Wifi Body Right Side High Date: 2012-11-22 Electronics: DAE4 Sn771 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.973$ mho/m; $\epsilon r = 52.02$; $\rho = 1000$ kg/m^3 Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.15, 4.15, 4.15) Right Side High/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.638 mW/g Right Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.828 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.010 mW/g SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.289 mW/g Maximum value of SAR (measured) = 0.591 mW/g Fig. 57 2450 MHz CH11 Fig. 57-1 Z-Scan at power reference point (2450 MHz CH11) # ANNEX B SYSTEM VALIDATION RESULTS # 835MHz Date: 2012-11-26 Electronics: DAE4 Sn771 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.19$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26) **System Validation /Area Scan (81x161x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.50 mW/g **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.839 V/m; Power Drift = -0.078 dB Peak SAR (extrapolated) = 3.473 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.49 mW/gMaximum value of SAR (measured) = 2.51 mW/g 0 dB = 2.50 mW/g = 7.96 dB mW/g Fig.58 validation 835MHz 250mW Date: 2012-11-26 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.988$ mho/m; $\varepsilon_r = 54.25$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14) **System Validation /Area Scan (81x171x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.57 mW/g **System Validation /Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.846 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.562 W/kg SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.52 mW/gMaximum value of SAR (measured) = 2.57 mW/g 0 dB = 2.57 mW/g = 8.20 dB mW/g Fig.59 validation 835MHz 250mW Date: 2012-11-23 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.389 \text{ mho/m}$; $\varepsilon_r = 40.73$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19) **System Validation/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 10.9 mW/g **System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.418 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 17.575 W/kg SAR(1 g) = 9.63 mW/g; SAR(10 g) = 4.96 mW/g Maximum value of SAR (measured) = 10.9 mW/g 0 dB = 10.9 mW/g = 20.75 dB mW/g Fig.60 validation 1900MHz 250mW Date: 2012-11-23 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52.39$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64) **System Validation/Area Scan (81x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.6 mW/g **System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.863 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 16.787 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.39 mW/gMaximum value of SAR (measured) = 11.7 mW/g 0 dB = 11.6 mW/g = 21.29 dB mW/g Fig.61 validation 1900MHz 250mW Date: 2012-11-22 Electronics: DAE4 Sn771 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.827 \text{ mho/m}$; $\varepsilon_r = 39.51$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.49, 4.49, 4.49) **System Validation/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 14.9 mW/g **System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.520 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 26.129 mW/g SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.97 mW/g Maximum value of SAR (measured) = 14.7 mW/g 0 dB = 14.9 mW/g = 23.49 dB mW/g Fig.62 validation 2450MHz 250mW Date: 2012-11-22 Electronics: DAE4 Sn771 Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.963 \text{ mho/m}$; $\varepsilon_r = 52.06$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.15, 4.15, 4.15) **System Validation/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 14.7 mW/g **System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.942 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 25.841 mW/g SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.84 mW/g Maximum value of SAR (measured) = 14.6 mW/g 0 dB = 14.7 mW/g = 23.35 dB mW/g Fig.63 validation 2450MHz 250mW # ANNEX C PROBE CALIBRATION CERTIFICATE Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC Beijing Certificate No: ES3-3149_Apr12 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** ES3DV3 - SN:3149 Object Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes April 24, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 10-Jan-12 (No. DAE4-660_Jan12) | Jan-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-11) | In house check; Oct-12 | Name Function Signature Calibrated by Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: April 24, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: ES3-3149_Apr12 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ σ rotation around probe axis Certificate No: ES3-3149_Apr12 Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. ES3DV3 - SN:3149 April 24, 2012 # Probe ES3DV3 SN:3149 Manufactured: Calibrated: June 12, 2007 April 24, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ES3DV3-SN:3149 April 24, 2012 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 1.21 | 1.24 | 1.24 | ± 10.1 % | | DCP (mV) ^B | 101.1 | 100.9 | 100.5 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|--------|------|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 X | 0.00 | 0.00 | 1.00 | 112.7 | ±2.2 % | | | | | | Y | 0.00 | 0.00 | 1.00 | 114.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | 118.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3-SN:3149 April 24, 2012 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 6.50 | 6.50 | 6.50 | 0.24 | 2.36 | ± 12.0 % | | 850 | 41.5 | 0.92 | 6.26 | 6.26 | 6.26 | 0.25 | 2.14 | ± 12.0 % | | 900 | 41.5 | 0.97 | 6.17 | 6.17 | 6.17 | 0.21 | 2.55 | ± 12.0 % | | 1800 | 40.0 | 1.40 | 5.23 | 5.23 | 5.23 | 0.43 | 1.64 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.19 | 5.19 | 5.19 | 0.45 | 1.64 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 5.11 | 5.11 | 5.11 | 0.52 | 1.46 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 5.12 | 5.12 | 5.12 | 0.49 | 1.52 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.49 | 4.49 | 4.49 | 0.71 | 1.37 | ± 12.0 % | | 2550 | 39.1 | 1.91 | 4.34 | 4.34 | 4.34 | 0.69 | 1.26 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.26 | 4.26 | 4.26 | 0.55 | 1.29 | ± 12.0 % | $^{^{\}text{C}}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ES3DV3-SN:3149 April 24, 2012 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149 # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 6.29 | 6.29 | 6.29 | 0.43 | 1.56 | ± 12.0 % | | 850 | 55.2 | 0.99 | 6.14 | 6.14 | 6.14 | 0.41 | 1.63 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.16 | 6.16 | 6.16 | 0.63 | 1.30 | ± 12.0 % | | 1800 | 53.3 | 1.52 | 4.84 | 4.84 | 4.84 | 0.28 | 2.97 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.64 | 4.64 | 4.64 | 0.34 | 2.25 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 4.63 | 4.63 | 4.63 | 0.35 | 2.21 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 4.91 | 4.91 | 4.91 | 0.36 | 2.20 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.15 | 4.15 | 4.15 | 0.80 | 0.61 | ± 12.0 % | | 2550 | 52.6 | 2.09 | 4.07 | 4.07 | 4.07 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 3.99 | 3.99 | 3.99 | 0.80 | 0.51 | ± 12.0 % | $[^]c$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^f At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ES3DV3-SN:3149 April 24, 2012 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ES3DV3- SN:3149 April 24, 2012 # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) 270 50 10 20 30 40 10 Y (deg) ES3DV3- SN:3149 April 24, 2012 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149 ## Other Probe Parameters | Triangular | |------------| | 51.8 | | enabled | | disabled | | 337 mm | | 10 mm | | 10 mm | | 4 mm | | 2 mm | | 2 mm | | 2 mm | | 3 mm | | | # ANNEX D DIPOLE CALIBRATION CERTIFICATE # 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) | lent TMC Beijing | | Certificate No. | o: D835V2-443_May12 | |---|---|--|--| | CALIBRATION (| CERTIFICATE | | | | Object | D835V2 - SN: 44 | 3 | | | calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 03, 2012 | | | | | | ional standards, which realize the physical ur
robability are given on the following pages ar | | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11
(No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | Calibration Equipment used (M&Crimary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 PAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 | | Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 PAE4 Recondary Standards Power sensor HP 8481A Ref | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY5 | V52.8.1 | |------------------------|--| | Advanced Extrapolation | | | Modular Flat Phantom | | | 15 mm | with Spacer | | dx, dy , $dz = 5 mm$ | | | 835 MHz ± 1 MHz | | | | Advanced Extrapolation Modular Flat Phantom 15 mm dx, dy, dz = 5 mm | **Head TSL parameters** he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.07 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.36 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.59 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 mW / g ± 16.5 % (k=2) | #### **Appendix** ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 6.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 7.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.2 dB | | #### **General Antenna Parameters and Design** | 1 | Electrical Delay (one direction) | 1.387 ns | |---|----------------------------------|-----------| | | Electrical Delay (one direction) | 1.007 1.0 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:
dx=5mm, dy=5mm, dz=5mm Reference Value = 56.826 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.423 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g = 8.66 dB mW/g # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 03.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.758 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.514 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.82 mW/g 0 dB = 2.82 mW/g = 9.00 dB mW/g # Impedance Measurement Plot for Body TSL ## 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Issued: May 9, 2012 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC Beijing Accreditation No.: SCS 108 Certificate No: D1900V2-541_May12 #### **CALIBRATION CERTIFICATE** D1900V2 - SN: 541 Object QA CAL-05.v8 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz May 09, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 27-Mar-12 (No. 217-01533) Apr-13 Type-N mismatch combination SN: 5047.2 / 06327 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205 Dec11) Dec-12 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 ID# Check Date (in house) Scheduled Check Secondary Standards Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Function Name Israe El-Naouq Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Certificate No: D1900V2-541_May12 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schwelzerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | | | | | ## Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.62 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.1 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.11 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 39.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW / g ± 16.5 % (k=2) | #### **Appendix** # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.6 Ω + 6.2 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 23.7 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.6 \Omega + 6.9 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,197 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 26, 2001 | #### **DASY5 Validation Report for Head TSL** Date: 09.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.763 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.071 mW/g SAR(1 g) = 9.62 mW/g; SAR(10 g) = 5.11 mW/g Maximum value of SAR (measured) = 12.0 mW/g 0 dB = 12.0 mW/g = 21.58 dB mW/g # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 04.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 541 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) # DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.165 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.442 mW/g SAR(1 g) = 10 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 12.7 mW/g 0 dB = 12.7 mW/g = 22.08 dB mW/g # Impedance Measurement Plot for Body TSL # 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: May 2, 2012 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S C S | CALIBRATION (| CERTIFICATE | | | |---|--|---|--| | Object | D2450V2 - SN: 8 | | | | | | | | | Calibration procedure(s) | QA CAL-05.v8
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | May 02, 2012 | | | | | | ional standards, which realize the physical un | | | | | robability are given on the following pages an
ry facility: environment temperature $(22 \pm 3)^{\circ}$ 0 | | | All calibrations have been conductable. Calibration Equipment used (M8) | cted in the closed laborator | ry facility; environment temperature (22 \pm 3)°0 | C and humidity < 70%. | | All calibrations have been conductall calibration Equipment used (M&Primary Standards | Integration in the closed laborator. TE critical for calibration) | ry facility; environment temperature $(22 \pm 3)^{\circ}$ 0 Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | All calibrations have been conductal
Calibration Equipment used (M8
Primary Standards
Power meter EPM-442A | TE critical for calibration) ID # GB37480704 | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) | C and humidity < 70%. Scheduled Calibration Oct-12 | | All calibrations have been conductalibration Equipment used (M8 Primary Standards Ower meter EPM-442A Ower sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) | C and humidity < 70%. Scheduled Calibration Oct-12 Oct-12 | | All calibrations have been conductal calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) | Scheduled Calibration Oct-12 Oct-12 Apr-13 | | All calibrations have been conductable. Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 | | All calibrations have been conductable. Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) | ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) | Scheduled Calibration Oct-12 Oct-12 Apr-13 | | All calibrations have been conductalibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 | | | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 | | All calibrations have been conductal calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check | | All calibrations have been conductal Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 | | All calibrations have been conductal Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 20-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check
Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | All calibrations have been conductal Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | | All calibrations have been conductal Calibration Equipment used (M8 Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01530) 20-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) | Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | = 11 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.1 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.09 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.92 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 mW / g ± 16.5 % (k=2) | ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.7 \Omega + 3.2 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 26.4 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $49.9 \Omega + 4.8 J\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 26.4 dB | # General Antenna Parameters and Design | | | \neg | |----------------------------------|----------|--------| | Electrical Delay (one direction) | 1.163 ns | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 10, 2009 | #### **DASY5 Validation Report for Head TSL** Date: 02.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 26.785
mW/g SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.09 mW/gMaximum value of SAR (measured) = 16.7 mW/g 0 dB = 16.7 mW/g = 24.45 dB mW/g # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 02.05.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.306 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.029 mW/g SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.92 mW/g Maximum value of SAR (measured) = 16.8 mW/g 0 dB = 16.8 mW/g = 24.51 dB mW/g # Impedance Measurement Plot for Body TSL # ANNEX E SPOT CHECK TEST As the test lab for ONE TOUCH 815D from TCT Mobile Limited, we, TMC Beijing, declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below. # SAR Values (GSM 850 MHz Band - Head) | Freque | ency | Side | Test | Pottom, Tuno | SAR(1 | 1g) (W/kg) | |--------|------|------|----------|--------------|---------------|-----------------| | MHz | Ch. | Side | Position | Battery Type | Original data | Spot check data | | 848.8 | 251 | Left | Touch | CAB3120000C3 | 0.703 | 0.674 | # SAR Values (PCS 1900 MHz Band - Head) | Freque | ency | Side | Test | Battery Type | SAR(1g) (W/kg) | | | |--------|------|-------|----------|--------------|----------------|-----------------|--| | MHz | Ch. | | Position | | Original data | Spot check data | | | 1880 | 661 | Right | Touch | CAB3120000C3 | 0.758 | 0.653 | | # SAR Values (GSM 850 MHz Band - Body) | Freque | ency | Mode/Band | Test | Spacing | Battery Type | SAR(1g) (W/kg) | | |--------|------|-----------|----------|---------|--------------|----------------|-----------------| | MHz | Ch. | | Position | (mm) | | Original data | Spot check data | | 848.8 | 251 | GPRS | Ground | 10 | CAB3120000C3 | 1.11 | 1.01 | # SAR Values (PCS 1900 MHz Band - Body) | Frequ | ency | Mode/Band | Test | Spacing | Battery Type | SAR(1g) (W/kg) | | |-------|------|-----------|----------|---------|--------------|----------------|-----------------| | MHz | Ch. | | Position | (mm) | | Original data | Spot check data | | 1880 | 661 | GPRS | Ground | 10 | CAB3120000C3 | 1.09 | 1.05 | # 850 Left Cheek High Date: 2012-11-26 Electronics: DAE4 Sn771 Medium: Head 835 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.903$ mho/m; $\epsilon r = 41.008$; $\rho = 0.903$ mho/m; $\epsilon r = 41.008$; $\epsilon r = 41.008$ 1000 kg/m^3 Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.26, 6.26, 6.26) Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.720 mW/g Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.471 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.825 mW/g SAR(1 g) = 0.674 mW/g; SAR(10 g) = 0.512 mW/g Maximum value of SAR (measured) = 0.708 mW/g 850MHz CH251 # 1900 Right Cheek Middle Date: 2012-11-23 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.372 \text{ mho/m}$; $\epsilon r = 40.808$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.19, 5.19, 5.19) Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.740 mW/g Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.483 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.971 mW/g SAR(1 g) = 0.653 mW/g; SAR(10 g) = 0.389 mW/g Maximum value of SAR (measured) = 0.708 mW/g 1900 MHz CH661 # 850 Body Toward Ground High Date: 2012-11-26 Electronics: DAE4 Sn771 Medium: Body 835 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.007$ mho/m; $\epsilon r = 54.121$; $\rho =$ 1000 kg/m^3 Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.14, 6.14, 6.14) **Toward Ground High/Area Scan (61x111x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.06 mW/g **Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.945 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.278 mW/g SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.746 mW/g Maximum value of SAR (measured) = 1.06 mW/g **Toward Ground High/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.945 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.269 mW/g SAR(1 g) = 0.920 mW/g; SAR(10 g) = 0.664 mW/g Maximum value of SAR (measured) = 1.02 mW/g # 1900 Body Toward Ground Middle Date: 2012-11-23 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon r = 52.473$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 22.3°C Liquid Temperature: 21.8°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.64, 4.64, 4.64) **Toward Ground Middle/Area Scan (51x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.17 mW/g **Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.402 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.606 mW/g SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.648 mW/g Maximum value of SAR (measured) = 1.12 mW/g 1900 MHz CH661