5800MHz Date: 2013-7-16 Electronics: DAE4 Sn771 Medium: Body 5800 MHz Medium parameters used: f = 5800 MHz; $\sigma = 6.115 \text{ mho/m}$; $\varepsilon_r = 48.73$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 5800 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(3.92, 3.92, 3.92) **System Validation /Area Scan (91x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 8.84 W/kg **System Validation /Zoom Scan (8x8x8)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 57.012 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 33.52 W/kg SAR(1 g) = 7.26 W/kg; SAR(10 g) = 2.01 W/kg Maximum value of SAR (measured) = 8.89 W/kg 0 dB = 8.84 W/kg = 18.93 dB W/kg Fig.B.12 validation 5800MHz 100mW The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. Table B.1 Comparison between area scan and zoom scan for system verification | Band | Position | Area scan (1g) | Zoom scan (1g) | Drift (%) | |------|----------|----------------|----------------|-----------| | 750 | Head | 2.13 | 2.09 | 1.91 | | 750 | Body | 2.19 | 2.17 | 0.92 | | 835 | Head | 2.34 | 2.37 | -1.27 | | 835 | Body | 2.36 | 2.38 | -0.84 | | 1750 | Head | 9.27 | 9.26 | 0.11 | | 1750 | Body | 9.13 | 9.11 | 0.22 | | 1900 | Head | 9.64 | 9.59 | 0.52 | | 1900 | Body | 10.1 | 10.2 | -0.98 | # **ANNEX C** SAR Measurement Setup ## C.1 Measurement Set-up The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1 SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY4 or DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. # C.2 Dasy4 or DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum. ## **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 Dynamic Range: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields Picture C.2 Near-field Probe Picture C.3 E-field Probe #### C.3 E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). ## C.4 Other Test Equipment ## C.4.1 Data Acquisition Electronics(DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE #### C.4.2 Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.5 DASY 4 Picture C.6 DASY 5 #### **C.4.3 Measurement Server** The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.7 Server for DASY 4 Picture C.8 Server for DASY 5 #### C.4.4 Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body
axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.9-1: Device Holder Picture C.9-2: Laptop Extension Kit #### C.4.5 Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.10: SAM Twin Phantom** # ANNEX D Position of the wireless device in relation to the phantom #### **D.1 General considerations** This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_t Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width w_t of the handset at the level of the acoustic output B Midpoint of the width w_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ### D.2 Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4 Test positions for body-worn devices #### D.3 Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices # **D.4 DUT Setup Photos** Picture D.6 # **ANNEX E** Equivalent Media Recipes The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **Table E.1: Composition of the Tissue Equivalent Matter** | | the state of s | | | | | | | | | | |-------------------|--|--------|--------|--------|--------|--------|--------|--------|--|--| | Frequency | 835 | 835 | 1900 | 1900 | 2450 | 2450 | 5800 | 5800 | | | | (MHz) | Head | Body | Head | Body | Head | Body | Head | Body | | | | Ingredients (% by | ngredients (% by weight) | | | | | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | 65.53 | 65.53 | | | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | \ | \ | | | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | \ | \ | | | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | \ | \ | | | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | \ | \ | | | | Glycol | \ | \ | 44.452 | 29.96 | 41.15 | 27.22 | , | , | | | | Monobutyl | ١ | ١ | 44.452 | 29.90 | 41.15 | 21.22 | \ | \ | | | | Diethylenglycol | , | , | \ | , | \ | , | 17.24 | 17.24 | | | | monohexylether | \ | \ | \ | \ | ١ | \ | 17.24 | 17.24 | | | | Triton X-100 | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | | | Dielectric | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 | ε=48.2 | | | | Parameters | | | | | | | | | | | | Target Value | σ=0.90 | σ=0.97 | σ=1.40 | σ=1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 | | | # **ANNEX F** System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation** | | Table F.1: System validation | | | | | | | | |-----------|------------------------------|-----------------|-----------------|--------------------|--|--|--|--| | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | | | | | | 3846 | Head 750MHz | Mar. 06, 2013 | 750 MHz | OK | | | | | | 3846 | Head 850MHz | Mar. 06, 2013 | 850 MHz | OK | | | | | | 3846 | Head 900MHz | Mar. 01, 2013 | 900 MHz | OK | | | | | | 3846 | Head 1750MHz | Mar. 03, 2013 | 1750 MHz | OK | | | | | | 3846 | Head 1810MHz | Mar. 03, 2013 | 1810 MHz | OK | | | | | | 3846 | Head 1900MHz | Mar. 07, 2013 | 1900 MHz | OK | | | | | | 3846 | Head 1950MHz | Mar. 04, 2013 | 1950 MHz | OK | | | | | | 3846 | Head 2000MHz | Mar. 04, 2013 | 2000 MHz | OK | | | | | | 3846 | Head 2100MHz | Mar. 05, 2013 | 2100 MHz | OK | | | | | | 3846 | Head 2300MHz | Mar. 05, 2013 | 2300 MHz | OK | | | | | | 3846 | Head 2450MHz | Mar. 02, 2013 | 2450 MHz | OK | | | | | | 3846 | Head 2550MHz | Mar. 08, 2013 | 2550 MHz | OK | | | | | | 3846 | Head 2600MHz | Mar. 08, 2013 | 2600 MHz | OK | | | | | | 3846 | Head 3500MHz | Mar. 09, 2013 | 3500 MHz | OK | | | | | | 3846 | Head 3700MHz | Mar. 09, 2013 | 3700 MHz | OK | | | | | | 3846 | Head 5200MHz | Mar. 10, 2013 | 5200 MHz | OK | | | | | | 3846 | Head 5500MHz | Mar. 10, 2013 | 5500 MHz | OK | | | | | | 3846 | Head 5800MHz | Mar. 10, 2013 | 5800 MHz | OK | | | | | | 3846 | Body 750MHz | Mar. 06, 2013 | 750 MHz | OK | | | | | | 3846 | Body 850MHz | Mar. 06, 2013 | 850 MHz | OK | | | | | | 3846 | Body 900MHz | Mar. 01, 2013 | 900 MHz | OK | | | | | | 3846 | Body 1750MHz | Mar. 03, 2013 | 1750 MHz | OK | | | | | | 3846 | Body 1810MHz | Mar. 03, 2013 | 1810 MHz | OK | | | | | | 3846 | Body 1900MHz | Mar. 07, 2013 | 1900 MHz | OK | | | | | | 3846 | Body 1950MHz | Mar. 04, 2013 | 1950 MHz | OK | | | | | | 3846 | Body 2000MHz | Mar. 04, 2013 | 2000 MHz | OK | | | | | | 3846 | Body 2100MHz | Mar. 05, 2013 | 2100 MHz | OK | | | | | | 3846 | Body 2300MHz | Mar. 05, 2013 | 2300 MHz | OK | | | | | | 3846 | Body 2450MHz | Mar. 02, 2013 | 2450 MHz | OK | | | | | | 3846 | Body 2550MHz | Mar. 08, 2013 | 2550 MHz | OK | | | | | | 3846 | Body 2600MHz | Mar. 08, 2013 | 2600 MHz | OK | | | | | | 3846 | Body 3500MHz | Mar. 09, 2013 | 3500 MHz | OK | | | | | | 3846 | Body 3700MHz | Mar. 09, 2013 | 3700 MHz | OK | | | | | | 3846 | Body 5200MHz | Mar. 10, 2013 | 5200 MHz | OK | | | | | | 3846 | Body 5500MHz | Mar. 10, 2013 | 5500 MHz | OK | | | | | | 3846 | Body 5800MHz | Mar. 10, 2013 |
5800 MHz | OK | | | | | | | | | | | | | | | # **ANNEX G** Probe Calibration Certificate ## **Probe 3846 Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC Beijing (Auden) Certificate No: EX3-3846_Dec12 S C S Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3846 Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: December 20, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. December 20, 2012 # Probe EX3DV4 SN:3846 Manufactured: Calibrated: October 25, 2011 December 20, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.49 | 0.44 | 0.46 | ± 10.1 % | | DCP (mV) ^B | 98.5 | 98.3 | 99.4 | - 1011 10 | **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|--------|-----|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 X | 0.0 | 0.0 | 1.0 | 120.0 | ±1.9 % | | | | | | Y | 0.0 | 0.0 | 1.0 | 110.6 | | | | | | Z | 0.0 | 0.0 | 1.0 | 115.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.53 | 9.53 | 9.53 | 0.55 | 0.72 | ± 12.0 9 | | 850 | 41.5 | 0.92 | 9.18 | 9.18 | 9.18 | 0.80 | 0.59 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.01 | 9.01 | 9.01 | 0.55 | 0.71 | ± 12.0 9 | | 1750 | 40.1 | 1.37 | 8.39 | 8.39 | 8.39 | 0.46 | 0.78 | ± 12.0 9 | | 1810 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.43 | 0.83 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.01 | 8.01 | 8.01 | 0.46 | 0.75 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.73 | 7.73 | 7.73 | 0.33 | 0.90 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.65 | 0.64 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.06 | 8.06 | 8.06 | 0.65 | 0.63 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.56 | 7.56 | 7.56 | 0.49 | 0.71 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.13 | 7.13 | 7.13 | 0.51 | 0.74 | ± 12.0 % | | 2550 | 39.1 | 1.91 | 6.78 | 6.78 | 6.78 | 0.42 | 0.81 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.00 | 7.00 | 7.00 | 0.42 | 0.86 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.63 | 6.63 | 6.63 | 0.35 | 1.20 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.55 | 6.55 | 6.55 | 0.32 | 1.10 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 4.68 | 4.68 | 4.68 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.43 | 4.43 | 4.43 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.28 | 4.28 | 4.28 | 0.45 | 1.80 | ± 13.1 % | ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C |
Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.28 | 9.28 | 9.28 | 0.44 | 0.85 | ± 12.0 % | | 850 | 55.2 | 0.99 | 9.04 | 9.04 | 9.04 | 0.28 | 1.12 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.01 | 9.01 | 9.01 | 0.59 | 0.76 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.63 | 7.63 | 7.63 | 0.33 | 0.96 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.46 | 0.77 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.37 | 7.37 | 7.37 | 0.54 | 0.73 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 7.56 | 7.56 | 7.56 | 0.45 | 0.77 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.37 | 0.90 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 7.64 | 7.64 | 7.64 | 0.35 | 0.90 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.20 | 7.20 | 7.20 | 0.61 | 0.67 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 7.00 | 7.00 | 7.00 | 0.76 | 0.56 | ± 12.0 9 | | 2550 | 52.6 | 2.09 | 6.89 | 6.89 | 6.89 | 0.80 | 0.50 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 6.72 | 6.72 | 6.72 | 0.80 | 0.50 | ± 12.0 9 | | 3500 | 51.3 | 3.31 | 6.39 | 6.39 | 6.39 | 0.45 | 1.04 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 6.17 | 6.17 | 6.17 | 0.53 | 0.92 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.37 | 4.37 | 4.37 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.89 | 3.89 | 3.89 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. December 20, 2012 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5 1.4 (1.3 1.2 1.2 1.0 0.9 0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4— SN:3846 December 20, 2012 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ # τοσοιτικής τ αποτιτ (ψ), σ f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) December 20, 2012 # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3846 December 20, 2012 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz December 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846 # Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 58.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | #### **Dipole Calibration Certificate** ANNEX H ## 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 TMC-Shanghai (Auden) Certificate No: D750V3-1045_Sep11 | | D750V3 - SN: 1045 | | | | | | |--|--|---|--|--|--|--| | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | | | | Calibration date: | September 29, 20 | 011 | | | | | | | | | | | | | | | cted in the closed laborator | robability are given on the following pages an
ry facility: environment temperature (22 \pm 3) $^{\circ}$ (| | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | Power meter E4419B | GB41293874 | 31-Mar-11 (No. 217-01372) | Apr-12 | | | | | Power sensor E4412A | MY41498087 | 31-Mar-11 (No. 217-01372) | Apr-12 | | | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 29-Mar-11 (No. 217-01369) | Apr-12 | | | | | Reference 20 dB Attenuator | SN: S5066 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | | | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | | | | Reference Probe ES3DV3 | SN: 3205 | 29-Apr-11 (No. ES3-3205_Apr11) | Apr-12 | | | | | | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | | | | DAE4 | | Check Date (in house) | Scheduled Check | | | | | | ID # | | | | | | | DAE4 Secondary Standards Power sensor HP 8481A | ID #
MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | | | | Secondary Standards
Power sensor HP 8481A | | | In house check: Oct-11
In house check: Oct-11 | | | | | Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | MY41092317 | 18-Oct-02 (in house check Oct-09) | | | | | | Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | MY41092317
100005 | 18-Oct-02 (in house check Oct-09)
04-Aug-99 (in house check Oct-09) | In house check: Oct-11
In house check: Oct-11 | | | | | Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer HP 8753E | MY41092317
100005
US37390585 S4206 | 18-Oct-02 (in house check Oct-09)
04-Aug-99 (in house check Oct-09)
18-Oct-01 (in house check Oct-10)
Function | In house check: Oct-11 | | | | | Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer HP 8753E | MY41092317
100005
US37390585 S4206
Name | 18-Oct-02 (in house check Oct-09)
04-Aug-99 (in house check Oct-09)
18-Oct-01 (in house check Oct-10) | In house check: Oct-11
In house check: Oct-11 | | | | | Secondary Standards | MY41092317
100005
US37390585 S4206
Name | 18-Oct-02 (in house check Oct-09)
04-Aug-99 (in house check Oct-09)
18-Oct-01 (in house check Oct-10)
Function | In house check: Oct-11
In house check: Oct-11 | | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom
Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.14 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.36 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.40 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.49 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.20 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.80 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.45 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 5.80 mW / g ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.2 Ω - 2.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.8 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.5 Ω - 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.036 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 02, 2011 | #### **DASY5 Validation Report for Head TSL** Date: 29.09.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.33, 6.33, 6.33); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.433 V/m; Power Drift = 0.0062 dB Peak SAR (extrapolated) = 3.216 W/kg SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.4 mW/g Maximum value of SAR (measured) = 2.501 mW/g ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 29.09.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045 Communication System: CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.12, 6.12, 6.12); Calibrated: 29.04.2011 · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.850 V/m; Power Drift = 0.0065 dB Peak SAR (extrapolated) = 3.269 W/kg SAR(1 g) = 2.2 mW/g; SAR(10 g) = 1.45 mW/g Maximum value of SAR (measured) = 2.566 mW/g # Impedance Measurement Plot for Body TSL #### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Certificate No: D835V2-443 May12 #### TMC Beijing **CALIBRATION CERTIFICATE** D835V2 - SN: 443 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz May 03, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID# Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 27-Mar-12 (No. 217-01530) Reference 20 dB Attenuator SN: 5058 (20k) Apr-13 Type-N mismatch combination SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) Apr-13 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 04-Aug-99 (in house check Oct-11) In house check: Oct-13 100005 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Signature Name Function Jeton Kastrati Calibrated by: Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: May 3, 2012 Certificate No: D835V2-443_May12 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures
low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.07 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.36 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 mW / g ± 16.5 % (k=2) | Page 3 of 8 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 6.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.8 Ω - 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.826 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.423 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g = 8.66 dB mW/g # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.758 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.514 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/gMaximum value of SAR (measured) = 2.82 mW/g Page 7 of 8 # STOP 1 100.000 000 MHz Av9 H1d START 635.000 000 MHz ## 1750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | CALIBRATION C | ERTIFICATE | | | |--|--|---|--| | Dbject | D1750V2 - SN: 1 | 003 | | | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 08, 2012 | | | | | | | | | | | onal standards, which realize the physical un
robability are given on the following pages ar | | | | | | | | All calibrations have been conduc | ted in the closed laborator | ry facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | | | ry facility: environment temperature (22 \pm 3) $^{\circ}$ (| C and humidity < 70%. | | Calibration Equipment used (M&T | | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | Calibration Equipment used (M&T | E critical for calibration) | | | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration Oct-12 Oct-12 | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5058 (20k) | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) | Scheduled Calibration Oct-12 Oct-12 Apr-13 | | Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) | Scheduled
Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&1 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 | | Calibration Equipment used (M&T
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check | | All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Dimce Iliev | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function Laboratory Technician | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 |