

No. 2013EEB00163

For

TCT Mobile Limited

GSM/GPRS Dual bands mobile phone

Model name: B11C US

Marketing name: one touch 665A

With

Hardware Version: PTH 06

Software Version: 79Q(010 05)

FCC ID: RAD371

Issued Date: 2013-04-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

Revision Version

Report Number	Revision	Date Memo	
2013EEB00163	00	2013-04-02	Initial creation of test report
2013EEB00163	EEB00163 01		Add antenna gain

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	
1.3 PROJECT DATA	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	7
3.2 Manufacturer Information	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	8
4.2 Internal Identification of EUT used during the test	
4.3 Internal Identification of AE used during the test	
5 TEST METHODOLOGY	g
5.1 APPLICABLE LIMIT REGULATIONS	9
5.2 APPLICABLE MEASUREMENT STANDARDS	
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	10
6.2 SAR Definition	
7 TISSUE SIMULATING LIQUIDS	11
7.1 Targets for tissue simulating liquid	11
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	14
8.1 System Setup	14
8.2 System Verification	
9 MEASUREMENT PROCEDURES	16
9.1 Tests to be performed	16
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.4 Power Drift	19
10 CONDUCTED OUTPUT POWER	19
10.1 Manufacturing tolerance	19
10.2 GSM Measurement result	20
10.3 BT MEASUREMENT RESULT	21
11 SIMILITANEOUS TY SAD CONSIDERATIONS	24

11.1 Introduction	21
11.2 Transmit Antenna Separation Distances	21
11.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	22
12 EVALUATION OF SIMULTANEOUS	23
13 SAR TEST RESULT	23
13.1 SAR TEST RESULT	23
14 SAR MEASUREMENT VARIABILITY	26
15 MEASUREMENT UNCERTAINTY	26
15.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS	26
16 MAIN TEST INSTRUMENTS	28
ANNEX A GRAPH RESULTS	29
ANNEX B SYSTEM VERIFICATION RESULTS	71
ANNEX C SAR MEASUREMENT SETUP	75
C.1 Measurement Set-up	75
C.2 DASY4 OR DASY5 E-FIELD PROBE SYSTEM	76
C.3 E-FIELD PROBE CALIBRATION	
C.4 OTHER TEST EQUIPMENT	77
C.4.1 DATA ACQUISITION ELECTRONICS(DAE)	77
С.4.2 ROBOT	78
C.4.3 Measurement Server	78
C.4.4 Device Holder for Phantom	79
C.4.5 PHANTOM	79
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE P	HANTOM81
D.1 GENERAL CONSIDERATIONS	81
D.2 Body-worn device	82
D.3 DESKBOTTOM DEVICE	82
D.4 DUT SETUP PHOTOS.	83
ANNEX E EQUIVALENT MEDIA RECIPES	84
ANNEX F SYSTEM VALIDATION	85
ANNEX G PROBE CALIBRATION CERTIFICATE	86
ANNEX H DIPOLE CALIBRATION CERTIFICATE	97

1 Test Laboratory

1.1 Testing Location

Company Name:

TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address:

No. 12building, Shangsha Innovation and Technology Park, Futian

District, Shenzhen, P. R. China

Postal Code:

518048

Telephone:

+86-755-33322000

Fax:

+86-755-33322001

1.2 Testing Environment

Temperature:

18°C~25 °C,

Relative humidity:

30%~ 70%

Ground system resistance:

< 0.5 Ω

Ambient noise & Reflection:

< 0.012 W/kg

1.3 Project Data

Project Leader:

Zhou Yi

Test Engineer:

Zhu Zhiqiang

Testing Start Date:

March 30, 2013

Testing End Date:

March 31, 2013

1.4 Signature

Zhu Zhiqiang

(Prepared this test report)

Zhou Yi

(Reviewed this test report)

Lu Minniu

Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited GSM/GPRS dual bands mobile phone B11C US are as follows:

Table 2.1: Max. Reported SAR (1g)

Band	Position	Reported SAR 1g (W/Kg)
CCM 950	Head	0.608
GSM 850	Body	0.504
GSM 1900	Head	0.926
GSW 1900	Body	0.728

All the tests are carried out with a micro SD card installed in the mobile phone and a fully charged battery.

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **0.926 W/kg (1g)**.

Table 2.2: The sum of reported SAR values

	Position	GSM	ВТ	Sum
Maximum reported value for Head	Right hand, Touch cheek	0.926	0.263	1.189
Maximum reported SAR value for Body	Toward Ground	0.728	0.263	0.991

According to the above table, the maximum sum of reported SAR values for GSM and BT is **1.189 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name: TCT Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai
Postal Code: 518000
Country: P.R.China
Contact: Gong Zhizhou

Email: zhizhou.gong@jrdcom.co

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

3.2 Manufacturer Information

Company Name: TCT Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai
Postal Code: 518000
Country: P.R.China
Contact: Gong Zhizhou

Email: zhizhou.gong@jrdcom.co

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	GSM/GPRS dual bands mobile phone		
Model name:	B11C US		
Marketing name:	one touch 665A		
Operating mode(s):	GSM 850/1900, BT		
Tested Tx Frequency:	825 – 848.8 MHz (GSM 850)		
rested 1x i requericy.	1850.2 – 1910 MHz (GSM 1900)		
Test Modulation	(GSM)GMSK;		
GPRS Multislot Class:	12		
GPRS capability Class:	В		
Release version:	GSM: R99		
Release version.	GPRS: R99		
Power class:	GSM850: tested with power level 5		
Power class.	GSM1900: tested with power level 0		
Test device Production information:	Production unit		
Device type:	Portable device		
Antenna type:	Integrated antenna		
Accessories/Body-worn configurations:	Headset		
Hotspot mode:	1		
Form factor:	177mm * 48 mm*11 mm(clam-shell open)		
FOITH Tactor.	95mm * 48 mm*17 mm(clam-shell closed)		

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	013684000000014	PTH 06	79Q(010 05)
EUT2	013684000000022	PTH 06	79Q(010 05)

^{*}EUT ID: is used to identify the test sample in the lab internally.

*AE ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 and conducted power with the EUT2

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB22D0000C1	1	BYD
AE2	Headset	CCB3160A10C2	1	shunda
AE3	Headset	CCB3160A10C0	1	juwei

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB447498 D01: General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

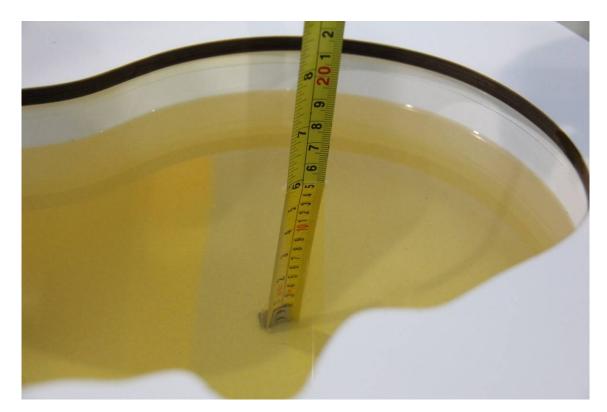
Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

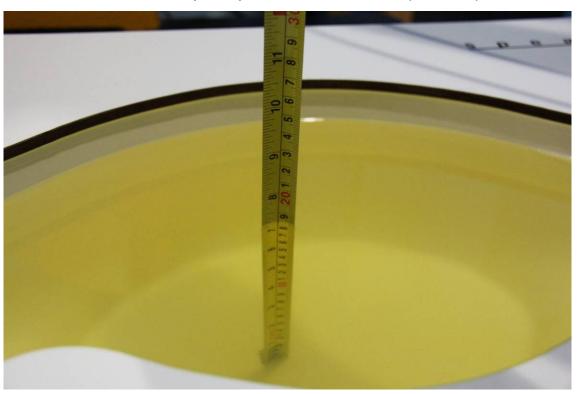

Frequency (MHz)	Liquid Type	Permittivity (ε)	± 5% Range	Conductivity (σ)	± 5% Range
835	Head	41.5	39.4~43.6	0.90	0.86~0.95
835	Body	55.2	52.4~58.0	0.97	0.92~1.02
1900	Head	40.0	38.0~42.0	1.40	1.33~1.47
1900	Body	53.3	50.6~56.0	1.52	1.44~1.60
2450	Head	39.2	37.2~41.2	1.80	1.71~1.89
2450	Body	52.7	50.1~55.3	1.95	1.85~2.05

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

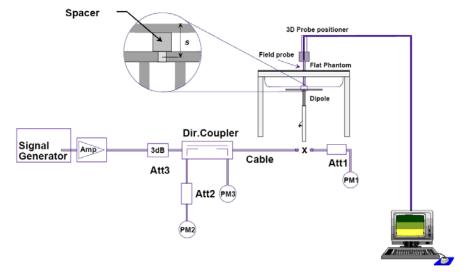
Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift	Conductivity σ (S/m)	Drift
2013-03-30	Head	835 MHz	40.89	-1.5%	0.89	-1.1%
2013-03-31	Body	835 MHz	53.29	-3.5%	1.00	3.1%
2013-03-30	Head	1900 MHz	38.49	-3.8%	1.46	4.3%
2013-03-31	Body	1900 MHz	51.72	-3.0%	1.59	4.6%

Picture 7-1: Liquid depth in the Head Phantom (835 MHz)



Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)


Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	Target value (W/kg)		Measured value (W/kg)		Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average	
2013-03-30	835 MHz	1.60	2.44	1.58	2.41	-1.25%	-1.23%	
2013-03-30	1900 MHz	5.19	9.86	5.30	10.2	2.12%	3.45%	

Table 8.2: System Verification of Body

Measurement		Target val	ue (W/kg)	Measured v	value (W/kg)	Devia	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-03-31	835 MHz	1.59	2.43	1.60	2.43	0.63%	0
2013-03-31	1900 MHz	5.40	10.20	5.58	10.4	3.33%	1.96%

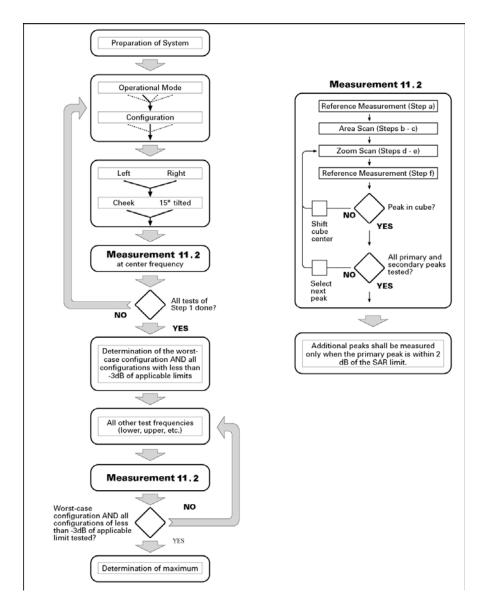
9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz
Maximum distance from (geometric center of prob		•	5 ± 1 mm	½-5-ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30°±1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan sp	atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤ 1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	x, y, z	ı	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Conducted Output Power

10.1 Manufacturing tolerance

Table 10.1: GSM Speech

		•				
GSM 850						
Channel	Channel 251 Channel 190 Channel 12					
Target (dBm)	32.Í	32.Í	32.ĺ			
Tolerance \pm (dB)	1	1	1			
	GSM	1 1900				
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	30	30	30			
Tolerance \pm (dB)	1	1	1			

Table 10.2: GPRS (GMSK Modulation)

	GSM 850 GPRS					
	Channel	251	190	128		
1 Txslot	Target (dBm)	32.Í	32.ĺ	32.ĺ		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1		
2 Txslots	Target (dBm)	29.5	29.5	29.5		
2 1 251015	Tolerance \pm (dB)	1	1	1		
3Txslots	Target (dBm)	27.5	27.5	27.5		
31 XSIUIS	Tolerance \pm (dB)	1	1	1		
4 Tyclote	Target (dBm)	26.5	26.5	26.5		
4 Txslots Toleran	Tolerance \pm (dB)	1	1	1		
		GSM 1900 GPRS	3			
	Channel	810	661	512		
1 Txslot	Target (dBm)	30	30	30		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1		
2 Txslots	Target (dBm)	26.5	26.5	26.5		
2 1 351015	Tolerance \pm (dB)	1	1	1		
3Txslots	Target (dBm)	24.5	24.5	24.5		
31351015	Tolerance \pm (dB)	1	1	1		
4 Txslots	Target (dBm)	2G5	2G5	2G5		
4 1 721012	Tolerance \pm (dB)	1	1	1		

			BT

	GFSK						
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	10	10	10				
Tolerance \pm (dB)	1	1	1				
	EDR2I	M-4_DQPSK					
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	10	10	10				
Tolerance \pm (dB)	1	1	1				
	EDR	3M-8DPSK					
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	10	10	10				
Tolerance \pm (dB)	1	1	1				

10.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 10.4: The conducted power measurement results for GSM850/1900

GSM	Conducted Power (dBm)				
850MHZ	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)		
OSUMINZ	32.87	32.83	32.81		
CCM		Conducted Power (dBm)			
GSM 1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)		
ISOUMITZ	30.49	30.57	30.59		

Table 10.5: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measured Power (dBm)			calculation	Averaç	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.69	32.66	32.56	-9.03dB	23.66	23.63	23.53
2 Txslots	29.43	29.37	29.36	-6.02dB	23.41	23.35	23.34
3Txslots	27.47	27.34	27.31	-4.26dB	23.21	23.08	23.05
4 Txslots	26.57	26.41	26.37	-3.01dB	23.56	23.40	23.36
PCS1900	Meası	ıred Power	(dBm)	calculation	Averaged Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	30.27	30.36	30.39	-9.03dB	21.24	21.33	21.36
2 Txslots	26.58	26.58	26.61	-6.02dB	20.56	20.56	20.59
3Txslots	24.67	24.58	24.57	-4.26dB	20.41	20.32	20.31
4 Txslots	23.73	23.61	23.51	-3.01dB	20.72	20.60	20.5

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

¹⁾ Division Factors

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 1Txslot for GSM850 GSM1900.

10.3 BT Measurement result

The output power of BT antenna is as following:


Modulation/Channel	Ch 0 (2402 MHz)	Ch 39 (2441 MHz)	Ch 78 (2480 MHz)
GFSK	10.18	10.60	10.76
EDR2M-4_DQPSK	9.90	10.34	10.55
EDR3M-8DPSK	10.25	10.69	10.86

11 Simultaneous TX SAR Considerations

11.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT can transmit simultaneous with other transmitters.

11.2 Transmit Antenna Separation Distances

Picture 11.1 Antenna Locations

Antenna gain

BT Antenna: PIFA				
Gain	3.32dBi			
B11C US Antenna: Monopole				
BAND	GSM850	DCS1900		
Gain	0.76dBi	3.78dBi		

11.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10m test separation distances is 19mW.

 ${\bf Appendix~A}$ SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and $\leq 50~mm$

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 11.2 Power Thresholds

12 Evaluation of Simultaneous

Table 13.1: Summary of Transmitters

Band/Mode	F(GHz)	SAR test exclusion threshold (mW)	RF output power (mW)
Bluetooth	2.441	19	12.19

According to the conducted power measurement result, we can draw the conclusion that: Stand-alone SAR for Bluetooth should not be performed. Stand-alone SAR for BT must be estimated according to following to determine simultaneous transmission SAR, and the result is 0.263 W/kg (1g average).

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}}/x$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Table 13.2: The sum of reported SAR values

	Position	GSM	ВТ	Sum
Maximum reported value for Head	Right hand, Touch cheek	0.926	0.263	1.189
Maximum reported SAR value for Body	Toward Ground	0.728	0.263	0.991

According to the above table, the sum of reported SAR values for GSM and BT <1.6W/kg. So the simultaneous transmission SAR is not required for BT transmitter.

13 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan and zoom scan based 1-g SAR estimation. In this report, measured SAR results are scaled to the maximum tune-up tolerance limit according the power applied to the individual channels, and the results are shown in the column "reported SAR".

13.1 SAR Test Result

Table 13.1: Duty Cycle

	Duty Cycle						
Speech for GSM850/1900	1:8.3						
GPRS for GSM850/1900	1:8.3						

Table 13.2: SAR Values (GSM 850 MHz Band - Head)

Frequ	encv		Test	Conducted	Measured	Reported	Measured	Reported	Power
	<u>-</u>	Side	Position	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	32.87	0.365	0.385	0.530	0.559	0.13
836.6	190	Left	Touch	32.83	0.389	0.414	0.563	0.599	0.11
824.2	128	Left	Touch	32.81	0.395	0.422	0.569	0.608	0.16
848.8	251	Left	Tilt	32.87	0.090	0.095	0.124	0.131	0.11
836.6	190	Left	Tilt	32.83	0.095	0.101	0.129	0.137	0.04
824.2	128	Left	Tilt	32.81	0.092	0.098	0.125	0.134	0.07
848.8	251	Right	Touch	32.87	0.303	0.319	0.419	0.442	0.13
836.6	190	Right	Touch	32.83	0.302	0.321	0.412	0.438	0.14
824.2	128	Right	Touch	32.81	0.307	0.328	0.416	0.445	0.13
848.8	251	Right	Tilt	32.87	0.081	0.085	0.112	0.118	0.03
836.6	190	Right	Tilt	32.83	0.087	0.093	0.119	0.127	0.01
824.2	128	Right	Tilt	32.81	0.084	0.090	0.114	0.122	-0.06

Table 13.3: SAR Values (GSM 850 MHz Band - Body)

Frequ	ency	Mode (number	Test	Conduct ed	Measured	Reported	Measured	Reported	Power
MHz	Ch.	of timeslots)	Position(clam- shell status)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	GPRS (1)	Phantom (closed)	32.66	0.146	0.162	0.200	0.221	-0.04
848.8	251	GPRS (1)	Ground (closed)	32.69	0.294	0.323	0.429	0.471	-0.09
836.6	190	GPRS (1)	Ground (closed)	32.66	0.266	0.294	0.391	0.433	-0.07
824.2	128	GPRS (1)	Ground (closed)	32.56	0.287	0.325	0.416	0.471	0.0
836.6	190	GPRS (1)	Ground (open)	32.66	0.242	0.268	0.334	0.370	0.13
848.8	251	Speech	Ground (closed) (AE2)	32.87	0.320	0.337	0.475	0.501	0.04
848.8	251	Speech	Ground (closed) (AE3)	32.87	0.311	0.328	0.478	0.504	-0.06

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 13.4: SAR Values (GSM 1900 MHz Band - Head)

Freque	ency	Test		Conducted	Measured	Reported	Measured	Reported	Power
	-	Side	Position	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	30.49	0.183	0.206	0.328	0.369	0.07
1880	661	Left	Touch	30.57	0.280	0.309	0.509	0.562	0.13
1850.2	512	Left	Touch	30.59	0.241	0.265	0.442	0.486	0.17
1909.8	810	Left	Tilt	30.49	0.035	0.039	0.054	0.061	0.06
1880	661	Left	Tilt	30.57	0.054	0.060	0.083	0.092	0.11
1850.2	512	Left	Tilt	30.59	0.060	0.066	0.092	0.101	0.12
1909.8	810	Right	Touch	30.49	0.419	0.471	0.755	0.849	0.07
1880	661	Right	Touch	30.57	0.469	0.518	0.839	0.926	0.05
1850.2	512	Right	Touch	30.59	0.388	0.426	0.696	0.765	0.08
1909.8	810	Right	Tilt	30.49	0.064	0.072	0.099	0.111	0.08
1880	661	Right	Tilt	30.57	0.072	0.079	0.111	0.123	0.05
1850.2	512	Right	Tilt	30.59	0.068	0.075	0.103	0.113	0.18

Table 13.5: SAR Values (GSM 1900 MHz Band - Body)

	Table 13.5: SAR Values (GSM 1900 MHz Band - Body)									
Freque	ency	Mode	Test Position(cla	Conducte	Measured	Reported	Measured	Reported	Power	
MHz	Ch.	(number of timeslots)	m-shell status)	d Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
1880	661	GPRS (1)	Phantom (closed)	30.36	0.186	0.216	0.298	0.345	0.04	
1880	661	GPRS (1)	Ground (closed)	30.36	0.307	0.356	0.588	0.681	-0.02	
1909.8	810	GPRS (1)	Ground (open)	30.27	0.329	0.389	0.615	0.728	-0.03	
1880	661	GPRS (1)	Ground (open)	30.36	0.336	0.389	0.623	0.722	0.04	
1850.2	512	GPRS (1)	Ground (open)	30.39	0.252	0.290	0.467	0.537	0.07	
1880	661	Speech	Ground (open) (AE2)	30.57	0.219	0.242	0.364	0.402	0.14	
1880	661	Speech	Ground (open) (AE3)	30.57	0.372	0.411	0.650	0.718	-0.04	

Note: The distance between the EUT and the phantom bottom is 10mm.

14 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequ MHz	Ch.	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
1880	661	Right Touch Cheek	0.839	0.838	1	I

Table 14.1: SAR Measurement Variability for Body GSM 1900 (1g)

15 Measurement Uncertainty

15.1 Measurement Uncertainty for Normal SAR Tests

	10.1 Micasarchient Oriccitainty for Normal OAK 10313									
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient	В	0	R	$\sqrt{3}$	1	1	0	0	∞

	conditions-noise									
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test s	sample related	l					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257	
_	inded uncertainty fidence interval of	ι	$u_e = 2u_c$					18.5	18.2	

16 MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	Agilent E5071C	MY46103759	January 15,2013	One year	
02	Power meter NRVD		101253	March 7 2012	One year	
03	Power sensor	NRV-Z5	100333	March 7,2013		
04	Signal Generator	E4438C	MY45095825	January 15, 2013	One year	
05	Amplifier	VTL5400	0404	No Calibration Requested		
06	BTS	E5515C	GB47460133	September 20, 2012	One year	
07	E-field Probe	SPEAG ES3DV3	3151	April 24, 2012	One year	
80	DAE	SPEAG DAE4	786	November 20, 2012	One year	
09	Dipole Validation Kit	SPEAG D835V2	4d057	October 24,2012	One year	
10	Dipole Validation Kit	SPEAG D1900V2	5d088	October 17,2012	One year	

^{***}END OF REPORT BODY***

ANNEX A GRAPH RESULTS

850 Left Cheek High

Date/Time: 3/30/2013 12:06:58 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

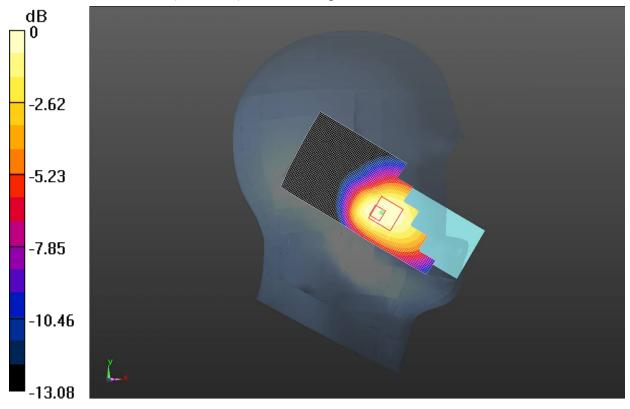
Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.889$ S/m; $\varepsilon_r = 40.997$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Cheek High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.231 V/m; Power Drift = 0.13 dB Maximum value of SAR (interpolated) = 0.578 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.231 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.365 W/kgMaximum value of SAR (measured) = 0.557 W/kg

0 dB = 0.557 W/kg = -2.54 dBW/kg

Fig. 1 850MHz CH251

850 Left Cheek Middle

Date/Time: 3/30/2013 12:21:07 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

kg/m³

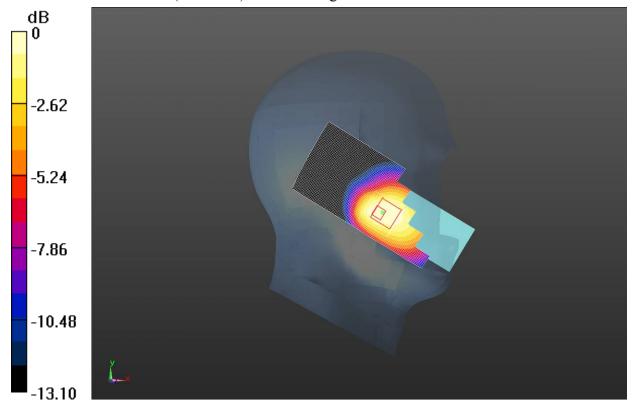
Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Reference Value = 3.447 V/m; Power Drift = 0.11 dBMaximum value of SAR (interpolated) = 0.613 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dx=8mm dz=5mm

dy=8mm, dz=5mm

Reference Value = 3.447 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = **0.563 W/kg**; **SAR(10 g)** = **0.389 W/kg** Maximum value of SAR (measured) = 0.590 W/kg

0 dB = 0.590 W/kg = -2.29 dBW/kg

Fig. 2 850 MHz CH190

850 Left Cheek Low

Date/Time: 3/30/2013 12:36:09 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

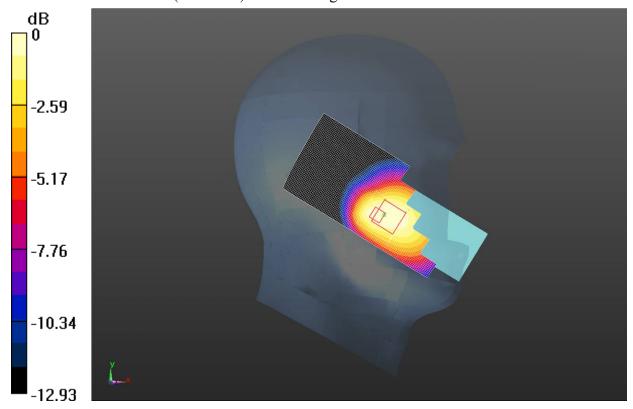
Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.137 V/m; Power Drift = 0.16 dB Maximum value of SAR (interpolated) = 0.617 W/kg

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.137 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.921 W/kg

SAR(1 g) = 0.569 W/kg; SAR(10 g) = 0.395 W/kgMaximum value of SAR (measured) = 0.589 W/kg

0 dB = 0.589 W/kg = -2.30 dBW/kg

Fig. 3 850 MHz CH128

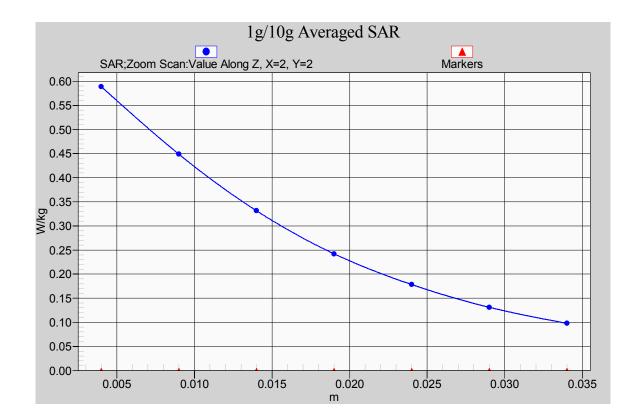


Fig. 3-1 Z-Scan at power reference point (850 MHz CH128)

850 Left Tilt High

Date/Time: 3/30/2013 1:19:07 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

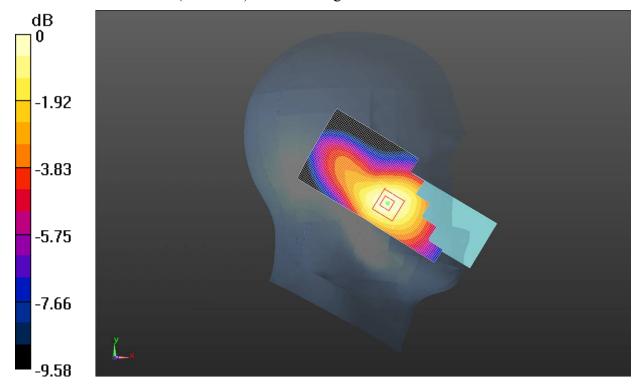
Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.889$ S/m; $\varepsilon_r = 40.997$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Tilt High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 7.624 V/m; Power Drift = 0.11 dB Maximum value of SAR (interpolated) = 0.132 W/kg

Left Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.624 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.161 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.090 W/kgMaximum value of SAR (measured) = 0.133 W/kg

0 dB = 0.133 W/kg = -8.76 dBW/kg

Fig.4 850 MHz CH251

850 Left Tilt Middle

Date/Time: 3/30/2013 1:04:37 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

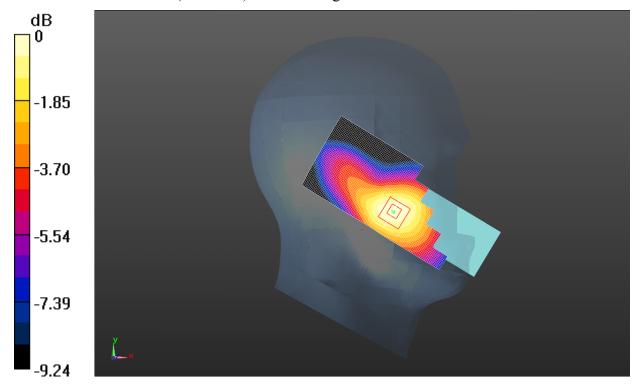
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Tilt Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 7.402 V/m; Power Drift = 0.04 dB Maximum value of SAR (interpolated) = 0.137 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.402 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.095 W/kgMaximum value of SAR (measured) = 0.138 W/kg

0 dB = 0.138 W/kg = -8.60 dBW/kg

Fig.5 850 MHz CH190

850 Left Tilt Low

Date/Time: 3/30/2013 12:50:27 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

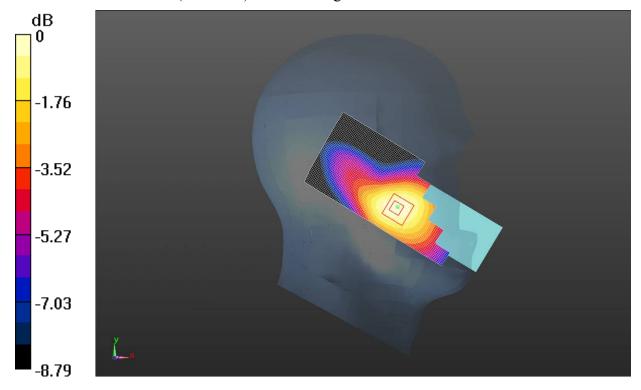
Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Left Tilt Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 6.639 V/m; Power Drift = 0.07 dB Maximum value of SAR (interpolated) = 0.130 W/kg

Left Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.639 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.125 W/kg; SAR(10 g) = 0.092 W/kgMaximum value of SAR (measured) = 0.133 W/kg

0 dB = 0.133 W/kg = -8.76 dBW/kg

Fig. 6 850 MHz CH128

850 Right Cheek High

Date/Time: 3/30/2013 1:34:11 PM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.889$ S/m; $\varepsilon_r = 40.997$; $\rho = 1000$

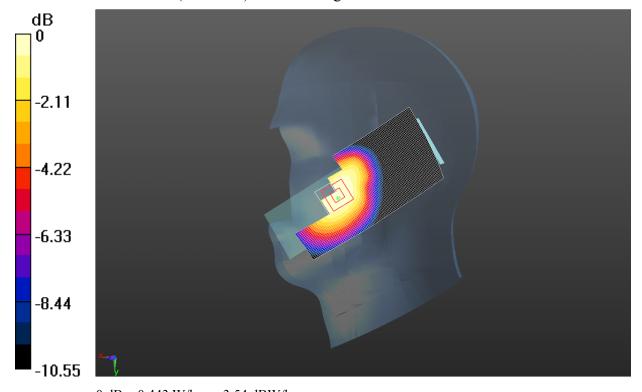
 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Cheek High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 2.968 V/m; Power Drift = 0.13 dBMaximum value of SAR (interpolated) = 0.452 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.968 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.303 W/kgMaximum value of SAR (measured) = 0.443 W/kg

0 dB = 0.443 W/kg = -3.54 dBW/kg

Fig. 7 850 MHz CH251

850 Right Cheek Middle

Date/Time: 3/30/2013 10:52:43 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

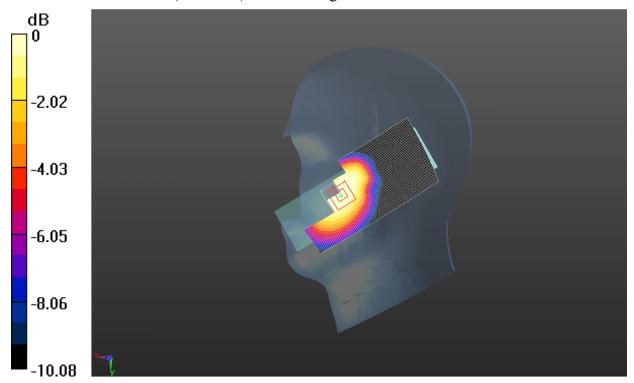
 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 3.620 V/m; Power Drift = 0.14 dB Maximum value of SAR (interpolated) = 0.434 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.620 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.302 W/kgMaximum value of SAR (measured) = 0.435 W/kg

0 dB = 0.435 W/kg = -3.62 dBW/kg

Fig. 8 850 MHz CH190

850 Right Cheek Low

Date/Time: 3/30/2013 11:06:46 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

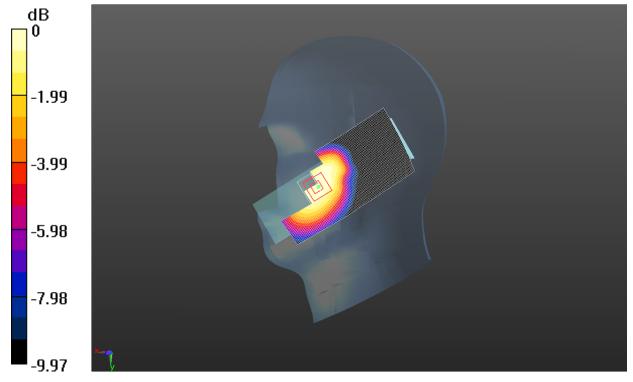
 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 3.325 V/m; Power Drift = 0.13 dB Maximum value of SAR (interpolated) = 0.444 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.325 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.515 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.307 W/kgMaximum value of SAR (measured) = 0.436 W/kg

0 dB = 0.436 W/kg = -3.61 dBW/kg

Fig. 9 850 MHz CH128

850 Right Tilt High

Date/Time: 3/30/2013 11:50:21 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

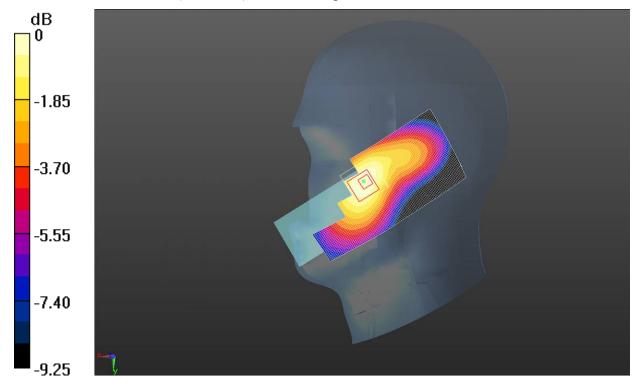
Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.889$ S/m; $\varepsilon_r = 40.997$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Tilt High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 7.477 V/m; Power Drift = 0.03 dB Maximum value of SAR (interpolated) = 0.119 W/kg

Right Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.477 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.081 W/kgMaximum value of SAR (measured) = 0.119 W/kg

0 dB = 0.119 W/kg = -9.26 dBW/kg

Fig.10 850 MHz CH251

850 Right Tilt Middle

Date/Time: 3/30/2013 11:36:10 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ S/m; $\varepsilon_r = 41.153$; $\rho = 1000$

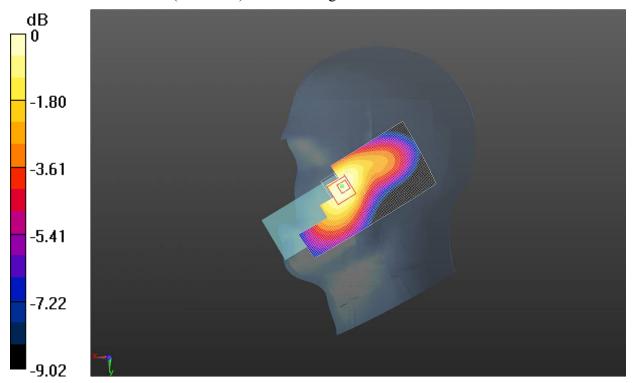
 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 836.6 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Tilt Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 7.290 V/m; Power Drift = 0.01 dBMaximum value of SAR (interpolated) = 0.127 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.290 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.126 W/kg

0 dB = 0.126 W/kg = -9.00 dBW/kg

Fig.11 850 MHz CH190

850 Right Tilt Low

Date/Time: 3/30/2013 11:20:56 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

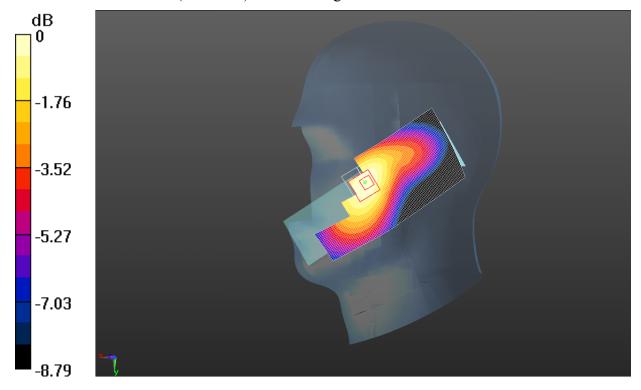
Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.866$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

Right Tilt Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 6.648 V/m; Power Drift = -0.06 dB Maximum value of SAR (interpolated) = 0.122 W/kg

Right Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.648 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.084 W/kgMaximum value of SAR (measured) = 0.121 W/kg

0 dB = 0.121 W/kg = -9.17 dBW/kg

Fig. 12 850 MHz CH128

850 Body Toward Phantom Middle with GPRS_closed

Date/Time: 3/31/2013 3:56:56 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 53.416$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:8.30042

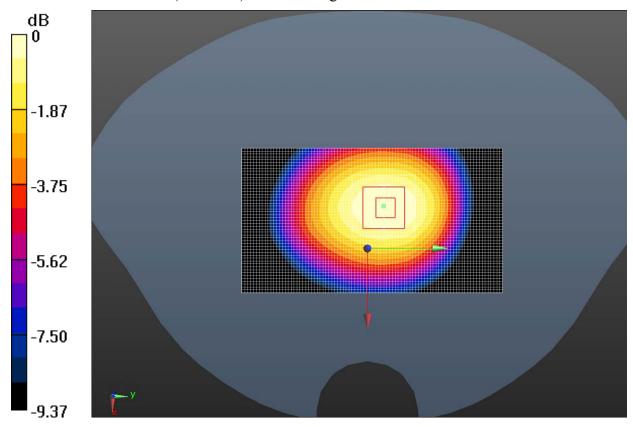
Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

Towards Phantom Middle/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 14.512 V/m; Power Drift = -0.04 dB

Maximum value of SAR (interpolated) = 0.211 W/kg


Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.512 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.254 W/kg

SAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.212 W/kg

0 dB = 0.212 W/kg = -6.74 dBW/kg

Fig. 13 850 MHz CH190

850 Body Toward Ground High with GPRS_closed

Date/Time: 3/31/2013 5:09:52 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 53.305$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 848.8 MHz Duty Cycle: 1:8.30042

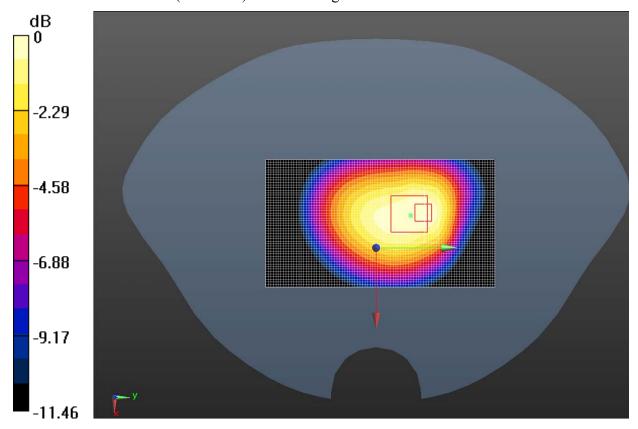
Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

Towards Ground High/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 20.473 V/m; Power Drift = -0.09 dB

Maximum value of SAR (interpolated) = 0.470 W/kg


Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.473 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.616 W/kg

SAR(1 g) = 0.429 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.465 W/kg

0 dB = 0.465 W/kg = -3.33 dBW/kg

Fig. 14 850 MHz CH251

850 Body Toward Ground Middle with GPRS_closed

Date/Time: 3/31/2013 4:24:48 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 53.416$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:8.30042

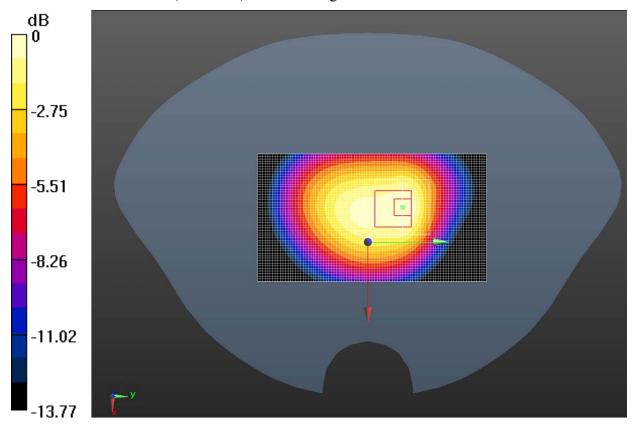
Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

Towards Ground Middle/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 20.300 V/m; Power Drift = -0.07 dBMaximum value of SAR (interpolated) = 0.465 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 20.300 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.266 W/kg

Maximum value of SAR (measured) = 0.424 W/kg

0 dB = 0.424 W/kg = -3.73 dBW/kg

Fig. 15 850 MHz CH190

850 Body Toward Ground Low with GPRS

Date/Time: 3/31/2013 5:25:24 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.968$ S/m; $\varepsilon_r = 53.503$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 824.2 MHz Duty Cycle: 1:8.30042

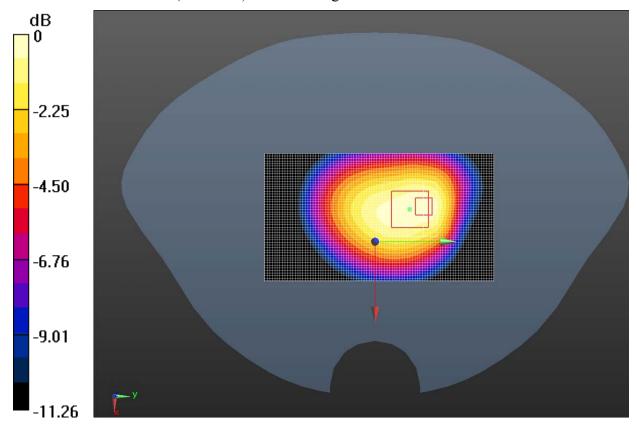
Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

Towards Ground Low/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 20.152 V/m; Power Drift = -0.00 dB

Maximum value of SAR (interpolated) = 0.446 W/kg


Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.152 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.594 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.287 W/kg

Maximum value of SAR (measured) = 0.449 W/kg

0 dB = 0.449 W/kg = -3.48 dBW/kg

Fig. 16 850 MHz CH128

850 Body Toward Ground Middle with GPRS_ open

Date/Time: 3/31/2013 4:46:52 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 53.416$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

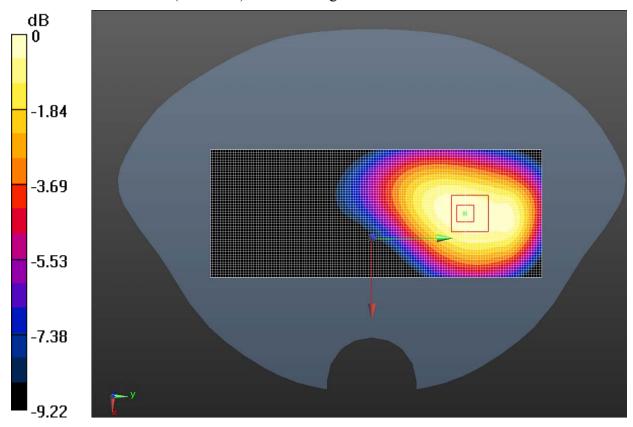
Towards Ground Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 9.245 V/m; Power Drift = 0.13 dB

Maximum value of SAR (interpolated) = 0.353 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 9.245 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.438 W/kg

SAR(1 g) = 0.334 W/kg; SAR(10 g) = 0.242 W/kg

Maximum value of SAR (measured) = 0.353 W/kg

0 dB = 0.353 W/kg = -4.52 dBW/kg

Fig. 17 850 MHz CH190

850 Body Toward Ground High with AE2_closed

Date/Time: 3/31/2013 6:10:16 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 53.305$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

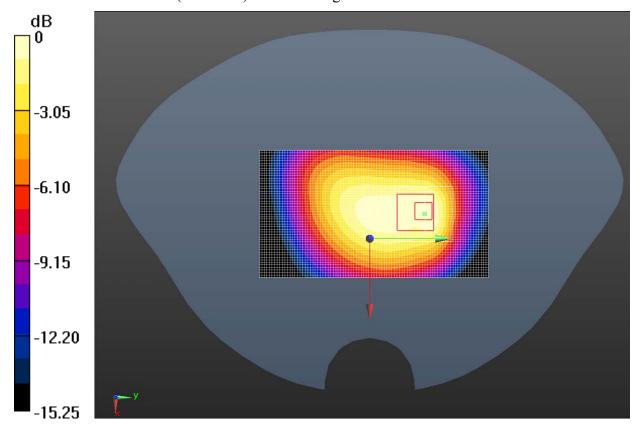
/Towards Ground High 1052/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 21.910 V/m; Power Drift = 0.04 dB

Maximum value of SAR (interpolated) = 0.531 W/kg

Towards Ground High 1052/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.910 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.709 W/kg

SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.320 W/kg

Maximum value of SAR (measured) = 0.517 W/kg

0 dB = 0.517 W/kg = -2.87 dBW/kg

Fig. 18 850 MHz CH251

850 Body Toward Ground High with AE3_closed

Date/Time: 3/31/2013 5:50:40 PM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 53.305$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

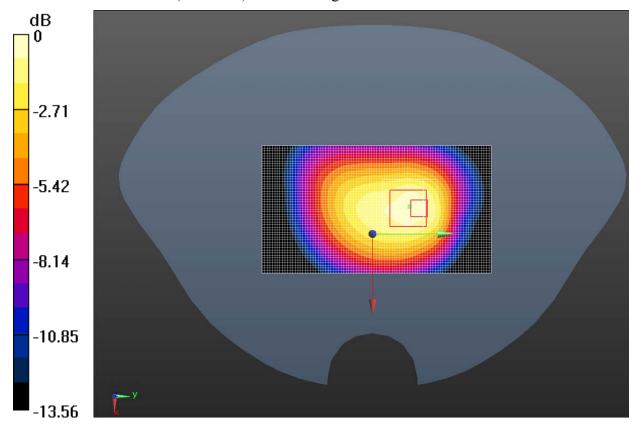
Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

Towards Ground High 1119/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 20.556 V/m; Power Drift = -0.06 dB Maximum value of SAR (interpolated) = 0.523 W/kg

Towards Ground High 1119/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.556 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.735 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 0.530 W/kg

0 dB = 0.530 W/kg = -2.76 dBW/kg

Fig. 19 850 MHz CH251

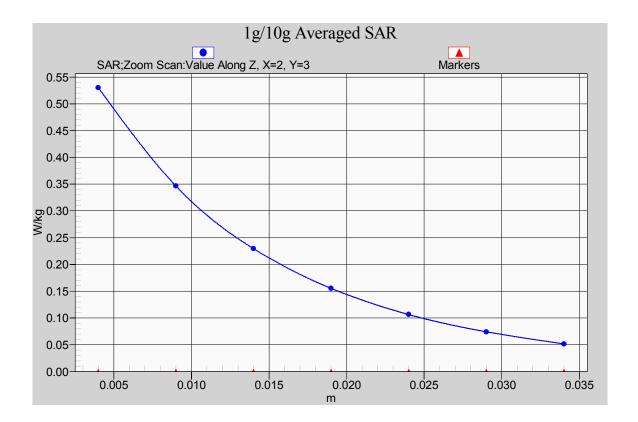


Fig. 19-1 Z-Scan at power reference point (850 MHz CH251)

GSM 1900 Left Cheek High

Date/Time: 3/30/2013 3:02:50 PM

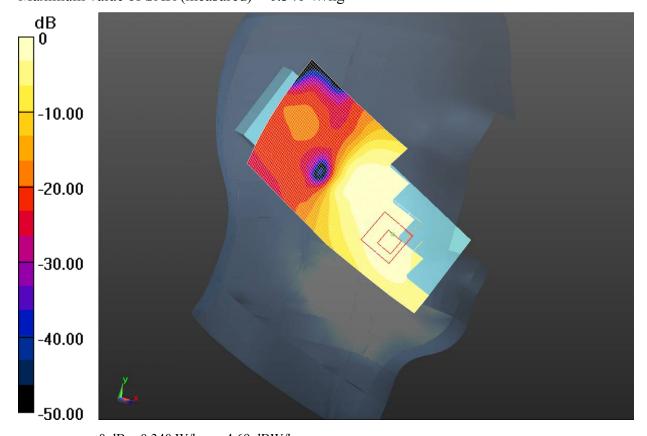
Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.466 \text{ S/m}$; $\varepsilon_r = 38.457$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Cheek High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 1.062 V/m; Power Drift = 0.07 dBMaximum value of SAR (interpolated) = 0.343 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.062 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.543 W/kg

SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.183 W/kgMaximum value of SAR (measured) = 0.340 W/kg

0 dB = 0.340 W/kg = -4.69 dBW/kg

Fig. 20 1900 MHz CH810

GSM 1900 Left Cheek Middle

Date/Time: 3/30/2013 3:48:22 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.438$ S/m; $\varepsilon_r = 38.564$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

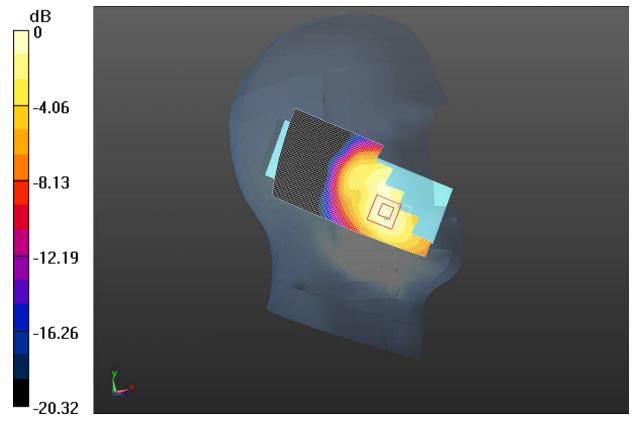
Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Reference Value = 1.624 V/m; Power Drift = 0.13 dB

Maximum value of SAR (interpolated) = 0.475 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.624 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.853 W/kg

SAR(1 g) = 0.509 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 0.526 W/kg

0 dB = 0.526 W/kg = -2.79 dBW/kg

Fig. 21 1900 MHz CH661

GSM 1900 Left Cheek Low

Date/Time: 3/30/2013 4:04:44 PM

Electronics: DAE4 Sn786 Medium: Head 1900

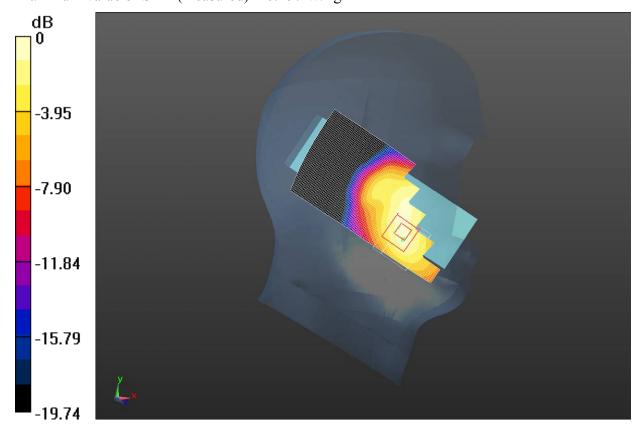
Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.691$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 1.450 V/m; Power Drift = 0.17 dB Maximum value of SAR (interpolated) = 0.392 W/kg

Left Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.450 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.745 W/kg

SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.241 W/kgMaximum value of SAR (measured) = 0.457 W/kg

0 dB = 0.457 W/kg = -3.40 dBW/kg

Fig. 22 1900 MHz CH512

GSM 1900 Left Tilt High

Date/Time: 3/30/2013 4:56:06 PM

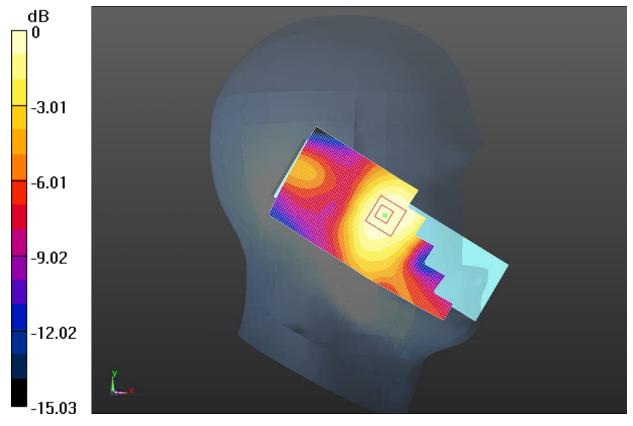
Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.466$ S/m; $\varepsilon_r = 38.457$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Tilt High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.665 V/m; Power Drift = 0.06 dB Maximum value of SAR (interpolated) = 0.0613 W/kg

Left Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.665 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0780 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.035 W/kgMaximum value of SAR (measured) = 0.0572 W/kg

0 dB = 0.0572 W/kg = -12.43 dBW/kg

Fig. 23 1900 MHz CH810

GSM 1900 Left Tilt Middle

Date/Time: 3/30/2013 4:41:45 PM

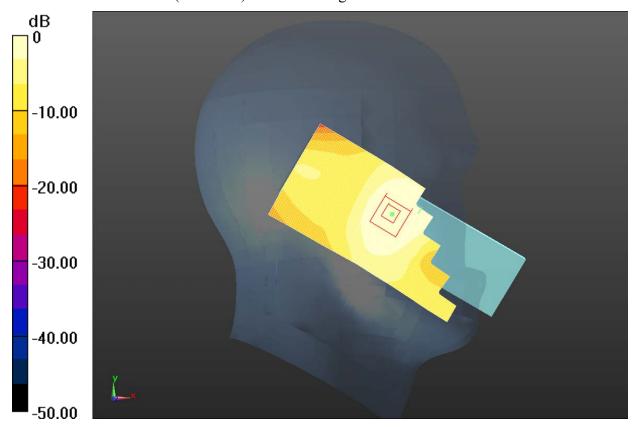
Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.438$ S/m; $\varepsilon_r = 38.564$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Tilt Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.832 V/m; Power Drift = 0.11 dB Maximum value of SAR (interpolated) = 0.0928 W/kg

Left Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.832 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.054 W/kgMaximum value of SAR (measured) = 0.0884 W/kg

0 dB = 0.0928 W/kg = -10.32 dBW/kg

Fig. 24 1900 MHz CH661

GSM 1900 Left Tilt Low

Date/Time: 3/30/2013 4:27:19 PM

Electronics: DAE4 Sn786 Medium: Head 1900

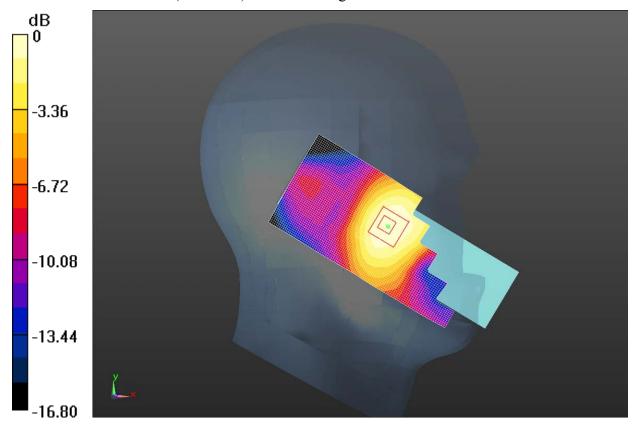
Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.691$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Left Tilt Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.167 V/m; Power Drift = 0.12 dB Maximum value of SAR (interpolated) = 0.103 W/kg

Left Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.167 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.135 W/kg

SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.060 W/kgMaximum value of SAR (measured) = 0.0987 W/kg

0 dB = 0.0987 W/kg = -10.06 dBW/kg

Fig. 25 1900 MHz CH512

GSM 1900 Right Cheek High

Date/Time: 3/30/2013 5:58:16 PM

Electronics: DAE4 Sn786 Medium: Head 1900

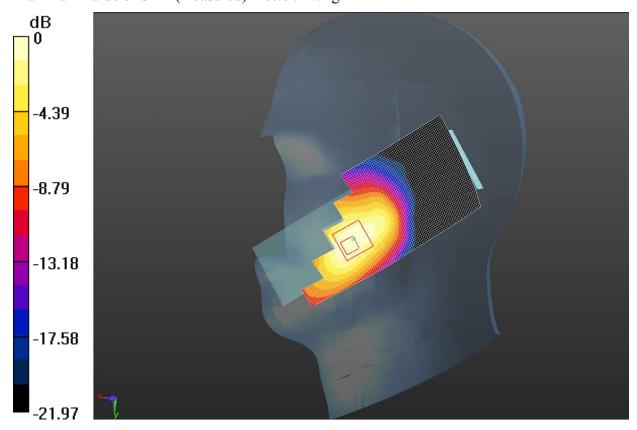
Medium parameters used: f = 1910 MHz; $\sigma = 1.466 \text{ S/m}$; $\varepsilon_r = 38.457$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Cheek High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 1.966 V/m; Power Drift = 0.07 dB Maximum value of SAR (interpolated) = 0.804 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.966 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.755 W/kg; SAR(10 g) = 0.419 W/kgMaximum value of SAR (measured) = 0.797 W/kg

0 dB = 0.797 W/kg = -0.99 dBW/kg

Fig. 26 1900 MHz CH810

GSM 1900 Right Cheek Middle

Date/Time: 3/30/2013 6:13:22 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.438 \text{ S/m}$; $\varepsilon_r = 38.564$; $\rho = 1000 \text{ kg/m}^3$

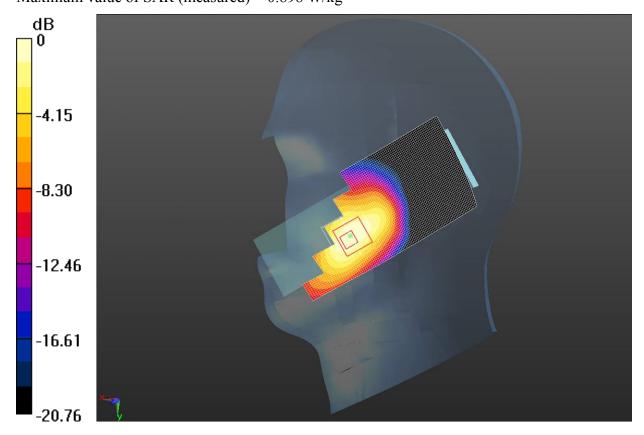
Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Cheek Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Reference Value = 1.757 V/m; Power Drift = 0.05 dBMaximum value of SAR (interpolated) = 0.884 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 1.757 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.839 W/kg; SAR(10 g) = 0.469 W/kgMaximum value of SAR (measured) = 0.898 W/kg

0 dB = 0.898 W/kg = -0.47 dBW/kg

Fig. 27 1900 MHz CH661

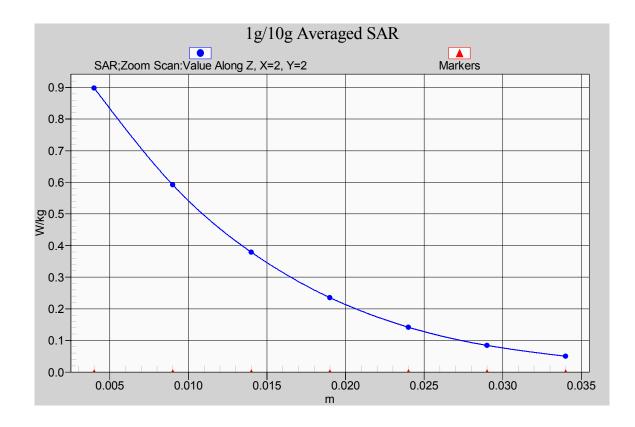


Fig. 27-1 Z-Scan at power reference point (1900 MHz CH661)

GSM 1900 Right Cheek Low

Date/Time: 3/30/2013 6:27:19 PM

Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.691$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

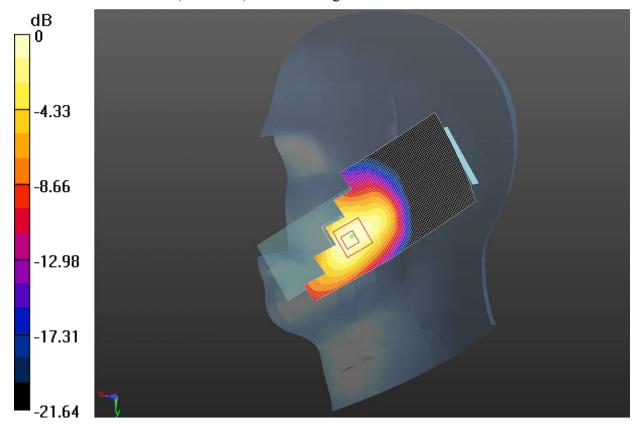
Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Cheek Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Reference Value = 1.797 V/m; Power Drift = 0.08 dB

Maximum value of SAR (interpolated) = 0.727 W/kg


Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.797 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.696 W/kg; SAR(10 g) = 0.388 W/kg

Maximum value of SAR (measured) = 0.741 W/kg

0 dB = 0.741 W/kg = -1.30 dBW/kg

Fig. 28 1900 MHz CH512

1900 Right Tilt High

Date/Time: 3/30/2013 7:10:24 PM

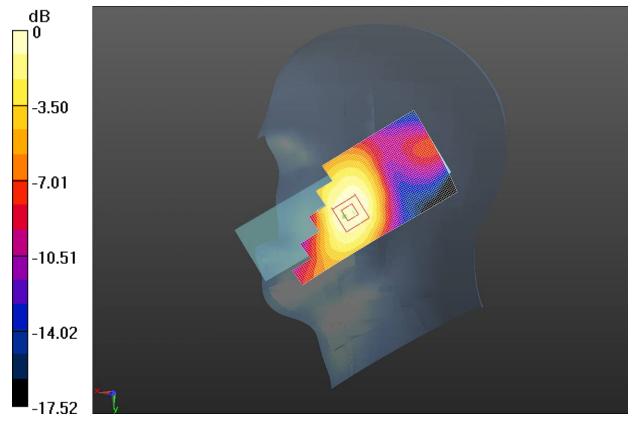
Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.466$ S/m; $\varepsilon_r = 38.457$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1910 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Tilt High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.314 V/m; Power Drift = 0.08 dB Maximum value of SAR (interpolated) = 0.108 W/kg

Right Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.314 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.099 W/kg; SAR(10 g) = 0.064 W/kgMaximum value of SAR (measured) = 0.105 W/kg

0 dB = 0.105 W/kg = -9.79 dBW/kg

Fig. 29 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 3/30/2013 6:55:45 PM

Electronics: DAE4 Sn786 Medium: Head 1900

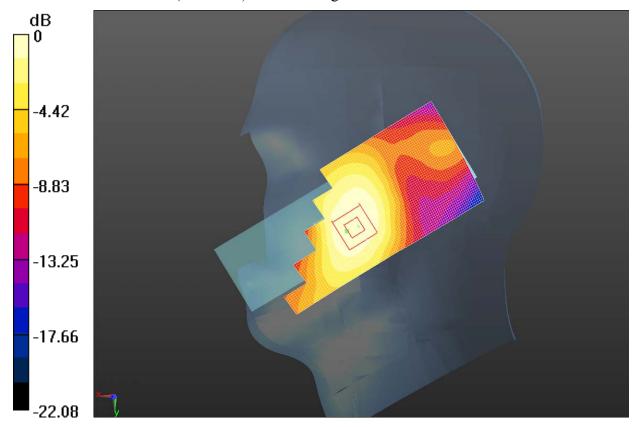
Medium parameters used: f = 1880 MHz; $\sigma = 1.438 \text{ S/m}$; $\varepsilon_r = 38.564$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Tilt Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm


Reference Value = 3.696 V/m; Power Drift = 0.05 dBMaximum value of SAR (interpolated) = 0.122 W/kg

Right Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.696 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.111 W/kg; SAR(10 g) = 0.072 W/kgMaximum value of SAR (measured) = 0.118 W/kg

0 dB = 0.118 W/kg = -9.30 dBW/kg

Fig.30 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 3/30/2013 6:41:36 PM

Electronics: DAE4 Sn786 Medium: Head 1900

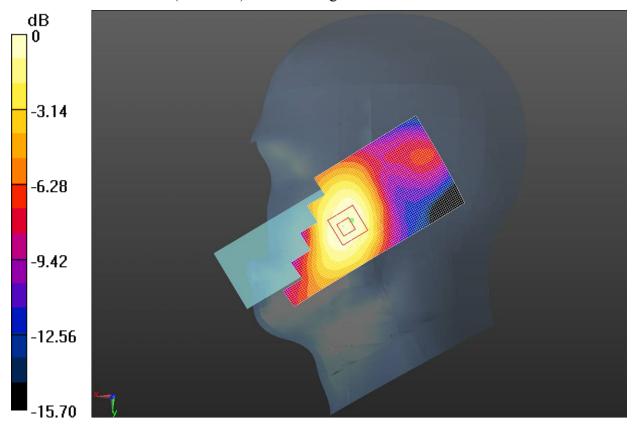
Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.412$ S/m; $\varepsilon_r = 38.691$; $\rho = 1000$

kg/m³

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: GSM Frequency: 1850.2 MHz Duty Cycle: 1:8.30042 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

Right Tilt Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Reference Value = 3.592 V/m; Power Drift = 0.18 dB Maximum value of SAR (interpolated) = 0.112 W/kg

Right Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.592 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.068 W/kgMaximum value of SAR (measured) = 0.109 W/kg

0 dB = 0.109 W/kg = -9.63 dBW/kg

Fig. 31 1900 MHz CH512

1900 Body Toward Phantom Middle with GPRS_closed

Date/Time: 3/31/2013 1:05:33 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.573 \text{ S/m}$; $\varepsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

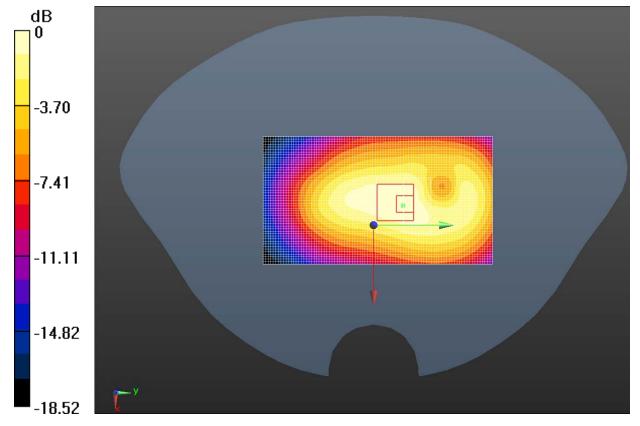
Towards Phantom Middle/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 14.101 V/m; Power Drift = 0.04 dB

Maximum value of SAR (interpolated) = 0.323 W/kg

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 14.101 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.298 W/kg; SAR(10 g) = 0.186 W/kg

Maximum value of SAR (measured) = 0.321 W/kg

0 dB = 0.321 W/kg = -4.94 dBW/kg

Fig. 32 1900 MHz CH661

1900 Body Toward Ground Middle with GPRS_closed

Date/Time: 3/31/2013 12:50:54 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.573 \text{ S/m}$; $\varepsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:8.30042

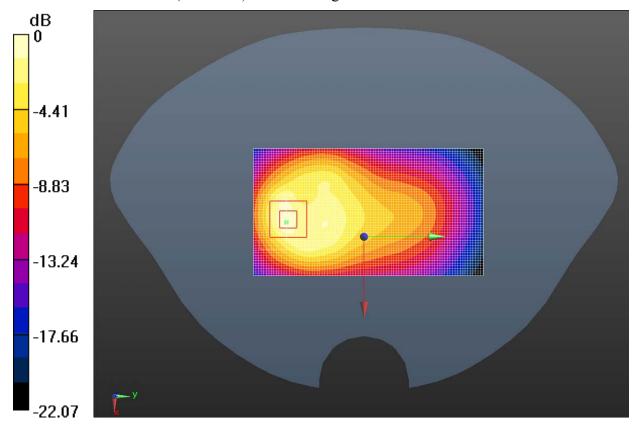
Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

Towards Ground Middle/Area Scan (51x91x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 12.091 V/m; Power Drift = -0.02 dB Maximum value of SAR (interpolated) = 0.600 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 12.091 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.588 W/kg; SAR(10 g) = 0.307 W/kg

Maximum value of SAR (measured) = 0.657 W/kg

0 dB = 0.657 W/kg = -1.82 dBW/kg

Fig. 33 1900 MHz CH661

1900 Body Toward Ground High with GPRS_open

Date/Time: 3/31/2013 1:43:24 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.603 \text{ S/m}$; $\varepsilon_r = 51.693$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 1909.8 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

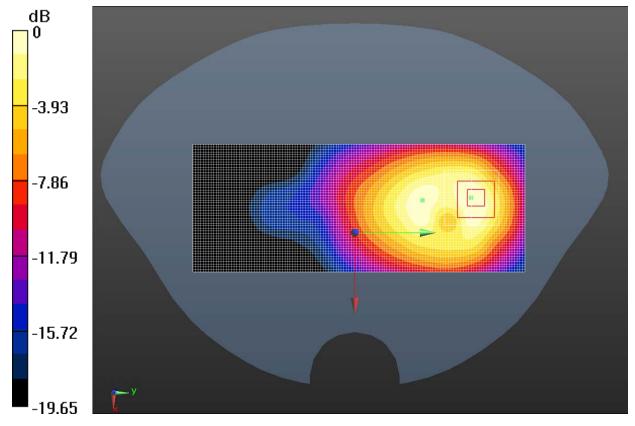
Towards Ground High/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 8.576 V/m; Power Drift = -0.03 dB

Maximum value of SAR (interpolated) = 0.736 W/kg

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 8.576 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.329 W/kg

Maximum value of SAR (measured) = 0.669 W/kg

0 dB = 0.669 W/kg = -1.75 dBW/kg

Fig. 34 1900 MHz CH810

1900 Body Toward Ground Middle with GPRS_open

Date/Time: 3/31/2013 2:17:17 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.573 \text{ S/m}$; $\varepsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

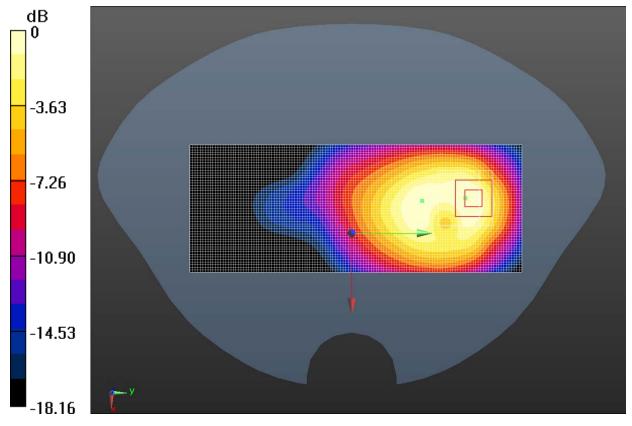
Towards Ground Middle/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 9.026 V/m; Power Drift = 0.04 dB

Maximum value of SAR (interpolated) = 0.744 W/kg

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 9.026 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.623 W/kg; SAR(10 g) = 0.336 W/kg

Maximum value of SAR (measured) = 0.656 W/kg

0 dB = 0.656 W/kg = -1.83 dBW/kg

Fig. 35 1900 MHz CH661

1900 Body Toward Ground Low with GPRS_open

Date/Time: 3/31/2013 2:00:21 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.544$ S/m; $\varepsilon_r = 51.859$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: 1 slot GPRS Frequency: 1850.2 MHz Duty Cycle: 1:8.30042

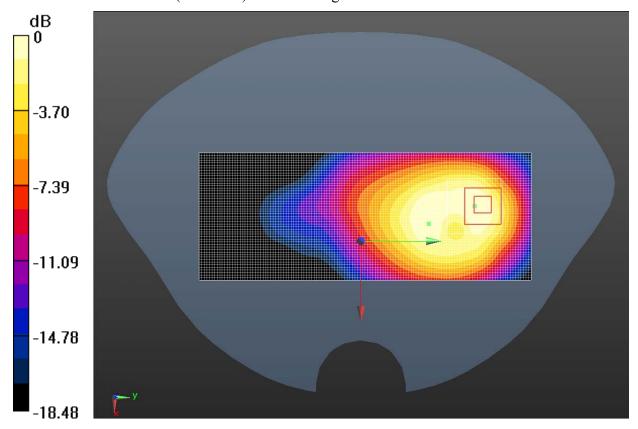
Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

Towards Ground Low/Area Scan (51x131x1): Interpolated grid: dx=1.500 mm,

dy=1.500 mm

Reference Value = 8.224 V/m; Power Drift = 0.07 dB

Maximum value of SAR (interpolated) = 0.565 W/kg


Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.224 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.835 W/kg

SAR(1 g) = 0.467 W/kg; SAR(10 g) = 0.252 W/kg

Maximum value of SAR (measured) = 0.507 W/kg

0 dB = 0.507 W/kg = -2.95 dBW/kg

Fig. 36 1900 MHz CH512

1900 Body Toward Ground Middle with AE2_open

Date/Time: 3/31/2013 3:02:37 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.573 \text{ S/m}$; $\varepsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042

Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

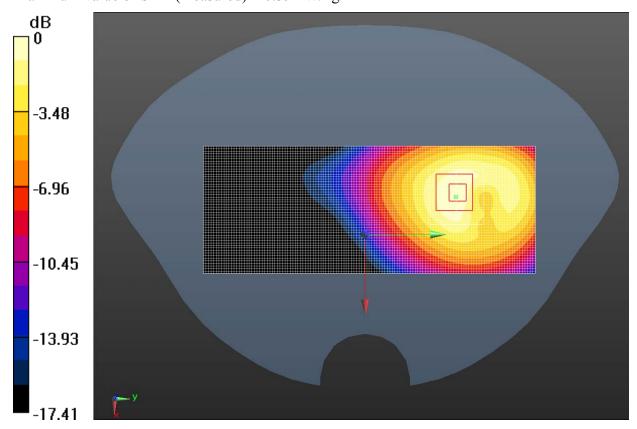
Towards Ground Middle 1052/Area Scan (51x131x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Reference Value = 5.221 V/m; Power Drift = 0.14 dB

Maximum value of SAR (interpolated) = 0.399 W/kg

Towards Ground Middle 1052/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.221 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.219 W/kg

Maximum value of SAR (measured) = 0.391 W/kg

0 dB = 0.391 W/kg = -4.08 dBW/kg

Fig. 37 1900 MHz CH661

1900 Body Toward Ground Middle with AE3_open

Date/Time: 3/31/2013 3:22:01 PM

Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.573 \text{ S/m}$; $\varepsilon_r = 51.78$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.30042

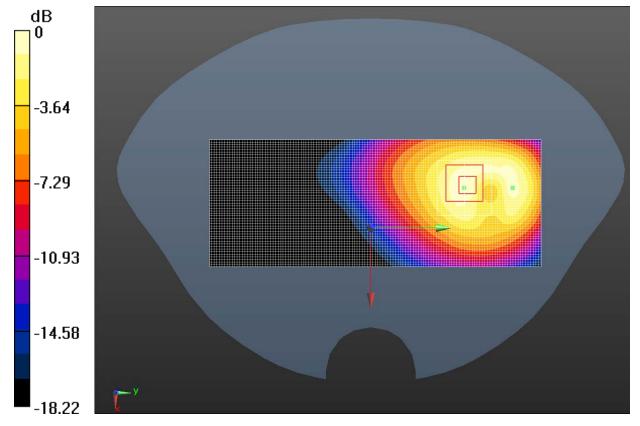
Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

Towards Ground Middle 1119/Area Scan (51x131x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Reference Value = 6.091 V/m; Power Drift = -0.04 dB Maximum value of SAR (interpolated) = 0.692 W/kg

Towards Ground Middle 1119/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.091 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.650 W/kg; SAR(10 g) = 0.372 W/kg

Maximum value of SAR (measured) = 0.706 W/kg

0 dB = 0.706 W/kg = -1.51 dBW/kg

Fig. 38 1900 MHz CH661

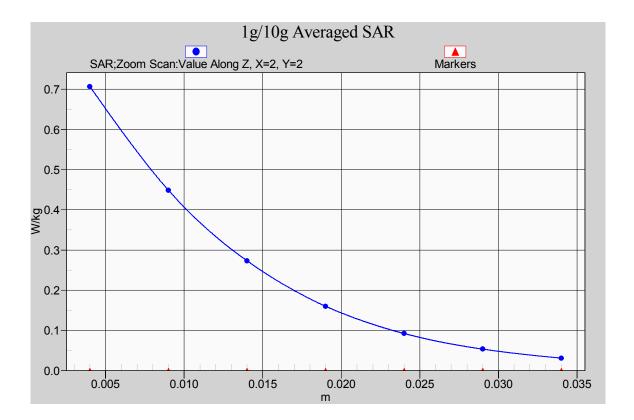


Fig. 38-1 Z-Scan at power reference point (1900 MHz CH661)

ANNEX B System Verification Results

835MHz

Date/Time: 3/30/2013 7:48:51 AM

Electronics: DAE4 Sn786 Medium: Head 850MHz

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 43.189$; $\rho = 1000$

 kg/m^3

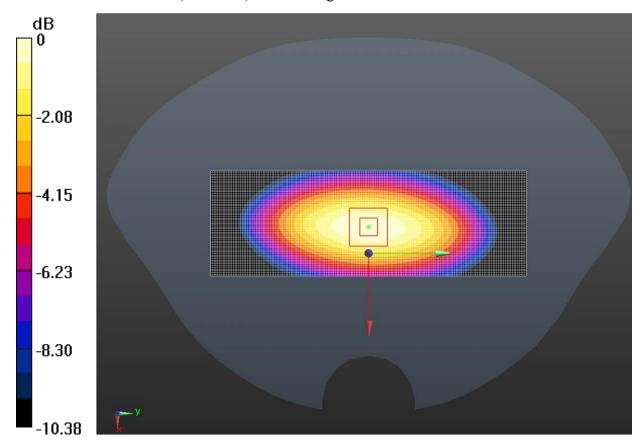
Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.27, 6.27, 6.27); Calibrated: 4/24/2012

System validation /Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.63 W/kg

System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 54.459 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.49 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

Fig.B.1 validation 835MHz 250mW

835MHz

Date/Time: 3/31/2013 7:35:50 AM

Electronics: DAE4 Sn786

Medium: Body 850

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.974$ S/m; $\varepsilon_r = 53.879$; $\rho = 1000$

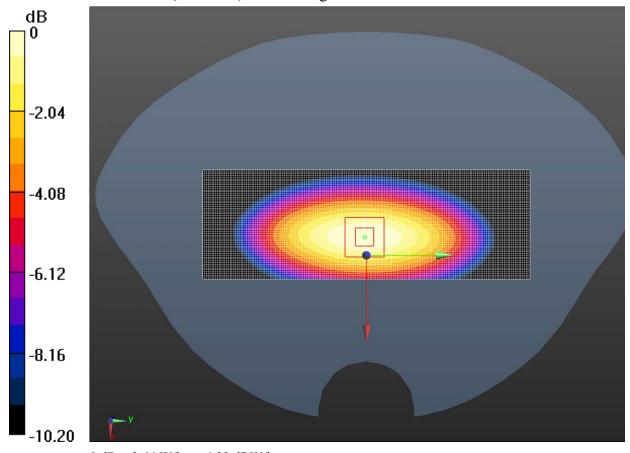
kg/m³

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012

System validation /Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 49.856 V/m; Power Drift = -0.08 dB Maximum value of SAR (interpolated) = 2.63 W/kg


System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.856 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 2.64 W/kg

0 dB = 2.64 W/kg = 4.22 dBW/kg

Fig.B.2 validation 835MHz 250mW

1900MHz

Date/Time: 3/30/2013 7:19:53 AM

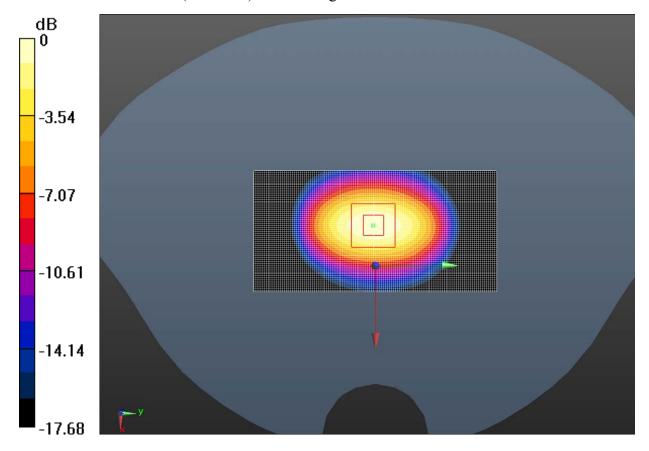
Electronics: DAE4 Sn786 Medium: Head 1900

Medium parameters used: f = 1900 MHz; $\sigma = 1.458 \text{ S/m}$; $\varepsilon_r = 38.013$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 21.0°C Liquid Temperature: 20.5°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 4/24/2012

System validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 90.801 V/m; Power Drift = -0.14 dB Maximum value of SAR (interpolated) = 11.8 W/kg

System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.801 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.3 W/kgMaximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Fig.B.3 validation 1900MHz 250mW

1900MHz

Date/Time: 3/31/2013 7:56:41 AM

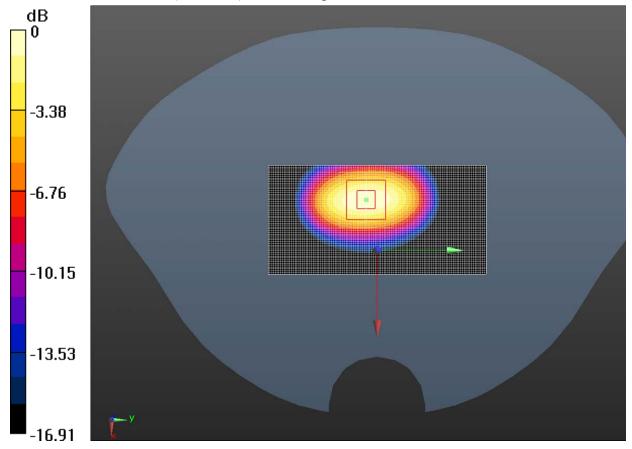
Electronics: DAE4 Sn786 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.59 \text{ S/m}$; $\varepsilon_r = 54.535$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 20.5°C Liquid Temperature: 20.0°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.7, 4.7, 4.7); Calibrated: 4/24/2012

System validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 60.339 V/m; Power Drift = 0.08 dB Maximum value of SAR (interpolated) = 12.4 W/kg

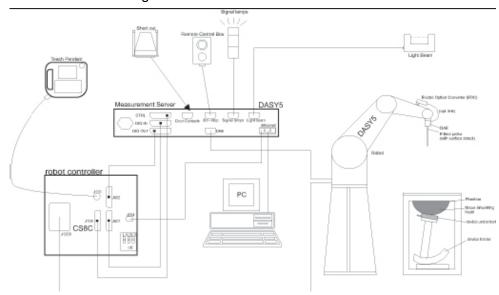
System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.339 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.58 W/kgMaximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg


Fig.B.4 validation 1900MHz 250mW

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is sbottomped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

PictureC.5: DASY5 Robot

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 4

Picture C.7 Server for DASY 5

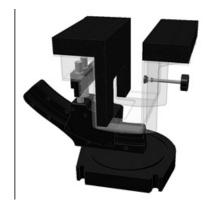
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Lapbottom Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.8-1: Device Holder Kit

Picture C.8-2: Lapbottom Extension

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: $810 \times 1000 \times 500 \text{ mm} (H \times L \times W)$

Available: Special

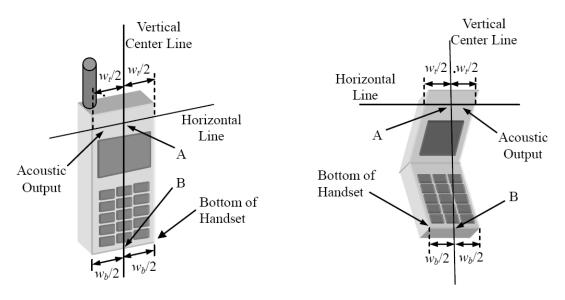
Picture C.9: SAM Twin Phantom

The ELI4 phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest standard IEC 62209-2 and all known tissue simulating liquids. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

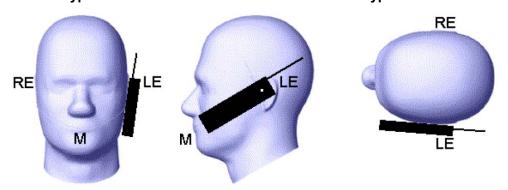
Available Special


Picture C.10: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

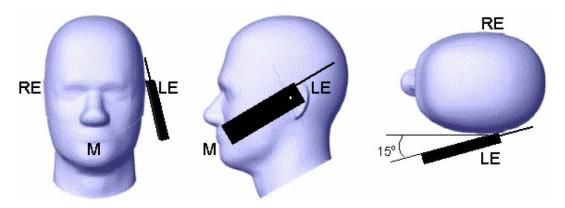
D.1 General Considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

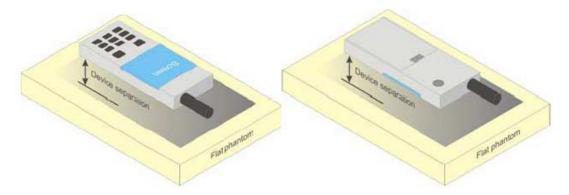
 W_h Width of the bottom of the handset

A Midpoint of the width w_i , of the handset at the level of the acoustic output


B Midpoint of the width w_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

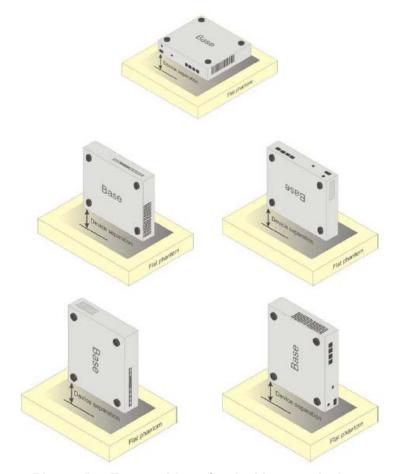
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Deskbottom device

A typical example of a deskbottom device is a wireless enabled deskbottom computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for deskbottom device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for deskbottom devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Frequency (MHz)	835 Head	835 Body	1900 Head	1900 Body	2450 Head	2450 Body			
Ingredients (% by weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60			
Sugar	56.0	45.0	1	/	/	\			
Salt	1.45	1.4	0.306	0.13	0.06	0.18			
Preventol	0.1	0.1	1	/	/	\			
Cellulose	1.0	1.0	1	/	/	\			
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22			
Dielectric Parameters	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95			
Target Value									

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation

Table F.1. System validation								
System No.	Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)			
	3151	Head 850MHz	May. 21, 2012	850 MHz	OK			
	3151	Head 850MHz	May. 21, 2012	900 MHz	OK			
	3151	Head 1800MHz	May. 22, 2012	1800 MHz	OK			
	3151	Head 1900MHz	May. 22, 2012	1900 MHz	OK			
	3151	Head 2000MHz	May. 23, 2012	2000 MHz	OK			
	3151	Head 2100MHz	May. 23, 2012	2100 MHz	OK			
	3151	Head 2450MHz	May. 23, 2012	2450 MHz	OK			
	3151	Head 2550MHz	May. 24, 2012	2550 MHz	OK			
	3151	Head 2600MHz	May. 24, 2012	2600 MHz	OK			
	3151	Body 850MHz	May. 24, 2012	850 MHz	OK			
	3151	Body 850MHz	May. 24, 2012	900 MHz	OK			
	3151	Body 1800MHz	May. 25, 2012	1800 MHz	OK			
	3151	Body 1900MHz	May. 25, 2012	1900 MHz	OK			
	3151	Body 2000MHz	May. 25, 2012	2000 MHz	OK			
	3151	Body 2100MHz	May. 26, 2012	2100 MHz	OK			
	3151	Body 2450MHz	May. 26, 2012	2450 MHz	OK			
	3151	Body 2550MHz	May. 26, 2012	2550 MHz	OK			
	3151	Body 2600MHz	May. 26, 2012	2600 MHz	OK			

ANNEX G Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TMC Beijing

Certificate No: ES3-3151_Apr12

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3151

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

April 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: \$5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: April 24, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3151_Apr12

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ES3DV3 - SN:3151 April 24, 2012 Probe ES3DV3 SN:3151 June 12, 2007 Manufactured: April 24, 2012 Calibrated: Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

ES3DV3-SN:3151 April 24, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.16	1.29	1.18	± 10.1 %
DCP (mV) ⁸	100.6	100.6	102.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	149.8	±4.1 %
			Y	0.00	0.00	1.00	112.8	1111
			Z	0.00	0.00	1.00	110.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.</sup>

ES3DV3-SN:3151 April 24, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3151

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.27	6.27	6.27	0.28	2.14	± 12.0 %
900	41.5	0.97	6.17	6.17	6.17	0.21	2.52	± 12.0 %
1810	40.0	1.40	5.11	5.11	5.11	0.59	1.39	± 12.0 %
1900	40.0	1.40	5.06	5.06	5.06	0.56	1.38	± 12.0 %
2000	40.0	1.40	5.01	5.01	5.01	0.78	1.22	± 12.0 %
2100	39.8	1.49	5.06	5.06	5.06	0.55	1.40	± 12.0 %
2450	39.2	1.80	4.44	4.44	4.44	0.74	1.24	± 12.0 %
2550	39.1	1.91	4.20	4.20	4.20	0.80	1.19	± 12.0 %
2600	39.0	1.96	4.27	4.27	4.27	0.80	1.16	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.