No. 2013HAC00020-2 Page 1 of 36

No. 2013HAC00020-2

For

TCT Mobile Limited

GSM dual band mobile phone

Mode Name: Tango Plus US

Marketing Name: ALCATEL 2001A

With

Hardware Version: Proto

Software Version: vA15

FCC ID: RAD379

Results Summary: T Category = T4

Issued Date: 2013-07-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Revision Date Memo	
2013HAC00020-2	00	2013-07-26	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	4
1.1 TESTING LOCATION	4
1.2 TESTING ENVIRONMENT	4
1.3 PROJECT DATA	
1.4 Signature	4
2 CLIENT INFORMATION	5
2.1 Applicant Information	
2.2 MANUFACTURER INFORMATION	5
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
3.1 ABOUT EUT	6
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.4 AIR INTERFACES / BANDS INDICATING OPERATING MODES	
4 CONDUCTED OUTPUT POWER MEASUREMENT	7
4.1 SUMMARY	7
4.1 SUMMART	
5. REFERENCE DOCUMENTS	7
5.1Reference Documents for testing	7
6 OPERATIONAL CONDITIONS DURING TEST	
6.1 HAC MEASUREMENT SET-UP	
6.2 AM1D probe 6.3 AMCC	
6.4 AMMI	
6.5 TEST ARCH PHANTOM & PHONE POSITIONER	. 10
6.6 ROBOTIC SYSTEM SPECIFICATIONS	
6.7 T-COIL MEASUREMENT POINTS AND REFERENCE PLANE	
7 T-COIL TEST PROCEDUERES	13
8 T-COIL PERFORMANCE REQUIREMENTS	
8.1 T-COIL COUPLING FIELD INTENSITY	
8.2 FREQUENCY RESPONSE	. 14
9 HAC T-COIL TEST DATA SUMMARY	15
9.1 Noise ambient 9.2 T-Coil Coupling Field Intensity	
9.2.1 AXIAL FIELD INTENSITY	
9.2.2 RADIAL FIELD INTENSITY	.15
9.3 FREQUENCY RESPONSE AT AXIAL MEASUREMENT POINT.	.16
9.4 Signal Quality 9.5 Total Measurement Conclusion	. 16 16
10 MEASUREMENT UNCERTAINTY	
11 MAIN TEST INSTRUMENTS	
ANNEX A TEST LAYOUT	19
ANNEX B TEST PLOTS	20
ANNEX C FREQUENCY REPONSE CURVES	32
ANNEX D PROBE CALIBRATION CERTIFICATE	33

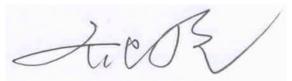
1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT	
Address:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China	
Postal Code:	100191	
Telephone:	+86-10-62304633	
Fax:	+86-10-62304793	

1.2 Testing Environment

Temperature:	18°C~25 °C,			
Relative humidity:	30%~ 70%			
Ground system resistance:	< 0.5 Ω			
Anchienter in the sheet and found to me low and in some lines with a subscreek of standards				


Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Hao
Testing Start Date:	July 13, 2013
Testing End Date:	July 13, 2013

1.4 Signature

Lin Hao (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Limited		
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,		
Address /Post.	Pudong Area Shanghai, P.R. China. 201203		
City:	ShangHai		
Postal Code:	201203		
Country:	P.R.China		
Contact:	Gong Zhizhou		
Email:	zhizhou.gong@jrdcom.com		
Telephone:	0086-21-61460890		
Fax:	0086-21-61460602		

2.2 Manufacturer Information

Company Name:	TCT Mobile Limited		
A dalaa a Daata	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,		
Address /Post:	Pudong Area Shanghai, P.R. China. 201203		
City:	ShangHai		
Postal Code:	201203		
Country:	P.R.China		
Contact:	Gong Zhizhou		
Email:	zhizhou.gong@jrdcom.com		
Telephone:	0086-21-61460890		
Fax:	0086-21-61460602		

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	GSM dual band mobile phone		
Mode Name:	Tango Plus US		
Marketing Name:	ALCATEL 2001A		
Operating mode(s):	GSM 850/1900, BT		

3.2 Internal Identification of EUT used during the test

EUT ID*	ID* IMEI HW Version		SW Version
EUT1	013765000000532	Proto	vA15
EUT2	013765000000508	Proto	vA15

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test T-coil with the EUT1 and conducted power with the EUT2.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB31L0000C1	/	BYD
AE2	Battery	CAB31L0000C2	/	BAK

*AE ID: is used to identify the test sample in the lab internally.

3.4 Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19/ tested	Simultaneous Transmissions Note: Not to be tested	Concurrent single transmission	Reduced power	Voice Over Digital Transport (Data)
	850	VO	Vaa	Yes	Yes	Na	NIA
GSM	1900	VO	Yes	ВТ	GPRS, BT Not rated	No	NA
	GPRS	DT	NA	NA	Yes* see note	NA	NA
ВТ	2450	V/D	NA	Yes GSM	Yes GPRS	NA	NA

VO: Voice CMRS/PSTN Service Only

V/D: Voice CMRS/PSTN and Data Service

DT: Digital Transport

* HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating

4 CONDUCTED OUTPUT POWER MEASUREMENT

4.1 Summary

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

4.2 Conducted Power

GSM	Conducted Power (dBm)					
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)			
820INIHZ	32.14	32.15	32.13			
COM	Conducted Power (dBm)					
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)			
	29.84	29.75	29.78			

5. Reference Documents

5.1Reference Documents for testing

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2007	American National Standard for Methods of Measurement	2007
	of Compatibility between Wireless Communication Devices	Edition
	and Hearing Aids	

6 OPERATIONAL CONDITIONS DURING TEST

6.1 HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core2 1.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

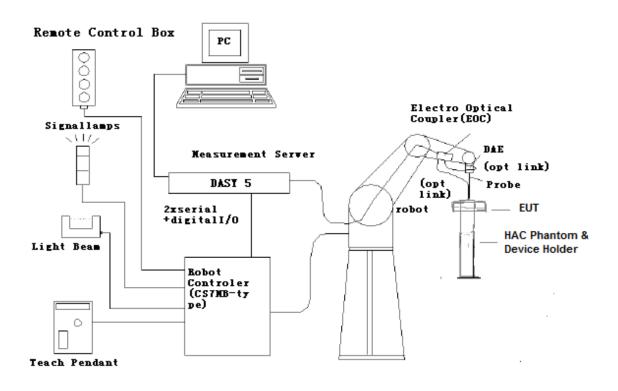


Figure 6.1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe

No.2013HAC00020-2 Page 9 of 36

contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

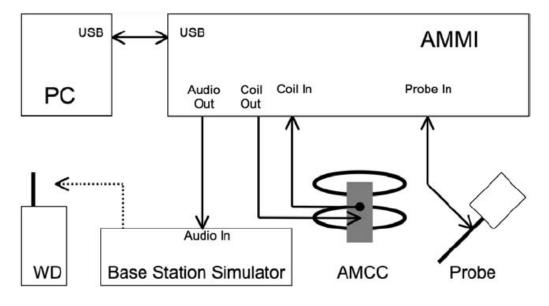


Figure 6.2 T-Coil setup with HAC Test Arch and AMCC

6.2 AM1D probe

The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards).

Specification:

Frequency range	ange 0.1~20kHz (RF sensitivity < -100dB, fully RF shielded)		
Sensitivity < -50dB A/m @ 1kHz			
Pre-amplifier	40dB, symmetric		
Dimensions Tip diameter/length: 6/290mm, sensor according to ANSI-C6			

6.3 AMCC

The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 500hm, and a shunt resistor of 100hm permits monitoring the current with a scale of 1:10

Port description:

Signal	Connector	ctor Resistance		
Coil In	BNC	Typically 50Ohm		
Coil Monitor	BNO	100hm \pm 1% (100mV corresponding to 1 A/m)		
Specification:				
Dimensions	370 x 370 x 196 mm, according to ANSI-C63.19			

Dimensions

6.4 AMMI

Figure 6.3 AMMI front panel

The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface. Specification:

Sampling rate	48 kHz / 24 bit
Dynamic range	85 dB
Test signal generation	User selectable and predefined (vis PC)
Calibration	Auto-calibration / full system calibration using AMCC with monitor output
Dimensions	482 x 65 x 270 mm

6.5 Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: 370 x 370 x 370 mm).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm 0.5$ dB.

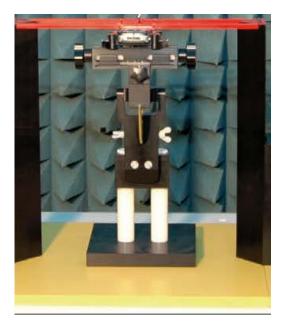


Figure 6.4 HAC Phantom & Device Holder

6.6 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160L Repeatability: ±0.02 mm No. of Axis: 6 Data Acquisition Electronic (DAE) System Cell Controller Processor: Intel Core2 Clock Speed: 1.86 GHz Operating System: Windows XP Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

6.7 T-Coil measurement points and reference plane

Figure 5.5 illustrates the three standard probe orientations. Position 1 is the axial orientation of the probe coil; orientation 2 and orientation 3 are radial orientations. The space between the measurement positions is not fixed. It is recommended that a scan of the WD be done for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil.

1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal

handset use, rest against the ear.

2) The measurement plane is parallel to, and 10 mm in front of, the reference plane.

3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point.

4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the WD and shall be located in the same half of the phone as the WD receiver. In a WD handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide.

5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position.

6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point.

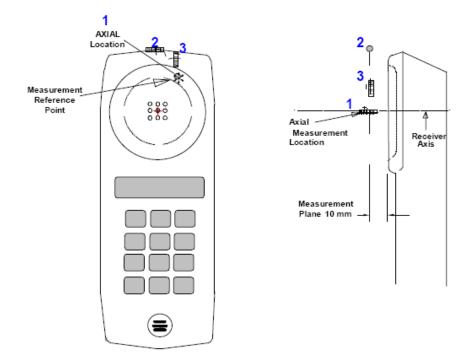


Figure 6.5 Axis and planes for WD audio frequency magnetic field measurements

7 T-Coil TEST PROCEDUERES

The following illustrate a typical test scan over a wireless communications device:

1) Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.

2) Set the reference drive level of signal voice defined in C63.19 per 6.3.2.1.

3) The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit of C63.19 per 7.3.2.

4) The DUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.

5) The DUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.

6) The DUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility.

7) Determined the optimal measurement locations for the DUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 6.3.4.4. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan.

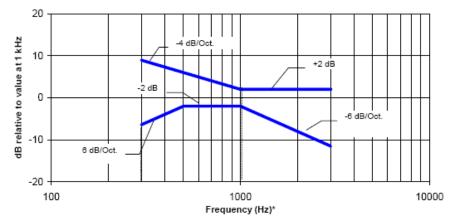
8) All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of there samples.

9) At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for axial, radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis.

10) Corrected for the frequency response after the DUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job.

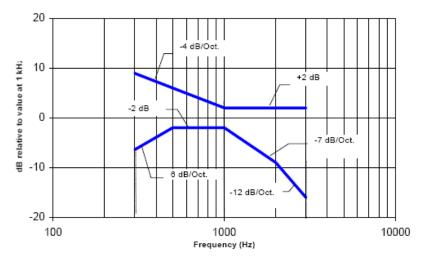
11) In SEMCAD postprocessing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report.

8 T-Coil PERFORMANCE REQUIREMENTS


In order to be rated for T-Coil use, a WD shall meet the requirements for signal level and signal quality contained in this part.

8.1 T-Coil coupling field intensity

When measured as specified in ANSI C63.19, the T-Coil signal shall be ≥ -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.


8.2 Frequency response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 7.1 and Figure 7.2 provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.

NOTE—Frequency response is between 300 Hz and 3000 Hz.

Figure 8.1—Magnetic field frequency response for WDs with a field ≤ –15 dB (A/m) at 1 kHz

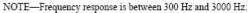


Figure 8.2—Magnetic field frequency response for WDs with a field that exceeds –15 dB(A/m) at 1 kHz

8.3 Signal quality

This part provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels. The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per Table 1

Table 1: T-Coil signal quality categories

Category	Telephone parameters WD signal quality [(signal + noise) – to – noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		

9 HAC T-Coil TEST DATA SUMMARY

9.1 Noise ambient

Probe Position	ABM2 (dB A/m)	
Radial 1 (Longitudinal)	-60.82	
Radial 2 (Transversal)	-61.55	
Axial	-62.09	

9.2 T-Coil Coupling Field Intensity

9.2.1 Axial Field Intensity

Cell Phone Mode	Minimum limit (dB A/m)	Result (dB A/m)	Verdict
GSM 850	-18	12.83	Pass
GSM 1900	-18	13.15	Pass

9.2.2 Radial Field Intensity

Cell Phone Mode	Minimum limit (dB A/m)	Result (dB A/m)	Verdict
GSM 850	-18	3.81	Pass
GSM 1900	-18	3.10	Pass

9.3 Frequency Response at Axial Measurement Point

Cell Phone Mode	Frequency Response Curve	Verdict
GSM 850	Figure C.1	Pass
GSM 1900	Figure C.2	Pass

9.4 Signal Quality

Probe Position	Band	Ch.	Measurement Position (x mm, y mm)	ABM1 (dB A/m)	SNR (dB)	T category
Radial 1	GSM 850	190	7.1, -17.9	3.81	42.57	T4
(Longitudinal)	GSM 1900	661	5.4, -18.3	3.10	41.22	T4
Radial 2	GSM 850	190	-3.74.6	11.70	56.66	T4
(Transversal)	GSM 1900	661	-2.9, -5	12.38	54.10	T4
Avial	GSM 850	190	-4.6, -15.4	12.83	38.00	T4
Axial	GSM 1900	661	-5, -15.4	13.15	37.38	T4

Note: The LCD backlight is turn off, Bluetooth function is turn off and volume is adjusted to maximum level during T-Coil testing. Signal strength measurement scan plots are presented in Annex B.

Probe Position	Frequency Band(MHz)	ABM1	Frequency Response	T Category
Dedial 1	GSM 850	Pass	1	T4
Radial 1	GSM 1900	Pass	/	T4
Radial 2	GSM 850	Pass	/	T4
	GSM 1900	Pass	/	T4
Axial	GSM 850	Pass	Pass	T4
	GSM 1900	Pass	Pass	T4

9.5 Total Measurement Conclusion

10 MEASUREMENT UNCERTAINTY

No.	Error source	Туре	Uncertainty Value ai (%)	Prob. Dist.	Div.	ABM1 ci	ABM2 ci	Std. Unc. ABM1 <i>u_i</i> (%)	Std. Unc. ABM2 <i>u</i> ['] _i (%)
1	System Repeatability	А	0.016	Ν	1	1	1	0.016	0.016
Prob	Probe Sensitivity								
2	Reference Level	В	3. 0	R	$\sqrt{3}$	1	1	3.0	3.0
3	AMCC Geometry	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2

No.2013HAC00020-2 Page 17 of 36

4	AMCC Current	В	0.6	R	$\sqrt{3}$	1	1	0.4	0.4	
5	Probe Positioning during Calibration	В	0. 1	R	$\sqrt{3}$	1	1	0.1	0.1	
6	Noise Contribution	В	0. 7	R	$\sqrt{3}$	0.014 3	1	0.0	0.4	
7	Frequency Slope	В	5.9	R	$\sqrt{3}$	0.1	1	0.3	3.5	
Probe	Probe System									
8	Repeatability / Drift	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	
9	Linearity / Dynamic Range	В	0.6	Ν	1	1	1	0.4	0.4	
10	Acoustic Noise	В	1.0	R	$\sqrt{3}$	0.1	1	0.1	0.6	
11	Probe Angle	В	2.3	R	$\sqrt{3}$	1	1	1.4	1.4	
12	Spectral Processing	В	0. 9	R	$\sqrt{3}$	1	1	0.5	0.5	
13	Integration Time	В	0.6	Ν	1	1	5	0.6	3.0	
14	Field Distribution	В	0.2	R	$\sqrt{3}$	1	1	0.1	0.1	
Test	Signal			-	-					
15	Ref.Signal Spectral Response	В	0.6	R	$\sqrt{3}$	0	1	0.0	0.4	
Posit	ioning									
16	Probe Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	
17	Phantom Thickness	В	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	
18	DUT Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	
Exter	nal Contributions									
19	RF Interference	В	0.0	R	$\sqrt{3}$	1	0.3	0.0	0.0	
20	Test Signal Variation	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	
	bined Std. Uncertainty I Field)		u' _c	$=\sqrt{\sum_{i=1}^{20}}$	$c_i^2 u_i^2$			4.1	6.1	
Expanded Std. Uncertainty		ı	$u_e = 2u_c$	Ν		<i>k</i> = 2		8.2	12. 2	

11 MAIN TEST INSTRUMENTS

Table 2: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Audio Magnetic 1D Field Probe	AM1DV2	1064	August 29, 2012	NCR
02	Audio Magnetic Calibration Coil	AMCC	1064	NCR	NCR
03	Audio Measuring Instrument	AMMI	1044	NCR	NCR
04	HAC Test Arch	N/A	1014	NCR	NCR
05	DAE	DAE4	777	February 22, 2013	One year
06	Software	DASY5 V5.0 Build 119.9	N/A	NCR	NCR
07	Software	SEMCAD V13.2 Build 87	N/A	NCR	NCR
08	Universal Radio Communication Tester	CMU 200	105948	August 23, 2012	One year

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1: HAC T-Coil System Layout

ANNEX B TEST PLOTS

T-Coil GSM 850 X longitudinal

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/x (longitudinal) (2007) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 4.97 dBA/m BWC Factor = 0.15 dB Location: -9.6, -17.1, 3.7 mm

T-Coil/General Scans 2/x (longitudinal) (2007) 4.2mm 50 x 50/ABM Interpolated

SNR(x,y,z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor: ABM1/ABM2 = 42.57 dB ABM1 comp = 3.81 dBA/m BWC Factor = 0.15 dB Location: 7.1, -17.9, 3.7 mm

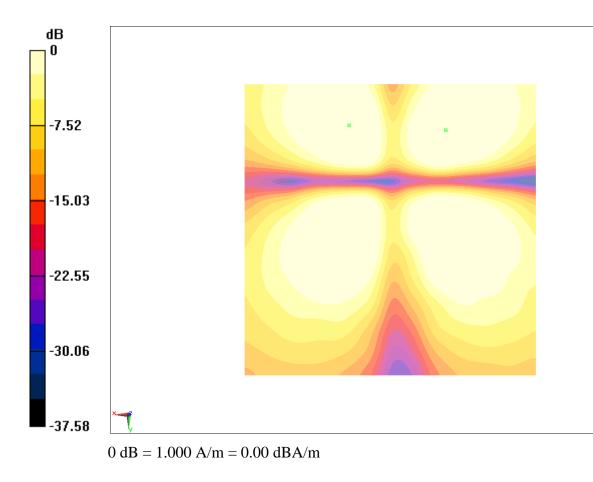


Fig B.1 T-Coil GSM 850

T-Coil GSM 850 Y transversal

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z)

(**121x121x1**): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 13.17 dBA/m BWC Factor = 0.15 dB Location: -1.7, -7.9, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z)

(**121x121x1**): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 56.66 dB ABM1 comp = 11.70 dBA/m BWC Factor = 0.15 dB Location: -3.7, -4.6, 3.7 mm

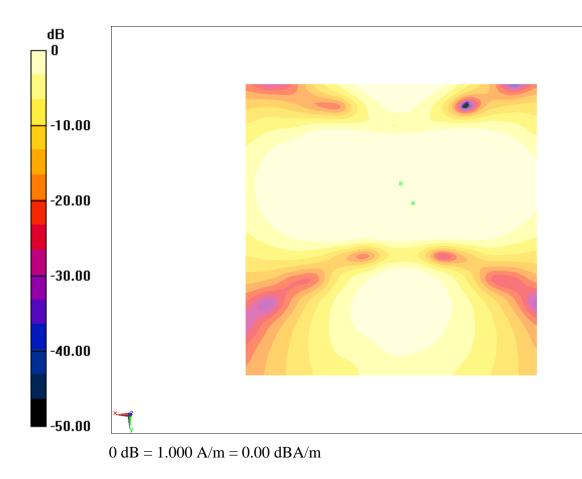


Fig B.2 T-Coil GSM 850

T-Coil GSM 850 Z Axial

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 13.76 dBA/m BWC Factor = 0.15 dB Location: -0.8, -14.2, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.15 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 38.00 dB ABM1 comp = 12.83 dBA/m BWC Factor = 0.15 dB Location: -4.6, -15.4, 3.7 mm

T-Coil/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 72.76 Measure Window Start: 300ms Measure Window Length: 2000ms

BWC applied: 10.80 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 1.57 dB BWC Factor = 10.80 dB Location: -4.2, -16.7, 3.7 mm

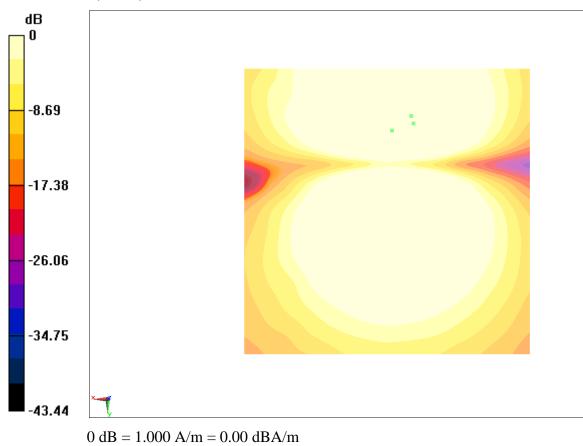


Fig B.3 T-Coil GSM 850

T-Coil GSM 1900 X longitudinal

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/x (longitudinal) (2007) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 4.03 dBA/m BWC Factor = 0.14 dB Location: -10, -16.7, 3.7 mm

T-Coil/General Scans/x (longitudinal) (2007) 4.2mm 50 x 50/ABM Interpolated

SNR(x,y,z) (121x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 41.22 dB ABM1 comp = 3.10 dBA/m BWC Factor = 0.14 dB Location: 5.4, -18.3, 3.7 mm

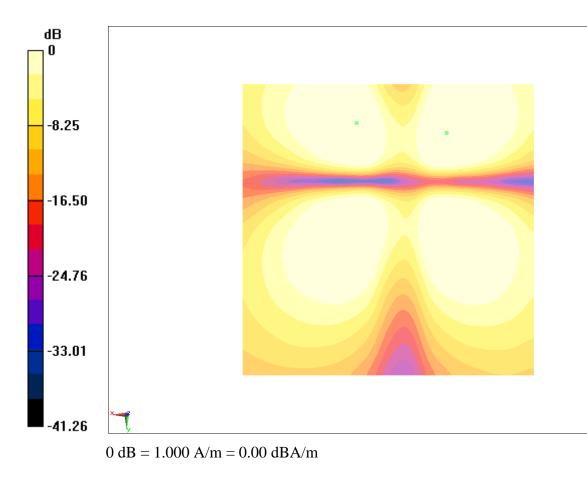


Fig B.4 T-Coil GSM 1900

T-Coil GSM 1900 Y transversal

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z)

(**121x121x1**): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 13.45 dBA/m BWC Factor = 0.14 dB Location: -1.7, -7.9, 3.7 mm

T-Coil/General Scans/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z)

(**121x121x1**): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 54.10 dB ABM1 comp = 12.38 dBA/m BWC Factor = 0.14 dB Location: -2.9, -5, 3.7 mm

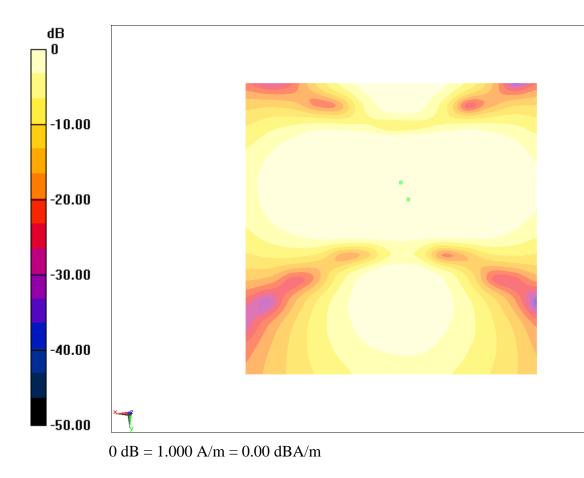


Fig B.5 T-Coil GSM 1900

T-Coil GSM 1900 Z Axial

Date: 2013-7-13 Electronics: DAE4 Sn777 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.6°C Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Probe: AM1DV2 - 1064;

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z)

(**121x121x1**): Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 = 13.85 dBA/m BWC Factor = 0.14 dB Location: -2.1, -14.6, 3.7 mm

T-Coil/General Scans/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 37.15 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.14 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 37.38 dB ABM1 comp = 13.15 dBA/m BWC Factor = 0.14 dB Location: -5, -15.4, 3.7 mm

T-Coil/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 72.76 Measure Window Start: 300ms Measure Window Length: 2000ms

BWC applied: 10.79 dB Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 1.67 dB BWC Factor = 10.79 dB Location: -4.2, -16.7, 3.7 mm

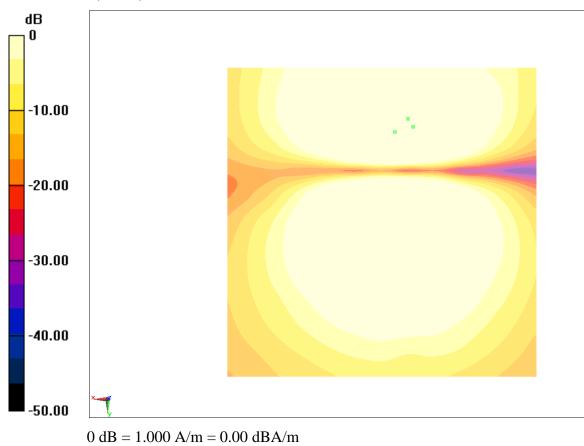


Fig B.6 T-Coil GSM 1900

ANNEX C FREQUENCY REPONSE CURVES

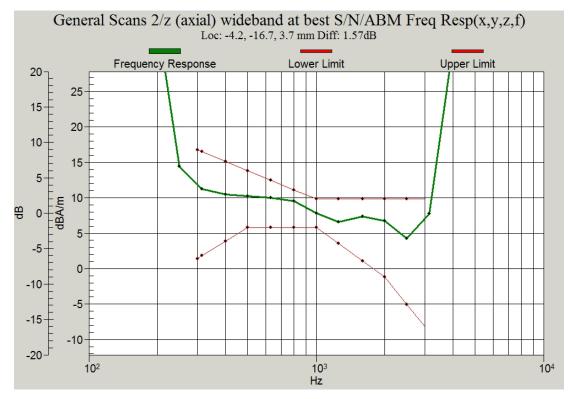


Figure C.1 Frequency Response of GSM 850

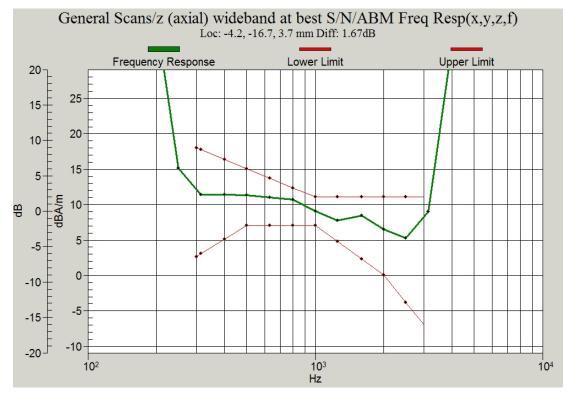


Figure C.2 Frequency Response of GSM 1900

No.2013HAC00020-2 Page 33 of 36

ANNEX D PROBE CALIBRATION CERTIFICATE

Engineering AG eughausstrasse 43, 8004 Zuric	y Of h, Switzerland	BAC-MRA CPUSS	Service suisse d'étalonnage Servizio svizzero di taratura
ccredited by the Swiss Accred he Swiss Accreditation Service fultilateral Agreement for the re	e is one of the signate	ories to the EA	No.: SCS 108
CALIBRATION C	Contraction of the second		: AM1D-1064_Aug12
Object	AM1DV2 - SN		
Calibration procedure(s)	QA CAL-24.v3 Calibration pro audio range	3 ocedure for AM1D magnetic field pro	bes and TMFS in the
Calibration date:	August 29, 20	12	
The measurements and the unce All calibrations have been condu	ertainties with confidence	national standards, which realize the physical uni ce probability are given on the following pages an ratory facility: environment temperature (22 ± 3) °C m)	d are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2	ertainties with confidence	ce probability are given on the following pages an ratory facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
The measurements and the unce	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008	ce probability are given on the following pages an ratory facility: environment temperature (22 ± 3)°C n) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Sep-12 Jan-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781	ce probability are given on the following pages an ratory facility: environment temperature (22 ± 3)°C in) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12)	d are part of the certificate. and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781 ID #	ce probability are given on the following pages and ratory facility: environment temperature (22 ± 3)°C (n) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781 ID #	ce probability are given on the following pages and ratory facility: environment temperature (22 ± 3)°C (n) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781 ID # 1050	ce probability are given on the following pages and ratory facility: environment temperature (22 ± 3)°C m) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12) Check Date (in house) 12-Oct-11 (in house check Oct-11)	d are part of the certificate. 2 and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13 Scheduled Check Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781 ID # 1050 Name	ce probability are given on the following pages an ratory facility: environment temperature (22 ± 3)°C m) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12) Check Date (in house) 12-Oct-11 (in house check Oct-11) Function	d are part of the certificate. 2 and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13 Scheduled Check Oct-13
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC Calibrated by: Approved by:	ertainties with confidence cted in the closed labor TE critical for calibratio ID # SN: 0810278 SN: 1008 SN: 781 ID # 1050 Name Fin Bomholt Katja Pokovic	ce probability are given on the following pages and ratory facility: environment temperature (22 ± 3)°C (n) Cal Date (Certificate No.) 28-Sep-11 (No:11450) 12-Jan-12 (No. AM1D-1008_Jan12) 29-May-12 (No. DAE4-781_May12) Check Date (in house) 12-Oct-11 (in house check Oct-11) Function R&D Director	d are part of the certificate. 2 and humidity < 70%. Scheduled Calibration Sep-12 Jan-13 May-13 Scheduled Check Oct-13 Signature Signa

References

[1] ANSI C63.19-2007, ANSI C63.19-2011

- American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and

allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

 Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest" orientation.

Functional Test: The functional test preceding calibration includes test of Noise level RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.

- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and – 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil.

Certificate No: AM1D-1064_Aug12

No.2013HAC00020-2 Page 35 of 36

AM1D probe identification and configuration data

Item	AM1DV2 Audio Magnetic 1D Field Probe				
Type No	SP AM1 001 AF				
Serial No	1064				

Overall length	296 mm	
Tip diameter	6.0 mm (at the tip)	
Sensor offset	3.0 mm (centre of sensor from tip)	
Internal Amplifier	40 dB	

Manufacturer / Origin	Schmid & Partner Engineering AG, Zurich, Switzerland	
Manufacturing date	November 06, 2007	
Last calibration date	December 06, 2007	

Calibration data

Connector rotation angle	(in DASY system)	333.2 °	+/- 3.6 ° (k=2)
Sensor angle	(in DASY system)	0.54 °	+/- 0.5 ° (k=2)
Sensitivity at 1 kHz	(in DASY system)	0.0657 V / (A/m)	+/- 2.2 % (k=2)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: AM1D-1064_Aug12

Page 3 of 3

The photos of HAC test are presented in the additional document:

Appendix to test report no. 2013HAC00020-1/2

The photos of HAC test