17.24
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95	ε=35.3 σ=5.27	ε=48.2 σ=6.00

Table E.1: Composition of the Tissue Equivalent Matter

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

		Table F.1: System	Validation	
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3846	Head 750MHz	Mar. 06, 2013	750 MHz	OK
3846	Head 850MHz	Mar. 06, 2013	850 MHz	OK
3846	Head 900MHz	Mar. 01, 2013	900 MHz	OK
3846	Head 1750MHz	Mar. 03, 2013	1750 MHz	OK
3846	Head 1810MHz	Mar. 03, 2013	1810 MHz	OK
3846	Head 1900MHz	Mar. 07, 2013	1900 MHz	OK
3846	Head 1950MHz	Mar. 04, 2013	1950 MHz	OK
3846	Head 2000MHz	Mar. 04, 2013	2000 MHz	OK
3846	Head 2100MHz	Mar. 05, 2013	2100 MHz	OK
3846	Head 2300MHz	Mar. 05, 2013	2300 MHz	OK
3846	Head 2450MHz	Mar. 02, 2013	2450 MHz	OK
3846	Head 2550MHz	Mar. 08, 2013	2550 MHz	OK
3846	Head 2600MHz	Mar. 08, 2013	2600 MHz	OK
3846	Head 3500MHz	Mar. 09, 2013	3500 MHz	OK
3846	Head 3700MHz	Mar. 09, 2013	3700 MHz	OK
3846	Head 5200MHz	Mar. 10, 2013	5200 MHz	OK
3846	Head 5500MHz	Mar. 10, 2013	5500 MHz	OK
3846	Head 5800MHz	Mar. 10, 2013	5800 MHz	OK
3846	Body 750MHz	Mar. 06, 2013	750 MHz	OK
3846	Body 850MHz	Mar. 06, 2013	850 MHz	OK
3846	Body 900MHz	Mar. 01, 2013	900 MHz	OK
3846	Body 1750MHz	Mar. 03, 2013	1750 MHz	OK
3846	Body 1810MHz	Mar. 03, 2013	1810 MHz	OK
3846	Body 1900MHz	Mar. 07, 2013	1900 MHz	OK
3846	Body 1950MHz	Mar. 04, 2013	1950 MHz	OK
3846	Body 2000MHz	Mar. 04, 2013	2000 MHz	OK
3846	Body 2100MHz	Mar. 05, 2013	2100 MHz	OK
3846	Body 2300MHz	Mar. 05, 2013	2300 MHz	OK
3846	Body 2450MHz	Mar. 02, 2013	2450 MHz	OK
3846	Body 2550MHz	Mar. 08, 2013	2550 MHz	OK
3846	Body 2600MHz	Mar. 08, 2013	2600 MHz	OK
3846	Body 3500MHz	Mar. 09, 2013	3500 MHz	OK
3846	Body 3700MHz	Mar. 09, 2013	3700 MHz	ОК
3846	Body 5200MHz	Mar. 10, 2013	5200 MHz	ОК
3846	Body 5500MHz	Mar. 10, 2013	5500 MHz	OK
3846	Body 5800MHz	Mar. 10, 2013	5800 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3846 Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zu	ory of	HAC MILA REAL SHISS REAL S	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accred The Swiss Accreditation Serv Multilateral Agreement for the	ice is one of the signatorie	es to the EA	No.: SCS 108
Client TMC Beijing (Auden)	Certificate No	EX3-3846_Dec12
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:38	46	120.00
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes		
Calibration date:	December 20, 20	012	A CONTRACTOR
All calibrations have been cond Calibration Equipment used (Ma		y facility: environment temperature (22 ± 3)°C :	and humidity < 70%.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198 Power sensor E4412A	GB41293874 MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531)	Apr-13 Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference 30 dB Attenuator	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
Reference Probe ES3DV2			
	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Reference Probe ES3DV2 DAE4 Secondary Standards	ID SN: 660	Check Date (in house)	Scheduled Check
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID US3642U01700	Check Date (in house) 4-Aug-99 (in house check Apr-11)	Scheduled Check In house check: Apr-13
Reference Probe ES3DV2 DAE4 Secondary Standards	ID	Check Date (in house)	Scheduled Check
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID US3642U01700 US37390585 Name	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12) Function	Scheduled Check In house check: Apr-13
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID US3642U01700 US37390585	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12)	Scheduled Check In house check: Apr-13 In house check: Oct-13
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID US3642U01700 US37390585 Name	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12) Function	Scheduled Check In house check: Apr-13 In house check: Oct-13
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID US3642U01700 US37390585 Name	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12) Function	Scheduled Check In house check: Apr-13 In house check: Oct-13
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	Scheduled Check In house check: Apr-13 In house check: Oct-13
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic	Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician Technical Manager	Scheduled Check In house check: Apr-13 In house check: Oct-13 Signature