

SAR TEST REPORT

No. 2012SAR00131

For

TCT Mobile Limited

HSUPA/HSDPA/UMTS triband/GSM quadband mobile phone

Model name: Beetle US

Marketing name: ONE TOUCH 4030A

With

Hardware Version: proto

Software Version: vEA1

FCCID: RAD315

Issued Date: 2012-12-27

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Date	Memo	
2012SAR00131	00	2012-12-22	Initial creation of test report	
2012SAR00131	01	2012-12-27	Update the evaluation of simultaneous transmission for BT and WiFi antenna	

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	7
3.2 MANUFACTURER INFORMATION	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 About EUT	
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
5 TEST METHODOLOGY	9
5.1 Applicable Limit Regulations	9
5.2 Applicable Measurement Standards	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 INTRODUCTION	
6.2 SAR DEFINITION	
7 SAR MEASUREMENT SETUP	11
7.1 Measurement Set-up	
7.2 DASY4 OR DASY5 E-FIELD PROBE SYSTEM	
7.3 E-FIELD PROBE CALIBRATION	
7.4 OTHER TEST EQUIPMENT	
7.4.1 DATA ACQUISITION ELECTRONICS(DAE)	
7.4.2 ROBOT 7.4.3 Measurement Server	
7.4.5 MEASUREMENT SERVER	
7.4.5 PHANTOM	
8. POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	
8.1 General considerations	
8.1 General considerations	
8.3 DESKTOP DEVICE	
8.4 DUT SETUP PHOTOS	
9 TISSUE SIMULATING LIQUIDS	21
9.1 Equivalent Tissues	
9.2 DIELECTRIC PERFORMANCE	

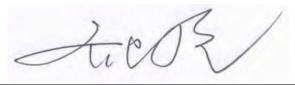
10 SYSTEM VALIDATION	23
10.1 System Validation	
10.2 System Setup	
11 MEASUREMENT PROCEDURES	25
11.1 Tests to be performed	
11.2 Measurement procedure	
11.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
11.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
11.5 Power Drift	
12 CONDUCTED OUTPUT POWER	29
12.1 GSM Measurement result	
12.2 WCDMA MEASUREMENT RESULT	
12.3 WI-FI AND BT MEASUREMENT RESULT	
13 SIMULTANEOUS TX SAR CONSIDERATIONS	32
13.1 INTRODUCTION	
13.2 TRANSMIT ANTENNA SEPARATION DISTANCES	
13.3 SIMULTANEOUS TRANSMISSION FOR EUT	
14 SAR TEST RESULT	34
14.1 THE EVALUATION OF MULTI-BATTERIES	
14.1 SAR TEST RESULT	
15 MEASUREMENT UNCERTAINTY	
16 MAIN TEST INSTRUMENTS	39
ANNEX A GRAPH RESULTS	40
ANNEX B SYSTEM VALIDATION RESULTS	156
ANNEX C PROBE CALIBRATION CERTIFICATE	162
ANNEX D DIPOLE CALIBRATION CERTIFICATE	173

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment


Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	December 12, 2012
Testing End Date:	December 14, 2012

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCT Mobile Limited HSUPA/HSDPA/UMTS triband/GSM quadband mobile phone Beetle US / ONE TOUCH 4030A are as follows (with expanded uncertainty 18.5%)

Table 2.1. Max. SAN Measured (19)			
Band	Position	SAR 1g	
Banu	FOSITION	(W/Kg)	
GSM 850	Head	0.808	
	Body	1.05	
COM 1000	Head	0.579	
GSM 1900	Body	0.919	
WCDMA 850	Head	0.690	
	Body	1.01	
WCDMA 1900	Head	1.18	
	Body	1.14	
Wi-Fi	Head	0.575	
VVI-FI	Body	0.177	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.18 (1g)**.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Audress / Fusi.	Pudong Area Shanghai, P.R. China. 201203
City:	ShangHai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Post:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
City:	Pudong Area Shanghai, P.R. China. 201203 ShangHai
City.	Shanyhai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@jrdcom.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Model name:Beetle USMarketing name:ONE TOUCH 4030A
Marketing name: ONE TOUCH 4030A
Operating mode(s): GSM 850/900/1800/1900, WCDMA 850/1900/2100, BT, Wi-Fi
825 – 848.8 MHz (GSM 850)
1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency: 826.4 – 846.6(WCDMA 850)
1852.4 – 1907.6(WCDMA 1900)
2412 – 2462 MHz (Wi-Fi)
GPRS Multislot Class: 12
GPRS capability Class: B
EGPRS Multislot Class: 12
Test device Production information: Production unit
Device type: Portable device
Antenna type: Integrated antenna
Accessories/Body-worn configurations: Headset
Hotspot mode: Support simultaneous transmission of hotspot and voice(or data)
Form factor: $11.5 \text{cm} \times 6.2 \text{ cm}$

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	013459000000383 / 013459000150055 013459000000722 / 013459000150048	proto	vEA1

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT (013459000000383 / 013459000150055) and conducted power with the EUT (013459000000722 / 013459000150048).

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB60B0000C1	١	BYD
AE2	Battery	CAB60B0000C2	١	BAK
AE3	Headset	CCB3160A11C1	١	Juwei
AE4	Headset	CCB3160A11C2	١	lianyun
AE5	Headset	CCB3160A15C1	١	Juwei
AE6	Headset	CCB3160A15C2	١	lianyun

*AE ID: is used to identify the test sample in the lab internally.

Note: AE3 and AE5 are the same, so they can use the same results. AE4 and AE6 are the same, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas.

KDB248227: SAR measurement procedures for 802.112abg transmitters.

KDB941225 : SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled limits exposure are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

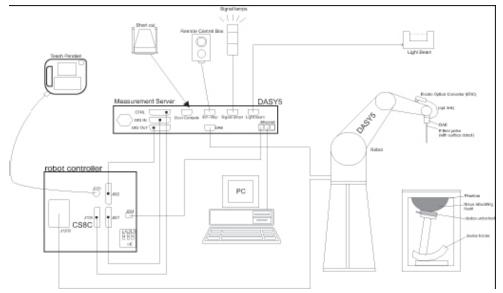
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 SAR MEASUREMENT SETUP

7.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture 7.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture 7.2 Near-field Probe

Picture 7.3 E-field Probe

7.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

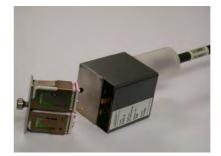
$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).


7.4 Other Test Equipment

7.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture7.4: DAE

7.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 7.5 DASY 4

Picture 7.6 DASY 5

7.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

No. 2012SAR00131 Page 15 of 196

Picture 7.7 Server for DASY 4

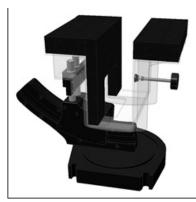
Picture 7.8 Server for DASY 5

7.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss


POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture 7.9-2: Laptop Extension Kit

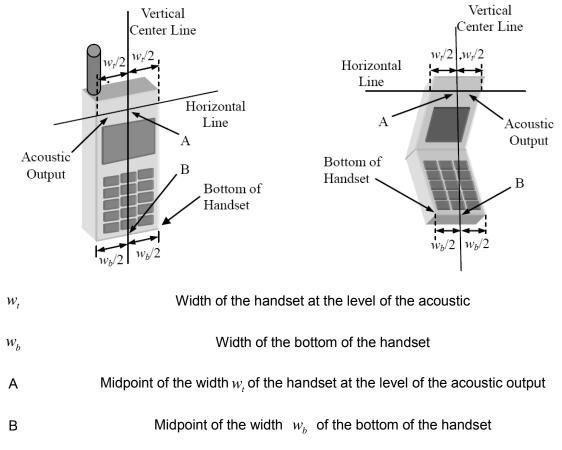
Picture 7.9-1: Device Holder

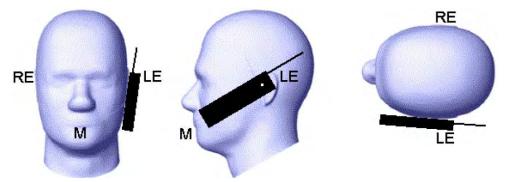
7.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

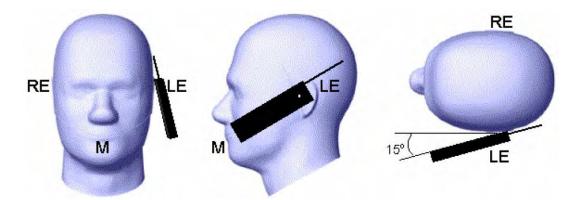
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture 7.10: SAM Twin Phantom


8. Position of the wireless device in relation to the phantom

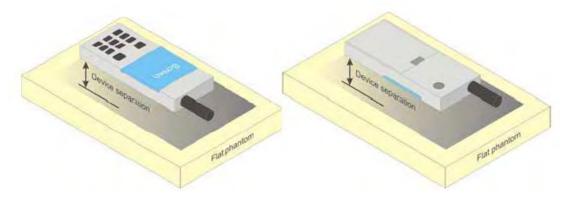
8.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture 8.1-a Typical "fixed" case handset Picture 8.1-b Typical "clam-shell" case handset

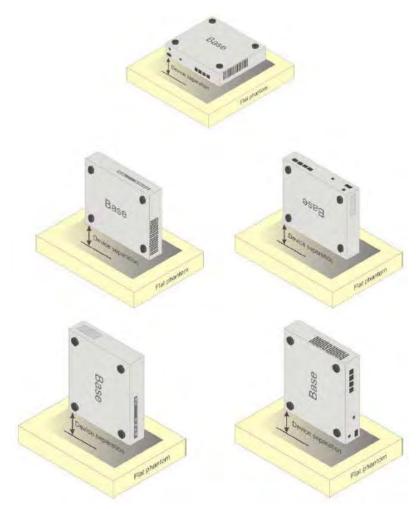
Picture 8.2 Cheek position of the wireless device on the left side of SAM



Picture 8.3 Tilt position of the wireless device on the left side of SAM

8.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture 8.4 Test positions for body-worn devices

8.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture 8.5 Test positions for desktop devices

8.4 DUT Setup Photos

Picture 8.6

9 Tissue Simulating Liquids

9.1 Equivalent Tissues

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 9.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

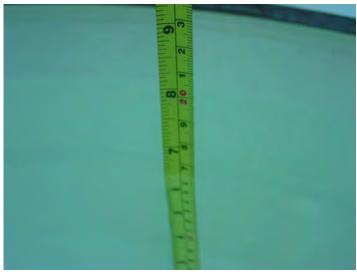
Frequency (MHz)	835 Head	835 Body	1900 Head	1900 Body	2450 Head	2450 Body					
Ingredients (% by weight)											
Water	41.45	52.5	55.242	69.91	58.79	72.60					
Sugar	56.0	45.0	١	/	١	١					
Salt	1.45	1.4	0.306	0.13	0.06	0.18					
Preventol	0.1	0.1	/	/	١	١					
Cellulose	1.0	1.0	/	/	١	١					
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22					
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95					

 Table 9.1: Composition of the Tissue Equivalent Matter

Table 9.2: Targets for tissue simulating liquid

Frequency	Liquid Type	Conductivity	± 5% Range	Permittivity	± 5% Range
(MHz)		(σ)		(3)	
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

9.2 Dielectric Performance

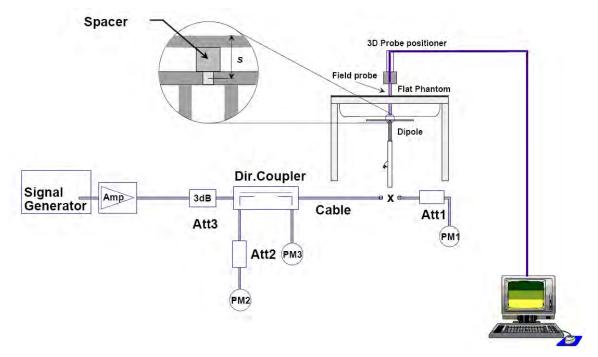

Table 9.3: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Measurement Date : 835 MHz December 13, 2012 1900 MHz December 14, 2012										
2450 MHz December 12, 2012											
/ Type Frequency Permittivity ϵ Conductivity σ (S/m)											
	Head	835 MHz	40.88	0.891							
	Body	835 MHz	54.25	0.989							
Measurement	Head	1900 MHz	40.93	1.385							
value	Body	1900 MHz	52.24	1.503							
	Head	2450 MHz	39.66	1.827							
	Body	2450 MHz	51.96	1.968							

Picture 9.1: Liquid depth in the Head Phantom (850 MHz)

Picture 9.2 Liquid depth in the Flat Phantom (1900MHz)

Picture 9.3 Liquid depth in the Flat Phantom (2450MHz)


10 System Validation

10.1 System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performace check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

10.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 10.1 System Setup for System Evaluation

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Picture 10.2 Photo of Dipole Setup

Table 10.1: System Validation of Head

Measurement Date : 835 MHz December 13, 2012				1900 MHz	December 14	, <u>2012</u>	
	2450 N	1Hz <u>Decemb</u>	<u>er 12, 2012</u>				
	Target value (W/kg) Measured value (W/kg) Dev						
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
Verification		Average	Average	Average	Average	Average	Average
results	835 MHz	6.07	9.30	6.20	9.48	2.14%	1.94%
	1900 MHz	20.6	39.1	20.08	38.28	-2.52%	-2.10%
	2450 MHz	24.4	52.4	23.76	51.20	-2.62%	-2.29%

Table 10.2: System Validation of Body

Measurement Date : 835 MHz December 13, 2012				1900 MHz <u>I</u>	December 14	<u>, 2012</u>					
	2450 MHz December 12, 2012										
Target value (W/kg) Measured value (W/kg) Deviation											
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g				
Verification		Average	Average	Average	Average	Average	Average				
results	835 MHz	6.20	9.36	6.32	9.56	1.94%	2.14%				
	1900 MHz	21.3	39.9	21.84	40.80	2.54%	2.26%				
	2450 MHz	23.6	50.4	23.32	50.80	-1.19%	0.79%				

11 Measurement Procedures

11.1 Tests to be performed

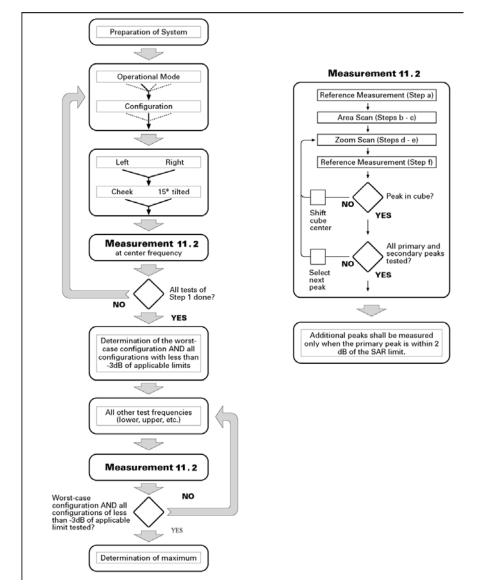
In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of

the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and


c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions. **Step 2**: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 11.1 Block diagram of the tests to be performed

11.2 Measurement procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.

b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the

plane wave skin depth and ln(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;

d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed.

e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

11.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output

conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c/oldsymbol{eta}_d$	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSDPA Data Devices

Sub- test	$oldsymbol{eta}_{c}$	eta_{d}	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

11.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

11.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.12 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

12 Conducted Output Power

12.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 12.1: The conducted	power measurement results for GSM850/1900

GSM		Conducted Power (dBm)								
850MHZ	Channel 251(848.8MHz)			Chann	el 190(836.6N	1Hz)	Channel 128(824.2MHz)			
ODUMITZ		32.3	6		32.36 32.36					
GSM				Conduc	Conducted Power (dBm)					
1900MHZ	Cł	nannel 810(1	909.8MHz)	Chann	iel 661(1800M	Hz)	Channel 512(1850.2MHz)		
		29.3	7		29.36		29.	32		
Table 12.2:	The	conducted	RS							
GSM 850	C	Measu	ured Power	(dBm)	calculation	A	veraged Power	(dBm)		
GPRS		251	190	128		251	190	128		
1 Txslot		32.42	32.36	32.35	-9.03dB	23.3	9 23.33	23.32		
2 Txslots	6	30.07	30.00	29.97	-6.02dB	24.0	5 23.98	23.95		
3Txslots	5	28.21	28.12	28.09	-4.26dB	23.9	5 23.86	23.83		
4 Txslot	s	27.12	27.05	27.02	-3.01dB	24.1	1 24.04	24.01		
GSM 850	C	Measu	ured Power	(dBm)	calculation	A	Averaged Power (dBm)			
EGPRS	3	251	190	128		251	190	128		
1 Txslot		32.43	32.35	32.37	-9.03dB	23.4	0 23.32	23.34		
2 Txslots	3	30.08	29.98	29.99	-6.02dB	24.0	6 23.96	23.97		
3Txslots	;	28.22	28.11	28.11	-4.26dB	23.9	6 23.85	23.85		
4 Txslot	S	27.14	27.04	27.03	-3.01dB	24.1	3 24.03	24.02		
PCS1900	0	Measu	ured Power	(dBm)	calculation	Averaged Power (dBm)				
GPRS		810	661	512		810	661	512		
1 Txslot		29.34	29.34	29.30	-9.03dB	20.3	1 20.31	20.27		
2 Txslot	S	29.00	28.99	28.97	-6.02dB	22.9	8 22.97	22.95		
3Txslots	5	26.31	26.30	26.29	-4.26dB	22.0	5 22.04	22.03		
4 Txslots	3	25.33	25.30	25.47	-3.01dB	22.3	2 22.29	22.46		
PCS1900	0	Measu	ured Power	(dBm)	calculation	A	veraged Power	(dBm)		
EGPRS		810	661	512		810	661	512		
1 Txslot		29.32	29.32	29.28	-9.03dB	20.2	9 20.29	20.25		
2 Txslot	s	28.98	28.98	28.95	-6.02dB	22.9	6 22.96	22.93		
3Txslots	;	26.29	26.28	26.27	-4.26dB	22.0	3 22.02	22.01		
4 Txslots	6	25.31	25.30	25.41	-3.01dB	22.3	0 22.29	22.40		

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB **According to the conducted power as above, the body measurements are performed with**

4Txslots for GSM850 and 2Txslots for GSM1900.

12.2 WCDMA Measurement result

	band		FDDV result					
Item	ARFCN	4132	4182	4233				
	ARECN	(826.4MHz)	(836.4MHz)	(846.6MHz)				
WCDMA	١	22.71	22.73	22.55				
	1	19.87	19.95	19.66				
	2	18.86	18.95	18.66				
HSUPA	3	19.35	19.44	19.15				
	4	19.87	19.96	19.70				
	5	21.84	21.91	21.64				
	band							
ltem	ARFCN	9262	9400	9538				
	ARECIN	(1852.4MHz)	(1880MHz)	(1907.6MHz)				
WCDMA	١	23.11	23.07	23.01				
	1	20.03	20.15	20.09				
	2	19.04	19.16	19.11				
HSUPA	3	19.53	19.63	19.58				
	4	20.05	20.17	20.12				
	5	22.04	22.15	22.09				

Table 10: The conducted Power for WCDMA850/1900

Note: HSUPA body SAR are not required, because maximum average output power of each RF channel with HSDPA active is not 1/4 dB higher than that measured without HSUPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

12.3 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Channel	Ch 0	Ch 39	Ch 78
	2402 MHz	2441 Mhz	2480 MHz
Peak Conducted Output Power(dBm)	5.12	2.31	4.32

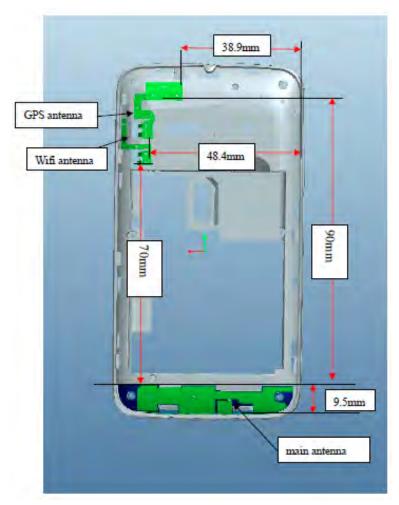
The average conducted power for Wi-Fi is as following:

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	16.31	16.27	16.34	16.06
6	16.72	16.68	16.80	16.56
11	16.95	16.90	17.04	16.78

802.11g (dBm)

802.11g (aBm)		-										
Channel\data rate	6Mbps	9M	bps	12	Mbps	18	BMbps	24Mbps	36Mbps	48Mbps	54Mbps	
1	14.21	14.	11	14	.04	13	3.84	13.66	13.51	13.03	12.91	
6	14.69	14.	62	14	.52	14	4.14	13.96	13.71	13.45	13.33	
11	14.96	14.	91	14	.79	14	4.61	14.24	13.94	13.67	13.56	
20M 802.11n (dB	m)											
Channel\data rate	MCS)	MCS	1	MCS	2	MCS3	MCS4	MCS5	MCS6	MCS7	
1	10.84		10.66	6	10.48		10.34	10.09	9.86	9.72	9.62	
6	11.39		11.23	3	11.09		10.96	10.48	10.27	10.17	10.08	
11	11.68		11.52	2	11.36		11.23	11.95	10.74	10.62	10.51	
40M 802.11n (dB	m)											
Channel\data rate	MCS)	MCS	1	MCS	2	MCS3	MCS4	MCS5	MCS6	MCS7	
3	9.58	9	9.29		9.03		8.59	8.23	7.81	7.69	7.56	
6	9.81	9	9.52		9.26		8.78	8.39	8.09	7.96	7.81	
9	10.21	9	9.73		9.48		9.23	8.85	8.34	8.20	8.09	
The peak conducted 802.11b (dBm)	d power f	or W	/i-Fi is	s as	follow	ing	:					
Channel\data rate	1Mb	ps			2Mb	os		5.5M	ops	11Mbps	6	
1	19.9	3			20.19			21.61	21.61		22.92	
6	/				1			/	/			
11	/				/	/ / 23.75						
802.11g (dBm)								-				
Channel\data rate	6Mbps	9M	bps	12	Mbps 18Mbps 24		24Mbps	36Mbps	48Mbps	54Mbps		
1	22.70	22.	63	22	.47	22	2.43	22.99	22.87	22.91	22.89	
6	/	/		/		/		23.24	/	1	/	
11	/	1		/		/		23.56	/	1	/	
20M 802.11n (dB	m)											
Channel\data rate	MCS	0	MCS	1	MCS	2	MCS3	MCS4	MCS5	MCS6	MCS7	
1	19.52		19.31	1	19.19		19.10	19.58	19.72	19.66	19.65	
6	/		/		/		/	/	20.13	/	1	
11	/		/		/		/	/	20.60	/	/	
40M 802.11n (dB	m)											
Channel\data rate	MCS)	MCS	1	MCS	2	MCS3	MCS4	MCS5	MCS6	MCS7	
3	18.40)	18.21	1	18.22		18.48	18.42	18.51	18.48	18.43	
6	/	1	/		/		/	/	18.61	/	/	
9	1	1	/		/		/	/	19.00	1	/	
SAR is not required for	or 802.11	g/n c	chanr	nels	if the c	outp	out pow	er is less	than 0.25d	B higher th	an that	
neasured on the corr data rates and higher for each of these cont	order m	odula	ations	s is	not rec	quir	ed whe	n the max	imum avei	rage outpu	t power	


for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 11".

13 Simultaneous TX SAR Considerations

13.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

13.2 Transmit Antenna Separation Distances

Picture 13.1 Antenna Locations

Band/Mode	F(GHz)	2P _{Ref} power threshold (mW)	RF output power (mW)						
Bluetooth	2.441	24.6	3.25						
2.4GHz WLAN 802.11 b/g	2.45	24.5	49.55						
Band/Mode	F(GHz)	P _{Ref} power threshold (mW)	RF output power (mW)						
Bluetooth	2.441	12.29	3.25						

Table 13.1: Summary of Transmitters

For the WiFi antenna and RF antenna, because the output of WiFi transmitter is $> 2P_{Ref}$ and its antenna is > 5.0 cm from RF antenna, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of GSM/WCDMA and WiFi.

For the BT antenna and RF antenna, because the output of BT transmitter is $< 2P_{Ref}$ and its antenna is > 5.0 cm from RF antenna, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR for Bluetooth should not be performed.

For the BT antenna and WiFi antenna, because the output of BT transmitter is $< P_{Ref}$, its antenna is < 2.5 cm from WiFi antenna and 1g SAR for WiFi antenna is < 1.2W/kg, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR for Bluetooth should not be performed.

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	$\label{eq:when there is no simultaneous transmission - 0 output $\leq 60/f$: SAR not required $$ output > 60/f$: stand-alone SAR required $$ When there is simultaneous transmission - $$ Stand-alone SAR not required when $$ output $\leq 2.P_{Ref}$ and antenna is $$ 5.0 cm from other antennas $$ output $\leq P_{Ref}$ and antenna is $$ 2.5 cm from other antennas $$ output $\leq P_{Ref}$ and antenna is $$ 2.5 cm from other antennas $$ output $\leq P_{Ref}$ and antenna is $$ 2.5 cm from other antennas $$ output $\leq P_{Ref}$ and antenna is $$ 2.5 cm from other antennas $$ output $\leq P_{Ref}$ and antenna is $$ 2.5 cm from other antennas $$ output $\leq P_{Ref}$ or 1-g SAR $$ 1.2 W/kg $$ Otherwise stand-alone SAR is required $$ When stand-alone SAR is required $$ wireless mode and exposure condition $$ oild SAR for highest output channel for each wireless mode and exposure condition $$ of SAR limit, evaluate all channels according to normal procedures $$ $$ and procedures $$ output $$ ou$	 o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas o when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply

٦	Table 13.2 SAR Evaluation	n Requirements fo	or Multiple Tra	Insmitter Handsets
1	1			1

Table 13.3: The sum of SAR values

	Position	GSM / WCDMA	WiFi	Sum
Maximum SAR	Left hand, Touch cheek	0.943	0.575	1.518
value for Head	Right hand, Touch cheek	1.18	0.288	1.468
Maximum SAR	Toward Ground	1.14	0.158	1.298
value for Body	Right Side	0.669	0.177	0.846

According to the above table, the sum of SAR values for GSM and WiFi <1.6W/kg. So the simultaneous transmission SAR is not required for WiFi transmitter.

14 SAR Test Result

14.1 The evaluation of multi-batteries

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries and retest on highest value point with other batteries. Then, repeat the measurement in the Body test.

Table 14.1: The evaluation of multi-batteries for Head Test

Frequency		Mode/Band	Side	Test	Pattony Type	SAR(1g)	Power
MHz	Ch.	WOUE/Ballu	Side	Position	Battery Type	(W/kg)	Drift(dB)
848.8	251	GSM850	Left	Touch	CAB60B0000C1	0.808	-0.13
848.8	251	GSM850	Left	Touch	CAB60B0000C2	0.746	-0.07

Note: According to the values in the above table, the battery, CAB60B0000C1, is the primary battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 14.2: The evaluation of multi-batteries for Body Test

Freque	ency	Handoot	Test	Spacing	Pottom Tupo	SAR(1g)	Power
MHz	Ch.	Headset	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
1880	661	١	Ground	10	CAB60B0000C1	0.918	0.11
1880	661	١	Ground	10	CAB60B0000C2	0.910	-0.16

Note: According to the values in the above table, the battery, CAB60B0000C1, is the primary battery. We'll perform the Body measurement with this battery and retest on highest value point with others.

14.1 SAR Test Result

Table 14.3: SAR Values (GSM 850 MHz Band - Head)

		•			,		
Freque	ency	Mode/Band	Side	Test	Pottomy Typo	SAR(1g)	Power
MHz	Ch.	WOUE/Danu	Side	Position	Battery Type	(W/kg)	Drift(dB)
848.8	251	GSM850	Left	Touch	CAB60B0000C1	0.808	-0.13
836.6	190	GSM850	Left	Touch	CAB60B0000C1	0.590	-0.00
824.2	128	GSM850	Left	Touch	CAB60B0000C1	0.428	-0.16
848.8	251	GSM850	Left	Tilt	CAB60B0000C1	0.365	-0.04
836.6	190	GSM850	Left	Tilt	CAB60B0000C1	0.280	0.04
824.2	128	GSM850	Left	Tilt	CAB60B0000C1	0.237	0.05
848.8	251	GSM850	Right	Touch	CAB60B0000C1	0.609	-0.15
836.6	190	GSM850	Right	Touch	CAB60B0000C1	0.450	0.01
824.2	128	GSM850	Right	Touch	CAB60B0000C1	0.334	0.12
848.8	251	GSM850	Right	Tilt	CAB60B0000C1	0.381	0.07
836.6	190	GSM850	Right	Tilt	CAB60B0000C1	0.307	-0.04
824.2	128	GSM850	Right	Tilt	CAB60B0000C1	0.242	0.05

Table 14.4: SAR Values ((GSM 850 MHz Band - Body)

Frequ	ency	Mode/Band	ode/Band Headset		Spacing	Bottom Tuno	SAR(1g)	Power
MHz	Ch.	Mode/Banu	neausei	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
848.8	251	GPRS	١	Phantom	10	CAB60B0000C1	0.768	-0.01
848.8	251	GPRS	١	Ground	10	CAB60B0000C1	1.05	0.02
836.6	190	GPRS	١	Ground	10	CAB60B0000C1	0.920	-0.02
824.2	128	GPRS	١	Ground	10	CAB60B0000C1	0.697	0.03
848.8	251	GPRS	١	Left	10	CAB60B0000C1	0.722	-0.11
848.8	251	GPRS	١	Right	10	CAB60B0000C1	0.666	0.05
848.8	251	GPRS	١	Bottom	10	CAB60B0000C1	0.172	-0.06
848.8	251	EGPRS	١	Ground	10	CAB60B0000C1	1.02	-0.12
848.8	251	Speech	CCB3160A11C1	Ground	10	CAB60B0000C1	0.781	-0.14
848.8	251	Speech	CCB3160A11C2	Ground	10	CAB60B0000C1	0.792	0.14

Table 14.5: SAR Values (GSM 1900 MHz Band - Head)

Frequency		Mode/Band	Side	Test	Pottom Tupo	SAR(1g)	Power
MHz	Ch.	WOUE/Ballu	Side	Position	Battery Type	(W/kg)	Drift(dB)
1909.8	810	GSM1900	Left	Touch	CAB60B0000C1	0.393	-0.13
1880	661	GSM1900	Left	Touch	CAB60B0000C1	0.390	0.04
1850.2	512	GSM1900	Left	Touch	CAB60B0000C1	0.370	-0.09
1909.8	810	GSM1900	Left	Tilt	CAB60B0000C1	0.174	-0.09
1880	661	GSM1900	Left	Tilt	CAB60B0000C1	0.168	-0.08
1850.2	512	GSM1900	Left	Tilt	CAB60B0000C1	0.153	-0.05
1909.8	810	GSM1900	Right	Touch	CAB60B0000C1	0.579	0.01
1880	661	GSM1900	Right	Touch	CAB60B0000C1	0.555	-0.17
1850.2	512	GSM1900	Right	Touch	CAB60B0000C1	0.484	-0.00
1909.8	810	GSM1900	Right	Tilt	CAB60B0000C1	0.184	0.03
1880	661	GSM1900	Right	Tilt	CAB60B0000C1	0.167	-0.05
1850.2	512	GSM1900	Right	Tilt	CAB60B0000C1	0.143	-0.07

Table 14.6: SAR Values (GSM 1900 MHz Band - Body)

Freque	ency	Mode/Band	Pand Headaat		Spacing	Dettern Turne	SAR(1g)	Power
MHz	Ch.	Mode/Band	Headset	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
1909.8	810	GPRS	١	Phantom	10	CAB60B0000C1	0.762	-0.15
1909.8	810	GPRS	١	Ground	10	CAB60B0000C1	0.890	-0.18
1880	661	GPRS	١	Ground	10	CAB60B0000C1	0.919	-0.06
1850.2	512	GPRS	١	Ground	10	CAB60B0000C1	0.898	0.15
1909.8	810	GPRS	١	Left	10	CAB60B0000C1	0.201	-0.05
1909.8	810	GPRS	١	Right	10	CAB60B0000C1	0.288	-0.03
1909.8	810	GPRS	١	Bottom	10	CAB60B0000C1	0.605	0.11
1880	661	EGPRS	١	Ground	10	CAB60B0000C1	0.918	0.11
1880	661	Speech	CCB3160A11C1	Ground	10	CAB60B0000C1	0.542	-0.00
1880	661	Speech	CCB3160A11C2	Ground	10	CAB60B0000C1	0.503	0.02

Freque	ency	Mode/Band	Sida	Test	Pottom Tuno	SAR(1g)	Power
MHz	Ch.	woue/banu	Side	Side Position Battery Type		(W/kg)	Drift(dB)
846.6	4233	WCDMA850	Left	Touch	CAB60B0000C1	0.690	-0.18
836.4	4182	WCDMA850	Left	Touch	CAB60B0000C1	0.575	-0.01
826.4	4132	WCDMA850	Left	Touch	CAB60B0000C1	0.515	0.01
846.6	4233	WCDMA850	Left	Tilt	CAB60B0000C1	0.352	-0.00
836.4	4182	WCDMA850	Left	Tilt	CAB60B0000C1	0.297	-0.19
826.4	4132	WCDMA850	Left	Tilt	CAB60B0000C1	0.275	0.07
846.6	4233	WCDMA850	Right	Touch	CAB60B0000C1	0.507	-0.18
836.4	4182	WCDMA850	Right	Touch	CAB60B0000C1	0.431	0.12
826.4	4132	WCDMA850	Right	Touch	CAB60B0000C1	0.394	0.05
846.6	4233	WCDMA850	Right	Tilt	CAB60B0000C1	0.327	-0.08
836.4	4182	WCDMA850	Right	Tilt	CAB60B0000C1	0.291	0.02
826.4	4132	WCDMA850	Right	Tilt	CAB60B0000C1	0.286	0.02

Table 14.7: SAR Values (WCDMA 850 MHz Band - Head)

Table 14.8: SAR Values (WCDMA 850 MHz Band - Body)

Frequency			Test	Spacing		SAR(1g)	Power
MHz	Ch.	Headset	Headset Position (mm) Battery Type		(W/kg)	Drift(dB)	
836.4	4182	١	Phantom	10	CAB60B0000C1	0.694	-0.03
846.6	4233	١	Ground	10	CAB60B0000C1	0.977	-0.01
836.4	4182	١	Ground	10	CAB60B0000C1	1.01	-0.03
826.4	4132	١	Ground	10	CAB60B0000C1	0.990	-0.01
836.4	4182	١	Left	10	CAB60B0000C1	0.765	-0.01
836.4	4182	١	Right	10	CAB60B0000C1	0.669	0.01
836.4	4182	١	Bottom	10	CAB60B0000C1	0.163	-0.04
846.6	4233	CCB3160A11C1	Ground	10	CAB60B0000C1	0.774	-0.07
836.4	4182	CCB3160A11C1	Ground	10	CAB60B0000C1	0.849	-0.03
826.4	4132	CCB3160A11C1	Ground	10	CAB60B0000C1	0.803	0.02
846.6	4233	CCB3160A11C2	Ground	10	CAB60B0000C1	0.818	0.03
836.4	4182	CCB3160A11C2	Ground	10	CAB60B0000C1	0.921	0.02
826.4	4132	CCB3160A11C2	Ground	10	CAB60B0000C1	0.857	0.00

Table 14.9: SAR Values (WCDMA 1900 MHz Band - Head)

Freque	ency	Mode/Band	Sida	Test	Bottom, Tupo	SAR(1g)	Power
MHz	Ch.	woue/banu	Side	Position	Battery Type	(W/kg)	Drift(dB)
1907.6	9538	WCDMA1900	Left	Touch	CAB60B0000C1	0.943	0.18
1880	9400	WCDMA1900	Left	Touch	CAB60B0000C1	0.775	0.06
1852.4	9262	WCDMA1900	Left	Touch	CAB60B0000C1	0.823	0.09
1907.6	9538	WCDMA1900	Left	Tilt	CAB60B0000C1	0.400	-0.16
1880	9400	WCDMA1900	Left	Tilt	CAB60B0000C1	0.324	-0.12
1852.4	9262	WCDMA1900	Left	Tilt	CAB60B0000C1	0.314	0.10
1907.6	9538	WCDMA1900	Right	Touch	CAB60B0000C1	1.18	0.13

1880	9400	WCDMA1900	Right	Touch	CAB60B0000C1	0.868	-0.03
1852.4	9262	WCDMA1900	Right	Touch	CAB60B0000C1	0.829	-0.10
1907.6	9538	WCDMA1900	Right	Tilt	CAB60B0000C1	0.384	-0.00
1880	9400	WCDMA1900	Right	Tilt	CAB60B0000C1	0.313	0.15
1852.4	9262	WCDMA1900	Right	Tilt	CAB60B0000C1	0.345	-0.05
1907.6	9538	WCDMA1900	Right	Touch	CAB60B0000C2	1.06	0.12

Table 14.10: SAR Values (WCDMA 1900 MHz Band - Body)

Frequency		Hoodoot	Test	Spacing	Bottom Tumo	SAR(1g)	Power
MHz	Ch.	Headset	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
1852.4	9262	١	Phantom	10	CAB60B0000C1	0.739	-0.04
1907.6	9538	١	Ground	10	CAB60B0000C1	1.14	-0.02
1880	9400	١	Ground	10	CAB60B0000C1	1.06	0.16
1852.4	9262	١	Ground	10	CAB60B0000C1	1.09	0.03
1852.4	9262	١	Left	10	CAB60B0000C1	0.213	0.09
1852.4	9262	١	Right	10	CAB60B0000C1	0.259	0.13
1907.6	9538	١	Bottom	10	CAB60B0000C1	0.933	0.07
1880	9400	١	Bottom	10	CAB60B0000C1	0.866	0.07
1852.4	9262	١	Bottom	10	CAB60B0000C1	0.919	0.09
1907.6	9538	CCB3160A11C1	Ground	10	CAB60B0000C1	1.1	0.10
1880	9400	CCB3160A11C1	Ground	10	CAB60B0000C1	0.958	0.05
1852.4	9262	CCB3160A11C1	Ground	10	CAB60B0000C1	1.05	0.04
1907.6	9538	CCB3160A11C2	Ground	10	CAB60B0000C1	1.12	0.03
1880	9400	CCB3160A11C2	Ground	10	CAB60B0000C1	0.971	0.05
1852.4	9262	CCB3160A11C2	Ground	10	CAB60B0000C1	1.06	0.16
1907.6	9538	١	Ground	10	CAB60B0000C2	1.13	0.01

Table 14.11: SAR Values (Wi-Fi 802.11b - Head)

Frequency		Mede/Band	Side	Test	Bottom Turno	SAR(1g)	Power
MHz	Ch.	Mode/Band	Side Position		Battery Type	(W/kg)	Drift(dB)
2462	11	802.11 b	Left	Touch	CAB60B0000C1	0.575	-0.14
2462	11	802.11 b	Left	Tilt	CAB60B0000C1	0.184	-0.04
2462	11	802.11 b	Right	Touch	CAB60B0000C1	0.288	0.15
2462	11	802.11 b	Right	Tilt	CAB60B0000C1	0.228	0.11

Table 14.12: SAR Values (Wi-Fi 802.11b - Body)

Frequency		Mode/Band	Test	Spacing	Pottom Turno	SAR(1g)	Power
MHz	Ch.	Mode/Banu	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
2462	11	802.11 b	Phantom	10	CAB60B0000C1	0.148	-0.06
2462	11	802.11 b	Ground	10	CAB60B0000C1	0.158	-0.19
2462	11	802.11 b	Right	10	CAB60B0000C1	0.177	-0.04
2462	11	802.11 b	Тор	10	CAB60B0000C1	0.066	-0.10

15 Measurement Uncertainty

			-							
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	~
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	œ
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test	sample related		I	I	•	•				L
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
Phar	tom and set-up									
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521

No. 2012SAR00131 Page 39 of 196

Combined standard uncertainty	$u_{c}' = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.25	9.12	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			18.5	18.2	

16 MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	February 14, 2012	One year		
02	Power meter	NRVD	102083	Sentember 11, 2012			
03	Power sensor	NRV-Z5	100542	September 11, 2012	One year		
04	Signal Generator	E4438C	MY49070393	November 13, 2012	One Year		
05	Amplifier	VTL5400	0505	No Calibration Requeste	quested		
06	BTS	E5515C	MY50263375	January 30, 2012	One year		
07	E-field Probe	SPEAG ES3DV3	3149	April 24, 2012	One year		
08	DAE	SPEAG DAE4	771	November 20, 2012	One year		
09	Dipole Validation Kit	SPEAG D835V2	443	May 03, 2012	One year		
10	Dipole Validation Kit	SPEAG D1900V2	541	May 09, 2012	One year		
11	Dipole Validation Kit	SPEAG D2450V2	853	May 02, 2012	One year		

END OF REPORT BODY

ANNEX A GRAPH RESULTS

850 Left Cheek High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.904$ mho/m; $\epsilon r = 40.698$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.242 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.995 mW/g SAR(1 g) = 0.808 mW/g; SAR(10 g) = 0.611 mW/g Maximum value of SAR (measured) = 0.837 mW/g

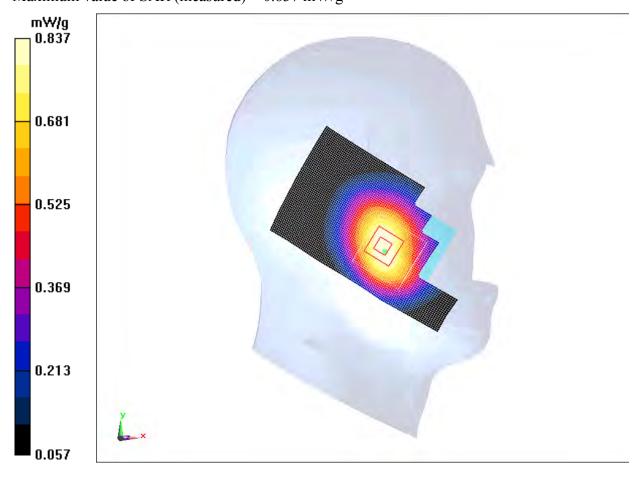


Fig. 1 850MHz CH251

No. 2012SAR00131 Page 41 of 196

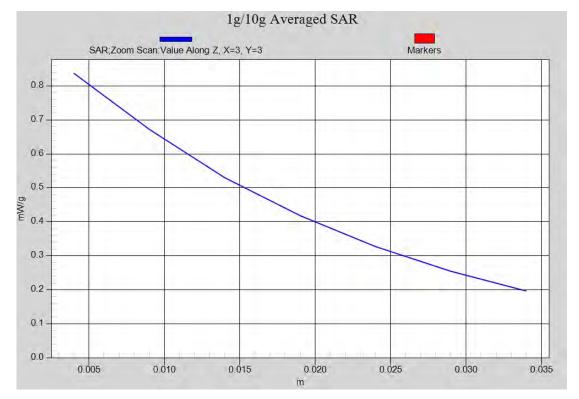
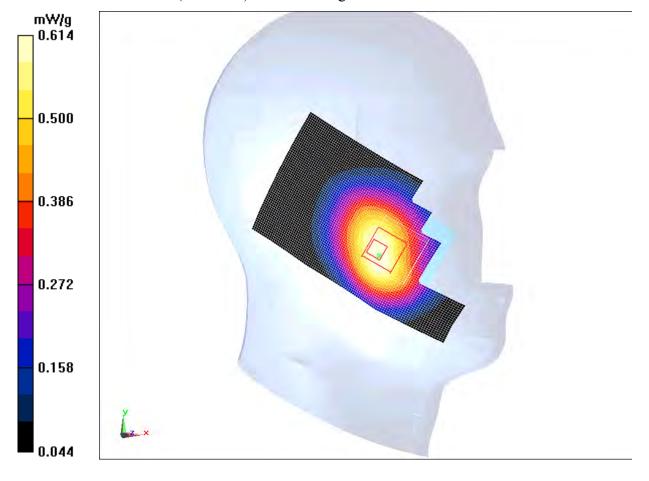


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)


850 Left Cheek Middle

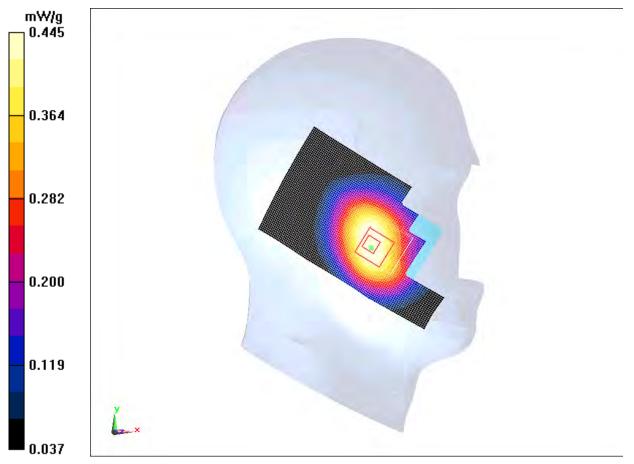
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

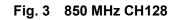
Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.621 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.108 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.744 mW/g SAR(1 g) = 0.590 mW/g; SAR(10 g) = 0.442 mW/g

Maximum value of SAR (measured) = 0.614 mW/g

Fig. 2 850 MHz CH190




850 Left Cheek Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.873$ mho/m; $\epsilon r = 40.995$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.457 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.467 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.529 mW/g SAR(1 g) = 0.428 mW/g; SAR(10 g) = 0.325 mW/g Maximum value of SAR (measured) = 0.445 mW/g

850 Left Tilt High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.904$ mho/m; $\epsilon r = 40.698$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.384 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.071 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.456 mW/gSAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.275 mW/g

Maximum value of SAR (measured) = 0.384 mW/g

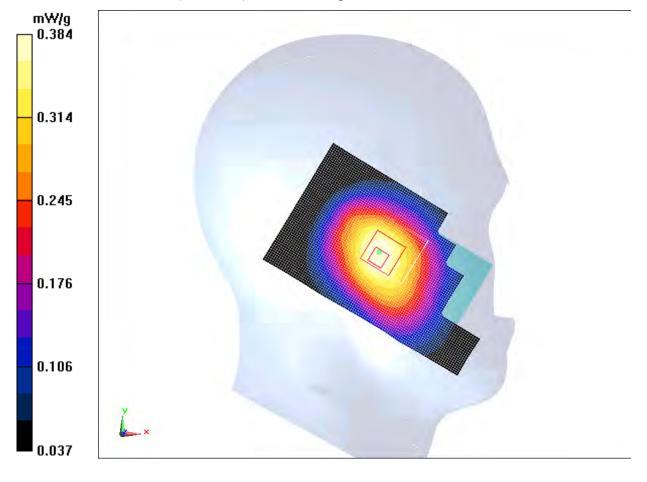


Fig.4 850 MHz CH251

850 Left Tilt Middle

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

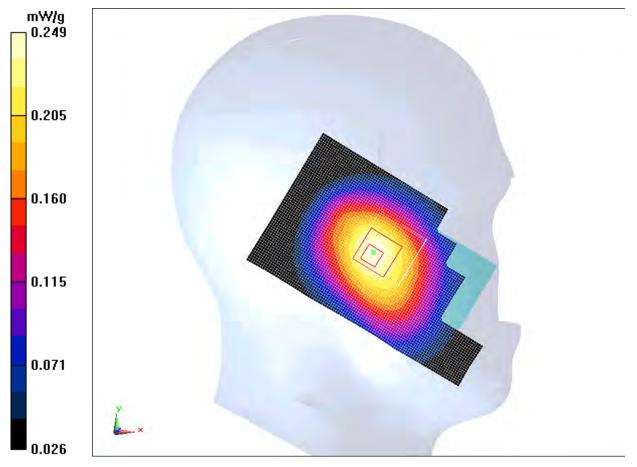
Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.293 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 11.579 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.351 mW/g SAR(1 g) = 0.280 mW/g; SAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 0.294 mW/g



Fig.5 850 MHz CH190

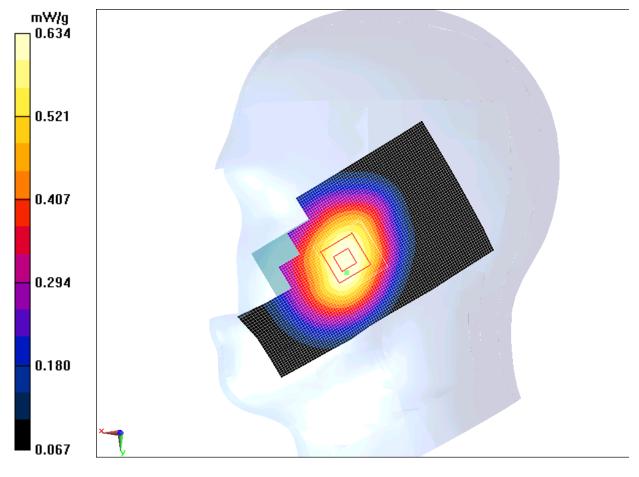


850 Left Tilt Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.873$ mho/m; $\epsilon r = 40.995$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.249 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.862 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.297 mW/gSAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.179 mW/gMaximum value of SAR (measured) = 0.249 mW/g


850 Right Cheek High

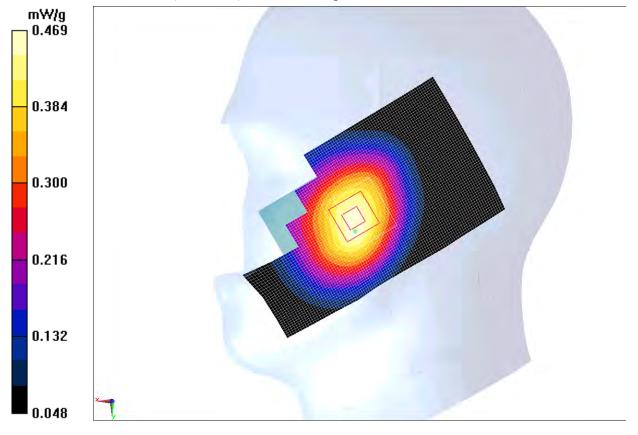
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.904$ mho/m; $\epsilon r = 40.698$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

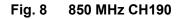
Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.639 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.337 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.756 mW/g SAR(1 g) = 0.609 mW/g; SAR(10 g) = 0.464 mW/g

Maximum value of SAR (measured) = 0.634 mW/g

850 Right Cheek Middle

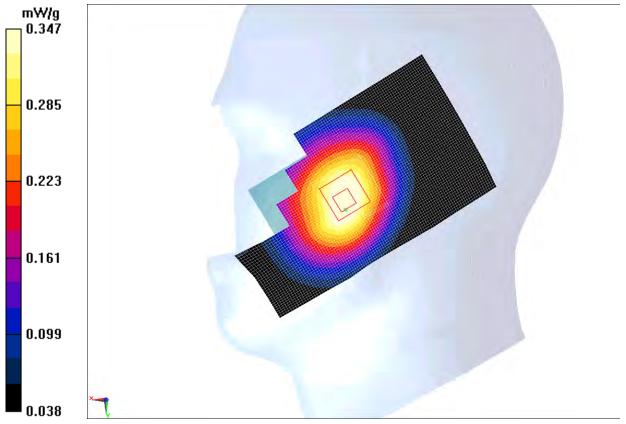

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)


Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.458 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.048 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.551 mW/g

SAR(1 g) = 0.450 mW/g; SAR(10 g) = 0.343 mW/g

Maximum value of SAR (measured) = 0.469 mW/g



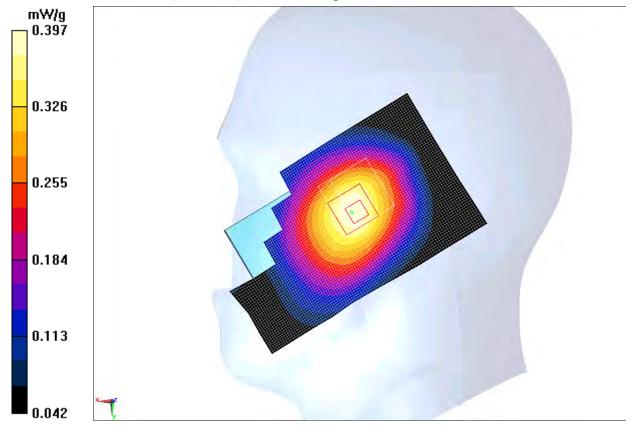
850 Right Cheek Low

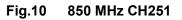
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.873$ mho/m; $\epsilon r = 40.995$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.356 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.277 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.415 mW/g SAR(1 g) = 0.334 mW/g; SAR(10 g) = 0.256 mW/g Maximum value of SAR (measured) = 0.347 mW/g

850 Right Tilt High


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.904$ mho/m; $\epsilon r = 40.698$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

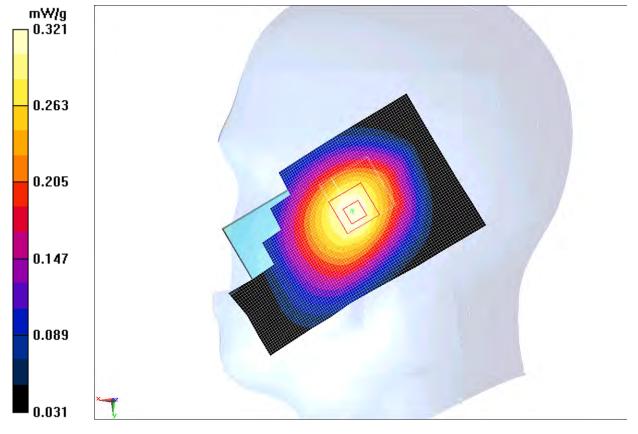

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.396 mW/g

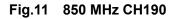
Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.794 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.474 mW/g

SAR(1 g) = 0.381 mW/g; SAR(10 g) = 0.286 mW/g

Maximum value of SAR (measured) = 0.397 mW/g

850 Right Tilt Middle


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)


Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.325 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.577 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.380 mW/g

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.321 mW/g

850 Right Tilt Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.873$ mho/m; $\epsilon r = 40.995$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.251 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.331 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.298 mW/g SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.185 mW/g Maximum value of SAR (measured) = 0.252 mW/g

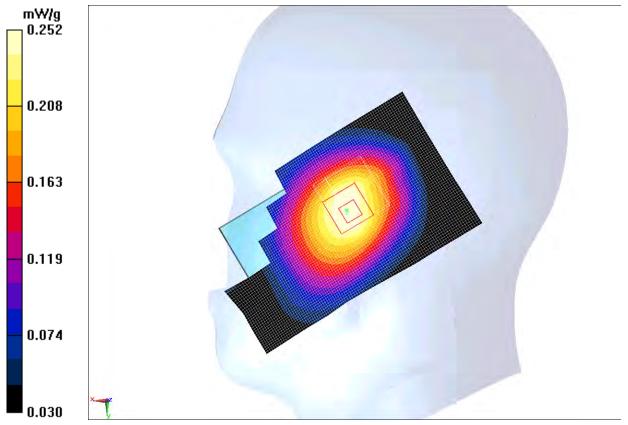
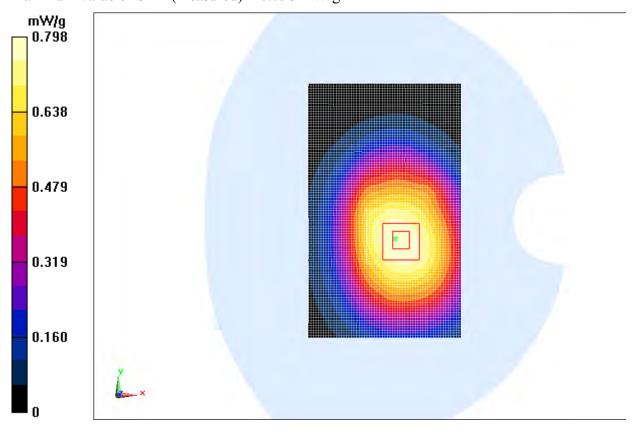


Fig. 12 850 MHz CH128


850 Body Towards Phantom High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Phantom High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.802 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.847 V/m; Power Drift = -0.01 dBPeak SAR (extrapolated) = 0.944 mW/g**SAR(1 g) = 0.768 \text{ mW/g}; SAR(10 g) = 0.588 \text{ mW/g}** Maximum value of SAR (measured) = 0.798 mW/g

850 Body Towards Ground High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.12 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.172 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.355 mW/g SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.773 mW/g Maximum value of SAR (measured) = 1.10 mW/g

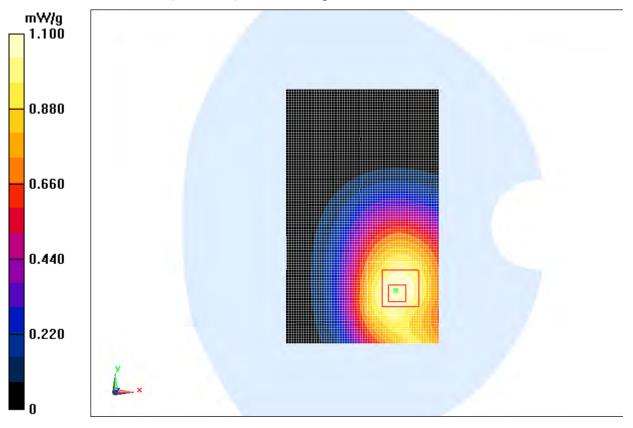


Fig. 14 850 MHz CH251

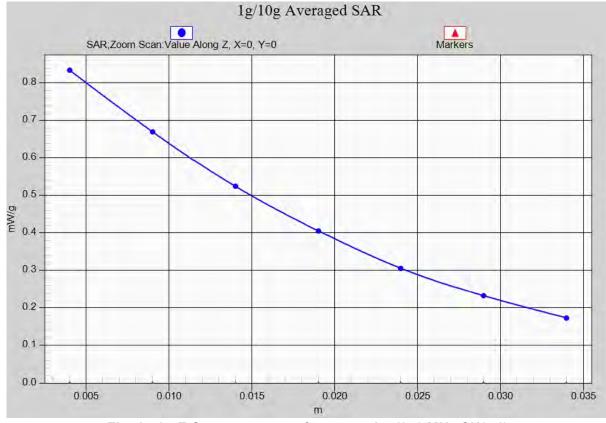


Fig. 14-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Towards Ground Middle

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.995$ mho/m; $\epsilon r = 54.237$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.977 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.890 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.158 mW/g

SAR(1 g) = 0.920 mW/g; SAR(10 g) = 0.681 mW/g

Maximum value of SAR (measured) = 0.973 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.890 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.197 mW/g

SAR(1 g) = 0.788 mW/g; SAR(10 g) = 0.558 mW/g

Maximum value of SAR (measured) = 0.886 mW/g

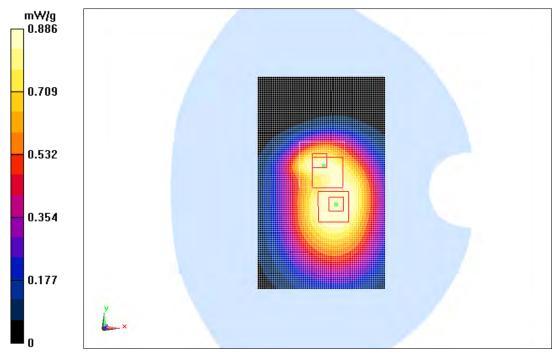


Fig. 15 850 MHz CH190

850 Body Towards Ground Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.982$ mho/m; $\epsilon r = 54.364$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.738 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.306 V/m; Power Drift = 0.03 dB

Reference value -20.500 v/m, Power Difft -0

Peak SAR (extrapolated) = 0.877 mW/g

SAR(1 g) = 0.697 mW/g; SAR(10 g) = 0.519 mW/g

Maximum value of SAR (measured) = 0.735 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.306 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.905 mW/g

SAR(1 g) = 0.624 mW/g; SAR(10 g) = 0.440 mW/g

Maximum value of SAR (measured) = 0.697 mW/g

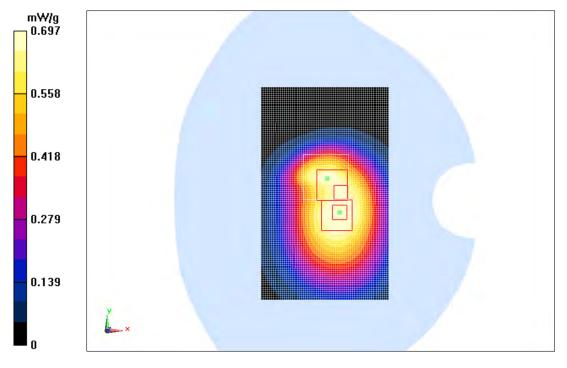
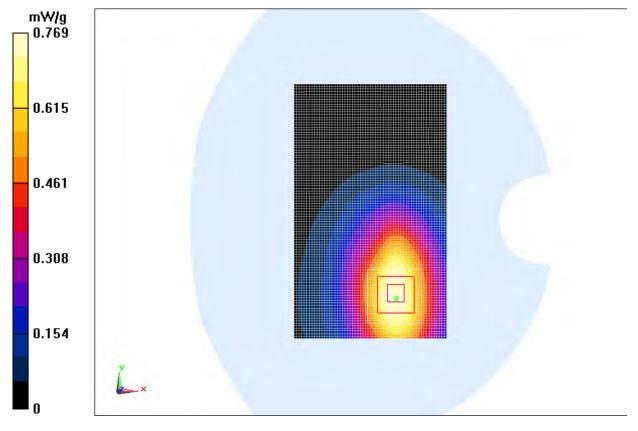


Fig. 16 850 MHz CH128

850 Body Left Side High


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Left Side High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.779 mW/g

Left Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.498 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.028 mW/g

SAR(1 g) = 0.722 mW/g; SAR(10 g) = 0.502 mW/g

Maximum value of SAR (measured) = 0.769 mW/g

850 Body Right Side High

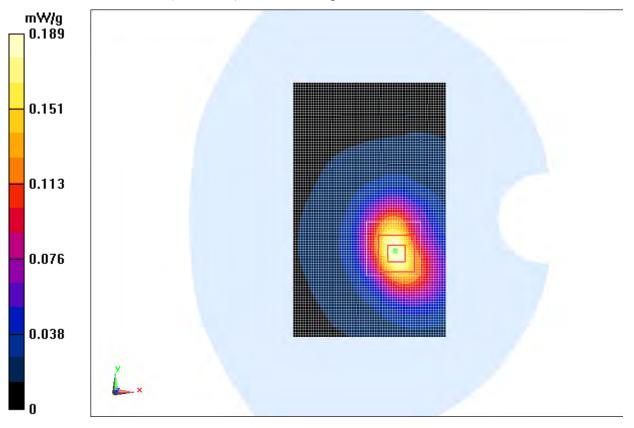
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Right Side High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.716 mW/g

Right Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.400 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.910 mW/g SAR(1 g) = 0.666 mW/g; SAR(10 g) = 0.461 mW/g

Maximum value of SAR (measured) = 0.713 mW/g


850 Body Bottom Side High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Bottom Side High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.192 mW/g

Bottom Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.757 V/m; Power Drift = -0.06 dBPeak SAR (extrapolated) = 0.278 mW/g**SAR(1 g) = 0.172 \text{ mW/g}; SAR(10 g) = 0.103 \text{ mW/g}** Maximum value of SAR (measured) = 0.189 mW/g

850 Body Towards Ground High with EGPRS

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 EGPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.09 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.376 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.298 mW/g

SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.750 mW/g

Maximum value of SAR (measured) = 1.08 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.376 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.316 mW/g

SAR(1 g) = 0.873 mW/g; SAR(10 g) = 0.609 mW/g

Maximum value of SAR (measured) = 0.977 mW/g

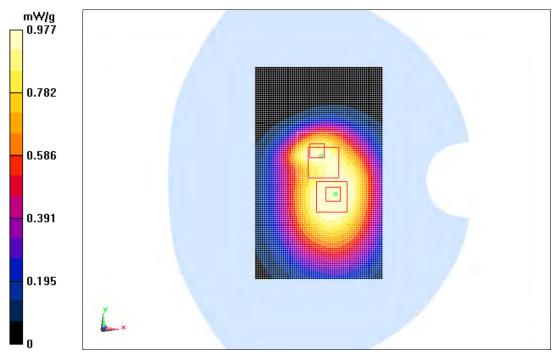
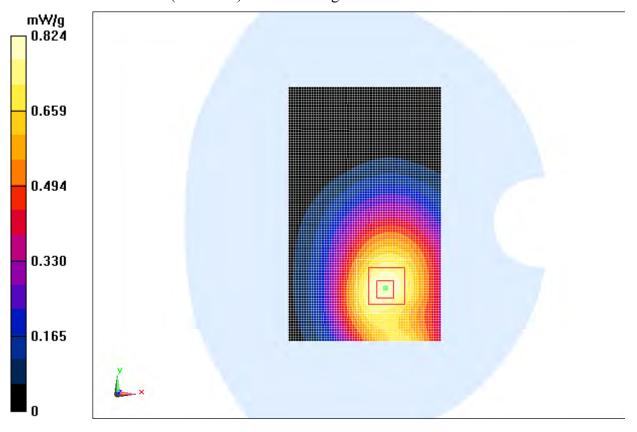


Fig. 20 850 MHz CH251

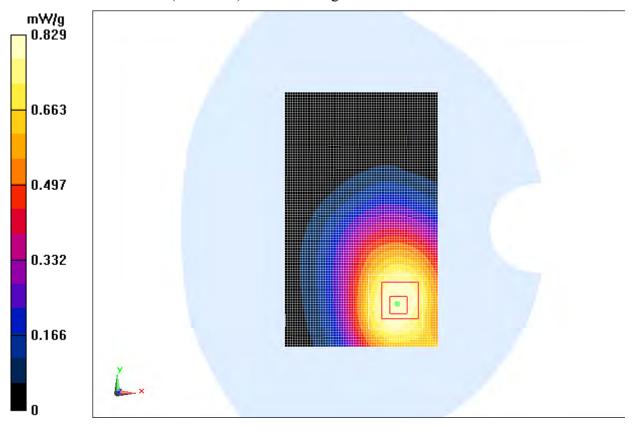

850 Body Towards Ground High with Headset CCB3160A11C1

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.822 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.204 V/m; Power Drift = -0.14 dBPeak SAR (extrapolated) = 1.003 mW/g**SAR(1 g) = 0.781 \text{ mW/g}; SAR(10 g) = 0.572 \text{ mW/g}** Maximum value of SAR (measured) = 0.824 mW/g

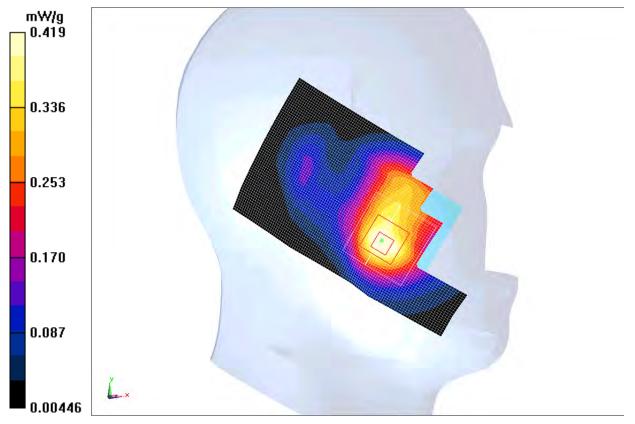

850 Body Towards Ground High with Headset CCB3160A11C2

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.008$ mho/m; $\epsilon r = 54.121$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.837 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.795 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.016 mW/g SAR(1 g) = 0.792 mW/g; SAR(10 g) = 0.587 mW/g Maximum value of SAR (measured) = 0.829 mW/g



1900 Left Cheek High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.396$ mho/m; $\epsilon r = 40.896$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.440 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.319 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.584 mW/g SAR(1 g) = 0.393 mW/g; SAR(10 g) = 0.243 mW/g Maximum value of SAR (measured) = 0.419 mW/g

1900 Left Cheek Middle

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head GSM1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.368$ mho/m; $\epsilon r = 41.008$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.420 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.225 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.577 mW/g SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.241 mW/g Maximum value of SAR (measured) = 0.421 mW/g

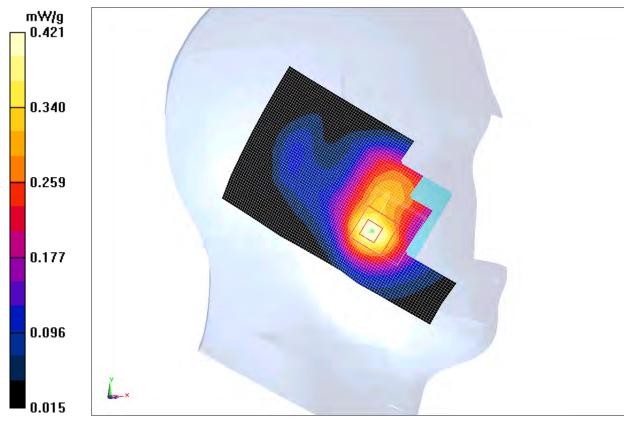


Fig. 24 1900 MHz CH661

1900 Left Cheek Low

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.338$ mho/m; $\epsilon r = 41.101$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.399 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.780 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.533 mW/gSAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 0.396 mW/g

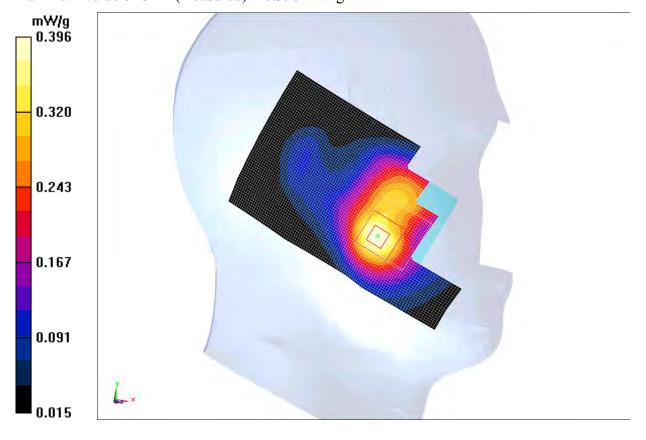
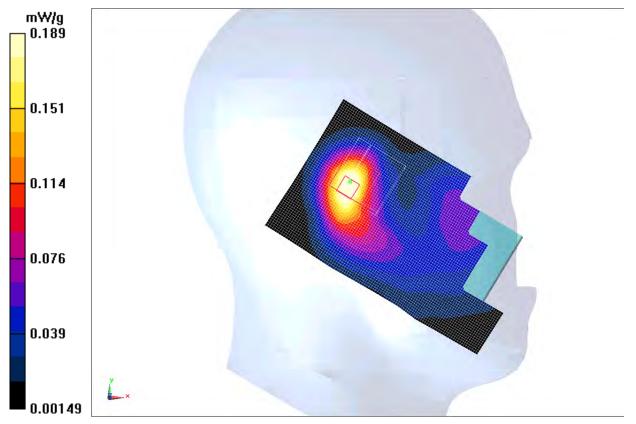


Fig. 25 1900 MHz CH512



1900 Left Tilt High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.396$ mho/m; $\epsilon r = 40.896$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.198 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.681 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.284 mW/gSAR(1 g) = 0.174 mW/g; SAR(10 g) = 0.095 mW/gMaximum value of SAR (measured) = 0.189 mW/g

1900 Left Tilt Middle

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.368$ mho/m; $\epsilon r = 41.008$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.197 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.504 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.268 mW/gSAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.093 mW/gMaximum value of SAR (measured) = 0.184 mW/g

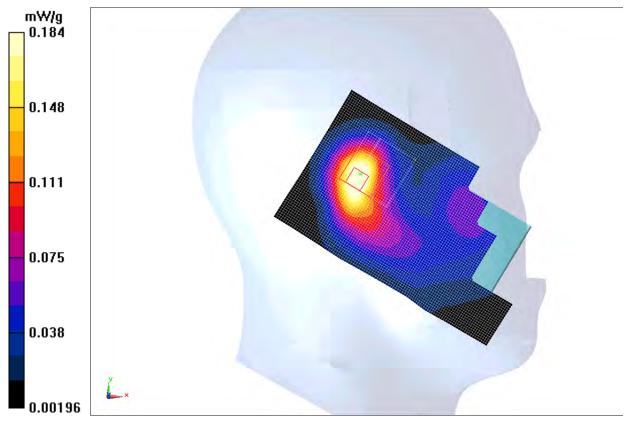


Fig. 27 1900 MHz CH661

1900 Left Tilt Low

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.338$ mho/m; $\epsilon r = 41.101$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.179 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.975 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.246 mW/g SAR(1 g) = 0.153 mW/g; SAR(10 g) = 0.085 mW/g

Maximum value of SAR (measured) = 0.169 mW/g

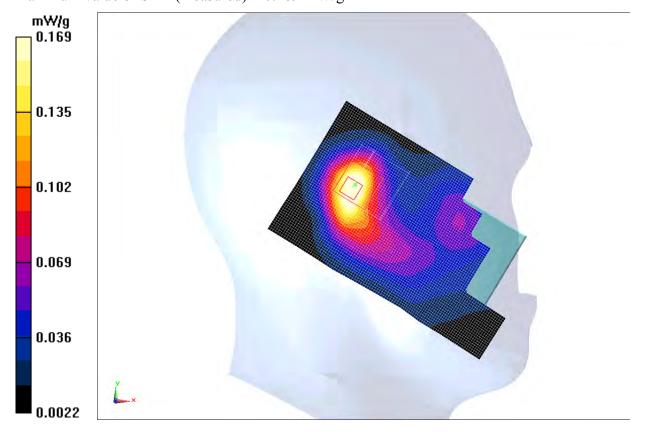
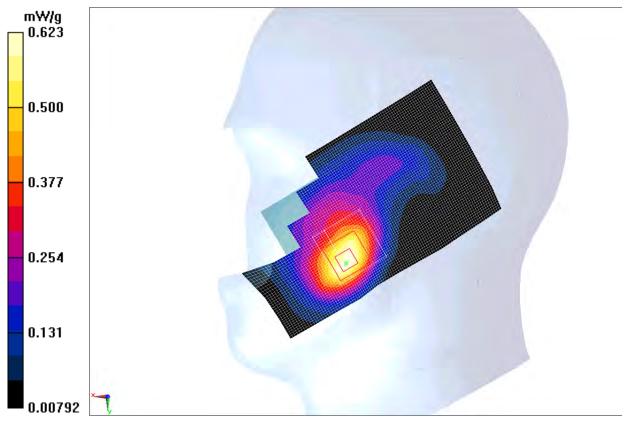


Fig. 28 1900 MHz CH512



1900 Right Cheek High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.396$ mho/m; $\epsilon r = 40.896$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.616 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.012 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.954 mW/g SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.334 mW/g Maximum value of SAR (measured) = 0.623 mW/g

No. 2012SAR00131 Page 71 of 196

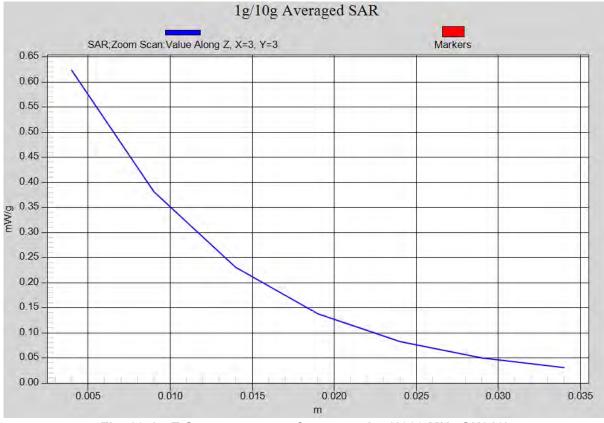
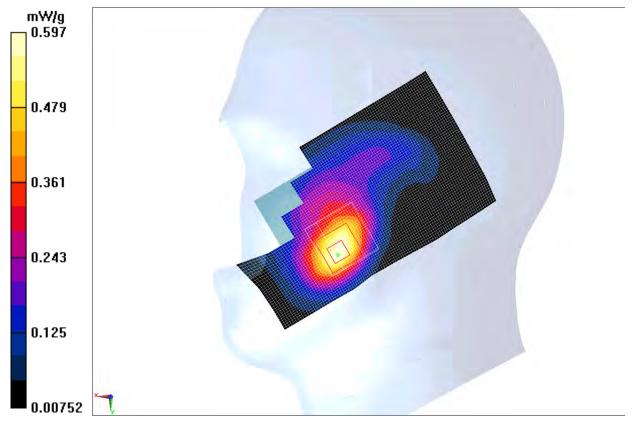
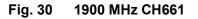


Fig. 29-1 Z-Scan at power reference point (1900 MHz CH810)

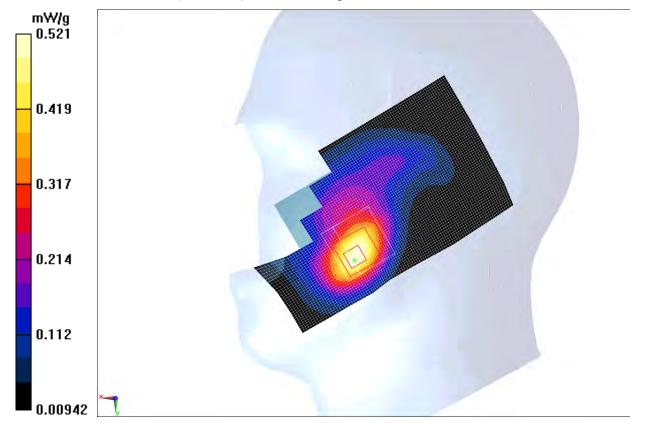



1900 Right Cheek Middle

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.368$ mho/m; $\epsilon r = 41.008$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.585 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.703 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.930 mW/gSAR(1 g) = 0.555 mW/g; SAR(10 g) = 0.317 mW/gMaximum value of SAR (measured) = 0.597 mW/g

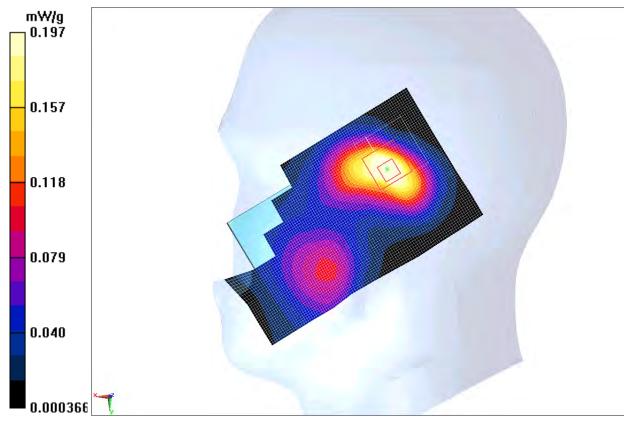

1900 Right Cheek Low

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.338$ mho/m; $\epsilon r = 41.101$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.513 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.770 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.809 mW/g SAR(1 g) = 0.484 mW/g; SAR(10 g) = 0.277 mW/g

Maximum value of SAR (measured) = 0.521 mW/g



1900 Right Tilt High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.396$ mho/m; $\epsilon r = 40.896$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.238 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.081 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.288 mW/gSAR(1 g) = 0.184 mW/g; SAR(10 g) = 0.106 mW/gMaximum value of SAR (measured) = 0.197 mW/g

1900 Right Tilt Middle

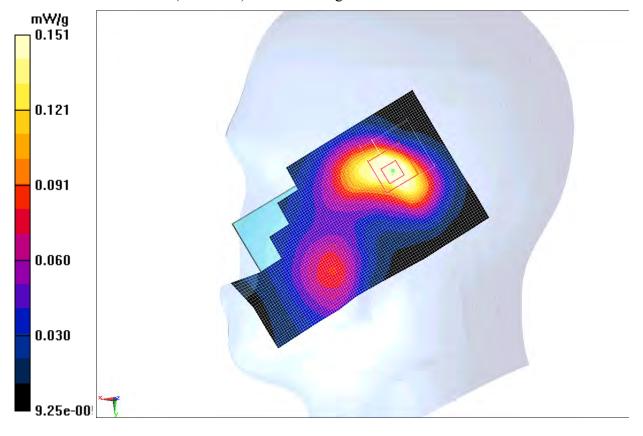
Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.368$ mho/m; $\epsilon r = 41.008$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.217 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.803 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.259 mW/gSAR(1 g) = 0.167 mW/g; SAR(10 g) = 0.097 mW/g Maximum value of SAR (measured) = 0.178 mW/g



Fig.33 1900 MHz CH661


1900 Right Tilt Low

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.338$ mho/m; $\epsilon r = 41.101$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.182 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.132 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.221 mW/g SAR(1 g) = 0.143 mW/g; SAR(10 g) = 0.084 mW/g

Maximum value of SAR (measured) = 0.151 mW/g

1900 Body Towards Phantom High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.513$ mho/m; $\epsilon r = 52.201$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Phantom High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.832 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mmdz=5mm Reference Value = 12.151 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.296 mW/g

SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.451 mW/g

Maximum value of SAR (measured) = 0.802 mW/g

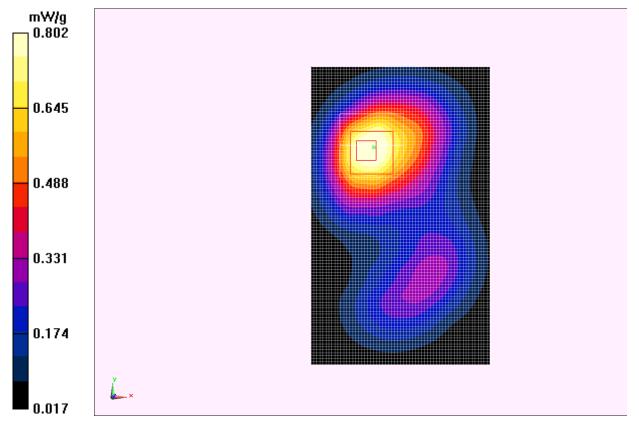
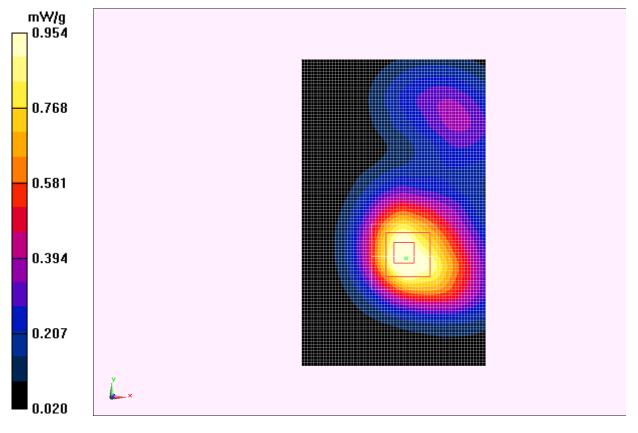


Fig. 35 1900 MHz CH810

1900 Body Towards Ground High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.513$ mho/m; $\epsilon r = 52.201$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)


Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.04 mW/g

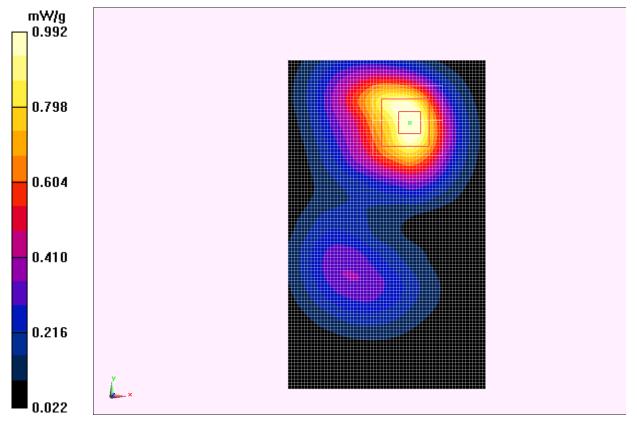
Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.993 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.471 mW/g

SAR(1 g) = 0.890 mW/g; SAR(10 g) = 0.541 mW/g

Maximum value of SAR (measured) = 0.954 mW/g

1900 Body Towards Ground Middle


Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ mho/m; $\epsilon r = 52.323$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.05 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.925 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.520 mW/g

SAR(1 g) = 0.919 mW/g; SAR(10 g) = 0.549 mW/g

Maximum value of SAR (measured) = 0.992 mW/g

No. 2012SAR00131 Page 80 of 196

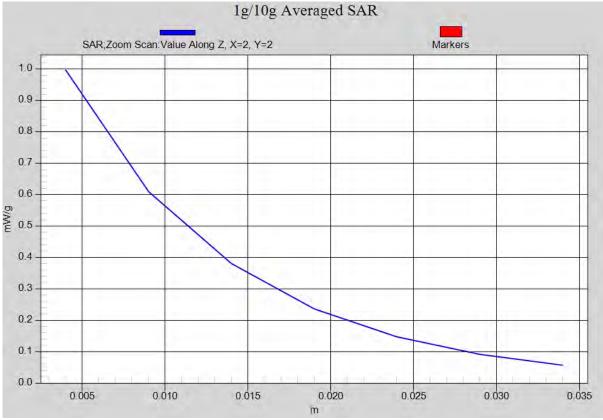


Fig. 37-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Towards Ground Low

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon r = 52.458$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.05 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.467 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.469 mW/g

SAR(1 g) = 0.898 mW/g; SAR(10 g) = 0.542 mW/g

Maximum value of SAR (measured) = 0.969 mW/g

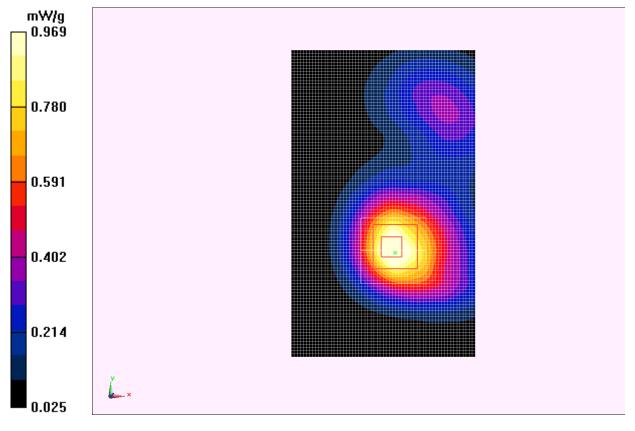


Fig. 38 1900 MHz CH512

1900 Body Left Side High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.513$ mho/m; $\epsilon r = 52.201$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Left Side/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.214 mW/g

Left Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.313 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.328 mW/g SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.122 mW/g Maximum value of SAR (measured) = 0.219 mW/g

Fig. 39 1900 MHz CH810

1900 Body Right Side High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.513$ mho/m; $\epsilon r = 52.201$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Right Side/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.328 mW/g

Right Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.228 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.485 mW/g **SAR(1 g) = 0.288 mW/g; SAR(10 g) = 0.165 mW/g** Maximum value of SAR (measured) = 0.310 mW/g

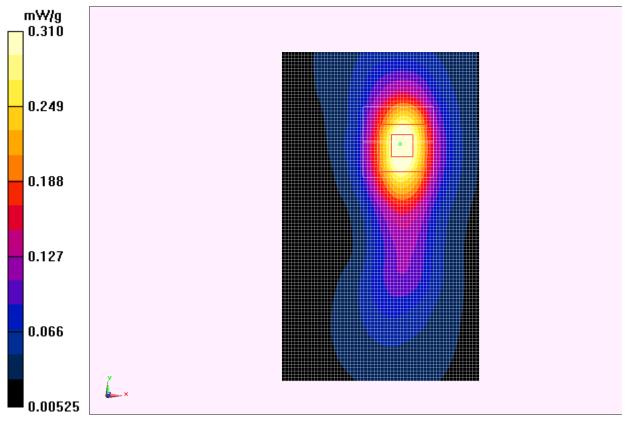
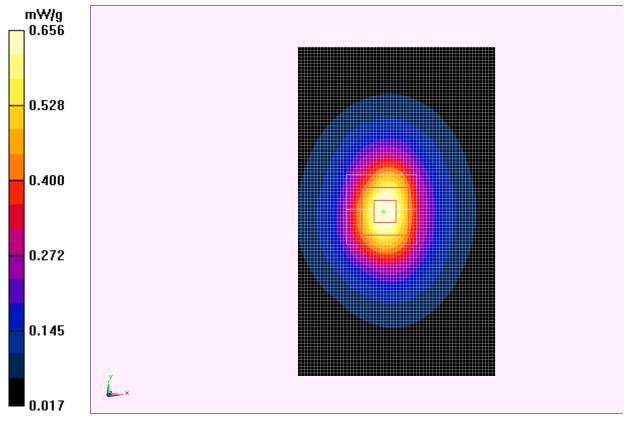


Fig. 40 1900 MHz CH810



1900 Body Bottom Side High

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.513$ mho/m; $\epsilon r = 52.201$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Bottom/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.665 mW/g

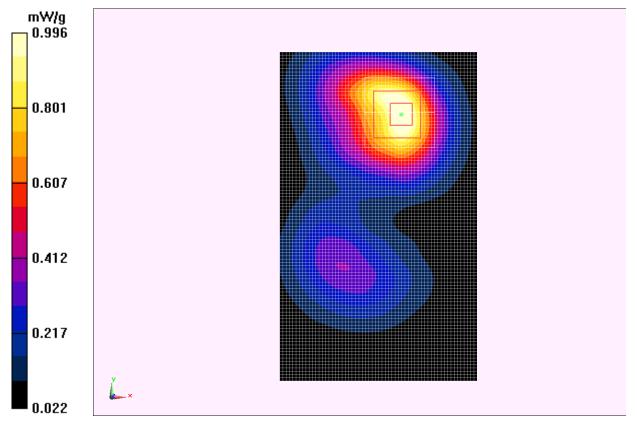
Bottom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.290 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.983 mW/gSAR(1 g) = 0.605 mW/g; SAR(10 g) = 0.354 mW/gMaximum value of SAR (measured) = 0.656 mW/g

1900 Body Toward Ground Middle with EGPRS

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ mho/m; $\epsilon r = 52.323$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Middle C1/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.05 mW/g


Toward Ground Middle C1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.797 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.517 mW/g

SAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.548 mW/g

Maximum value of SAR (measured) = 0.996 mW/g

1900 Body Toward Ground Middle with Headset CCB3160A11C1

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ mho/m; $\epsilon r = 52.323$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.625 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.984 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.900 mW/g SAR(1 g) = 0.542 mW/g; SAR(10 g) = 0.328 mW/g

Maximum value of SAR (measured) = 0.580 mW/g

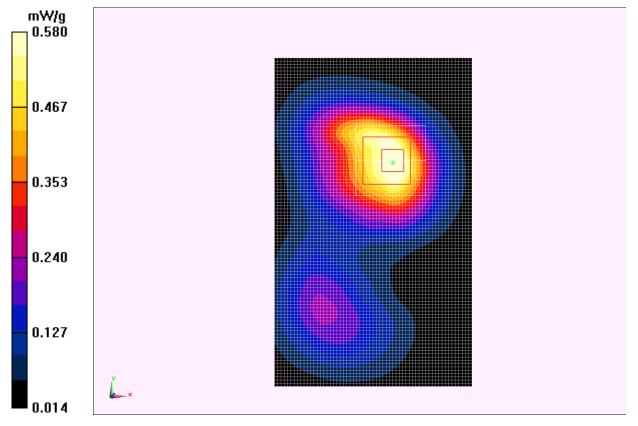


Fig. 43 1900 MHz CH661

1900 Body Toward Ground Middle with Headset CCB3160A11C2

Date: 2012-12-14 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.483$ mho/m; $\epsilon r = 52.323$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.603 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.699 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.844 mW/gSAR(1 g) = 0.503 mW/g; SAR(10 g) = 0.303 mW/gMaximum value of SAB (measured) = 0.521 mW/g

Maximum value of SAR (measured) = 0.521 mW/g

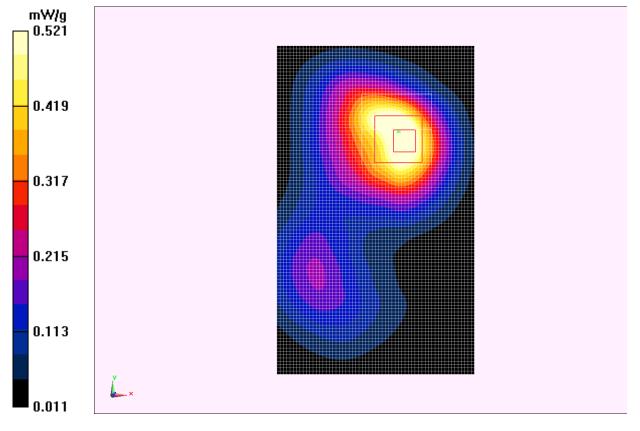
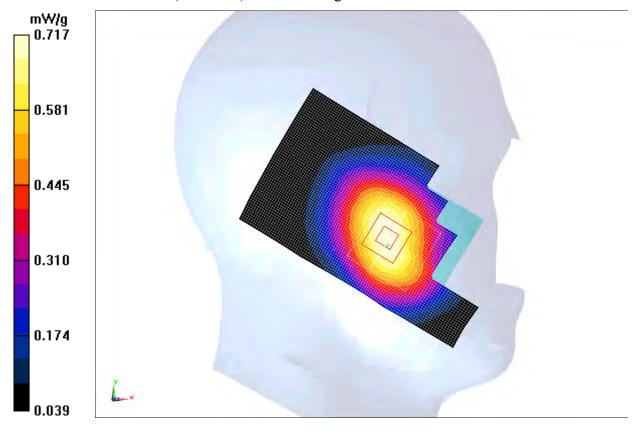


Fig. 44 1900 MHz CH661


WCDMA 850 Left Cheek High

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.903$ mho/m; $\epsilon r = 40.688$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.707 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 8.646 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.846 mW/g SAR(1 g) = 0.690 mW/g; SAR(10 g) = 0.525 mW/g

Maximum value of SAR (measured) = 0.717 mW/g

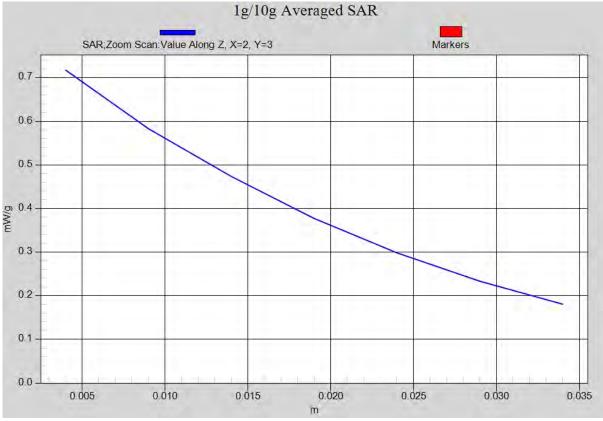
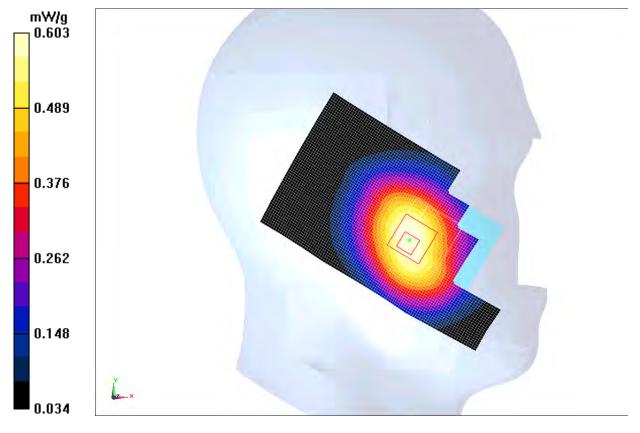


Fig. 45-1 Z-Scan at power reference point (WCDMA 850 CH4233)

WCDMA 850 Left Cheek Middle


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

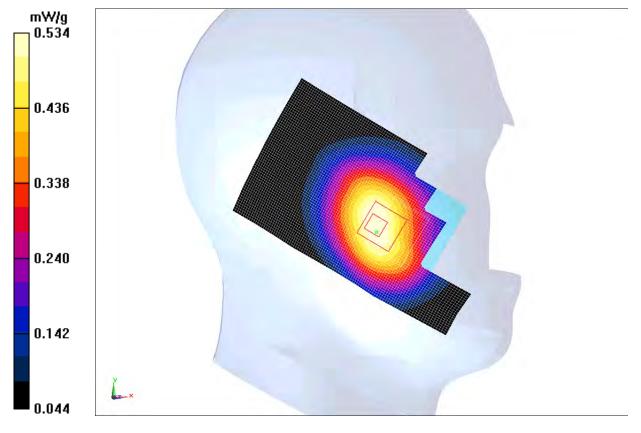
Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.600 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.971 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.716 mW/g

SAR(1 g) = 0.575 mW/g; SAR(10 g) = 0.435 mW/g

Maximum value of SAR (measured) = 0.603 mW/g

WCDMA 850 Left Cheek Low


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.883$ mho/m; $\epsilon r = 40.985$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 826.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

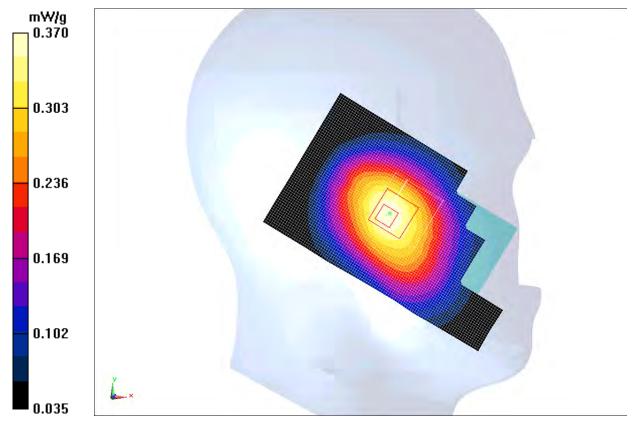
Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.533 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.987 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.638 mW/g

SAR(1 g) = 0.515 mW/g; SAR(10 g) = 0.388 mW/g

Maximum value of SAR (measured) = 0.534 mW/g

WCDMA 850 Left Tilt High

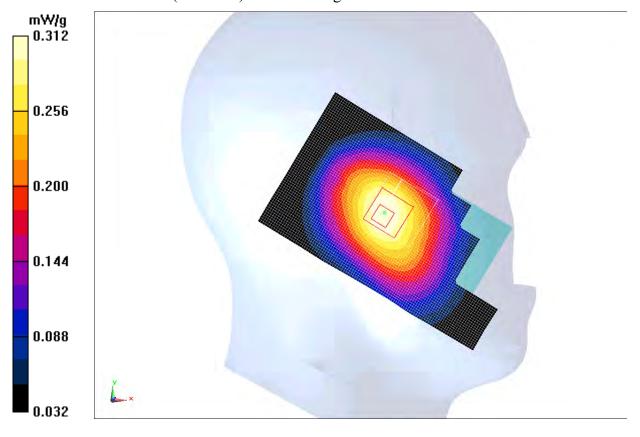

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.903$ mho/m; $\epsilon r = 40.688$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.369 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.530 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.439 mW/g

SAR(1 g) = 0.352 mW/g; SAR(10 g) = 0.264 mW/g

Maximum value of SAR (measured) = 0.370 mW/g

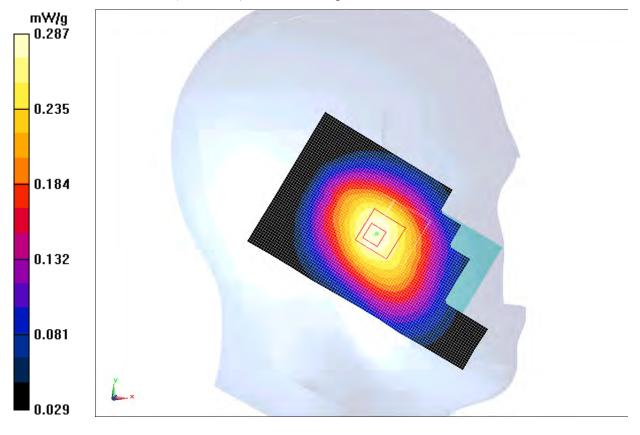

WCDMA 850 Left Tilt Middle

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.314 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.027 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.369 mW/g SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.225 mW/g

Maximum value of SAR (measured) = 0.312 mW/g

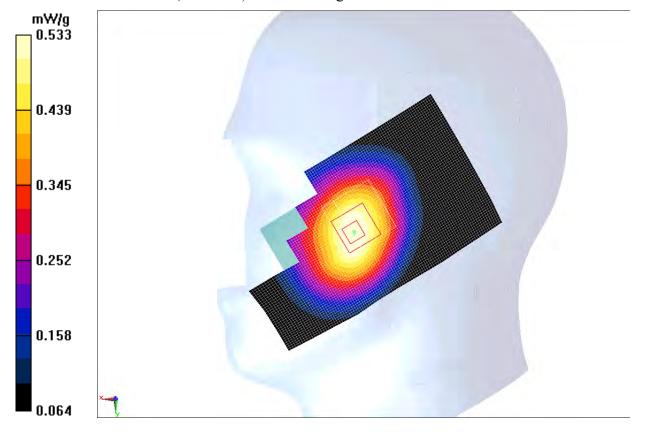

WCDMA 850 Left Tilt Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.883$ mho/m; $\epsilon r = 40.985$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 826.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.288 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.029 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.340 mW/g SAR(1 g) = 0.275 mW/g; SAR(10 g) = 0.209 mW/g

Maximum value of SAR (measured) = 0.287 mW/g


WCDMA 850 Right Cheek High

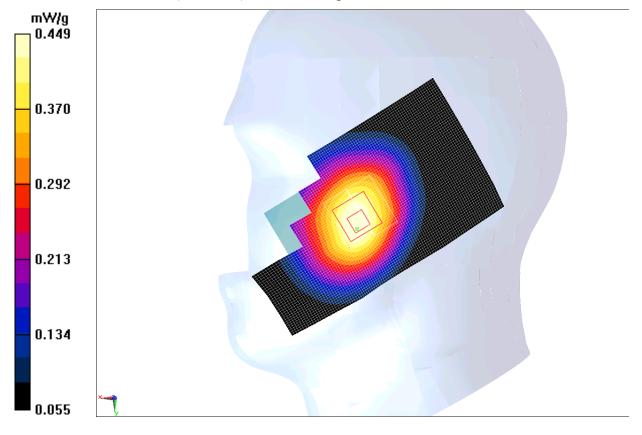
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.903$ mho/m; $\epsilon r = 40.688$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.536 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 7.305 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.608 mW/g SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.388 mW/g

Maximum value of SAR (measured) = 0.533 mW/g

WCDMA 850 Right Cheek Middle


Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

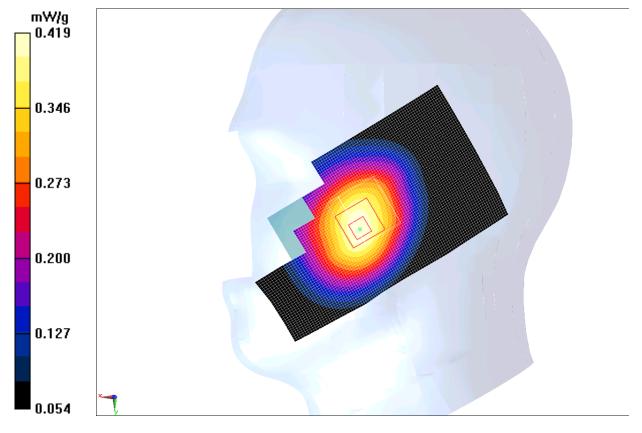
Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.451 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.546 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.535 mW/g

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.330 mW/g

Maximum value of SAR (measured) = 0.449 mW/g

WCDMA 850 Right Cheek Low

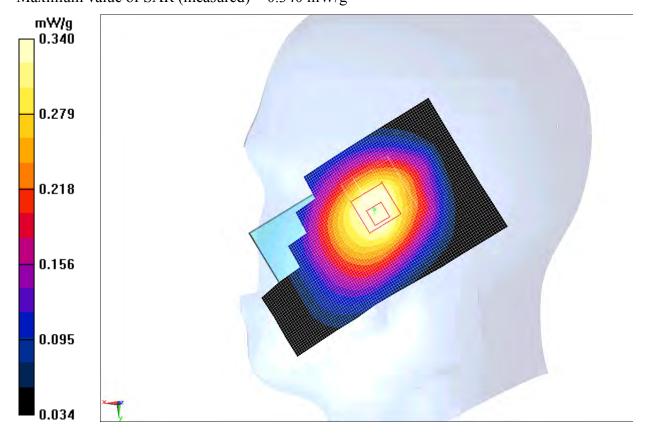

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.883$ mho/m; $\epsilon r = 40.985$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 826.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Cheek Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.412 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 6.517 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.490 mW/g

SAR(1 g) = 0.394 mW/g; SAR(10 g) = 0.301 mW/g

Maximum value of SAR (measured) = 0.419 mW/g


WCDMA 850 Right Tilt High

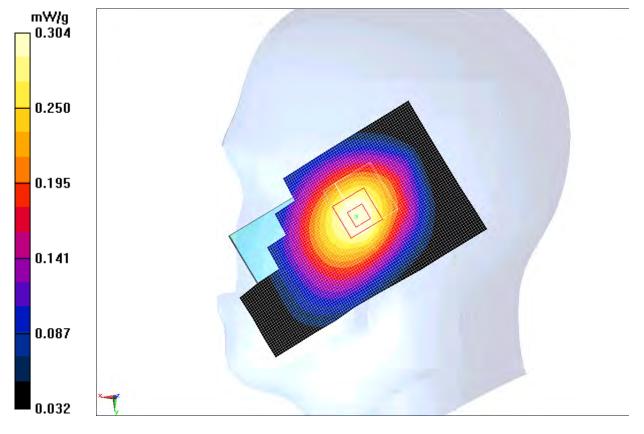
Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.903$ mho/m; $\epsilon r = 40.688$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.349 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.117 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.410 mW/g SAR(1 g) = 0.327 mW/g; SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.340 mW/g

WCDMA 850 Right Tilt Middle

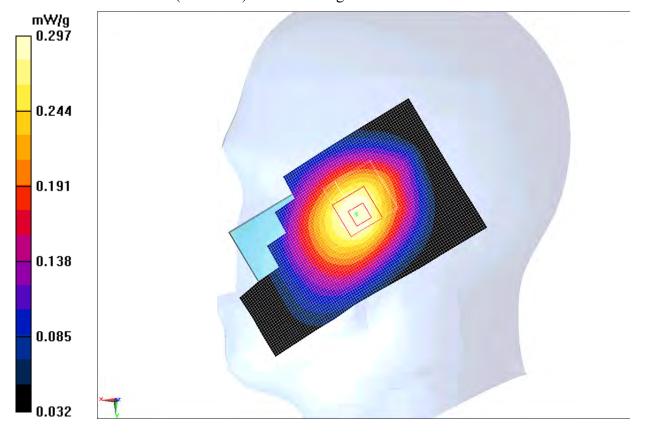

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.892$ mho/m; $\epsilon r = 40.855$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.311 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.478 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.356 mW/g

SAR(1 g) = 0.291 mW/g; SAR(10 g) = 0.221 mW/g

Maximum value of SAR (measured) = 0.304 mW/g


WCDMA 850 Right Tilt Low

Date: 2012-12-13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.883$ mho/m; $\epsilon r = 40.985$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: WCDMA; Frequency: 826.4 MHz;Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26)

Tilt Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.305 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.508 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.355 mW/gSAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.217 mW/g

Maximum value of SAR (measured) = 0.297 mW/g

