2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA | CALIBRATION C | ERTIFICATE | | | |--|---|---|--| | Dbject | D2450V2 - SN: 8 | 53 | | | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 02, 2012 | | | | | | onal standards, which realize the physical un
robability are given on the following pages an | | | The measurements and the unce | ertainties with confidence p | | d are part of the certificate. | | The measurements and the unce | ertainties with confidence p | robability are given on the following pages an | d are part of the certificate. | | The measurements and the unce
all calibrations have been conduct
calibration Equipment used (M&T
primary Standards | ortainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 | robability are given on the following pages and ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) | c and humidity < 70%. Scheduled Calibration Oct-12 | | the measurements and the unce
all calibrations have been conducted
calibration Equipment used (M&T
rimary Standards
lower meter EPM-442A
lower sensor HP 8481A | ortainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 | robability are given on the following pages and ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) | c and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 | | he measurements and the unce
Il calibrations have been conduct
alibration Equipment used (M&T
rimary Standards
ower meter EPM-442A
ower sensor HP 8481A
eference 20 dB Attenuator | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | robability are given on the following pages and ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01530) | c and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-13 | | he measurements and the unce
il calibrations have been conduct
alibration Equipment used (M&T
rimary Standards
ower meter EPM-442A
ower sensor HP 8481A
eference 20 dB Attenuator
ype-N mismatch combination | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01533) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | Il calibrations have been conductalibration Equipment used (M&Trimary Standards ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | robability are given on the following pages and ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01530) | c and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 Apr-13 | | The measurements and the unce
All calibrations have been conducted. Calibration Equipment used (M&T) Primary Standards Power meter EPM-442A Power sensor IPM-8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Opt-12 Apr-13 Apr-13 Dec-12 | | The measurements and the unce
all calibrations have been conducted. Calibration Equipment used (M&T) Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards | retainties with confidence poted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 | | The measurements and the unce
the measurements and the unce
the conduction of the conduction of the
calibration Equipment used (M&T
calibration Equipment used (M&T
calibration Equipment used (M&T
calibration of the calibration of the combination of the calibration calibra | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | The measurements and the unce | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 | | The measurements and the unce the measurements and the unce the measurements and the unce the measurement used (M&T Calibration Equipment | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | The measurements and the unce the measurements and the unce the measurements and the unce the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are the measurement used (M&T) and the measurement used (M&T) are | retainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13 | Certificate No: D2450V2-853_May12 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | = 1 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.1 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.09 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.92 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 mW / g ± 16.5 % (k=2) | # **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.7 \Omega + 3.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.4 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $49.9 \Omega + 4.8 J\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.4 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.163 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | November 10, 2009 | | ### **DASY5 Validation Report for Head TSL** Date: 02.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.785 mW/g SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.09 mW/g Maximum value of SAR (measured) = 16.7 mW/g 0 dB = 16.7 mW/g = 24.45 dB mW/g # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 02.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.306 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.029 mW/g SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.92 mW/g Maximum value of SAR (measured) = 16.8 mW/g 0 dB = 16.8 mW/g = 24.51 dB mW/g # Impedance Measurement Plot for Body TSL