

No. 2013SAR00057

For

TCT Mobile Limited

HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone

Model name: Diablo HD US1

Marketing name: ONE TOUCH 6033A

With

Hardware Version: Proto03

Software Version: vAAC-1-US1

FCC ID: RAD327

IC: 9238A-0020

Issued Date: 2013-04-18

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Date	Memo
2013SAR00057	00	2013-04-18	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT.	
1.3 Project Data	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 About EUT	9
4.2 Internal Identification of EUT used during the test	
4.3 Internal Identification of AE used during the test	9
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	17
8.1 System Setup	17
8.2 SYSTEM VERIFICATION	
9 MEASUREMENT PROCEDURES	19
9.1 Tests to be performed	19
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	21
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	22
9.5 Power Drift	22
10 AREA SCAN BASED 1-G SAR	23
10.1 REQUIREMENT OF KDB	23
10.2 FAST SAR ALGORITHMS	23
11 CONDUCTED OUTDUT DOWER	24

11.1 MANU	FACTURING TOLERANCE	. 24
11.2 GSM N	MEASUREMENT RESULT	. 26
11.3 WCDN	/IA MEASUREMENT RESULT	. 27
11.4 WI-FI	AND BT MEASUREMENT RESULT	. 27
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	29
12.1 Introi	DUCTION	. 29
12.2 Trans	MIT ANTENNA SEPARATION DISTANCES	. 29
12.3 SAR M	IEASUREMENT POSITIONS	. 29
12.4 STAND	ALONE SAR TEST EXCLUSION CONSIDERATIONS	. 30
13 EVALUA	ATION OF SIMULTANEOUS	31
14 SAR TE	ST RESULT	32
14.1 SAR R	ESULTS FOR FAST SAR	.32
14.2 SAR R	ESULTS FOR STANDARD PROCEDURE	. 37
15 SAR ME	ASUREMENT VARIABILITY	39
16 MEASU	REMENT UNCERTAINTY	40
	EST INSTRUMENTS	
ANNEX A	GRAPH RESULTS	45
ANNEX B	SYSTEM VERIFICATION RESULTS	69
ANNEX C	SAR MEASUREMENT SETUP	76
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	82
ANNEX E	EQUIVALENT MEDIA RECIPES	85
ANNEX F	SYSTEM VALIDATION	86
ANNEX G	PROBE CALIBRATION CERTIFICATE	87
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	98

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuan beilu, Haidian District, Beijing, P.R. China

Postal Code: 100191

Telephone: +86-10-62304633 Fax: +86-10-62304793

1.2 Testing Environment

Temperature: $18^{\circ}\text{C} \sim 25^{\circ}\text{C}$, Relative humidity: $30\% \sim 70\%$ Ground system resistance: $< 0.5 \Omega$

Ambient noise & Reflection: < 0.012 W/kg

1.3 Project Data

Project Leader: Qi Dianyuan
Test Engineer: Lin Xiaojun
Testing Start Date: March 26, 2013
Testing End Date: April 2, 2013

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone Diablo HD US1 / ONE TOUCH 6033A are as follows:

Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR	Equipment Class	
Exposure corniguration	recrinology band	1g (W/Kg)	Equipment olass	
	GSM 850	0.31		
Head	PCS 1900	0.30	PCE	
(Separation Distance 0mm)	UMTS FDD 2	0.21	POE	
(Separation distance offin)	UMTS FDD 5	0.23		
	WLAN 2.4 GHz	0.76	DTS	
	GSM 850	1.16		
Pody worn	PCS 1900	1.37	PCE	
Body-worn (Separation Distance 10mm)	UMTS FDD 2	1.35	POE	
(Separation distance formin)	UMTS FDD 5	0.46		
	WLAN 2.4 GHz	0.18	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.37

W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported Left hand, Touch cheek		0.31	0.49	0.80
value for Head	Left hand, Tilt 15°	0.23	0.76	0.99
Highest reported Rear		1.16	0.18	1.34
SAR value for Body	Bottom	1.37	/	1

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported	Left hand, Touch cheek	0.31	0.26	0.57
value for Head	Left hand, Tilt 15°	0.23	0.26	0.49
Highest reported Rear		1.16	0.26	1.42
SAR value for Body	lue for Body Bottom		/	1

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.42 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post.	Pudong Area Shanghai, P.R. China. 201203
City:	ShangHai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	ShangHai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS dualband / GSM quadband mobile phone
Model name:	Diablo HD US1
Marketing name:	ONE TOUCH 6033A
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 850/1900, BT, Wi-Fi (2.4G)
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	826.4-846.6 MHz (WCDMA850 Band V)
	1852.4-1907.6 MHz (WCDMA1900 Band II)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
GPRS capability Class:	В
WCDMA UE Category:	6
	GSM: R99
Release Version:	GPRS: Rel6
	UMTS: R6
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support simultaneous transmission of hotspot and voice(or data)
Form factor:	13.4cm $ imes$ 6.9 cm

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	013485000601300	Proto03	vAAC-1-US1
EUT2	013485003625698	Proto03	vAAC-1-US1

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 and conducted power with the EUT2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAC1800001C3 /		SCUD
AE2	Headset	CCB3001A14C1	/	Lianyun
AE3	Headset	CCB3001A14C2	/	Juwei
AE4	Headset	CCB3001A15C1	/	Lianyun
AE5	Headset	CCB3001A15C2	/	Juwei

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE2 and AE4 are the same, so they can use the same results. AE3 and AE5 are the same, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IC RSS-102: Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB447498 D01: General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06 Hot Spot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227: SAR measurement procedures for 802.112abg transmitters

865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				<u> </u>	
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Turno	Francis	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Type	Frequency	ε	(%)	σ (S/m)	(%)
2013-04-01	Head	835 MHz	40.79	-1.71	0.888	-1.33
	Body	835 MHz	56.37	2.12	0.981	1.13
2013-04-02	Head	1900 MHz	39.58	-1.05	1.423	1.64
2013-04-02	Body	1900 MHz	52.68	-1.16	1.532	0.79
2013-03-26	Head	2450 MHz	39.78	1.48	1.813	0.72
2013-03-20	Body	2450 MHz	51.86	-1.59	1.962	0.62

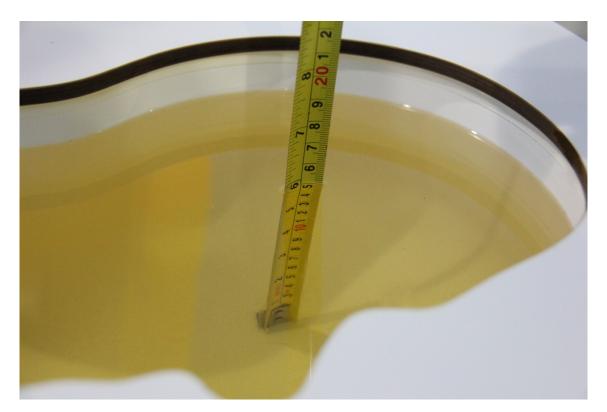
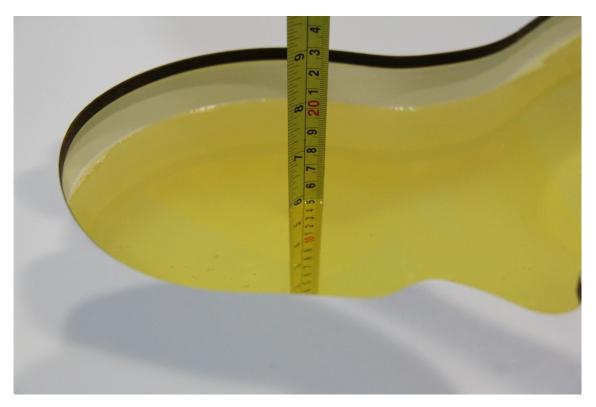

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Table 7.3: Dielectric Performance of Tissue Simulating Liquid for IC standard

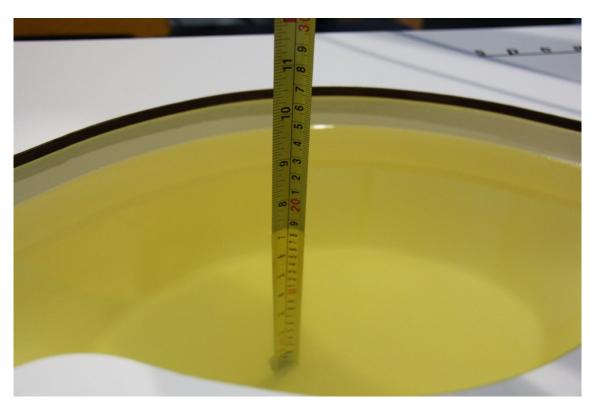
Measurement Date	Turno	Francis	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Туре	Frequency	ε	(%)	σ (S/m)	(%)
	GSM850	848.8 MHz	0.9	0.00	40.628	-2.10
	Head	836.6 MHz	0.887	-1.44	40.795	-1.70
	пеац	825 MHz	0.877	-2.56	40.957	-1.31
	MODMAGEO	846.6 MHz	0.898	-0.22	40.653	-2.04
	WCDMA850 Head	836.4 MHz	0.887	-1.44	40.795	-1.70
2012 04 01		826.4 MHz	0.879	-2.33	40.935	-1.36
2013-04-01	CCMOTO	848.8 MHz	0.996	2.68	56.20	1.81
	GSM850	836.6 MHz	0.985	1.55	56.353	2.09
	Body	825 MHz	0.973	0.31	56.485	2.33
	MODMAGEO	846.6 MHz	0.993	2.37	56.227	1.86
	WCDMA850	836.4 MHz	0.985	1.55	56.353	2.09
	Body	826.4 MHz	0.973	0.31	56.467	2.30
	GSM1900 Head	1910 MHz	1.426	1.86	39.536	-1.16
		1880 MHz	1.407	0.50	39.588	-1.03
		1850.2 MHz	1.375	-1.79	39.707	-0.73
	WCDM44000	1907.6 MHz	1.425	1.79	39.547	-1.13
	WCDMA1900 Head	1880 MHz	1.407	0.50	39.588	-1.03
2013-04-02	Heau	1852.4 MHz	1.376	-1.71	39.695	-0.76
2013-04-02	CCM4000	1910 MHz	1.545	1.64	52.667	-1.19
	GSM1900 Body	1880 MHz	1.507	-0.86	52.723	-1.08
	Войу	1850.2 MHz	1.484	-2.37	52.891	-0.77
	WCDMA1900	1907.6 MHz	1.542	1.45	52.672	-1.18
	Body	1880 MHz	1.507	-0.86	52.723	-1.08
	Войу	1852.4 MHz	1.485	-2.30	52.881	-0.79
	W:E: 2.4C	2462 MHz	1.826	1.44	39.728	1.35
	WiFi-2.4G Head	2437 MHz	1.8	0.00	39.842	1.64
2013-03-26	i ieau	2412 MHz	1.773	-1.50	39.928	1.86
2013-03-20	W/iEi 2 4C	2462 MHz	1.976	1.33	51.814	-1.68
	WiFi-2.4G	2437 MHz	1.948	-0.10	51.907	-1.50
	Body	2412 MHz	1.92	-1.54	51.96	-1.40

Picture 7-1: Liquid depth in the Head Phantom (835 MHz)

Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)

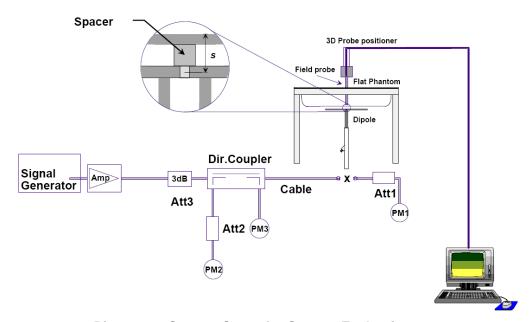


Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)



Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)


Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured v	value (W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-04-01	835 MHz	6.07	9.30	6.24	9.64	2.80%	3.66%
2013-04-02	1900 MHz	20.6	39.1	20.28	38.60	-1.55%	-1.28%
2013-03-26	2450 MHz	24.4	52.4	23.84	51.20	-2.30%	-2.29%

Table 8.2: System Verification of Body

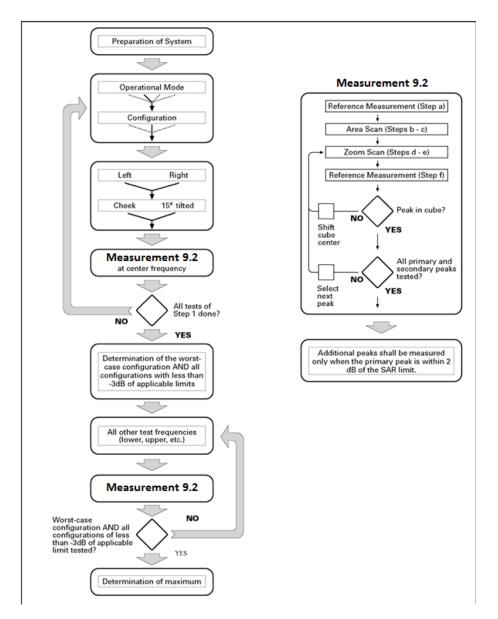
Measurement		Target value (W/kg)		Measured value (W/kg)		Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2013-04-01	835 MHz	6.20	9.36	6.32	9.44	1.94%	0.85%
2013-04-02	1900 MHz	21.3	39.9	21.68	40.80	1.78%	2.26%
2013-03-26	2450 MHz	23.6	50.4	24.28	51.60	2.88%	2.38%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz	
Maximum distance from (geometric center of pro			5 ± 1 mm	$\frac{1}{2}\cdot\delta\cdot\ln(2)\pm0.5~\mathrm{mm}$	
Maximum probe angle fi normal at the measureme			30° ± 1° 20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the e < the corresponding x or y	
Maximum zoom scan sp	atial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform g	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface		Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	eta_d	eta_c / eta_d	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	$oldsymbol{eta_{ed}}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3. 0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2. 0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3. 0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.21 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

GSM 850						
Channel	Channel 251	Channel 190	Channel 128			
Target (dBm)	32.3	32.3	32.3			
Tolerance \pm (dB)	1	1	1			
	GSM	1 1900				
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	29.3	29.3	29.3			
Tolerance \pm (dB)	1	1	1			

Table 11.2: GPRS and EGPRS

	Ia	DIE 11.2: GPRS and		
		GSM 850 GPRS (GN	/ISK)	
	Channel	251	190	128
1 Txslot	Target (dBm)	32.3	32.3	32.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1
2 Txslots	Target (dBm)	31.2	31.2	31.2
2 1 351015	Tolerance \pm (dB)	1	1	1
3Txslots	Target (dBm)	29.5	29.5	29.5
31 851015	Tolerance \pm (dB)	1	1	1
4 Txslots	Target (dBm)	28.5	28.5	28.5
4 1 X SIOLS	Tolerance \pm (dB)	1	1	1
		GSM 850 EGPRS (GI	MSK)	
	Channel	251	190	128
4 Tuelet	Target (dBm)	32.3	32.3	32.3
1 Txslot	Tolerance \pm (dB)	1	1	1
2 Typloto	Target (dBm)	31.2	31.2	31.2
2 Txslots	Tolerance \pm (dB)	1	1	1
3Txslots	Target (dBm)	29.5	29.5	29.5
31 XSIUIS	Tolerance \pm (dB)	1	1	1
4 Txslots	Target (dBm)	28.5	28.5	28.5
4 1 XSIOIS	Tolerance \pm (dB)	1	1	1
		GSM 1900 GPRS (GI	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	29.3	29.3	29.3
1 1 1 1 20101	Tolerance \pm (dB)	1	1	1
2 Txslots	Target (dBm)	27	27	27
Z 1 XSIUIS	Tolerance \pm (dB)	1	1	1
3Txslots	Target (dBm)	26	26	26
31 721012	Tolerance \pm (dB)	1	1	1

4 Txslots	Target (dBm)	25.1	25.1	25.1			
4 1 8 5 10 15	Tolerance \pm (dB)	1	1	1			
	GSM 1900 EGPRS (GMSK)						
	Channel	810	661	512			
1 Txslot	Target (dBm)	29.3	29.3	29.3			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1	1	1			
2 Txslots	Target (dBm)	27	27	27			
2 1 X SIOLS	Tolerance \pm (dB)	1	1	1			
3Txslots	Target (dBm)	26	26	26			
31 XSIOIS	Tolerance \pm (dB)	1	1	1			
4 Txslots	Target (dBm)	25.1	25.1	25.1			
4 1 351015	Tolerance \pm (dB)	1	1	1			

Table 11.3: WCDMA

	WCDMA 850 CS						
Channel	Channel Channel 4233 Channel 4182 Channel 4132						
Target (dBm)	22.5	22.5	22.5				
Tolerance \pm (dB)	0.8	0.8	0.8				
	WCDMA	1900 CS					
Channel	Channel 9538	Channel 9400	Channel 9262				
Target (dBm)	22						
Tolerance ±(dB)	0.8	0.8	0.8				

Table 11.4: Bluetooth

Bluetooth						
Channel Channel 0 Channel 39 Channel 78						
Target (dBm) 10 10 10						
Tolerance \pm (dB) 1 1 1						

Table 11.5: WiFi

Mode	Target (dBm)	Tolerance \pm (dB)
802.11 b	14	1
802.11 g	14	1
802.11 n (2.4GHz HT20)	14	1
802.11 n (2.4GHz HT40)	12	1

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

GSM		Conducted Power (dBm)	
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
OSUMINZ	32.40	32.39	32.42
CCM		Conducted Power (dBm)	
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900101112	28.57	28.89	29.10

Table 11.7: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.39	32.39	32.37	-9.03dB	23.36	23.36	23.34
2 Txslots	30.99	30.98	31.01	-6.02dB	24.97	24.96	24.99
3Txslots	28.90	28.91	28.94	-4.26dB	24.64	24.65	24.68
4 Txslots	27.71	27.72	27.74	-3.01dB	24.70	24.71	24.73
GSM 850	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.36	32.38	32.41	-9.03dB	23.33	23.35	23.38
2 Txslots	30.97	30.97	30.98	-6.02dB	24.95	24.95	24.96
3Txslots	28.91	28.93	28.94	-4.26dB	24.65	24.67	24.68
4 Txslots	27.69	27.70	27.72	-3.01dB	24.68	24.69	24.71
PCS1900	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	28.55	28.89	29.08	-9.03dB	19.52	19.86	20.05
2 Txslots	27.53	27.80	27.97	-6.02dB	21.51	21.78	21.95
3Txslots	25.50	25.78	25.95	-4.26dB	21.24	21.52	21.69
4 Txslots	24.32	24.59	24.75	-3.01dB	21.31	21.58	21.74
PCS1900	Measu	red Power	(dBm)	calculation	Averaged Power (dBm)		(dBm)
EGPRS (GMSK)	810	661	512		810	661	512
1 Txslot	28.55	28.88	29.09	-9.03dB	19.52	19.85	20.06
2 Txslots	27.52	27.78	27.95	-6.02dB	21.50	21.76	21.93
3Txslots	25.49	25.80	25.95	-4.26dB	21.23	21.54	21.69
4 Txslots	24.30	24.60	24.73	-3.01dB	21.29	21.59	21.72

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

¹⁾ Division Factors

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for GPRS and EGPRS.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

11.3 WCDMA Measurement result

Table 11.8: The conducted Power for WCDMA850/1900

	1	The conducted Fowe			
Item	band		FDDV result		
iteiii	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)	
WCDMA	\	23.11	23.02	22.99	
	1	20.13	20.70	20.74	
	2	19.08	19.70	19.75	
HSUPA	3	19.62	20.22	20.23	
	4	20.10	20.72	20.76	
	5	22.02	22.72	22.73	
ltem	band		FDDII result		
пеш	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)	
WCDMA	\	22.46	22.56	22.67	
	1	20.35	20.43	20.29	
	2	19.36	19.43	19.33	
HSUPA	3	19.85	19.92	19.80	
	4	20.37	20.45	20.37	
	5	22.34	22.44	22.37	

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Mode		Conducted Power (dBm)						
iviode	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)					
GFSK	10.00	9.97	10.09					
EDR2M-4_DQPSK	9.85	9.75	9.87					
EDR3M-8DPSK	10.19	10.08	10.25					

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	14.20	14.19	14.25	14.22
6	14.52	14.53	14.55	14.50
11	13.78	13.80	13.89	13.88

802.11g (dBm)

Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
1	14.25	14.23	14.16	14.22	14.12	14.03	14.12	14.09
6	14.71	14.61	14.70	14.68	14.66	14.67	14.65	14.63
11	13.94	13.91	13.89	13.92	13.81	13.76	13.84	13.81

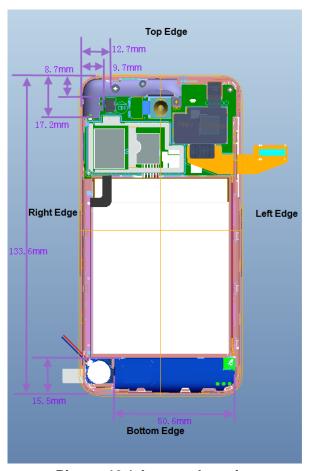
802.11n (dBm) - HT20

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	14.38	14.16	14.25	14.23	14.21	14.20	14.19	14.16
6	14.72	14.62	14.71	14.69	14.67	14.68	14.66	14.64
11	13.91	13.78	13.89	13.86	13.85	13.82	13.83	13.79

802.11n (dBm) - HT40

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	12.67	12.41	12.38	12.35	12.39	12.34	12.38	12.33
6	12.63	12.62	12.60	12.57	12.38	12.36	12.39	12.34
11	12.35	12.33	12.09	12.05	12.08	12.04	12.11	12.05

SAR is not required for 802.11g channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 6".



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions									
Mode	Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Main antenna Yes Yes Yes No Yes								
WLAN Yes Yes No Yes Yes No									

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Appendix A

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 12.2 Power Thresholds

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz)	SAR test exclusion	RF outp	ut power	SAR test
Barid/Mode	F(GHZ)	threshold (mW)	dBm	mW	exclusion
Bluetooth	2.441	19	10.25	10.59	Yes
2.4GHz WLAN 802.11 b	2.45	19	14.72	29.65	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported	Left hand, Touch cheek	0.31	0.49	0.80
value for Head	Left hand, Tilt 15°	0.23	0.76	0.99
Highest reported	Rear	1.16	0.18	1.34
SAR value for Body	Bottom	1.37	/	1

Table 13.2: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported	Left hand, Touch cheek	0.31	0.26	0.57
value for Head	Left hand, Tilt 15°	0.23	0.26	0.49
Highest reported	Rear	1.16	0.26	1.42
SAR value for Body	Bottom	1.37	/	1

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Mada/Band	F (GHz)	Distance (mm)	Upper limi	t of power *	Estimated _{1g}
Mode/Band	r (GHZ)	Distance (mm)	dBm	mW	(W/kg)
Bluetooth	2.441	10	11	12.59	0.26

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom.

The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:4
WCDMA850/1900 and WiFi	1:1

14.1 SAR results for Fast SAR

Table 14.2: SAR Values (GSM 850 MHz Band - Head)

			Ambien	t Tempera	ture: 22.6 °C	Liquid ⁻	Temperature	: 22.1 °C		
Frequ	ency		Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
-	1	Side	Position	No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		POSITION	NO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	/	32.40	0.165	0.20	0.241	0.30	0.10
836.6	190	Left	Touch	Fig.1	32.39	0.195	0.24	0.255	0.31	0.12
824.2	128	Left	Touch	/	32.42	0.169	0.21	0.246	0.30	-0.01
848.8	251	Left	Tilt	/	32.40	0.122	0.15	0.176	0.22	0.17
836.6	190	Left	Tilt	/	32.39	0.127	0.16	0.183	0.23	0.18
824.2	128	Left	Tilt	/	32.42	0.115	0.14	0.166	0.20	0.07
848.8	251	Right	Touch	/	32.40	0.194	0.24	0.253	0.31	0.18
836.6	190	Right	Touch	/	32.39	0.171	0.21	0.248	0.31	0.17
824.2	128	Right	Touch	/	32.42	0.170	0.21	0.246	0.30	0.10
848.8	251	Right	Tilt	/	32.40	0.107	0.13	0.155	0.19	0.17
836.6	190	Right	Tilt	/	32.39	0.111	0.14	0.160	0.20	-0.11
824.2	128	Right	Tilt	/	32.42	0.112	0.14	0.161	0.20	0.09

Table 14.3: SAR Values (GSM 850 MHz Band - Body)

		,	Ambient Temp	erature: 2	22.6 °C	Liquid Temp	erature: 22.1	°C			
Frequ	encv	Mode	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power	
	I	(number of				Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
836.6	190	GPRS (2)	Front	/	30.98	0.431	0.57	0.549	0.73	0.10	
848.8	251	GPRS (2)	Rear	/	30.99	0.617	0.82	0.801	1.06	0.12	
836.6	190	GPRS (2)	Rear	/	30.98	0.631	0.84	0.820	1.09	-0.05	
824.2	128	GPRS (2)	Rear	Fig.2	31.01	0.675	0.89	0.879	1.16	-0.05	
836.6	190	GPRS (2)	Left	/	30.98	0.401	0.53	0.568	0.75	-0.02	
836.6	190	GPRS (2)	Right	/	30.98	0.425	0.56	0.605	0.80	-0.13	
836.6	190	GPRS (2)	Bottom	/	30.98	0.125	0.17	0.197	0.26	0.15	
824.2	128	EGPRS (2)	Rear	/	30.98	0.673	0.89	0.877	1.16	0.08	
024.2	128	Chaash	Rear	,	22.42	0.250	0.44	0.510	0.63	0.00	
824.2	128	Speech	(Headset1)	/	32.42	0.358	0.44	0.512	0.63	0.08	
924.2	120	Speech	Rear	,	22.42	0.407	0.50	0.505	0.72	0.04	
824.2	128	Speech	(Headset2)	/	32.42	0.407	0.50	0.585	0.72	0.04	

Note2: The type of Headset1 is CCB3001A14C1, the type of Headset2 is CCB3001A14C2.

Table 14.4: SAR Values (GSM 1900 MHz Band - Head)

			Ambient	Temperat	ure: 22.7°C	Liquid T	emperature:	22.2 °C		
Freque	ency		Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
	-	Side	Position	No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	INO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	/	28.57	0.113	0.17	0.199	0.30	0.11
1880	661	Left	Touch	/	28.89	0.123	0.17	0.216	0.30	0.01
1850.2	512	Left	Touch	Fig.3	29.10	0.134	0.18	0.222	0.29	0.15
1909.8	810	Left	Tilt	/	28.57	0.056	0.08	0.106	0.16	0.08
1880	661	Left	Tilt	/	28.89	0.064	0.09	0.116	0.16	0.06
1850.2	512	Left	Tilt	/	29.10	0.060	0.08	0.109	0.14	-0.06
1909.8	810	Right	Touch	/	28.57	0.061	0.09	0.103	0.15	0.18
1880	661	Right	Touch	/	28.89	0.069	0.10	0.116	0.16	0.17
1850.2	512	Right	Touch	/	29.10	0.083	0.11	0.135	0.18	0.17
1909.8	810	Right	Tilt	/	28.57	0.050	0.07	0.094	0.14	0.11
1880	661	Right	Tilt	/	28.89	0.054	0.07	0.101	0.14	-0.13
1850.2	512	Right	Tilt	/	29.10	0.062	0.08	0.115	0.15	0.12

Table 14.5: SAR Values (GSM 1900 MHz Band - Body)

			Ambient Tem	perature:	22.7°C	Liquid Temp	erature: 22.2	2°C		
Freque	encv	Mode	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
	1	(number of	Position	No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	INO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (2)	Front	/	27.53	0.503	0.56	0.922	1.03	-0.01
1880	661	GPRS (2)	Front	/	27.80	0.553	0.58	0.989	1.04	0.10
1850.2	512	GPRS (2)	Front	/	27.97	0.576	0.58	1.03	1.04	-0.04
1909.8	810	GPRS (2)	Rear	/	27.53	0.488	0.54	0.858	0.96	0.04
1880	661	GPRS (2)	Rear	/	27.80	0.449	0.47	0.810	0.85	0.03
1850.2	512	GPRS (2)	Rear	/	27.97	0.444	0.45	0.795	0.80	-0.06
1880	661	GPRS (2)	Left	/	27.80	0.125	0.13	0.219	0.23	0.09
1880	661	GPRS (2)	Right	/	27.80	0.061	0.06	0.099	0.10	-0.11
1909.8	810	GPRS (2)	Bottom	Fig.4	27.53	0.642	0.72	1.23	1.37	0.03
1880	661	GPRS (2)	Bottom	/	27.80	0.616	0.65	1.17	1.23	-0.01
1850.2	512	GPRS (2)	Bottom	/	27.97	0.601	0.61	1.15	1.16	-0.01
1909.8	810	EGPRS (2)	Bottom	/	27.52	0.604	0.67	1.15	1.28	-0.04
1000.9	810	Speech	Bottom	1	20 57	0.202	0.34	0.760	0.67	0.04
1909.8	010	Speech	(Headset1)	/	28.57	0.393	0.34	0.769	0.67	0.04
1909.8	810	Speech	Bottom	1	28.57	0.394	0.35	0.771	0.68	0.05
1909.0	610	Speecii	(Headset2)	1	20.37	0.394	0.33	0.771	0.00	0.05

Note2: The type of Headset1 is CCB3001A14C1, the type of Headset2 is CCB3001A14C2.

Table 14.6: SAR Values (WCDMA 850 MHz Band - Head)

			Ambient	Temperat	ure: 22.6 °C	Liquid T	emperature:	22.1 °C		
Frequ	iencv		Test	Figuro	Conducted	Measured	Reported	Measured	Reported	Power
	1	Side	Position	Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
846.6	4233	Left	Touch	Fig.5	23.11	0.167	0.17	0.220	0.23	0.16
836.4	4182	Left	Touch	/	23.02	0.137	0.15	0.199	0.21	0.18
826.4	4132	Left	Touch	/	22.99	0.145	0.16	0.210	0.23	0.19
846.6	4233	Left	Tilt	/	23.11	0.107	0.11	0.155	0.16	0.18
836.4	4182	Left	Tilt	/	23.02	0.095	0.10	0.137	0.15	0.14
826.4	4132	Left	Tilt	/	22.99	0.098	0.11	0.140	0.15	0.15
846.6	4233	Right	Touch	/	23.11	0.169	0.18	0.219	0.23	0.17
836.4	4182	Right	Touch	/	23.02	0.129	0.14	0.187	0.20	0.16
826.4	4132	Right	Touch	/	22.99	0.136	0.15	0.197	0.21	0.12
846.6	4233	Right	Tilt	/	23.11	0.096	0.10	0.139	0.15	-0.03
836.4	4182	Right	Tilt	/	23.02	0.084	0.09	0.121	0.13	-0.13
826.4	4132	Right	Tilt	/	22.99	0.094	0.10	0.137	0.15	0.15

Table 14.7: SAR Values (WCDMA 850 MHz Band - Body)

		Ambie	ent Tempei	rature: 22.6°C	Liquid	d Temperatui	e: 22.1 °C		
Frequ	iencv	Toot	Figure	Conducted	Measured	Reported	Measured	Reported	Power
1.090		Test	•	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.4	4182	Front	/	23.02	0.244	0.26	0.312	0.33	0.00
846.6	4233	Rear	/	23.11	0.313	0.33	0.406	0.42	0.00
836.4	4182	Rear	Fig.6	23.02	0.327	0.35	0.427	0.46	-0.04
826.4	4132	Rear	/	22.99	0.326	0.35	0.423	0.45	0.09
836.4	4182	Left	/	23.02	0.222	0.24	0.316	0.34	0.03
836.4	4182	Right	/	23.02	0.218	0.23	0.309	0.33	0.10
836.4	4182	Bottom	/	23.02	0.060	0.06	0.094	0.10	0.13
836.4	4182	Rear	1	23.02	0.285	0.30	0.409	0.44	0.10
030.4	4102	(Headset1)	,	23.02	0.265	0.30	0.409	0.44	0.10
836.4	4182	Rear	/	23.02	0.247	0.26	0.356	0.38	0.03
030.4	4102	(Headset2)	/	25.02	0.247	0.20	0.550	0.30	0.03

Note2: The type of Headset1 is CCB3001A14C1, the type of Headset2 is CCB3001A14C2.

Table 14.8: SAR Values (WCDMA 1900 MHz Band - Head)

			Ambient 7	Temperat	ure: 22.7°C	Liquid T	emperature:	22.2 °C		
Frequ	ency		Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	NO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Left	Touch	/	22.46	0.101	0.11	0.174	0.19	-0.11
1880	9400	Left	Touch	/	22.56	0.112	0.12	0.192	0.20	0.19
1852.4	9262	Left	Touch	Fig.7	22.67	0.125	0.13	0.203	0.21	0.15
1907.6	9538	Left	Tilt	/	22.46	0.077	0.08	0.145	0.16	0.08
1880	9400	Left	Tilt	/	22.56	0.077	0.08	0.144	0.15	0.19
1852.4	9262	Left	Tilt	/	22.67	0.078	0.08	0.144	0.15	-0.04
1907.6	9538	Right	Touch	/	22.46	0.070	0.08	0.120	0.13	0.02
1880	9400	Right	Touch	/	22.56	0.090	0.10	0.155	0.16	0.10
1852.4	9262	Right	Touch	/	22.67	0.102	0.11	0.166	0.17	0.12
1907.6	9538	Right	Tilt	/	22.46	0.066	0.07	0.121	0.13	0.12
1880	9400	Right	Tilt	/	22.56	0.070	0.07	0.130	0.14	0.19
1852.4	9262	Right	Tilt	/	22.67	0.074	0.08	0.135	0.14	0.19

Table 14.9: SAR Values (WCDMA 1900 MHz Band - Body)

		Ambier	nt Tempera	ature: 22.7°C	Liquid	Temperature	e: 22.2 °C		
Frequ	encv	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
	-	Position	No.	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	INO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Front	/	22.46	0.557	0.60	1	1.08	0.12
1880	9400	Front	/	22.56	0.603	0.64	1.08	1.14	-0.08
1852.4	9262	Front	/	22.67	0.624	0.64	1.1	1.13	-0.01
1907.6	9538	Rear	/	22.46	0.534	0.58	0.942	1.02	0.08
1880	9400	Rear	/	22.56	0.553	0.58	0.969	1.02	-0.02
1852.4	9262	Rear	/	22.67	0.549	0.57	0.963	0.99	-0.02
1880	9400	Left	/	22.56	0.125	0.13	0.220	0.23	0.17
1880	9400	Right	/	22.56	0.064	0.07	0.101	0.11	-0.07
1907.6	9538	Bottom	/	22.46	0.563	0.61	1.07	1.16	-0.03
1880	9400	Bottom	Fig.8	22.56	0.681	0.72	1.28	1.35	-0.11
1852.4	9262	Bottom	Fig.9	22.67	0.635	0.65	1.21	1.25	-0.10
1880	9400	Bottom	Fig.10	22.56	0.646	0.68	1.24	1.31	-0.00
1000	9400	(Headset1)	1 lg. 10	22.30	0.040	0.00	1.24	1.51	-0.00
1880	9400	Bottom	Fig.11	22.56	0.636	0.67	1.22	1.29	0.00
1000	34 00	(Headset2)	1 19.11	22.30	0.030	0.07	1.22	1.23	0.00
1880	9400	Bottom	Fig.12	22.44	0.658	0.71	1.23	1.34	-0.11
1000	3 1 00	(HSUPA)	1 19.12	22.77	0.000	0.7 1	1.20	1.54	-0.11

Note2: The type of Headset1 is CCB3001A14C1, the type of Headset2 is CCB3001A14C2.

Table 14.10: SAR Values (Wi-Fi 802.11b - Head)

	Table 14.10. OAK Values (WI 11002.115 1100a)												
	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C												
Frequ	encv		Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power			
		Side			Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
2437	6	Left	Touch	/	14.52	0.213	0.24	0.443	0.49	-0.16			
2437	6	Left	Tilt	Fig.13	14.52	0.338	0.38	0.682	0.76	0.19			
2437	6	Right	Touch	/	14.52	0.225	0.25	0.409	0.46	-0.16			
2437	6	Right	Tilt	/	14.52	0.297	0.33	0.614	0.69	-0.10			

Table 14.11: SAR Values (Wi-Fi 802.11b - Body)

	Table 14.11. OAK Values (WI 1 Tool.11b Body)												
	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C												
Frequency Test Figure Conducted Measured Reported Measured Reported									Power				
	1			Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
MHz	Ch.	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
2437	6	Front	/	14.52	0.083	0.09	0.159	0.18	0.19				
2437	6	Rear	Fig.14	14.52	0.090	0.10	0.161	0.18	0.01				
2437	6	Right	/	14.52	0.053	0.06	0.103	0.12	-0.07				
2437	6	Тор	/	14.52	0.062	0.07	0.120	0.13	0.06				

Note1: The distance between the EUT and the phantom bottom is 10mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band and the SAR values that are > 1.2 W/kg.

Table 14.12: SAR Values (GSM 850 MHz Band - Head)

			Ambien	t Tempera	ture: 22.6 °C	Liquid ⁻	Temperature	: 22.1 °C		
Frequency Test Figure Conducto						Measured	Reported	Measured	Reported	Power
•	Side			•	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6 190 Left Touch Fig.1 32.39						0.195	0.24	0.255	0.31	0.12

Table 14.13: SAR Values (GSM 850 MHz Band - Body)

		ļ.	Ambient Temp	erature:	22.6 °C	Liquid Temp	erature: 22.1	°C		
Freque	encv	Mode	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
	J	(number of		Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
824.2	128	GPRS (2)	Rear	Fig.2	31.01	0.675	0.89	0.879	1.16	-0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.14: SAR Values (GSM 1900 MHz Band - Head)

			Ambient	Ambient Temperature: 22.7 °C			emperature:	22.2°C		
Freque	encv		Test	Ciauro	Conducted	Measured	Reported	Measured	Reported	Power
	<u> </u>			Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1850.2 512 Left Touch Fig.3 29.10					29.10	0.134	0.18	0.222	0.29	0.15

Table 14.15: SAR Values (GSM 1900 MHz Band - Body)

			Ambient Tem	perature:	22.7°C	Liquid Temp	erature: 22.2	2°C		
Freque	encv	Mode	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
	(number o			_	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (2)	Bottom	Fig.4	27.53	0.642	0.72	1.23	1.37	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.16: SAR Values (WCDMA 850 MHz Band - Head)

			Ambient	emperature:	22.1 °C							
Frequency			Test	Eiguro	Conducted	Measured	Reported	Measured	Reported	Power		
		Side		Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.	Position No.		INO.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
846.6	4233	Left	Touch	Fig.5	23.11	0.167	0.17	0.220	0.23	0.16		

Table 14.17: SAR Values (WCDMA 850 MHz Band - Body)

		Ambie	ent Temper	rature: 22.6°C	Liquid	d Temperatui	re: 22.1 °C		
Frequ	iencv	Toot	Eiguro	Conducted	Measured	Reported	Measured	Reported	Power
1.090	1	Test	Figure	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.4	4182	Rear	Fig.6	23.02	0.327	0.35	0.427	0.46	-0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.18: SAR Values (WCDMA 1900 MHz Band - Head)

			Ambient 7	Гетрегаt	ure: 22.7°C	Liquid T	emperature:			
Frequency Test Figure Conducted						Measured	Reported	Measured	Reported	Power
	- ;			_	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4 9262 Left Touch Fig.7 22.67				22.67	0.125	0.13	0.203	0.21	0.15	

Table 14.19: SAR Values (WCDMA 1900 MHz Band - Body)

		Ambier	nt Temper	ature: 22.7°C	Liquid	Temperature	e: 22.2 °C		
Frequ	encv	Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power
- 1	,		•	Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	9400	Bottom	Fig.8	22.56	0.681	0.72	1.28	1.35	-0.11
1852.4	9262	Bottom	Fig.9	22.67	0.635	0.65	1.21	1.25	-0.10
1880	9400	Bottom	Fig.10	22.56	0.646	0.68	1.24	1.31	-0.00
1000	9400	(Headset1)	1 lg. 10	22.30	0.040	0.00	1.24	1.31	-0.00
1880	9400	Bottom	Fig.11	22.56	0.636	0.67	1.22	1.29	0.00
1000	9400	(Headset2)	1 19.11	22.30	0.030	0.07	1.22	1.29	0.00
1880 0400		Bottom	Fig.12	22.44	0.658	0.71	1.23	1.34	-0.11
1880 9400		(HSUPA)	1 19.12	22.44	0.030	0.71	1.23	1.34	-0.11

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The type of Headset1 is CCB3001A14C1, the type of Headset2 is CCB3001A14C2.

Table 14.20: SAR Values (Wi-Fi 802.11b - Head)

	rable in the start values (in 11 could)												
	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C												
Frequ	encv		Test	Figure	Conducted	Measured	Reported	Measured	Reported	Power			
-	-	Side	Position		Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
2437	2437 6 Left Tilt Fig.13					0.338	0.38	0.682	0.76	0.19			

Table 14.21: SAR Values (Wi-Fi 802.11b - Body)

		An	nbient Tem	nperature: 22.	5°C Lic	juid Tempera	ture: 22.0 °C			
Frequency Test Figure Conducted Measured Reported Measured Power										
	<u> </u>			Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2437 6 Rear Fig.14 14.52 0.090 0.10 0.161 0.18 0.0									0.01	

Note1: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body GSM 850 (1g)

Freque	ency Ch.	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)	
824.2	128	Rear	10	0.879	0.872	1.01	1	

Table 15.2: SAR Measurement Variability for Body GSM 1900 (1g)

Frequency		Test	Spacing	Original	First	The	Second	
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)	
1909.8	810	Bottom	10	1.23	1.19	1.03	1	

Table 15.3: SAR Measurement Variability for Body WCDMA 1900 (1g)

Frequency		Toot Specing		Original	First	The	Second	
MHz	Ch.	- Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)	
1880	9400	Bottom	10	1.28	1.28	1.00	1	

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

i Measurement Oi	illity for No	iests (300MHZ~3GHZ)								
Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
		value	Distribution		1g	10g	Unc.	Unc.	of	
							(1g)	(10g)	freedo	
									m	
Measurement system										
Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞	
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
		Test	sample related	i						
Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
		Phant	tom and set-u	p						
Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞	
Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞	
Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	
	Error Description surement system Probe calibration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing Test sample positioning with respect to phantom shell Post-processing Test sample positioning With of output power Phantom uncertainty Drift of output power Phantom uncertainty Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity (target)	Error Description Surement system Probe calibration B Isotropy B Boundary effect Linearity Detection limit Readout electronics Response time B Integration time RF ambient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing B Post-processing A Device holder uncertainty Drift of output power Phantom uncertainty B Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity	Surement system Probe calibration B 5.5 Isotropy B 4.7 Boundary effect B 1.0 Linearity B 4.7 Detection limit B 1.0 Readout electronics B 0.3 Response time B 2.6 RF ambient conditions-noise B 0.8 Integration time B 2.6 RF ambient conditions-reflection B 0.4 Probe positioned mech. restrictions B 0.4 Probe positioning with respect to phantom shell B 2.9 phantom shell B 3.3 Device holder ancertainty B 3.3 Device holder ancertainty B 5.0 Phantom uncertainty B 4.0 Liquid conductivity (target) Liquid permittivity (target) Liquid permittivity (target) Liquid permittivity (target) Liquid permittivity A 1.6	Surement system Probe calibration B 5.5 N Isotropy B 4.7 R Boundary effect B 1.0 R Linearity B 4.7 R Detection limit B 1.0 R Readout electronics B 0.3 R Response time B 0.8 R Integration time B 2.6 R RF ambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing B 1.0 R Test sample positioning Device holder uncertainty Drift of output power Phantom uncertainty B 4.0 R Liquid conductivity (target) Liquid permittivity (and in the proper into a position in position in positionity Liquid permittivity (target) Liquid permittivity (targ	Error Description Type Uncertainty Probably Distribution Distributio	Error Description Type Uncertainty value Probably Distribution Ig	Error Description Type Uncertainty value Probably Distribution Div. (Ci) (Ci) 10g 10g	Type	Probe Prob	