

No. 2013SAR00065

For

TCT Mobile Limited

HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone

Model Name: Scribe5HD AWS

Marketing Name: ONE TOUCH 8008W

with

Hardware Version: 1.5

Software Version: vA8D

FCC ID: RAD330

Issued Date: 2013-06-18

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

Revision Version

Report Number	Revision	Date	Memo		
2013SAR00065	00	2013-05-13	Initial creation of test report		
			1. Retest the BT power on page 32		
			2. Update the Power Tolerance of BT in		
2013SAR00065	01	2013-06-04	table 11.4 on page 29		
20133AR00003	ΟI	2013-06-04	3. Update the table 2.3 on page 7, the table		
			12.1 on page 35 and the table 13.2&13.3		
			on page 36 for BT		
			1. Retest the conducted power of		
	02	2013-06-17	WCDMA1900 in table 11.8 on page 32		
2013SAR00065			2. Update the Power Tolerance of		
20133AN00003			WCDMA1900 in table 11.3 on page 29		
			3. Retest the SAR values of WCDMA1900		
and update the relevant informati					

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT.	5
1.3 PROJECT DATA	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 ABOUT EUT	9
4.2 Internal Identification of EUT used during the test	9
4.3 Internal Identification of AE used during the test	10
4.4 ACCESSORY	
4.4.1 FLIP COVER	
4.4.2 Rear cover	
5 TEST METHODOLOGY	12
5.1 APPLICABLE LIMIT REGULATIONS	12
5.2 APPLICABLE MEASUREMENT STANDARDS	12
6 SPECIFIC ABSORPTION RATE (SAR)	13
6.1 Introduction	13
6.2 SAR DEFINITION	13
7 TISSUE SIMULATING LIQUIDS	14
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	14
7.2 DIELECTRIC PERFORMANCE	14
8 SYSTEM VERIFICATION	19
8.1 System Setup	19
8.2 SYSTEM VERIFICATION	20
9 MEASUREMENT PROCEDURES	21
9.1 Tests to be performed	21
9.2 GENERAL MEASUREMENT PROCEDURE	23
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.5 Power Drift	25
10 AREA SCAN BASED 1-G SAR	26
10.1 REQUIREMENT OF KDR	26

10.2 FAST S	SAR ALGORITHMS	26
11 CONDU	CTED OUTPUT POWER	27
11.1 M ANU	FACTURING TOLERANCE	27
11.2 GSM	MEASUREMENT RESULT	30
	MA MEASUREMENT RESULT	
11.4 WI-FI	AND BT MEASUREMENT RESULT	32
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	34
12.1 Intro	DUCTION	34
	SMIT ANTENNA SEPARATION DISTANCES	
	MEASUREMENT POSITIONS	
	DALONE SAR TEST EXCLUSION CONSIDERATIONS	
13 EVALU	ATION OF SIMULTANEOUS	36
14 SAR TE	ST RESULT	37
14.1 SAR F	RESULTS FOR FAST SAR	37
14.2 SAR F	RESULTS FOR STANDARD PROCEDURE	45
15 SAR MI	EASUREMENT VARIABILITY	48
16 MEASU	REMENT UNCERTAINTY	49
17 MAIN T	EST INSTRUMENTS	53
ANNEX A	GRAPH RESULTS	54
ANNEX B	SYSTEM VERIFICATION RESULTS	86
ANNEX C	SAR MEASUREMENT SETUP	97
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	.103
ANNEX E	EQUIVALENT MEDIA RECIPES	106
ANNEX F	SYSTEM VALIDATION	.107
ANNEX G	PROBE CALIBRATION CERTIFICATE	.108
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	.119
ANNEX I	DIPOLE QUALIFICATION FOR THE EXTENDED 3-YEAR CALIBRATION INTER	VAL

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuan beilu, Haidian District, Beijing, P.R. China

Postal Code: 100191

Telephone: +86-10-62304633 Fax: +86-10-62304793

1.2 Testing Environment

Temperature: $18^{\circ}\text{C} \sim 25^{\circ}\text{C}$, Relative humidity: $30\% \sim 70\%$ Ground system resistance: $< 0.5 \ \Omega$ Ambient noise & Reflection: $< 0.012 \ \text{W/kg}$

1.3 Project Data

Project Leader: Qi Dianyuan
Test Engineer: Lin Xiaojun
Testing Start Date: April 26, 2013
Testing End Date: June 17, 2013

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone Scribe5HD AWS / ONE TOUCH 8008W are as follows:

Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR	Equipment Class	
Exposure corniguration	recritiology baria	1g (W/Kg)	Equipment Olass	
	GSM 850	0.56		
Head	PCS 1900	0.20	PCE	
(Separation Distance 0mm)	UMTS FDD 4	0.55	POE	
(Separation distance offin)	UMTS FDD 2	0.31		
	WLAN 2.4 GHz	0.16	DTS	
	GSM 850	1.12		
Dody warn	PCS 1900	1.07	PCE	
Body-worn (Separation Distance 10mm)	UMTS FDD 4	1.09	PCE	
(Separation distance formin)	UMTS FDD 2	1.17		
	WLAN 2.4 GHz	0.06	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.17**

W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Head	- I Right hand Touch cheek		0.16	0.72
Highest reported Rear		1.12	0.06	1.18
SAR value for Body	Bottom	1.17	/	1

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand Touch cheek		0.12	0.68
Highest reported SAR value for Body	Bottom	1.17	0.12	1.29

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.29 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited
Address /Dest	12F/B, TCL Tower, Gaoxin Nanyi Road, Nanshan District, Shenzhen,
Address /Post:	Guangdong, P.R. China
City:	Shenzhen
Postal Code:	/
Country:	P.R.China
Contact:	Lv Meixian
Email:	meixian.lv@tcl.com
Telephone:	0086 755 33956929
Fax:	0086 755 36645072

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Doots	12F/B, TCL Tower, Gaoxin Nanyi Road, Nanshan District, Shenzhen,
Address /Post:	Guangdong,P.R. China
City:	Shenzhen
Postal Code:	1
Country:	P.R.China
Contact:	Lv Meixian
Email:	meixian.lv@tcl.com
Telephone:	0086 755 33956929
Fax:	0086 755 36645072

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone
Model name:	Scribe5HD AWS
Marketing name:	ONE TOUCH 8008W
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 1700/1900, BT, Wi-Fi (2.4G)
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	1712.4 - 1752.6 MHz (WCDMA 1700 Band IV)
	1852.4-1907.6 MHz (WCDMA1900 Band II)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
GPRS capability Class:	В
	HSDPA: 8
WCDMA UE Category:	HSUPA: 7
Wednik de Calegory.	HSPA+: 7
	DC-HSDPA: 24
	GSM: R99
Release Version:	GPRS: Rel6
	UMTS: R8
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support simultaneous transmission of hotspot and voice(or data)
Form factor:	$14.4 \text{cm} \times 7.5 \text{ cm}$

4.2 Internal Identification of EUT used during the test

EUT ID* IMEI		HW Version	SW Version
EUT1	013507000011824	1.5	vA8D
EUT2	013507000011873	1.5	vA8D
EUT3	013507000011832	1.5	vA8D
EUT4	013507000012053	1.5	vA8D

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1&2 and conducted power with the EUT3&4.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	ttery CAC2500000C3 /		SCUD
AE2	Headset	lset CCB3001A14C1 /		Lianyun
AE3	Headset	CCB3001A14C2	/	Juwei
AE4	Headset	CCB3001A15C1	1	Lianyun
AE5	Headset	CCB3001A15C2	/	Juwei

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE2 and AE4 are the same, so they can use the same results. AE3 and AE5 are the same, so they can use the same results.

4.4 Accessory

4.4.1 Flip cover

There is a kind of accessory (flip cover) with conductive materials, the details is presented in the below picture 4.1. We'll perform the head measurement in all bands without the accessory and retest on highest value point with the accessory in each band. Then, repeat the measurement in the Body test.

Accessory Development

Flip cover: Black Size: 105 x 139 x 2.6mm

Picture 4.1: Constituents of the flip cover

4.4.2 Rear cover

There is another rear cover (black color) with different conductive materials from original rear cover (red color) for logo, the details is presented in the below picture 4.2. We'll perform the head measurement in all bands without the accessory and retest on highest value point with the accessory in each band. Then, repeat the measurement in the Body test.

Picture 4.2: Constituents of the Rear cover

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures for 3G Devices

KDB941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01: 3GPP R6 HSPA and R7 HSPA+ SAR Guidance

KDB941225 D06 Hot Spot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227: SAR measurement procedures for 802.112abg transmitters

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				<u> </u>	
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

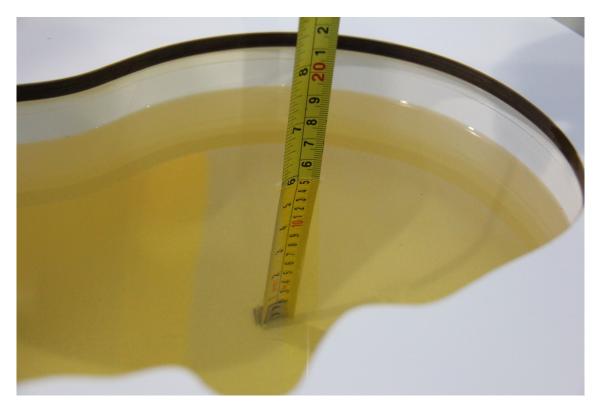
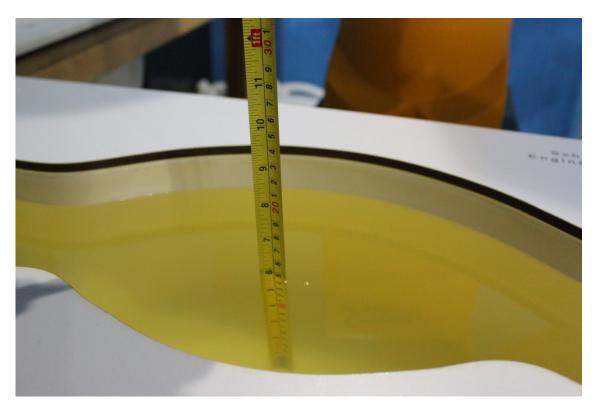

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

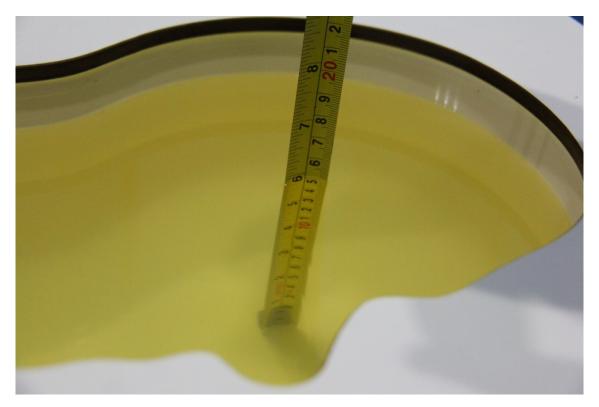
Measurement Date	Turno	Eroguanav	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Type	Frequency	ε	(%)	σ (S/m)	(%)
2013-04-26	Head	835 MHz	40.88	-1.49	0.917	1.89
2013-04-20	Body	835 MHz	55.01	-0.34	0.979	0.93
2013-04-28	Head	1750 MHz	40.73	1.62	1.381	0.80
2013-04-20	Body	1750 MHz	52.85	-1.03	1.48	-0.67
2013-04-27	Head	1900 MHz	39.41	-1.48	1.422	1.57
2013-04-21	Body	1900 MHz	52.43	-1.63	1.538	1.18
2013-04-29	Head	2450 MHz	39.61	1.05	1.777	-1.28
2013-04-29	Body	2450 MHz	52.18	-0.99	1.937	-0.67
2013-06-17	Head	1900 MHz	38.91	-2.73	1.413	0.93
2013-00-17	Body	1900 MHz	52.16	-2.14	1.515	-0.33

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1: Liquid depth in the Head Phantom (835 MHz)



Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)



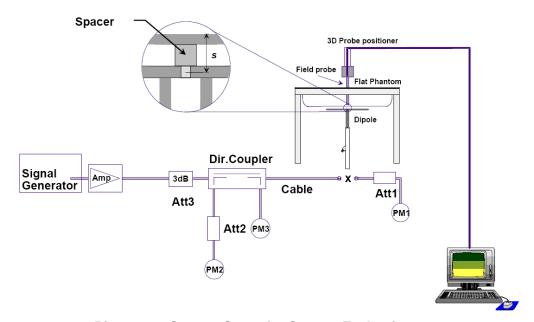
Picture 7-3: Liquid depth in the Head Phantom (1750 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1750MHz)

Picture 7-5: Liquid depth in the Head Phantom (1900 MHz)

Picture 7-6 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-7 Liquid depth in the Head Phantom (2450MHz)


Picture 7-8 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured v	value (W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-04-26	835 MHz	6.07	9.30	5.96	9.20	-1.81%	-1.08%
2013-04-28	1750 MHz	19.3	36.2	19.68	37.08	1.97%	2.43%
2013-04-27	1900 MHz	20.6	39.1	20.12	38.36	-2.33%	-1.89%
2013-04-29	2450 MHz	24.4	52.4	24.16	51.60	-0.98%	-1.53%
2013-06-17	1900 MHz	20.6	39.1	19.92	38.12	-3.30%	-2.51%

Table 8.2: System Verification of Body

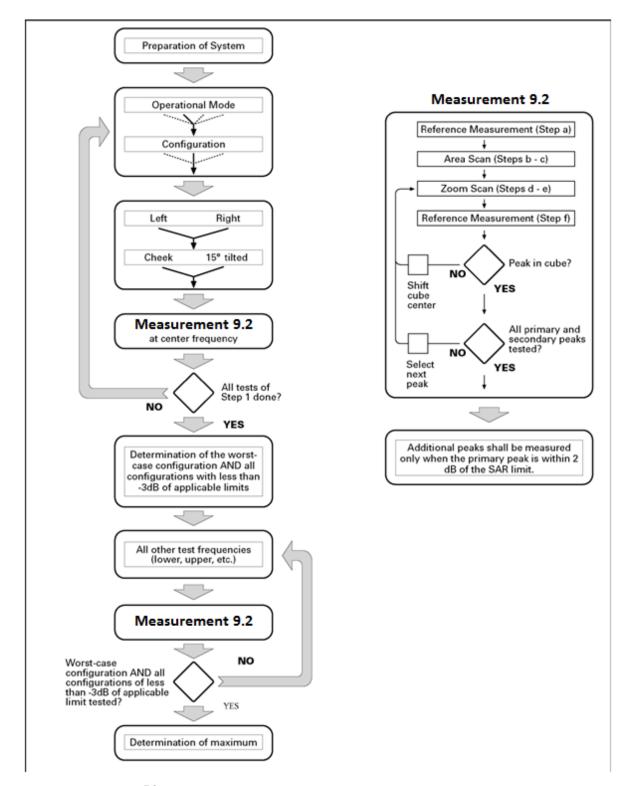
Measurement	urement		ue (W/kg)	Measured v	value (W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-04-26	835 MHz	6.20	9.36	6.20	9.24	0.00%	-1.28%
2013-04-28	1750 MHz	20.1	37.4	19.88	36.60	-1.09%	-2.14%
2013-04-27	1900 MHz	21.3	39.9	21.36	40.40	0.28%	1.25%
2013-04-29	2450 MHz	23.6	50.4	23.92	51.20	1.36%	1.59%
2013-06-17	1900 MHz	21.3	39.9	21.20	40.40	-0.47%	1.25%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <p< td=""></p<></pre></pre></pre></pre></pre></pre></pre>
Maximum zoom scan sp	atial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 3 - 4 GHz: \leq 5 m 2 - 3 GHz: \leq 5 mm 4 - 6 GHz: \leq 4 m	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_i$	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta_c}/oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	eta_{ed}	$oldsymbol{eta_{ed}}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2. 0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3. 0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1. 0	0.0	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.41 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 850							
Channel	Channel 251	Channel 190	Channel 128					
Target (dBm)	32.3	32.3	32.3					
Tolerance \pm (dB)	1	1	1					
	GSM	1 1900						
Channel	Channel 810	Channel 661	Channel 512					
Target (dBm)	29.3	29.3	29.3					
Tolerance \pm (dB)	1	1	1					

Table 11.2: GPRS and EGPRS

	GSM 850 GPRS (GMSK)						
	Channel	251	190	128			
1 Txslot	Target (dBm)	32.3	32.3	32.3			
1 1 X SIOL	Tolerance \pm (dB)	1	1	1			
2 Txslots	Target (dBm)	29	29	29			
2 1 851015	Tolerance \pm (dB)	1	1	1			
3Txslots	Target (dBm)	26.2	26.2	26.2			
31 851015	Tolerance \pm (dB)	1	1	1			
4 Txslots	Target (dBm)	26.2	26.2	26.2			
4 1 351015	Tolerance \pm (dB)	1	1	1			
	(GSM 850 EGPRS (GI	MSK)				
	Channel	251	190	128			
1 Txslot	Target (dBm)	32.3	32.3	32.3			
1 1 X SIOL	Tolerance \pm (dB)	1	1	1			
2 Txslots	Target (dBm)	29	29	29			
2 1 851015	Tolerance \pm (dB)	1	1	1			
3Txslots	Target (dBm)	26.2	26.2	26.2			
31 X51015	Tolerance \pm (dB)	1	1	1			
4 Txslots	Target (dBm)	26.2	26.2	26.2			
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1			
		GSM 1900 GPRS (GN	MSK)				
	Channel	810	661	512			
1 Txslot	Target (dBm)	29.3	29.3	29.3			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.5	1.5	1.5			
2 Txslots	Target (dBm)	28	28	28			
Z 1 7310(3	Tolerance \pm (dB)	1	1	1			
3Txslots	Target (dBm)	26	26	26			
31 721012	Tolerance \pm (dB)	1	1	1			

4 Txslots	Target (dBm)	24.5	24.5	24.5
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1
	C	SSM 1900 EGPRS (G	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	29.3	29.3	29.3
1 1 XSIOL	Tolerance \pm (dB)	1.5	1.5	1.5
2 Txslots	Target (dBm)	28	28	28
2 1 XSIOIS	Tolerance \pm (dB)	1	1	1
2Tvolete	Target (dBm)	26	26	26
3Txslots	Tolerance \pm (dB)	1	1	1
4 Tyoloto	Target (dBm)	24.5	24.5	24.5
4 Txslots	Tolerance \pm (dB)	1	1	1

Table 11.3: WCDMA

WCDMA 1700 CS						
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	22.5	22.5	22.5			
Tolerance \pm (dB)	1.2	1.2	1.2			
	HSDPA (sub	o-test 1/2/3/4)				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	21.5	21.5	21.5			
Tolerance ±(dB)	1	1	1			
	HSUPA (su	ub-test 1/2/3)				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	19.5	19.5	19.5			
Tolerance \pm (dB)	2	2	2			
	HSUPA (sub-test 4)				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	19	19	19			
Tolerance \pm (dB)	2	2	2			
	HSUPA (sub-test 5)				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	20.5	20.5	20.5			
Tolerance \pm (dB)	2	2	2			
	HS	SPA+				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	19.5	19.5	19.5			
Tolerance \pm (dB)	1	1	1			
	DC-HSDPA (s	sub-test 1/2/3/4)				
Channel	Channel 1513	Channel 1412	Channel 1312			
Target (dBm)	21.5	21.5	21.5			
Tolerance \pm (dB)	1	1	1			

	WCDMA	1900 CS	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	22.0	22.0	22.0
Tolerance \pm (dB)	1	1	1
	HSDPA (sub	o-test 1/2/3/4)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	21.5	21.5	21.5
Tolerance \pm (dB)	1	1	1
	HSUPA (s	ub-test 1/2)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	20	20	20
Tolerance \pm (dB)	1	1	1
	HSUPA (:	sub-test 3)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	21	21	21
Tolerance \pm (dB)	1	1	1
	HSUPA (:	sub-test 4)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	19.5	19.5	19.5
Tolerance \pm (dB)	1	1	1
	HSUPA (sub-test 5)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	21.7	21.7	21.7
Tolerance \pm (dB)	1	1	1
	HS	PA+	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	19.5	19.5	19.5
Tolerance \pm (dB)	1	1	1
	DC-HSDPA (s	ub-test 1/2/3/4)	
Channel	Channel 9538	Channel 9400	Channel 9262
Target (dBm)	21.5	21.5	21.5
Tolerance \pm (dB)	1	1	1

Table 11.4: Bluetooth

Bluetooth							
Channel Channel 0 Channel 39 Channel 78							
Target (dBm)	Target (dBm) 6.5 6.5 6.5						
Tolerance $\pm (dB)$ 1 1 1							

Table 11.5: WiFi

	802.11b									
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	10	11	11							
Tolerance \pm (dB)	1	1	1							
	802	2.11g								
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	10	11	11.5							
Tolerance ±(dB)	1	1	1							
	802.11	n-HT20								
Channel	Channel 1	Channel 6	Channel 11							
Target (dBm)	12	13.5	14							
Tolerance ±(dB)	1	1	1							
	802.11	n-HT40								
Channel	Channel 3	Channel 6	Channel 9							
Target (dBm)	11	11.5	12							
Tolerance \pm (dB)	1	1	1							

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

CCM	Conducted Power (dBm)						
GSM 850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
OSUMITZ	32.35	32.31	32.37				
GSM		Conducted Power (dBm)					
1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
I SOUMINZ	29.21	29.43	29.48				

Table 11.7: The conducted power measurement results for GPRS and EGPRS

•								
GSM 850	Measured Power (dBm)			calculation	Avera	ged Power	(dBm)	
GPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.37	32.31	32.38	-9.03dB	23.34	23.28	23.35	
2 Txslots	28.97	28.93	29.03	-6.02dB	22.95	22.91	23.01	
3Txslots	27.01	26.98	27.03	-4.26dB	22.75	22.72	22.77	
4 Txslots	26.98	26.97	27.03	-3.01dB	23.97	23.96	24.02	

GSM 850	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.35	32.33	32.40	-9.03dB	23.32	23.30	23.37
2 Txslots	28.99	28.94	29.04	-6.02dB	22.97	22.92	23.02
3Txslots	27.03	26.99	27.06	-4.26dB	22.77	22.73	22.80
4 Txslots	27.01	26.97	27.05	-3.01dB	24.00	23.96	24.04
PCS1900	Measured Power (dBm)			calculation	Averaged Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.15	29.35	29.41	-9.03dB	20.12	20.32	20.38
2 Txslots	28.23	28.45	28.49	-6.02dB	22.21	22.43	22.47
3Txslots	26.54	26.70	26.74	-4.26dB	22.28	22.44	22.48
4 Txslots	24.75	24.92	24.89	-3.01dB	21.74	21.91	21.88
PCS1900	Meası	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.14	29.37	29.44	-9.03dB	20.11	20.34	20.41
2 Txslots	28.26	28.46	28.51	-6.02dB	22.24	22.44	22.49
3Txslots	26.56	26.73	26.76	-4.26dB	22.30	22.47	22.50
4 Txslots	24.76	24.91	24.90	-3.01dB	21.75	21.90	21.89

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GSM850 and 3Txslots for PCS1900.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

11.3 WCDMA Measurement result

Table 11.8: The conducted Power for WCDMA1700/1900

Item	band		FDDIV result	
item	ARFCN	1513 (1752.6MHz)	1412 (1732.4MHz)	1312 (1712.4MHz)
WCDMA	\	23.10	23.06	23.03
	1	21.55	21.49	21.54
ПСОВУ	2	21.54	21.48	21.51
HSDPA	3	21.07	20.97	21.03
	4	21.05	20.94	21.06

	1	19.89	19.86	19.80
	2	19.90	19.88	19.83
HSUPA	3	20.97	20.94	20.83
	4	19.36	19.38	19.25
	5	21.91	21.94	21.85
HSPA+	1	19.55	19.63	19.52
	1	21.58	21.48	21.57
DC-HSDPA	2	21.57	21.45	21.54
(Cat 24)	3	21.06	20.95	21.05
	4	21.03	20.96	21.04
Item	band		FDDII result	
item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)
WCDMA	١	22.66	22.79	22.71
	1	21.88	22.08	21.87
HCDDA	2	21.87	22.05	21.82
HSDPA	3	21.44	21.59	21.38
	4	21.38	21.55	21.34
	1	20.16	20.25	19.95
	2	20.17	20.22	19.95
HSUPA	3	21.23	21.22	20.97
	4	19.65	19.68	19.42
	5	22.21	22.27	21.99
HSPA+	1	19.59	19.82	19.56
	1	21.93	22.06	21.88
DC-HSDPA	2	21.96	22.04	21.85
(Cat 24)	3	21.43	21.59	21.34
	4	21.40	21.54	21.36

Note1: DC-HSDPA power measurements have been performed in accordance with methods agreed with the FCC via PBA.

Note2: HSDPA&HSUPA&HSPA+&DC-HSDPA body SAR for WCDMA1700/1900 are not required, because maximum average output power of each RF channel with HSDPA&HSUPA&HSPA+&DC-HSDPA active is not 1/4 dB higher than that measured without HSDPA&HSUPA&HSPA+&DC-HSDPA and the maximum SAR for 12.2 kbps RMC is \leq 75% of the SAR limit.

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

	l <u> </u>	Conducted Daylor (dDm)	
Mode		Conducted Power (dBm)	
Wode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)
GFSK	6.71	6.55	6.77
EDR2M-4_DQPSK	6.51	6.38	6.56
EDR3M-8DPSK	6.85	6.73	6.89

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	10.22	10.2	10.34	10.21
6	11.66	11.61	11.7	11.65
11	11.44	11.46	11.68	11.48

802.11g (dBm)

Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
1	10.12	10.12	10.11	10.14	10.07	10.12	10.13	10.2
6	11.67	11.39	11.42	11.39	11.37	11.48	11.43	11.42
11	12.13	12.14	12.22	12.27	12.15	12.19	12.18	12.47

802.11n (dBm) - HT20

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	12.8	12.81	12.82	12.84	12.85	12.87	12.79	12.8
6	13.97	13.9	14	14.08	14	14.18	14.02	13.92
11	14.66	14.6	14.69	14.62	14.68	14.8	14.71	14.69

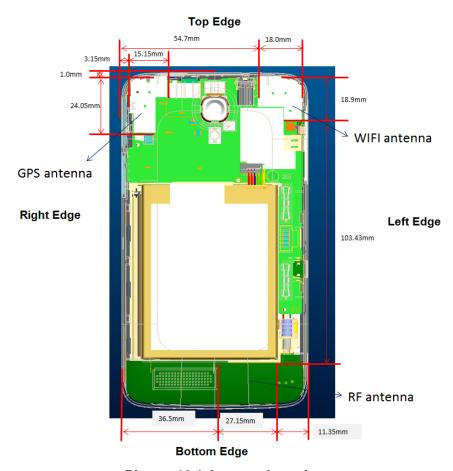
802.11n (dBm) - HT40

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
3	10.95	11.01	11.02	10.97	11.03	10.95	11.04	11.2
6	12.05	11.98	11.91	11.96	11.91	11.84	12	11.8
9	12.32	12.4	12.45	12.45	12.43	12.42	12.51	12.7

SAR is not required for 802.11g channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate.

According to the above conducted power, the EUT should be tested for four conditions as below:

- 1. 802.11b, 1Mbps, channel 6
- 2. 802.11g, 6Mbps, channel 11
- 3. 802.11g, 54Mbps, channel 11
- 4. 802.11n-HT20, MCS0, channel 11



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions								
Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Main antenna Yes Yes Yes No Yes							
WLAN Yes Yes No Yes No								

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Appendix A

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 12.2 Power Thresholds

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz)	SAR test exclusion	RF output power		SAR test
Barid/Niode	r(GHZ)	threshold (mW)	dBm	mW	exclusion
Bluetooth	2.441	19	6.89	4.89	Yes
2.4GHz WLAN 802.11 b	2.45	19	14.8	30.20	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported	Right hand, Touch cheek	0.56	0.16	0.72
SAR value for Head	Right hand, fouch cheek	ek 0.56	0.16	0.72
Highest reported	Rear	1.12	0.06	1.18
SAR value for Body	Bottom	1.17	/	1

Table 13.2: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum	
Highest reported	Right hand, Touch cheek	0.56	0.12	0.68	
SAR value for Head	rtight hand, roden encek	0.50	0.12	0.00	
Highest reported	Bottom	1.17	0.12	1.29	
SAR value for Body	Dottom	1.17	0.12	1.23	

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Mode/Band	F (GHz)	Distance (mm)	Upper limit of power *		Estimated _{1g}
	r (GHZ)		dBm	mW	(W/kg)
Bluetooth	2.441	10	7.5	5.62	0.12

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850	1:2
GPRS&EGPRS for GSM1900	1:2.67
WCDMA850/1900 and WiFi	1:1

14.1 SAR results for Fast SAR

We'll perform the head measurement in all bands with red rear cover and retest on highest value point for other three conditions (red rear cover + flip cover, black rear cover, black rear cover + flip cover). Then, repeat the measurement in the Body test.

Table 14.2: SAR Values (GSM 850 MHz Band - Head) with red rear cover

				Ambient	Temperature:	22.8°C L	iquid Tempera	ture: 22.3 °C			
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	1	Side			Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	/	32.35	33.3	0.228	0.28	0.335	0.42	0.05
836.6	190	Left	Touch	/	32.31	33.3	0.283	0.36	0.372	0.47	0.17
824.2	128	Left	Touch	/	32.37	33.3	0.227	0.28	0.332	0.41	0.18
848.8	251	Left	Tilt	/	32.35	33.3	0.182	0.23	0.262	0.33	0.05
836.6	190	Left	Tilt	/	32.31	33.3	0.160	0.20	0.229	0.29	0.10
824.2	128	Left	Tilt	/	32.37	33.3	0.165	0.20	0.236	0.29	0.11
848.8	251	Right	Touch	/	32.35	33.3	0.241	0.30	0.350	0.44	0.07
836.6	190	Right	Touch	Fig.1	32.31	33.3	0.341	0.43	0.444	0.56	0.08
824.2	128	Right	Touch	/	32.37	33.3	0.253	0.31	0.367	0.45	0.19
848.8	251	Right	Tilt	/	32.35	33.3	0.176	0.22	0.252	0.31	-0.19
836.6	190	Right	Tilt	/	32.31	33.3	0.150	0.19	0.216	0.27	0.10
824.2	128	Right	Tilt	/	32.37	33.3	0.192	0.24	0.276	0.34	0.06

Table 14.3: SAR Values (GSM 850 MHz Band - Head) with other conditions

				Ambient Te	emperature: 22	2.8°C Liqui	id Temperatur	e: 22.3 °C			
Frequ	ency		Test		Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	condition	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	Right	Touch	1	32.31	33.3	0.295	0.37	0.428	0.54	0.15
836.6	190	Right	Touch	2	32.31	33.3	0.296	0.37	0.429	0.54	0.13
836.6	190	Right	Touch	3	32.31	33.3	0.291	0.37	0.391	0.49	0.11

Note: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.4: SAR Values (GSM 850 MHz Band - Body) with red rear cover

			Ar	mbient Te	mperature: 22	8°C Liqui	id Temperature	: 22.3 °C			
Frequ	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	,	(number of	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	NO.	(dBm)	Power (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (4)	Front	/	26.98	27.2	0.732	0.77	0.936	0.98	-0.02
836.6	190	GPRS (4)	Front	/	26.97	27.2	0.783	0.83	0.994	1.05	0.08
824.2	128	GPRS (4)	Front	/	27.03	27.2	0.760	0.79	0.961	1.00	0.07
848.8	251	GPRS (4)	Rear	/	26.98	27.2	0.801	0.84	1.03	1.08	0.01
836.6	190	GPRS (4)	Rear	Fig.2	26.97	27.2	0.828	0.87	1.06	1.12	0.03
824.2	128	GPRS (4)	Rear	/	27.03	27.2	0.779	0.81	0.997	1.04	0.04
836.6	190	GPRS (4)	Left	/	26.97	27.2	0.436	0.46	0.617	0.65	0.07
848.8	251	GPRS (4)	Right	/	26.98	27.2	0.603	0.63	0.888	0.93	0.05
836.6	190	GPRS (4)	Right	/	26.97	27.2	0.640	0.67	0.913	0.96	0.07
824.2	128	GPRS (4)	Right	/	27.03	27.2	0.579	0.60	0.851	0.88	0.17
836.6	190	GPRS (4)	Bottom	/	26.97	27.2	0.172	0.18	0.277	0.29	0.16
836.6	190	EGPRS (4)	Rear	/	26.97	27.2	0.823	0.87	1.05	1.11	0.03
836.6	190	Speech	Rear	1	32.31	33.3	0.266	0.08	0.378	0.12	0.03
030.0	190	Speech	Headset1		3∠.31	33.3	0.200	0.08	0.378	0.12	-0.03
836.6	190	Spaach	Rear	,	22.24	22.2	0.202	0.00	0.420	0.12	0.14
0.00.0	190	Speech	Headset2	/	32.31	33.3	0.303	0.09	0.428	0.13	0.14

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: Headset1 is CCB3001A14C1, Headset2 is CCB3001A14C2.

Table 14.5: SAR Values (GSM 850 MHz Band - Body) with other conditions

			Aı	mbient Temp	erature: 22.8°	C Liquid To	emperature: 2	22.3 °C			
Frequ	ency	Mode (number of	Test	condition	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	timeslots)	Position	Condition	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (4)	Rear	1	26.97	27.2	0.795	0.84	1.01	1.06	-0.14
836.6	190	GPRS (4)	Rear	2	26.97	27.2	0.820	0.86	1.05	1.11	0.01
836.6	190	GPRS (4)	Rear	3	26.97	27.2	0.774	0.82	0.992	1.05	-0.02

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.6: SAR Values (GSM 1900 MHz Band - Head) with red rear cover

Ambient Temperature: 22.6 °C Liquid Temperature: 22.1 °C Conducted Measured Reported Reporte											
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		FUSITION	NO.	(dBm)	Fower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	/	29.21	30.3	0.0820	0.11	0.143	0.18	-0.11
1880	661	Left	Touch	/	29.43	30.3	0.0941	0.11	0.163	0.20	0.05
1850.2	512	Left	Touch	Fig.3	29.48	30.3	0.102	0.12	0.168	0.20	0.14
1909.8	810	Left	Tilt	/	29.21	30.3	0.0493	0.06	0.0889	0.11	0.13
1880	661	Left	Tilt	/	29.43	30.3	0.0504	0.06	0.0898	0.11	0.19
1850.2	512	Left	Tilt	/	29.48	30.3	0.0487	0.06	0.0855	0.10	-0.12
1909.8	810	Right	Touch	/	29.21	30.3	0.0850	0.11	0.145	0.19	-0.15
1880	661	Right	Touch	/	29.43	30.3	0.0906	0.11	0.153	0.19	0.09
1850.2	512	Right	Touch	/	29.48	30.3	0.103	0.12	0.166	0.20	0.18
1909.8	810	Right	Tilt	/	29.21	30.3	0.0486	0.06	0.0835	0.11	0.02
1880	661	Right	Tilt	/	29.43	30.3	0.0577	0.07	0.0986	0.12	0.05
1850.2	512	Right	Tilt	/	29.48	30.3	0.0590	0.07	0.100	0.12	0.07

Table 14.7: SAR Values (GSM 1900 MHz Band - Head) with other conditions

				Ambient Te	mperature: 22	2.6°C Liqu	id Temperatu	re: 22.1 °C			
Freque	ency	0: 1	Test	Pre .	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	condition	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1850.2	512	Left	Touch	1	29.48	30.3	0.0822	0.10	0.134	0.16	0.16
1850.2	512	Left	Touch	2	29.48	30.3	0.101	0.12	0.167	0.20	-0.17
1850.2	512	Left	Touch	3	29.48	30.3	0.0801	0.10	0.129	0.16	0.14

Note: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.8: SAR Values (GSM 1900 MHz Band - Body) with red rear cover

			Amb	ient Temp	erature: 22.6°	C Liquid T	emperature:	22.1 °C			
Frequ	encv	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
- 1	, 	(number of			Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	GPRS (3)	Front	/	26.70	27	0.388	0.44	0.670	0.75	0.02
1880	661	GPRS (3)	Rear	/	26.70	27	0.410	0.46	0.681	0.76	-0.02
1880	661	GPRS (3)	Left	/	26.70	27	0.136	0.15	0.229	0.26	0.03
1880	661	GPRS (3)	Right	/	26.70	27	0.0957	0.11	0.155	0.17	0.09
1909.8	810	GPRS (3)	Bottom	Fig.4	26.54	27	0.513	0.60	0.917	1.07	0.00
1880	661	GPRS (3)	Bottom	/	26.70	27	0.472	0.53	0.879	0.99	-0.04
1850.2	512	GPRS (3)	Bottom	/	26.74	27	0.460	0.51	0.851	0.95	0.05
1909.8	810	EGPRS (3)	Bottom	/	26.56	27	0.485	0.56	0.862	1.00	0.01
1880	661	EGPRS (3)	Bottom	/	26.73	27	0.441	0.49	0.832	0.93	-0.11
1850.2	512	EGPRS (3)	Bottom	/	26.76	27	0.420	0.46	0.789	0.87	0.03

1909.8	810	Speech	Bottom Headset1	/	29.21	30.3	0.326	0.42	0.620	0.80	0.02
1909.8	810	Speech	Bottom Headset2	/	29.21	30.3	0.279	0.36	0.521	0.67	-0.02

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: Headset1 is CCB3001A14C1, Headset2 is CCB3001A14C2.

Table 14.9: SAR Values (GSM 1900 MHz Band - Body) with other conditions

			An	nbient Temp	erature: 22.6°	C Liquid T	emperature: 2	22.1 °C			
Freque	ency	Mode	Test		Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		(number of		condition	Power	· ·	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (3)	Bottom	1	26.54	27	0.505	0.59	0.903	1.05	0.15
1909.8	810	GPRS (3)	Bottom	2	26.54	27	0.482	0.56	0.867	1.01	-0.05
1909.8	810	GPRS (3)	Bottom	3	26.54	27	0.468	0.54	0.835	0.97	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.10: SAR Values (WCDMA 1700 MHz Band - Head) with red rear cover

		Ambient Temperature: 22.7 °C Liquid Temperature: 22.2 °C Conducted Measured Reported Reported Power										
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power	
		Side	Position		Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1752.6	1513	Left	Touch	/	23.10	23.7	0.199	0.23	0.332	0.38	0.18	
1732.4	1412	Left	Touch	/	23.06	23.7	0.238	0.28	0.377	0.44	-0.18	
1712.4	1312	Left	Touch	/	23.03	23.7	0.183	0.21	0.305	0.36	0.14	
1752.6	1513	Left	Tilt	/	23.10	23.7	0.0836	0.10	0.146	0.17	0.10	
1732.4	1412	Left	Tilt	/	23.06	23.7	0.0961	0.11	0.165	0.19	0.09	
1712.4	1312	Left	Tilt	/	23.03	23.7	0.0720	80.0	0.121	0.14	0.12	
1752.6	1513	Right	Touch	/	23.10	23.7	0.219	0.25	0.360	0.41	-0.13	
1732.4	1412	Right	Touch	Fig.5	23.06	23.7	0.302	0.35	0.478	0.55	0.18	
1712.4	1312	Right	Touch	/	23.03	23.7	0.222	0.26	0.362	0.42	0.05	
1752.6	1513	Right	Tilt	/	23.10	23.7	0.0884	0.10	0.155	0.18	0.06	
1732.4	1412	Right	Tilt	/	23.06	23.7	0.105	0.12	0.184	0.21	0.15	
1712.4	1312	Right	Tilt	/	23.03	23.7	0.0794	0.09	0.138	0.16	0.11	

Table 14.11: SAR Values (WCDMA 1700 MHz Band - Head) with other conditions

					(,					
			·	Ambient Ter	nperature: 22.	7°C Liquid	d Temperatur	e: 22.2°C					
Frequ	Frequency Test Conducted Max. tune-up Measured Reported Reported Powe												
	, 	Side		condition	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	r Drift		
MHz	Ch.		Position		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1732.4	1412	Right	Touch	1	23.06	23.7	0.220	0.25	0.347	0.40	0.16		
1732.4	1412	Right	Touch	2	23.06	23.7	0.295	0.34	0.469	0.54	-0.05		
1732.4	1412	Right	Touch	3	23.06	23.7	0.215	0.25	0.338	0.39	0.11		

Note: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.12: SAR Values (WCDMA 1700 MHz Band - Body) with red rear cover

			Ambie	nt Temperature	e: 22.7°C	Liquid Tempe	rature: 22.2°	С		
Frequ	encv	Test	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
			Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1752.6	1513	Front	/	23.10	23.7	0.402	0.46	0.678	0.78	-0.03
1732.4	1412	Front	Fig.6	23.06	23.7	0.571	0.66	0.938	1.09	-0.16
1712.4	1312	Front	/	23.03	23.7	0.361	0.42	0.600	0.70	0.01
1752.6	1513	Rear	/	23.10	23.7	0.399	0.46	0.675	0.78	-0.02
1732.4	1412	Rear	/	23.06	23.7	0.470	0.54	0.803	0.93	0.04
1712.4	1312	Rear	/	23.03	23.7	0.372	0.43	0.623	0.73	-0.00
1732.4	1412	Left	/	23.06	23.7	0.123	0.14	0.212	0.25	0.05
1732.4	1412	Right	/	23.06	23.7	0.100	0.12	0.161	0.19	0.17
1732.4	1412	Bottom	/	23.06	23.7	0.429	0.50	0.730	0.85	0.02
1732.4	1412	Front	,	23.06	23.7	0.407	0.56	0.709	0.02	-0.10
1732.4	1412	Headset1	/	23.00	23.7	0.487	0.56	0.798	0.92	-0.10
1732.4	1412	Front	/	23.06	23.7	0.506	0.59	0.832	0.96	0.03
1132.4	1412	Headset2	,	23.00	23.1	0.500	บ.อฮ	0.032	0.30	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: Headset1 is CCB3001A14C1, Headset2 is CCB3001A14C2.

Table 14.13: SAR Values (WCDMA 1700 MHz Band - Body) with other conditions

				•			,			
			Ambier	nt Temperature	e: 22.7°C	Liquid Tempe	rature: 22.2°	С		
Frequ	encv	Took		Conducted	May turn a un	Measured	Reported	Measured	Reported	Power
11094		Test	condition	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1732.4	1412	Front	1	23.06	23.7	0.531	0.62	0.871	1.01	-0.16
1732.4	1412	Front	2	23.06	23.7	0.535	0.62	0.921	1.07	-0.12
1732.4	1412	Front	3	23.06	23.7	0.434	0.50	0.701	0.81	-0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.14: SAR Values (WCDMA 1900 MHz Band - Head) with red rear cover

				Ambient	Temperature:	22.6°C Li	quid Tempera	ture: 22.1 °C			
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
IVII IZ	CII.				(dBm)	,	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Left	Touch	Fig.7	22.66	23.0	0.176	0.19	0.290	0.31	0.14
1880	9400	Left	Touch	/	22.79	23.0	0.143	0.15	0.239	0.25	0.11
1852.4	9262	Left	Touch	/	22.71	23.0	0.134	0.14	0.225	0.24	0.11
1907.6	9538	Left	Tilt	/	22.66	23.0	0.101	0.11	0.183	0.20	0.13
1880	9400	Left	Tilt	/	22.79	23.0	0.0862	0.09	0.155	0.16	0.16
1852.4	9262	Left	Tilt	/	22.71	23.0	0.0816	0.09	0.144	0.15	0.16
1907.6	9538	Right	Touch	/	22.66	23.0	0.159	0.17	0.259	0.28	-0.18
1880	9400	Right	Touch	/	22.79	23.0	0.138	0.14	0.231	0.24	0.18

1852.4	9262	Right	Touch	/	22.71	23.0	0.133	0.14	0.222	0.24	0.11
1907.6	9538	Right	Tilt	/	22.66	23.0	0.0935	0.10	0.165	0.18	0.07
1880	9400	Right	Tilt	/	22.79	23.0	0.0884	0.09	0.155	0.16	0.11
1852.4	9262	Right	Tilt	/	22.71	23.0	0.0865	0.09	0.150	0.16	0.05

Table 14.15: SAR Values (WCDMA 1900 MHz Band - Head) with other conditions

				Ambient Ter	nperature: 22.	6°C Liquio	d Temperatur	e: 22.1 °C			
Frequ	ency	0.1	Test	12.0	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	condition	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1907.6	9538	Left	Touch	1	22.66	23.0	0.148	0.16	0.242	0.26	0.18
1907.6	9538	Left	Touch	2	22.66	23.0	0.177	0.19	0.289	0.31	0.15
1907.6	9538	Left	Touch	3	22.66	23.0	0.143	0.15	0.229	0.25	0.14

Note: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.16: SAR Values (WCDMA 1900 MHz Band - Body) with red rear cover

			Ambier	nt Temperature	e: 22.6 °C L	iquid Tempe	rature: 22.1 °C	2		
Frequ	encv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	FUSILIUIT	NO.	(dBm)	Fower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Front	/	22.66	23.0	0.459	0.50	0.811	0.88	-0.16
1880	9400	Front	/	22.79	23.0	0.469	0.49	0.822	0.86	-0.00
1852.4	9262	Front	/	22.71	23.0	0.503	0.54	0.872	0.93	-0.01
1907.6	9538	Rear	/	22.66	23.0	0.572	0.62	0.984	1.06	-0.02
1880	9400	Rear	/	22.79	23.0	0.584	0.61	0.995	1.04	-0.02
1852.4	9262	Rear	/	22.71	23.0	0.581	0.62	0.975	1.04	-0.01
1880	9400	Left	/	22.79	23.0	0.154	0.16	0.267	0.28	0.06
1880	9400	Right	/	22.79	23.0	0.108	0.11	0.179	0.19	0.07
1907.6	9538	Bottom	/	22.66	23.0	0.584	0.63	1.08	1.17	0.12
1880	9400	Bottom	/	22.79	23.0	0.58	0.61	1.06	1.11	0.18
1852.4	9262	Bottom	Fig.8	22.71	23.0	0.598	0.64	1.09	1.17	0.15
1907.6	9538	Bottom Headset1	/	22.66	23.0	0.364	0.39	0.655	0.71	-0.04
1880	9400	Bottom Headset1	/	22.79	23.0	0.422	0.44	0.760	0.80	-0.10
1852.4	9262	Bottom Headset1	/	22.71	23.0	0.434	0.46	0.779	0.83	0.09
1907.6	9538	Bottom Headset2	/	22.66	23.0	0.492	0.53	0.914	0.99	-0.04
1880	9400	Bottom Headset2	/	22.79	23.0	0.507	0.53	0.935	0.98	-0.02
1852.4	9262	Bottom Headset2	/	22.71	23.0	0.535	0.57	0.984	1.05	-0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: Headset1 is CCB3001A14C1, Headset2 is CCB3001A14C2.

Table 14.17: SAR Values (WCDMA 1900 MHz Band - Body) with other conditions

			Ambien	t Temperature	e: 22.6°C L	iquid Tempe	rature: 22.1°C	2		
Frequ	encv	Test		Conducted	May tung up	Measured	Reported	Measured	Reported	Power
			Condition	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	n. Position		(dBm) Power (dBm)		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4	9262	Bottom	1	22.71	23.0	0.562	0.60	1.03	1.10	0.08
1852.4	9262	Bottom	2	22.71	23.0	0.576	0.62	1.05	1.12	0.02
1852.4	9262	Bottom	3	22.71	23.0	0.560	0.60	1.02	1.09	0.07

Note: condition1 is red rear cover + flip cover, condition2 is black rear cover, condition3 is black rear cover + flip cover

Table 14.18: SAR Values (Wi-Fi 802.11b 1Mbps - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	ency	C: de	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	Left	Touch	/	11.66	12	0.0481	0.05	0.09	0.10	0.14
2437	6	Left	Tilt	/	11.66	12	0.0354	0.04	0.0701	80.0	0.18
2437	6	Right	Touch	Fig.9	11.66	12	0.068	0.07	0.144	0.16	0.18
2437	6	Right	Tilt	/	11.66	12	0.0573	0.06	0.128	0.14	0.11

Table 14.19: SAR Values (Wi-Fi 802.11b 1Mbps - Body) with red rear cover

		iu	DIC 17.1	J. OAIT Vai	ucs (11 1 1 1 00	Z.TID TMDP	3 Dody) W	Titil I Ca I C	ii covci	
			Aml	oient Tempera	ture: 22.5°C	Liquid Temp	erature: 22.0	°C		
Frequ	iencv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	<i>,</i>			Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Front	/	11.66	12	0.0216	0.02	0.0376	0.04	-0.15
2437	6	Rear	Fig.10	11.66	12	0.027	0.03	0.049	0.05	0.14
2437	6	Left	/	11.66	12	0.0205	0.02	0.0403	0.04	0.12
2437	6	Тор		11.66	12	0.0100	0.01	0.0195	0.02	0.15

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.20: SAR Values (Wi-Fi 802.11g 6Mbps - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side		No.	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Left	Touch	/	12.13	12.5	0.0416	0.05	0.0801	0.09	-0.02
2462	11	Left	Tilt	/	12.13	12.5	0.0285	0.03	0.0554	0.06	0.14
2462	11	Right	Touch	Fig.11	12.13	12.5	0.069	80.0	0.148	0.16	0.15
2462	11	Right	Tilt	/	12.13	12.5	0.0522	0.06	0.116	0.13	0.16

Table 14.21: SAR Values (Wi-Fi 802.11g 6Mbps - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5°C	Liquid Temp	perature: 22.0	0°C		
Frequ	iencv	Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	I		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Front	/	12.13	12.5	0.0208	0.02	0.0373	0.04	0.10
2462	11	Rear	Fig.12	12.13	12.5	0.025	0.03	0.046	0.05	0.18
2462	11	Left	/	12.13	12.5	0.0204	0.02	0.0399	0.04	0.15
2462	11	Тор		12.13	12.5	0.00938	0.01	0.0180	0.02	0.19

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.22: SAR Values (Wi-Fi 802.11g 54Mbps - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	ency	0:4-	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2462	11	Left	Touch	/	12.47	12.5	0.0232	0.02	0.0444	0.04	-0.11
2462	11	Left	Tilt	/	12.47	12.5	0.0173	0.02	0.0330	0.03	0.18
2462	11	Right	Touch	Fig.13	12.47	12.5	0.049	0.05	0.104	0.10	0.13
2462	11	Right	Tilt	/	12.47	12.5	0.0328	0.03	0.0701	0.07	0.15

Table 14.23: SAR Values (Wi-Fi 802.11g 54Mbps - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5 °C	Liquid Temp	perature: 22.0)°C		
Frequ	iencv	Test	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	, I	Position	Figure No.	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	POSITION	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Front	/	12.47	12.5	0.0103	0.01	0.0204	0.02	0.16
2462	11	Rear	Fig.14	12.47	12.5	0.019	0.02	0.036	0.04	0.13
2462	11	Left	/	12.47	12.5	0.0116	0.01	0.0227	0.02	0.19
2462	11	Тор		12.47	12.5	0.00640	0.01	0.0174	0.02	-0.12

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.24: SAR Values (Wi-Fi 802.11n-HT20 MCS0 - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	MHz Ch. Side			Power	_	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Left	Touch	/	14.66	15	0.0305	0.03	0.0593	0.06	0.03
2462	11	Left	Tilt	/	14.66	15	0.0271	0.03	0.0535	0.06	0.16
2462	11	Right	Touch	Fig.15	14.66	15	0.070	0.08	0.150	0.16	0.14
2462	11	Right	Tilt	/	14.66	15	0.0521	0.06	0.114	0.12	0.13

Table 14.25: SAR Values (Wi-Fi 802.11n-HT20 MCS0 - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5°C	Liquid Temp	perature: 22.0)°C		
Frequ	iencv	Toot	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	, 	Test Figure Position No.	Power	Max. tune-up Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	INO.	(dBm)	Power (ubili)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Front	/	14.66	15	0.0195	0.02	0.0341	0.04	0.00
2462	11	Rear	Fig.16	14.66	15	0.032	0.03	0.059	0.06	0.11
2462	11	Left	/	14.66	15	0.0184	0.02	0.0363	0.04	0.11
2462	11	Тор		14.66	15	0.00964	0.01	0.0188	0.02	0.11

Note1: The distance between the EUT and the phantom bottom is 10mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.26: SAR Values (GSM 850 MHz Band - Head) with red rear cover

				Ambient	Temperature:	: 22.8°C L	iquid Tempera	ture: 22.3 °C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	Right	Touch	Fig.1	32.31	33.3	0.341	0.43	0.444	0.56	0.08

Table 14.27: SAR Values (GSM 850 MHz Band - Body) with red rear cover

			Ar	mbient Te	mperature: 22	2.8°C Liqui	id Temperature	e: 22.3 °C			
Frequ	encv	Mode	Test	Figure.	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	I	(number of		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (4)	Rear	Fig.2	26.97	27.2	0.828	0.87	1.06	1.12	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.28: SAR Values (GSM 1900 MHz Band - Head) with red rear cover

				Ambient	Temperature:	22.6 °C L	iquid Tempera	ture: 22.1 °C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side			Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1850.2	512	Left	Touch	Fig.3	29.48	30.3	0.102	0.12	0.168	0.20	0.14

Table 14.29: SAR Values (GSM 1900 MHz Band - Body) with red rear cover

			Amb	ient Temp	erature: 22.6°	C Liquid T	emperature:	22.1 °C			
Frequ	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1a)	Power Drift
MHz	MHz Ch. (number of Position No.		No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
1909.8	810	GPRS (3)	Bottom	0.513	0.60	0.917	1.07	0.00			

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.30: SAR Values (WCDMA 1700 MHz Band - Head) with red rear cover

			A	Ambient T	emperature: 2	2.7°C Liqı	uid Temperatu	ıre: 22.2°C			
Frequ	ency		Toot	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	ī	Side	Side Test Position	Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1732.4 1412 Right Touch Fig.5 23.06 23.7 0.302 0.35 0.478 0.55 0.18										0.18	

Table 14.31: SAR Values (WCDMA 1700 MHz Band - Body) with red rear cover

			Ambie	nt Temperature	e: 22.7°C	Liquid Tempe	rature: 22.2°	С		
Frequ	Frequency Test Figure Conducted Max. tune						Reported	Measured	Reported	Power
	,		Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1732.4 1412 Front Fig.6 23.06 23						0.571	0.66	0.938	1.09	-0.16

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.32: SAR Values (WCDMA 1900 MHz Band - Head) with red rear cover

				Ambient	Temperature:	22.6 °C Li	quid Tempera	ature: 22.1 °C			
Frequ MHz	ency Ch.	Side	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1907.6 9538 Left Touch Fig.7 22.66					22.66	23.0	0.176	0.19	0.290	0.31	0.14

Table 14.33: SAR Values (WCDMA 1900 MHz Band - Body) with red rear cover

				a.a.s. (11 C.			Cay, man			
			Ambier	nt Temperature	e: 22.6 °C L	iquid Tempe	rature: 22.1°C			
Frequ	encv	Test	Figuro	Conducted	May tung un	Measured	Reported	Measured	Reported	Power
			Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4	9262	Bottom	Fig.8	22.71	23.0	0.598	0.64	1.09	1.17	0.15

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.34: SAR Values (Wi-Fi 802.11b 1Mbps - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	ency	C:de	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	Right	Touch	Fig.9	11.66	12	0.068	0.07	0.144	0.16	0.18

Table 14.35: SAR Values (Wi-Fi 802.11b 1Mbps - Body) with red rear cover

				Aml	oient Tempera	ture: 22.5°C	Liquid Temperature: 22.0 °C					
	Frequency		Toot	Figure	Conducted		Measured	Reported	Measured	Reported	Power	
ļ			Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
	MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
	2437	6	Rear	Fig.10	11.66	12	0.027	0.03	0.049	0.05	0.14	

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.36: SAR Values (Wi-Fi 802.11g 6Mbps - Head) with red rear cover

	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C												
Fred	Frequency		Toot	Figure	Conducted		Measured	Reported	Measured	Reported	Power		
	· ,	Side	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.			Position No.	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	2462 11 Right		Touch	Fig.11	12.13	12.5	0.069	0.08	0.148	0.16	0.15		

Table 14.37: SAR Values (Wi-Fi 802.11g 6Mbps - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5°C	Liquid Temperature: 22.0 °C					
Frequ	uency	Test Figure		Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1a)	Power Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	11	Rear	Fig.12	12.13	12.5	0.025	0.03	0.046	0.05	0.18	

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.38: SAR Values (Wi-Fi 802.11g 54Mbps - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Frequ	Frequency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
2462	11	Right	Touch	Fig.13	12.47	12.5	0.049	0.05	0.104	0.10	0.13

Table 14.39: SAR Values (Wi-Fi 802.11g 54Mbps - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5°C	Liquid Temperature: 22.0 °C					
Frequ	iency	Test	Figure	Conducted Max. tune-up		Measured	Reported	Measured	Reported	Power	
<u> </u>	,	Position		Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	11	Rear	Fig.14	12.47	12.5	0.019	0.02	0.036	0.04	0.13	

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.40: SAR Values (Wi-Fi 802.11n-HT20 MCS0 - Head) with red rear cover

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	Frequency		Test	Figure	Conducted Max. tune-		Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		POSITION	NO.	(dBm)	Power (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Right	Touch	Fig.15	14.66	15	0.070	80.0	0.150	0.16	0.14

Table 14.41: SAR Values (Wi-Fi 802.11n-HT20 MCS0 - Body) with red rear cover

			Aml	oient Tempera	ture: 22.5°C	Liquid Temperature: 22.0 °C					
Fregu	uency	Toot	Figure 2	Conducted			Reported	Measured	Reported	Power	
	1	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	2 11 Rear Fig.16 14.66		15	0.032	0.03	0.059	0.06	0.11			

Note1: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body GSM 850 (1g)

Freque	ency	Tost	Spacing	Original	First	The	Second
MHz	Ch.	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
836.6	190	Rear	10	1.06	1.05	1.01	1

Table 15.2: SAR Measurement Variability for Body GSM 1900 (1g)

Freque	ncy	Toet	Spacing	Original	First	The	Second
MHz	Ch.	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1909.8	810	Bottom	10	0.917	0.916	1.00	1

Table 15.3: SAR Measurement Variability for Body WCDMA 1700 (1g)

Freque	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1732.4	1412	Front	10	0.938	0.932	1.01	1

Table 15.4: SAR Measurement Variability for Body WCDMA 1900 (1g)

Frequ	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1852.4	9262	Bottom	10	1.09	1.07	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

i Measurement Oi	icei la	illity for No	illiai SAK	16212	(JUUI	VIIIZ~	3 G 112	,	
Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedo
									m
surement system									
Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
		Test	sample related	i					
Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
		Phant	tom and set-u	p					
Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
	Error Description surement system Probe calibration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing Test sample positioning with respect to phantom shell Post-processing Test sample positioning With of output power Phantom uncertainty Drift of output power Phantom uncertainty Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity (target)	Error Description Surement system Probe calibration B Isotropy B Boundary effect Linearity Detection limit Readout electronics Response time B Integration time RF ambient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing B Post-processing A Device holder uncertainty Drift of output power Phantom uncertainty B Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity	Surement system Probe calibration B 5.5 Isotropy B 4.7 Boundary effect B 1.0 Linearity B 4.7 Detection limit B 1.0 Readout electronics B 0.3 Response time B 2.6 RF ambient conditions-noise B 0.8 Integration time B 2.6 RF ambient conditions-reflection B 0.4 Probe positioned mech. restrictions B 0.4 Probe positioning with respect to phantom shell B 2.9 phantom shell B 3.3 Device holder ancertainty B 3.3 Device holder ancertainty B 5.0 Phantom uncertainty B 4.0 Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity (target) Liquid permittivity (target) Liquid permittivity A 1.6	Surement system Probe calibration B 5.5 N Isotropy B 4.7 R Boundary effect B 1.0 R Linearity B 4.7 R Detection limit B 1.0 R Readout electronics B 0.3 R Response time B 0.8 R Integration time B 2.6 R RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing B 1.0 R Test sample positioning Device holder uncertainty Drift of output power Phantom uncertainty B 4.0 R Liquid conductivity (target) Liquid permittivity (and in the position in power Probe positioning Device holder A 2.06 N Readout electronics B 4.7 R B 5.0 R Post-processing B 0.4 R Post-processing B 1.0 R Test sample related Post-processing A 3.3 N Phantom uncertainty B 5.0 R Liquid permittivity (target) Liquid permittivity (and in the process of the position in position	Error Description Type Uncertainty Probably Distribution Distributio	Error Description Type Uncertainty value Probably Distribution Ig	Error Description Type Uncertainty value Probably Distribution Div. (Ci) (Ci) 10g 10g	Type	Probe Prob

Combined standard uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.25	9.12	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			18.5	18.2	

16.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)

16.	6.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)										
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Meas	surement system										
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	8	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8	
			Test	sample related	i						
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8	
			Phan	tom and set-u	p						
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8	
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8	
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.8	10.7	257
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.6	21.4	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type		Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	Measurement system										
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	80	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞	
			Test	sample related	l						
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	

	Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8	
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.1	9.95	257	
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.2	19.9		

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	Measurement system										
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞	

	Test sample related										
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			Phant	tom and set-uj)						
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞	
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.3	13.2	257	
_	nded uncertainty idence interval of	ι	$u_e = 2u_c$					26.6	26.4		

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	February 15, 2013	One year		
02	Power meter	NRVD	102083	Sontombor 11, 2012	One year		
03	Power sensor	NRV-Z5	100542	September 11, 2012	One year		
04	Signal Generator	E4438C	MY49070393	November 13, 2012	One Year		
05	Amplifier	VTL5400	0505	No Calibration Requested			
06	BTS	E5515C	MY48363198	July 11, 2012	One year		
07	E-field Probe	SPEAG EX3DV4	3846	December 20, 2012	One year		
08	DAE	SPEAG DAE4	771	November 20, 2012	One year		
09	Dipole Validation Kit	SPEAG D835V2	443	May 03, 2012	Three years		
10	Dipole Validation Kit	SPEAG D1750V2	1003	May 08, 2012	Three years		
11	Dipole Validation Kit	SPEAG D1900V2	541	May 09, 2012	Three years		
12	Dipole Validation Kit	SPEAG D2450V2	853	May 02, 2012	Three years		

^{***}END OF REPORT BODY***

ANNEX A Graph Results

850 Right Cheek Middle

Date: 2013-4-26

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919$ mho/m; $\epsilon r = 40.861$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Cheek Middle/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.459 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.109 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.540 W/kg

SAR(1 g) = 0.444 W/kg; SAR(10 g) = 0.341 W/kg

Maximum value of SAR (measured) = 0.463 W/kg

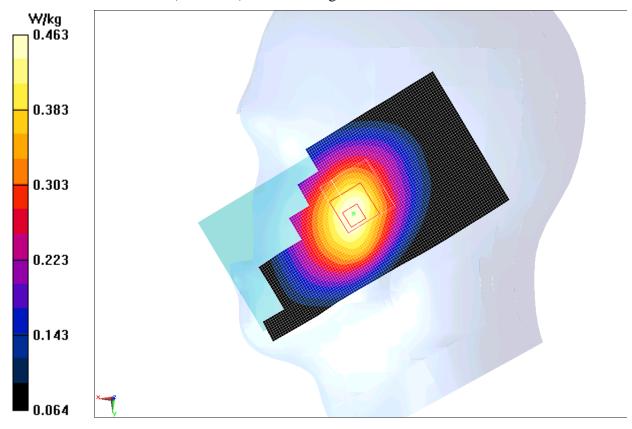


Fig.1 850MHz CH190

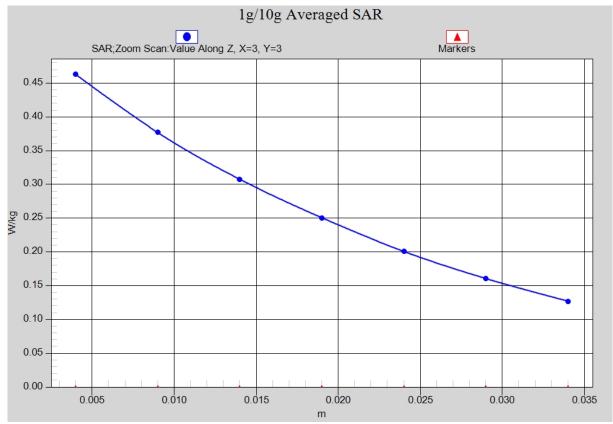


Fig. 1-1 Z-Scan at power reference point (850 MHz CH190)

850 Body Rear Middle

Date: 2013-4-26

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.981$ mho/m; $\epsilon r = 54.989$; $\rho = 0.981$ mho/m; $\epsilon r = 54.989$; $\epsilon r = 54.989$;

 1000 kg/m^3

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C

Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3846 ConvF(9.04, 9.04, 9.04)

Rear Middle/Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.12 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.055 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.828 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

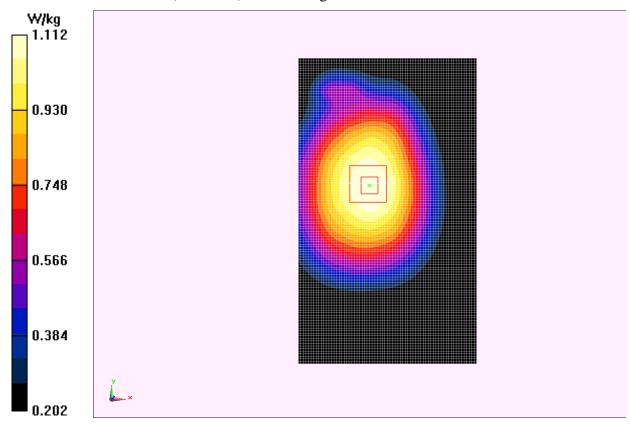


Fig.2 850 MHz CH190

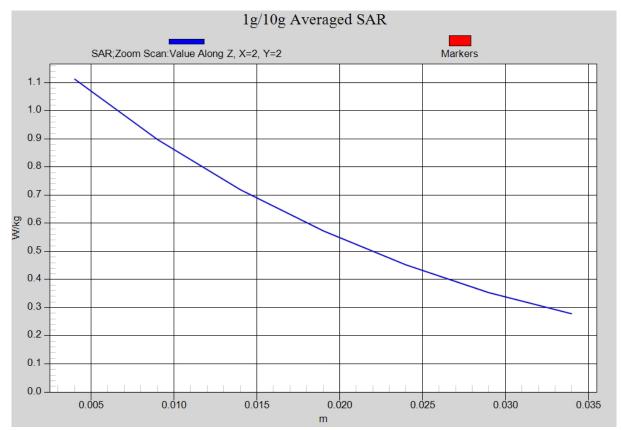


Fig. 2-1 Z-Scan at power reference point (850 MHz CH190)

1900 Left Cheek Low

Date: 2013-4-27

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.374$ mho/m; $\epsilon r = 39.537$; $\rho = 1.374$ mho/m; $\epsilon r = 39.537$; $\epsilon r = 39.537$

 1000 kg/m^3

Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(8.01, 8.01, 8.01)

Cheek Low/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.189 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.130 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.102 W/kg

Maximum value of SAR (measured) = 0.185 W/kg

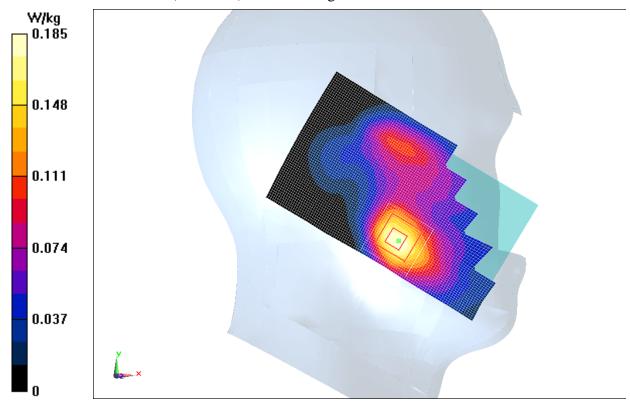


Fig.3 1900 MHz CH512

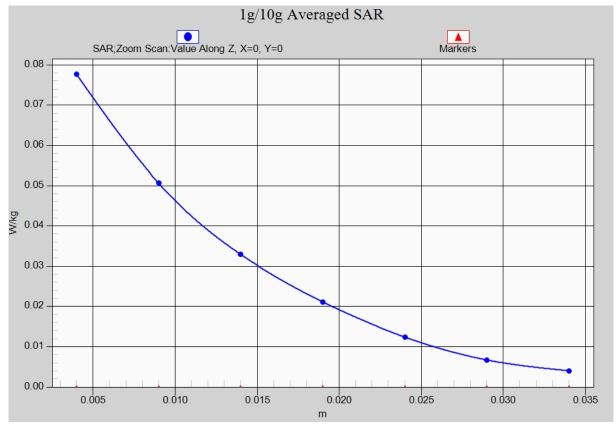


Fig. 3-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Bottom Edge High

Date: 2013-4-27

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon r = 52.406$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN3846 ConvF(7.37, 7.37, 7.37)

Bottom Edge High/Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.05 W/kg

Bottom Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.616 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.917 W/kg; SAR(10 g) = 0.513 W/kgMaximum value of SAR (measured) = 1.03 W/kg

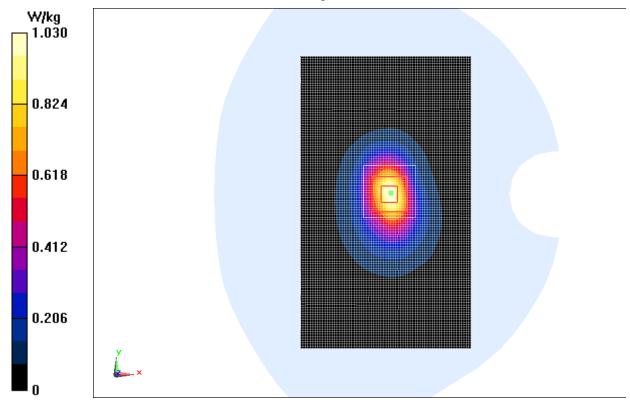


Fig.4 1900 MHz CH810

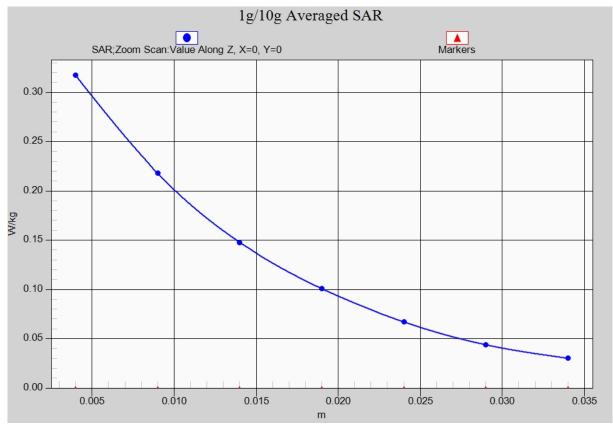


Fig.4-1 Z-Scan at power reference point (1900 MHz CH810)

WCDMA 1700 Right Cheek Middle

Date: 2013-4-28

Electronics: DAE4 Sn771 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.364$ mho/m; $\epsilon r = 40.806$; $\rho = 1.364$ mho/m; $\epsilon r = 40.806$; $\epsilon r = 40.806$

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.39, 8.39, 8.39)

Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.532 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.018 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.721 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.302 W/kg

Maximum value of SAR (measured) = 0.507 W/kg

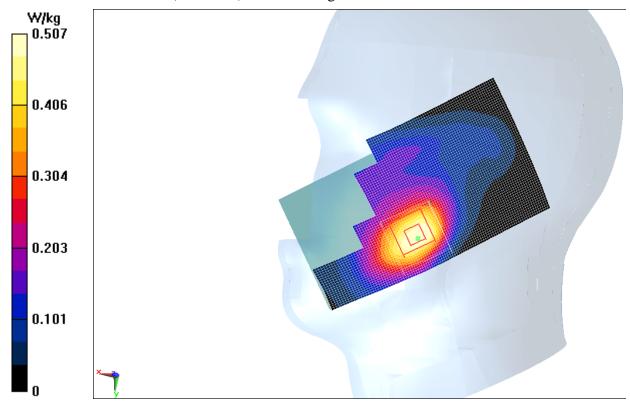


Fig.5 WCDMA 1700 CH1412

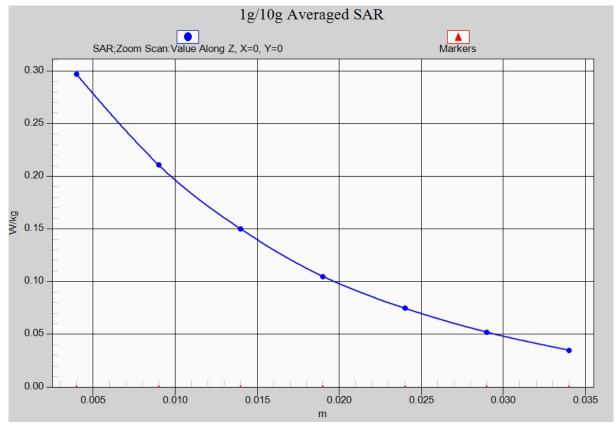


Fig. 5-1 Z-Scan at power reference point (WCDMA 1700 CH1412)

WCDMA 1700 Body Front Middle

Date: 2013-4-28

Electronics: DAE4 Sn771 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.465$ mho/m; $\epsilon r = 52.905$; $\rho = 1.465$ mho/m; $\epsilon r = 52.905$; $\epsilon = 1.465$ mho/m; $\epsilon r = 1.465$ mh

 1000 kg/m^3

Ambient Temperature: 22.7°C Liquid Temperature: 22.2°C

Communication System: WCDMA1700; Frequency: 1732.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.63, 7.63, 7.63)

Front Middle/Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Front Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.445 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.571 W/kg

Maximum value of SAR (measured) = 0.997 W/kg

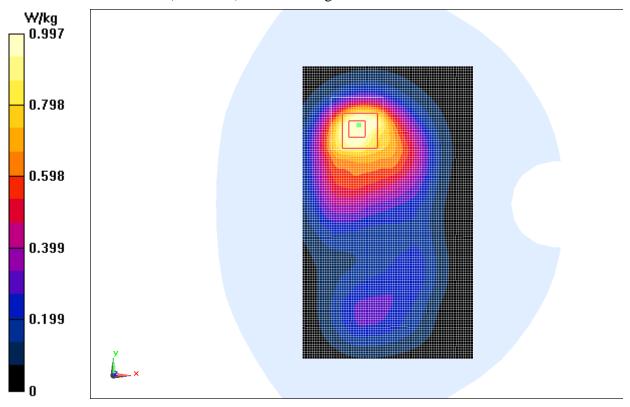


Fig.6 WCDMA 1700 CH1412

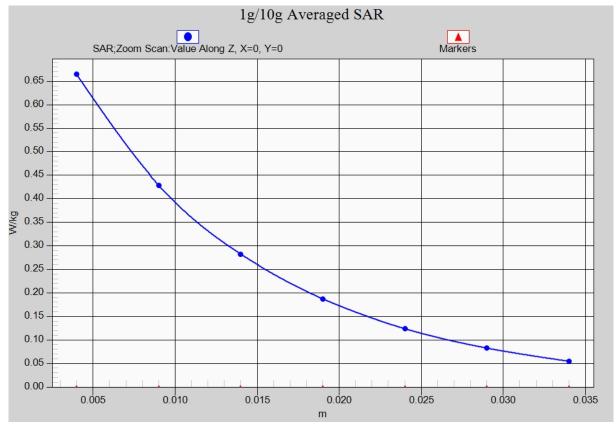


Fig. 6-1 Z-Scan at power reference point (WCDMA1700 CH1412)