ES3DV3- SN:3149 April 24, 2012 # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ES3DV3- SN:3149 April 24, 2012 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149 ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 51.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | #### **Dipole Calibration Certificate** ANNEX H # 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA | | | Participant of the Control Co | b: D835V2-443_May12 | |---|--|--|--| | CALIBRATION C | ERTIFICATE | | | | Dbject | D835V2 - SN: 44 | 3 | | | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 03, 2012 | WELL BOTH A | | | | | robability are given on the following pages an | | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer HP 8753E | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters** he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.07 mW /g ± 16.5 % (k=2) | # Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.36 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 mW / g ± 16.5 % (k=2) | #### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 6.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.2 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | ### **DASY5 Validation Report for Head TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.826 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.423 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g = 8.66 dB mW/g ### **DASY5 Validation Report for Body TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.758 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.514 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.82 mW/g 0 dB = 2.82 mW/g = 9.00 dB mW/g ### 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Certificate No: D1900V2-541_May12 TMC Beijing **CALIBRATION CERTIFICATE** D1900V2 - SN: 541 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz May 09, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Scheduled Calibration Cal Date (Certificate No.) Primary Standards Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 27-Mar-12 (No. 217-01533) Apr-13 SN: 5047.2 / 06327 Type-N mismatch combination Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 ID# Check Date (in house) Scheduled Check Secondary Standards Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 04-Aug-99 (in house check Oct-11) In house check: Oct-13 100005 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Israe El-Naouq Laboratory Technician Calibrated by: Katja Pokovic Technical Manager Approved by: Issued: May 9, 2012 Certificate No: D1900V2-541_May12 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.62 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.1 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.11 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 19 | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 39.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW / g ± 16.5 % (k=2) | #### **Appendix** ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.7 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.6 \Omega + 6.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | ### **DASY5 Validation Report for Head TSL** Date: 09.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.763 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.071 mW/g SAR(1 g) = 9.62 mW/g; SAR(10 g) = 5.11 mW/g Maximum value of SAR (measured) = 12.0 mW/g 0 dB = 12.0 mW/g = 21.58 dB mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 04.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.165 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.442 mW/g SAR(1 g) = 10 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 12.7 mW/g -3.60 -7.20 -10.80 -14.40 0 dB = 12.7 mW/g = 22.08 dB mW/g ## Impedance Measurement Plot for Body TSL # ANNEX I SPOT CHECK TEST As the test lab for ALCATEL 1011A from TCT Mobile Limited, we, TMC Beijing, declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below. ## SAR Values (GSM 850 MHz Band - Head) | Fred | Frequency | | Side | Test | Pottory Type | SAR(1g) (W/kg) | | |-------|-----------|-----|-------|----------|--------------|----------------|-----------------| | MHz | 2 | Ch. | Side | Position | Battery Type | Original data | Spot check data | | 848.8 | В | 251 | Right | Touch | CAB24Q0000C1 | 1.02 | 1.01 | ## SAR Values (GSM 850 MHz Band - Body) | Frequency | | Test | Spacing | Pottory Type | SAR(1g) (W/kg) | | |-----------|-----|----------|---------|--------------|----------------|-----------------| | MHz | Ch. | Position | (mm) | Battery Type | Original data | Spot check data | | 836.6 | 190 | Ground | 10 | CAB24Q0000C1 | 0.721 | 0.661 | ### SAR Values (PCS 1900 MHz Band - Head) | Freque | Frequency | | Test | Pottory Type | SAR(1g) (W/kg) | | |--------|-----------|-------|----------|--------------|----------------|-----------------| | MHz | Ch. | Side | Position | Battery Type | Original data | Spot check data | | 1880 | 661 | Right | Touch | CAB24Q0000C1 | 0.866 | 0.793 | ## SAR Values (PCS 1900 MHz Band - Body) | Frequ | ency | Test | Spacing | Pattony Type | SAR(1g) (W/kg) | | |-------|------|----------|---------|--------------|----------------|-----------------| | MHz | Ch. | Position | (mm) | Battery Type | Original data | Spot check data | | 1880 | 661 | Ground | 10 | CAB24Q0000C1 | 0.839 | 0.658 | # 850 Right Cheek High Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Head 835 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.914$ mho/m; $\epsilon r = 40.598$; $\rho = 0.914$ mho/m; $\epsilon r = 40.598$; 1000 kg/m^3 Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26) Cheek High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.07 W/kg Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.267 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.698 W/kg Maximum value of SAR (measured) = 1.07 W/kg Fig. I.1 850 MHz CH251 # 850 Body Toward Ground Middle Date: 2013-3-6 Electronics: DAE4 Sn771 Medium: Body 835 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.992$ mho/m; $\epsilon r = 56.491$; $\rho =$ 1000 kg/m^3 Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14) Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.704 W/kg Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.264 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.858 W/kg SAR(1 g) = 0.661 W/kg; SAR(10 g) = 0.481 W/kg Maximum value of SAR (measured) = 0.694 W/kg Fig. I.2 850 MHz CH190 # 1900 Right Cheek Middle Date: 2013-3-7 Electronics: DAE4 Sn771 Medium: Head GSM1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.397 \text{ mho/m}$; $\epsilon r = 39.488$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19) Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.852 W/kg Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.614 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.401 W/kg SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.436 W/kg Maximum value of SAR (measured) = 0.883 W/kg Fig. I.3 1900 MHz CH661 # 1900 Body Toward Ground Middle Date: 2013-2-19 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.515 \text{ mho/m}$; $\epsilon r = 52.897$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.6°C Liquid Temperature: 22.2°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64) **Toward Ground Middle/Area Scan (41x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.740 W/kg **Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.104 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.067 W/kg SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.385 W/kgMaximum value of SAR (measured) = 0.723 W/kg Fig. I.4 1900 MHz CH661