

Report No.: RXA1205-0176SAR01R1

OET 65 TEST REPORT

Product Name	GSM/GPRS Quadband mobile phone	
Model Name	Fastlane SFR	
Marketing Name	Text Edition 153 by SFR	
FCC ID	RAD286	
Client	TCT Mobile Limited	

TA Technology (Shanghai) Co., Ltd.

Report No.: RXA1205-0176SAR01R1

Page 2 of 120

GENERAL SUMMARY

Product Name	GSM/GPRS Quadband mobile phone	Model	Fastlane SFR
Report No.	RXA1205-0176SAR01R1	FCC ID	RAD286
Client	TCT Mobile Limited		
Manufacturer	TCT Mobile Limited		
Reference Standard(s)	 IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions. 		
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: May 31 th , 2012		
Comment	The test result only responds to the mean		

Approved by

Revised by __

凌敏定

Performed by

Director

SAR Manager

SAR Engineer

· |

TA Technology (Shang	yhai) Co.,	Ltd.
Test Repo	rt	

Report No.: RXA1205-0176SAR01R1

Page 3 of 120

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the Test Report	5
1.2. Testing Laboratory	5
1.3. Applicant Information	6
1.4. Manufacturer Information	6
1.5. Information of EUT	
1.6. The Maximum SAR _{1g} Values	
1.7. Test Date	9
2. SAR Measurements System Configuration	10
2.1. SAR Measurement Set-up	10
2.2. DASY4 E-field Probe System	11
2.2.1. EX3DV4 Probe Specification	11
2.2.2. E-field Probe Calibration	12
2.3. Other Test Equipment	12
2.3.1. Device Holder for Transmitters	12
2.3.2. Phantom	
2.4. Scanning Procedure	
2.5. Data Storage and Evaluation	15
2.5.1. Data Storage	
2.5.2. Data Evaluation by SEMCAD	15
3. Laboratory Environment	17
4. Tissue-equivalent Liquid	
4.1. Tissue-equivalent Liquid Ingredients	
4.2. Tissue-equivalent Liquid Properties	19
5. System Check	20
5.1. Description of System Check	20
5.2. System Check Results	21
6. Operational Conditions during Test	22
6.1. General Description of Test Procedures	22
6.2. Test Positions	22
6.2.1. Against Phantom Head	22
6.2.2. Body Worn Configuration	
6.3. Test Configuration	23
6.3.1. GSM Test Configuration	23
7. Test Results	24
7.1. Conducted Power Results	24
7.2. SAR Test Results	25
7.2.1. GSM 850 (GPRS)	25
7.2.2. GSM 1900 (GPRS)	
8. 300MHz to 3GHz Measurement Uncertainty	27

Report No.: RXA1205-0176SAR01R1Page 4	
9. Main Test Instruments	
ANNEX A: Test Layout	
ANNEX B: System Check Results	
ANNEX C: Graph Results	
ANNEX D: Probe Calibration Certificate	
ANNEX E: D835V2 Dipole Calibration Certificate	

ANNEX F: D1900V2 Dipole Calibration Certificate	102
ANNEX G: DAE4 Calibration Certificate	110
ANNEX H: The EUT Appearances and Test Configuration	115

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	yangweizhong@ta-shanghai.com

1.3. Applicant Information

Company:	TCT Mobile Limited
Address:	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P.R. China

1.4. Manufacturer Information

Company:	TCT Mobile Limited
Address:	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P.R. China

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		
State of Sample:	Prototype Unit		
Product Name:	GSM/GPRS Quadband	mobile phone	
IMEI:	865579010000112		
Hardware Version:	Proto		
Software Version:	VJ72		
Antenna Type:	Internal Antenna		
Device Operating Configurations :			
Supporting Mode(s):	GSM 850/GSM 1900; (tested) GSM 900/GSM 1800; (untested)		
Test Modulation:	(GSM)GMSK;		
Device Class:	В		
	Max Number of Timeslots in Uplink		2
GPRS Multislot Class(10):	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
	Mode	Tx (MHz)	Rx (MHz)
Operating Frequency Range(s):	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8
Device Classe	GSM 850: 4, tested with power level 5		
Power Class:	GSM 1900: 1, tested with power level 0		
Test Channel: (Low - Middle - High)	128 - 190 - 251 (GSM 850) (tested) 512 - 661 - 810 (GSM 1900) (tested)		

Report No.: RXA1205-0176SAR01R1

Name	Model	Manufacturer	S/N	
Battery 1	CAB22B0000C1	BYD	B254060086A	
Battery 2	CAB22D0000C1	BYD	B2700601B9A	
Stereo Headset 1	CCB3160A11C1	Juwei	1	
Stereo Headset 2	CCB3160A15C2	Shunda	1	
Stereo Headset 3 CCB3160A11C2 Shunda /				
Stereo Headset 4 CCB3160A15C1 Juwei /				
Note: 1. Stereo Headset 1 and Stereo Headset 2 non-REACH, need test. 2. Stereo Headset 3 and Stereo Headset 4 REACH,no need test.				

Auxiliary Equipment Details

Equipment Under Test (EUT) is a GSM/GPRS Quadband mobile phone. The EUT has a GSM antenna that is used for Tx/Rx. The detail about EUT and Lithium Battery is in chapter 1.5 in this report. SAR are tested for GSM 850 and GSM 1900.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

Page 9 of 120

1.6. The Maximum ${\sf SAR}_{1g}$ Values

Head SAR Configuration

Mode	Channel	Position	SAR _{1g} (W/kg)
GSM 850	High/251	Left, Cheek	0.964
GSM 1900	Low/512	Right, Cheek	0.518

Body Worn Configuration

Mode	Channel	Position	Separation	SAR _{1g} (W/kg)	
			distance		
2Txslots GPRS 850	High/251	Towards Ground	15mm	1.150	
2Txslots GPRS 1900	Middle/661	Towards Ground	15mm	0.480	

1.7. Test Date

The test performed from May 8, 2012 to May 10, 2012.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

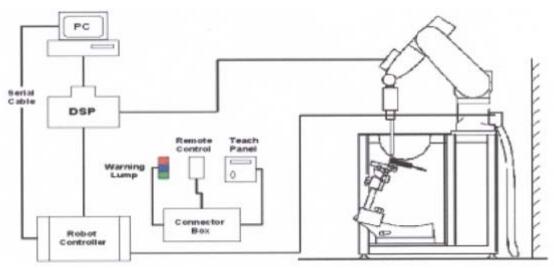


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

- Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
- Calibration ISO/IEC 17025 calibration service available
- Frequency 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)

- Dynamic Range 10μ W/g to > 100 mW/g Linearity:
 - \pm 0.2dB (noise: typically < 1 μ W/g)
- Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
- Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

Report No.: RXA1205-0176SAR01R1

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No.: RXA1205-0176SAR01R1

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0.1 mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AailableSpecial

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

Report No.: RXA1205-0176SAR01R1

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 5x5x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 8mm resolution amounting to175 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 5x5x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	•	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
•	- Crest factor	cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No.: RXA1205-0176SAR01R1

a_{ii}

f

Ei

 H_i

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	\boldsymbol{U}_i = input signal of channel i	(i = x, y, z)
	<i>cf</i> = crest factor of exciting field	(DASY parameter)
	<i>dcp</i> _i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	robes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field p	robes:	$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	V _i	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i [mV/(V/m) ²] for E-field Probes	(i = x, y, z)
	ConvF	= sensitivity enhancement in solution	

= sensor sensitivity factors for H-field probes

The RSS value of the field components gives the total field strength (Hermitian magnitude):

= magnetic field strength of channel i in A/m

= electric field strength of channel i in V/m

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

= carrier frequency [GHz]

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

Report No.: RXA1205-0176SAR01R1

with **SAR** = local specific absorption rate in mW/g

- **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

*E*_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 1: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 2 and table 3 show the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Head Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Brain) 835MHz		
Water	41.45		
Sugar	56		
Salt	1.45		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=41.5 σ=0.9		

MIXTURE%	FREQUENCY(Brain) 1900MHz	
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters		
Target Value	f=1900MHz ε=40.0 σ=1.40	

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97		

MIXTURE%	FREQUENCY (Body) 1900MHz	
Water	69.91	
Glycol monobutyl	29.96	
Salt	0.13	
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52	

4.2. Tissue-equivalent Liquid Properties

Frequency	Description	Dielectric Par	Temp		
requency	Description	٤r	σ(s/m)	ĉ	
	Target value	41.50	0.90	22.0	
835MHz	± 5% window	39.43 — 43.58	0.86 — 0.95	22.0	
(head)	Measurement value 2012-5-10	42.3	0.888	21.5	
	Target value	40.00	1.40	22.0	
1900MHz	±5% window	38.00 — 42.00	1.33 — 1.47	22.0	
(head)	Measurement value 2012-5-10	40.1	1.39	21.5	

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp		
Trequency	Description	٤ _r	σ(s/m)	C	
	Target value	55.20	0.97	22.0	
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	22.0	
(body)	Measurement value 2012-5-8	54.3	0.986	21.5	
1900MHz	Target value ±5% window	53.30 50.64 — 55.97	2		
(body)	Measurement value 2012-5-9	52.1	1.55	21.5	

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 6 and table 7.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

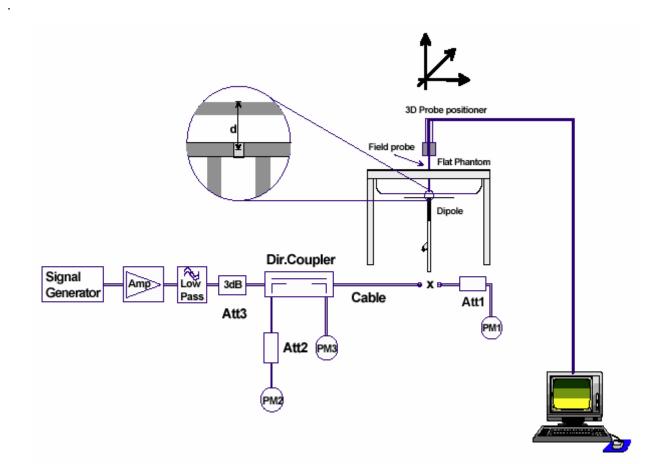


Figure 6 System Check Set-up

Page 21 of 120

5.2. System Check Results

Table 6: System Check in Head Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10%deviation)
		٤ _r	σ(s/m)	(°C)	(°C) (W/kg)		
835MHz	2012-5-10	42.3	0.888	21.5	2.45	9.8	9.34 (8.41~10.27)
1900MHz	2012-5-10	40.1	1.39	21.5	9.83 39.32		40.30 (36.27~ 44.33)
Note: 1. The graph results see ANNEX B. 2. Target Values derive from the calibration certificate.							

Table 7: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters				Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% deviation)
		٤r	σ(s/m)	(°C)		(W/kg)			
835MHz	2012-5-8	54.3	0.986	21.5	2.52	10.08	9.46 (8.51~10.41)		
1900MHz	2012-5-9	52.1	1.55	21.5	10.6	42.4	41.70 (37.53~45.87)		
Note: 1. The graph results see ANNEX B. 2. Target Values derive from the calibration certificate.									

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radiofrequency Channel Number (ARFCN) is allocated to 128, 190 and 251 in the case of GSM 850, to 512, 661 and 810 in the case of GSM 1900. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Positions

6.2.1. Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

6.2.2. Body Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The distance between the device and the phantom was kept 15mm.

6.3. Test Configuration

6.3.1. GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power lever is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 10 for this EUT, it has at most 2 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: **Table 8: The allowed power reduction in the multi-slot configuration**

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0

7. Test Results

7.1. Conducted Power Results

Table 9: Conducted Power Measurement Results

GSM 850		Burst Cond	lucted Pow	er(dBm)		Aver	age power((dBm)
		Channel	Channel	Channel		Channel	Channel	Channel
		128	190	251		128	190	251
G	SM	32.1	32	31.99	-9.03dB	23.07	22.97	22.96
GPRS	1Txslot	32.06	31.96	31.97	-9.03dB	23.03	22.93	22.94
(GMSK)	2Txslots	31.32	31.14	31.1	-6.02dB	25.3	25.12	25.08
						Average power(dBm)		
		Burst Cond	lucted Pow	er(dBm)		Aver	age power(dBm)
GSM	1900	Burst Conc Channel	Channel	er(dBm) Channel		Aver Channel	age power(Channel	dBm) Channel
GSM	1900			· · ·				· ·
	1900 SM	Channel	Channel	Channel	-9.03dB	Channel	Channel	Channel
		Channel 512	Channel 661	Channel 810	-9.03dB -9.03dB	Channel 512	Channel 661	Channel 810

Note:

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

2) Average power numbers

The maximum power numbers are marks in bold.

7.2. SAR Test Results

7.2.1. GSM 850 (GPRS)

Table 10: SAR Values [GSM 850 (GPRS)]

Limit of SAR		10 g Average 2.0 W/kg	1 g Average 1.6 W/kg	Power Drift ± 0.21 dB	Graph Results	
Different Test Position	Channel	Measurement	t Result(W/kg)	Power		
Different fest Fosition	Channel	10 g Average	1 g Average	Drift (dB)		
	Test Pos	ition of Head with	Battery 1			
	High/251	0.721	0.964	-0.018	Figure 11	
Left hand, Touch Cheek	Middle/190	0.646	0.864	0.020	Figure 12	
	Low/128	0.526	0.701	-0.069	Figure 13	
	High/251	0.310	0.412	-0.022	Figure 14	
Left hand, Tilt 15 Degree	Middle/190	0.275	0.364	-0.068	Figure 15	
	Low/128	0.246	0.324	-0.022	Figure 16	
	High/251	0.655	0.879	-0.061	Figure 17	
Right hand, Touch Cheek	Middle/190	0.588	0.782	-0.033	Figure 18	
	Low/128	0.501	0.670	-0.025	Figure 19	
Right hand, Tilt 15 Degree	High/251	0.285	0.378	0.003	Figure 20	
	Middle/190	0.248	0.328	0.122	Figure 21	
	Low/128	0.232	0.305	-0.031	Figure 22	
	Worst Case	Position of Head v	with Battery 2			
Left hand, Touch Cheek	High/251	0.668	0.894	-0.001	Figure 23	
Test	position of B	Body with Battery	1 (Distance 15mm)		
	High/251	0.837	1.150	-0.027	Figure 24	
Towards Ground (2Txslots)	Middle/190	0.830	1.150	0.021	Figure 25	
	Low/128	0.747	1.030	0.038	Figure 26	
	High/251	0.624	0.846	-0.024	Figure 27	
Towards Phantom (2Txslots)	Middle/190	0.609	0.824	0.004	Figure 28	
	Low/128	0.528	0.713	-0.042	Figure 29	
Worst Case Positio	n of Body wit	th Stereo Headset	1 and Battery 1 (I	Distance 15m	m)	
Towards Ground (GSM)	High/251	0.203	0.293	0.012	Figure 30	
Worst Case Positio	n of Body wit	th Stereo Headset	2 and Battery 1 (I	Distance 15m	m)	
Towards Ground (GSM)	High/251	0.380	0.524	0.009	Figure 31	
Worst C	ase Position	of Body with Batte	ery 2 (Distance 15	mm)		
Towards Ground (2Txslots)	High/251	0.801	1.100	0.015	Figure 32	

2. The Head SAR test shall be performed at the high, middle and low frequency channels of each operating mode.

3. The Body SAR test firstly shall be performed at the high, middle and low frequency channels of the maximum source-based time-averaged output power.

Report No.: RXA1205-0176SAR01R1

Page 26 of 120

7.2.2. GSM 1900 (GPRS)

Table 11: SAR Values [GSM 1900(GPRS)]

Limit of SAR	-	10 g Average	1 g Average	Power Drift ± 0.21	Graph	
		2.0 W/kg	1.6 W/kg	dB	Results	
Different Test Position		Measurement	t Result(W/kg)	Power		
Different fest Position	Channel	10 g Average	1 g Average	Drift (dB)		
	Test Pos	ition of Head with	Battery 1			
	High/810	0.292	0.474	0.031	Figure 33	
Left hand, Touch Cheek	Middle/661	0.300	0.482	-0.029	Figure 34	
	Low/512	0.320	0.504	-0.051	Figure 35	
	High/810	0.123	0.206	-0.004	Figure 36	
Left hand, Tilt 15 Degree	Middle/661	0.130	0.215	-0.035	Figure 37	
	Low/512	0.128	0.210	-0.011	Figure 38	
	High/810	0.294	0.517	-0.009	Figure 39	
Right hand, Touch Cheek	Middle/661	0.287	0.498	0.066	Figure 40	
	Low/512	0.302	0.518	0.050	Figure 41	
	High/810	0.119	0.196	0.023	Figure 42	
Right hand, Tilt 15 Degree	Middle/661	0.118	0.192	-0.005	Figure 43	
	Low/512	0.119	0.191	-0.016	Figure 44	
Test	position of B	ody with Battery	1 (Distance 15mm	I)		
	High/810	0.272	0.464	-0.022	Figure 45	
Towards Ground (2Txslots)	Middle/661	0.281	0.480	0.010	Figure 46	
	Low/512	0.271	0.461	0.031	Figure 47	
	High/810	0.153	0.255	0.053	Figure 48	
Towards Phantom (2Txslots)	Middle/661	0.138	0.225	-0.028	Figure 49	
	Low/512	0.161	0.265	0.029	Figure 50	
Worst Case Positio	on of Body wit	h Stereo Headset	1 and Battery 1 (I	Distance 15m	m)	
Towards Ground (GSM)	Middle/661	0.151	0.259	-0.010	Figure 51	
Worst Case Positio	on of Body wit	h Stereo Headset	2 and Battery 1 (I	Distance 15m	m)	
Towards Ground (GSM)	Middle/661	0.171	0.294	0.032	Figure 52	

3. The Body SAR test firstly shall be performed at the high, middle and low frequency channels of the maximum source-based time-averaged output power.

Page 27 of 120

8. 300MHz to 3GHz Measurement Uncertainty

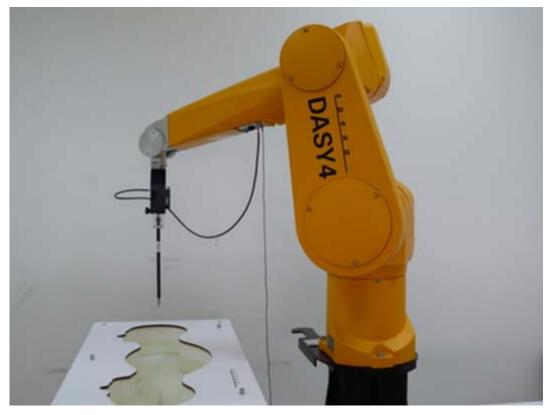
No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
		Mea	asurement syste	em		I	I	I
2	-probe calibration	В	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	×
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	8
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	œ
9	-readout Electronics	В	1.0	N	1	1	1.0	∞
10	-response time	В	0	R	$\sqrt{3}$	1	0	×
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	œ
12	-noise	В	0	R	$\sqrt{3}$	1	0	8
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	×
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	×
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	œ
		Tes	st sample Relate	ed				
17	-Test Sample Positioning	А	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	А	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	×
		Ph	ysical paramete	er				
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	œ

Report No.: RXA1205-0176SAR01R1

Page 28 of 120

21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	œ
22	-liquid conductivity (measurement uncertainty)	В	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.6	1.5	9
Comb	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$				12.16	
Expan 95 %)	•	$u_e = 2u_c$		N k=2		23.00		

9. Main Test Instruments

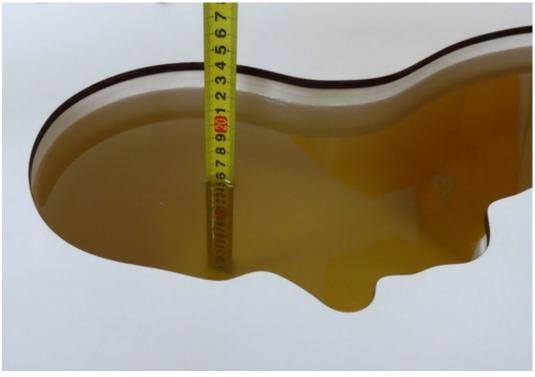

Table 12:	List of	f Main	Instruments
		, mann	

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 12, 2011	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Rec	quested
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 25, 2011	One year
05	Power sensor	E9327A	US40441622	September 24, 2011	One year
06	Signal Generator	HP 8341B	2730A00804	September 12, 2011	One year
07	Dual directional coupler	778D-012	5051P	August 21, 2011	One year
09	Amplifier	IXA-020	0401	No Calibration Rec	quested
10	BTS	E5515C	MY48360988	December 2, 2011	One year
11	E-field Probe	EX3DV4	3816	October 3, 2011	One year
12	DAE	DAE4	1317	January 23, 2012	One year
13	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	One year
14	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	One year
15	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
16	Hygrothermograph	WS-1	64591	September 28, 2011	One year

*****END OF REPORT *****

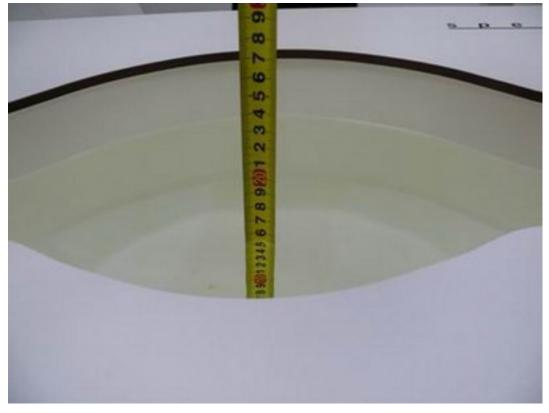
Report No.: RXA1205-0176SAR01R1

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout

Report No.: RXA1205-0176SAR01R1



Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

Picture 3: Liquid depth in the head Phantom (835MHz, 15.3cm depth)

Report No.: RXA1205-0176SAR01R1

Picture 4: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 5: liquid depth in the head Phantom (1900 MHz, 15.3cm depth)

Report No.: RXA1205-0176SAR01R1

ANNEX B: System Check Results

System Performance Check at 835 MHz Head TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 5/10/2012 6:51:30 PM

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.888 mho/m; ϵ_r = 42.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

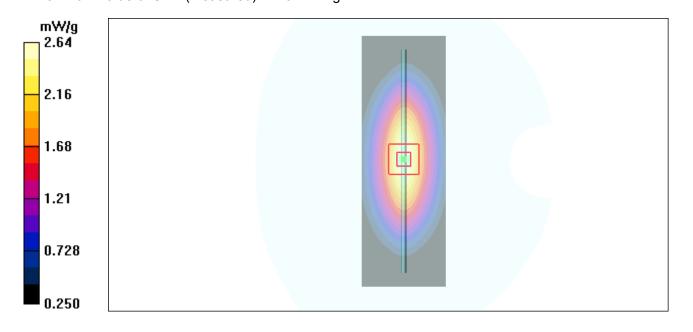
DASY4 Configuration:

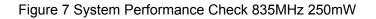
Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

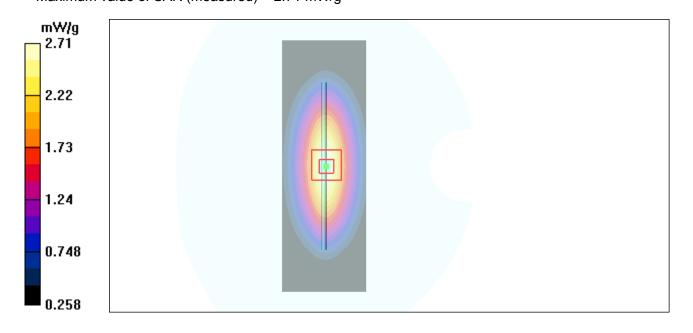

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.66 mW/g

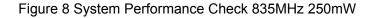

d=15mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.64 mW/g

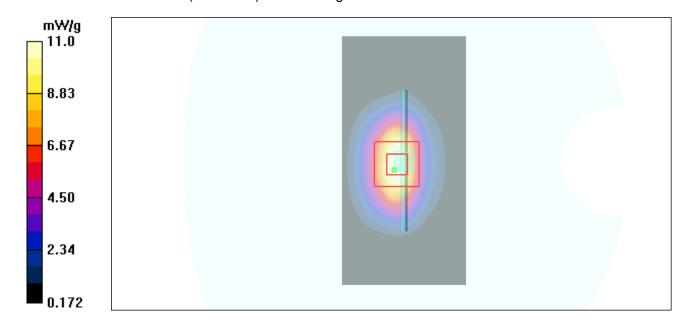

Report No.: RXA1205-0176SAR01R1

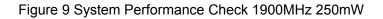

System Performance Check at 835 MHz Body TSL DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date/Time: 5/8/2012 8:32:21 PM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.986 mho/m; ε_r = 54.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.73 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.9 V/m; Power Drift = -0.071 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.66 mW/g Maximum value of SAR (measured) = 2.71 mW/g

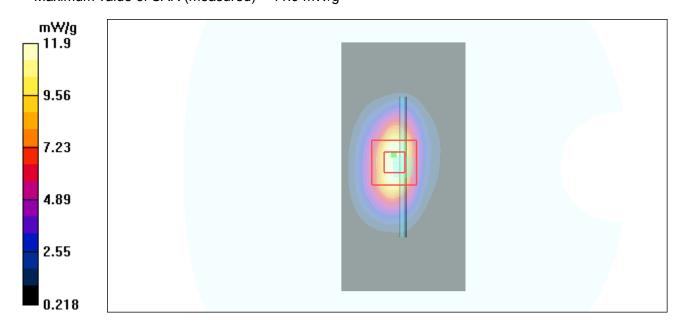

Report No.: RXA1205-0176SAR01R1

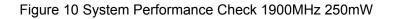

System Performance Check at 1900 MHz Head TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 5/10/2012 1:31:36 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.39 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW 2/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

d=10mm, Pin=250mW 2/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.8 V/m; Power Drift = 0.034 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.83 mW/g; SAR(10 g) = 5.13 mW/g Maximum value of SAR (measured) = 11.0 mW/g


Report No.: RXA1205-0176SAR01R1


System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 5/9/2012 12:18:54 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.55 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

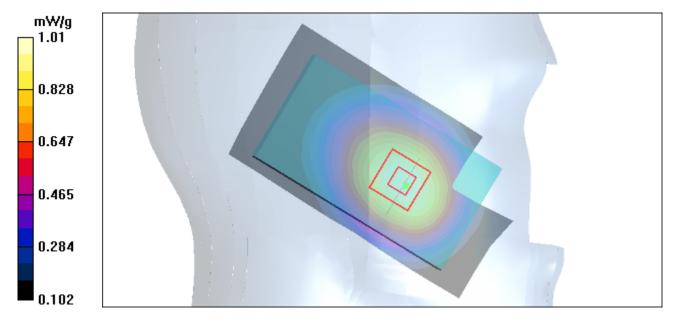
d=10mm, Pin=250mW/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.7 V/m; Power Drift = -0.092 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.56 mW/g Maximum value of SAR (measured) = 11.9 mW/g

Report No.: RXA1205-0176SAR01R1

ANNEX C: Graph Results


GSM 850 Left Cheek High (Battery 1)

Date/Time: 5/10/2012 7:26:16 PM Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 0.901 mho/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.964 mW/g; SAR(10 g) = 0.721 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Report No.: RXA1205-0176SAR01R1

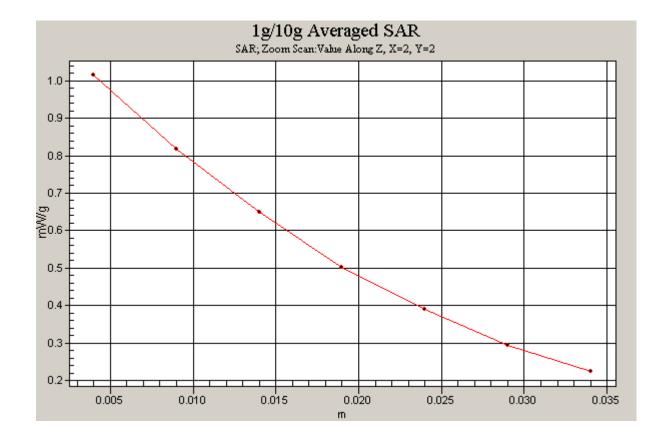
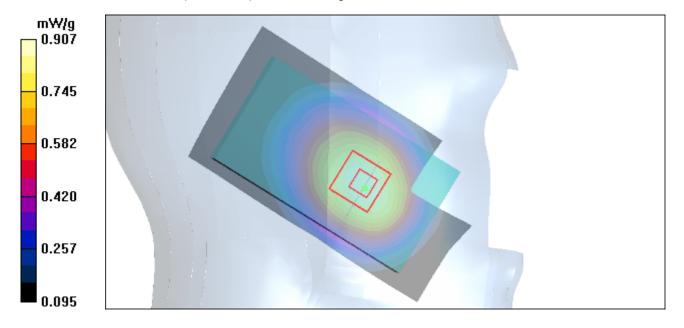
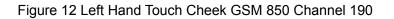


Figure 11 Left Hand Touch Cheek GSM 850 Channel 251

Report No.: RXA1205-0176SAR01R1

Page 39 of 120

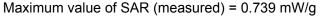

GSM 850 Left Cheek Middle (Battery 1)

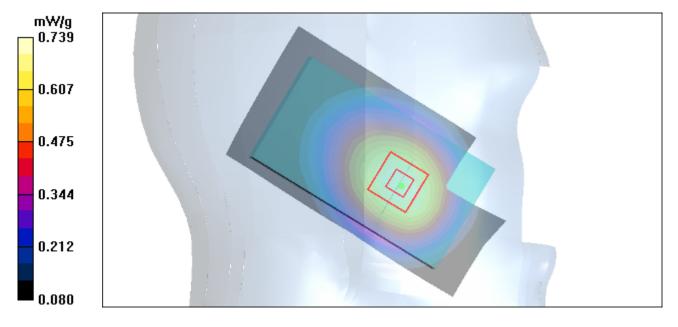

Date/Time: 5/10/2012 7:13:22 PM Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; σ = 0.89 mho/m; ε_r = 42.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.907 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.7 V/m; Power Drift = 0.020 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.864 mW/g; SAR(10 g) = 0.646 mW/g

Maximum value of SAR (measured) = 0.907 mW/g

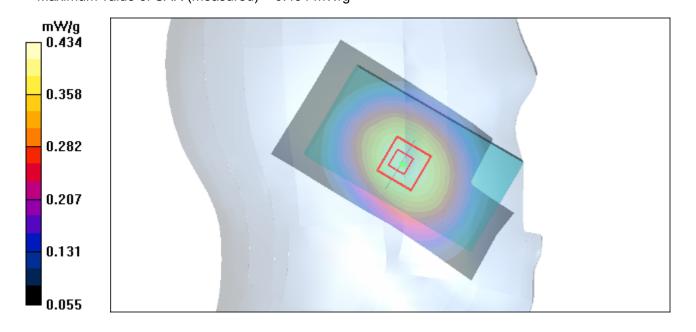

Report No.: RXA1205-0176SAR01R1

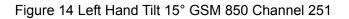

GSM 850 Left Cheek Low (Battery 1)

Date/Time: 5/10/2012 7:39:32 PM Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.878 mho/m; ϵ_r = 42.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.735 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.71 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 0.859 W/kg SAR(1 g) = 0.701 mW/g; SAR(10 g) = 0.526 mW/g


Report No.: RXA1205-0176SAR01R1


GSM 850 Left Tilt High (Battery 1)

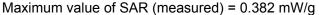
Date/Time: 5/10/2012 11:18:58 PM Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 0.901 mho/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

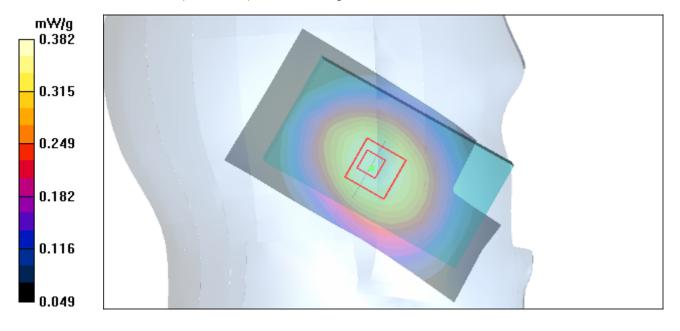
Tilt High /Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.438 mW/g

Tilt High /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.0 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 0.520 W/kg SAR(1 g) = 0.412 mW/g; SAR(10 g) = 0.310 mW/g Maximum value of SAR (measured) = 0.434 mW/g

Test Report

Report No.: RXA1205-0176SAR01R1

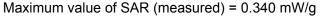

GSM 850 Left Tilt Middle (Battery 1)

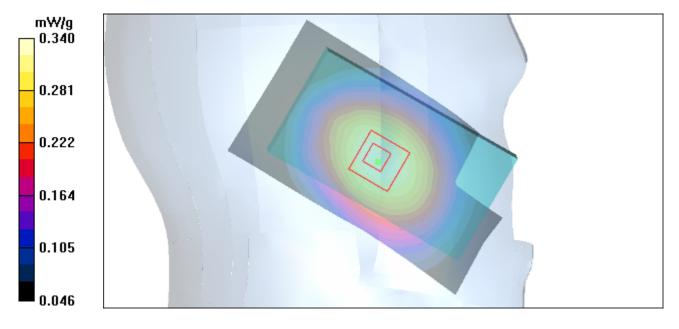

Date/Time: 5/10/2012 8:29:43 PM Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; σ = 0.89 mho/m; ε_r = 42.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd.

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.391 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.5 V/m; Power Drift = -0.068 dB Peak SAR (extrapolated) = 0.459 W/kg SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.275 mW/g

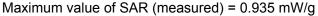

Report No.: RXA1205-0176SAR01R1


GSM 850 Left Tilt Low (Battery 1)

Date/Time: 5/10/2012 7:53:41 PM Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.878 mho/m; ϵ_r = 42.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.343 mW/g

Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 0.407 W/kg SAR(1 g) = 0.324 mW/g; SAR(10 g) = 0.246 mW/g


Report No.: RXA1205-0176SAR01R1

GSM 850 Right Cheek High (Battery 1)

Date/Time: 5/10/2012 9:02:18 PM Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 0.901 mho/m; ε_r = 42.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.941 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = -0.061 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.879 mW/g; SAR(10 g) = 0.655 mW/g

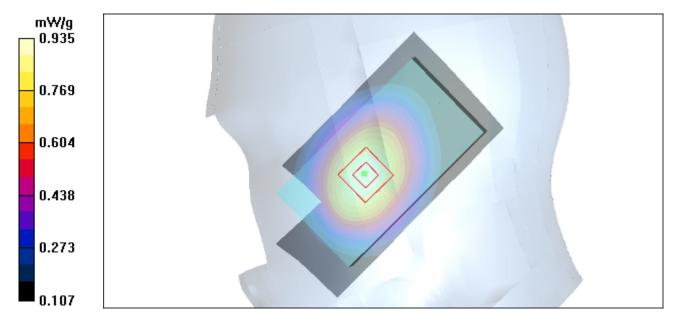
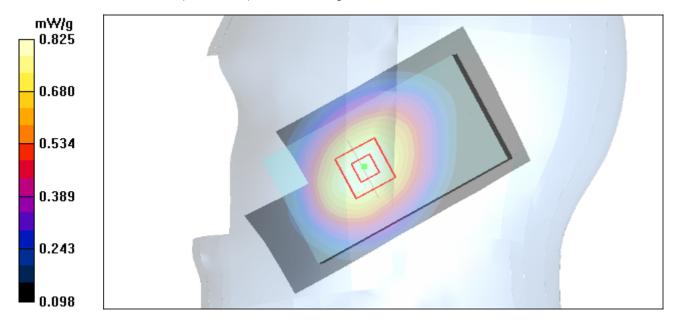


Figure 17 Right Hand Touch Cheek GSM 850 Channel 251

Report No.: RXA1205-0176SAR01R1

Page 45 of 120


GSM 850 Right Cheek Middle (Battery 1)

Date/Time: 5/10/2012 8:49:39 PM Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; σ = 0.89 mho/m; ε_r = 42.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

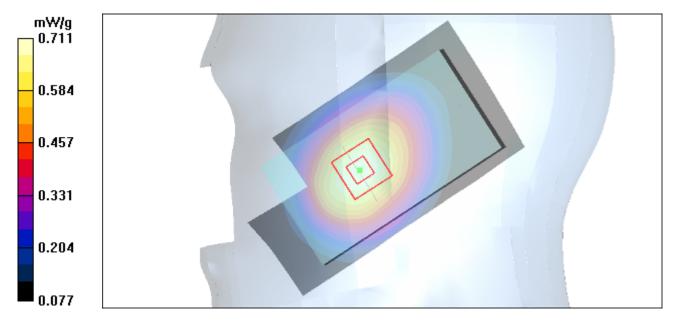
Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.841 mW/g

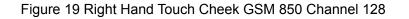
Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.782 mW/g; SAR(10 g) = 0.588 mW/g

Maximum value of SAR (measured) = 0.825 mW/g

Figure 18 Right Hand Touch Cheek GSM 850 Channel 190

Report No.: RXA1205-0176SAR01R1


GSM 850 Right Cheek Low (Battery 1)


Date/Time: 5/10/2012 9:15:08 PM Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.878$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

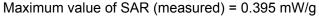
Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.712 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.1 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 0.841 W/kg SAR(1 g) = 0.670 mW/g; SAR(10 g) = 0.501 mW/g

Maximum value of SAR (measured) = 0.711 mW/g

Test Report

Report No.: RXA1205-0176SAR01R1


GSM 850 Right Tilt High (Battery 1)

Date/Time: 5/10/2012 10:06:21 PM Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 0.901 mho/m; ε_r = 42.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd.

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.398 mW/g

Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 0.473 W/kg SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.285 mW/g

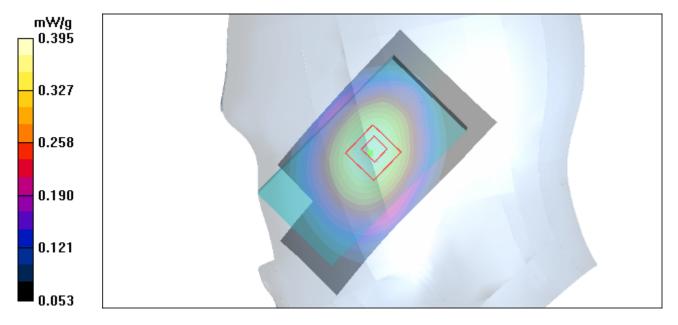
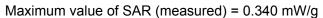


Figure 20 Right Hand Tilt 15° GSM 850 Channel 251

Test Report

Report No.: RXA1205-0176SAR01R1


GSM 850 Right Tilt Middle (Battery 1)

Date/Time: 5/10/2012 10:19:12 PM Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 837 MHz; σ = 0.89 mho/m; ε_r = 42.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd.

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.356 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = 0.122 dB Peak SAR (extrapolated) = 0.412 W/kg SAR(1 g) = 0.328 mW/g; SAR(10 g) = 0.248 mW/g

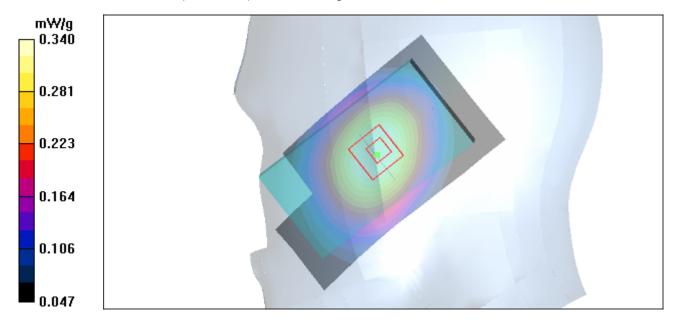


Figure 21 Right Hand Tilt 15° GSM 850 Channel 190

Report No.: RXA1205-0176SAR01R1

GSM 850 Right Tilt Low (Battery 1)

Date/Time: 5/10/2012 9:40:47 PM Communication System: GSM850; Frequency: 824.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.878$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.322 mW/g

Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.8 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 0.379 W/kg SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.232 mW/g

Maximum value of SAR (measured) = 0.319 mW/g

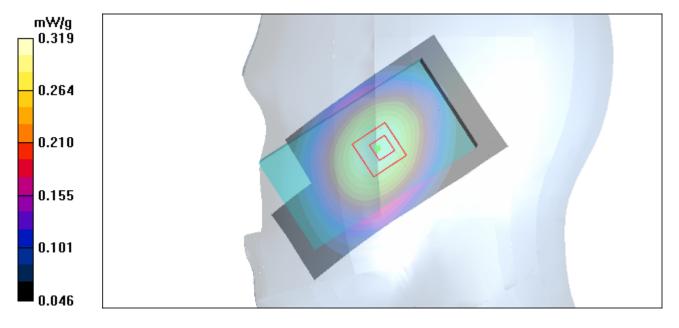
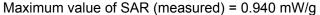


Figure 22 Right Hand Tilt 15° GSM 850 Channel 128


Report No.: RXA1205-0176SAR01R1

GSM 850 Left Cheek High (Battery 2)

Date/Time: 5/10/2012 11:38:30 PM Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 0.901 mho/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.22, 9.22, 9.22); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.939 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.894 mW/g; SAR(10 g) = 0.668 mW/g

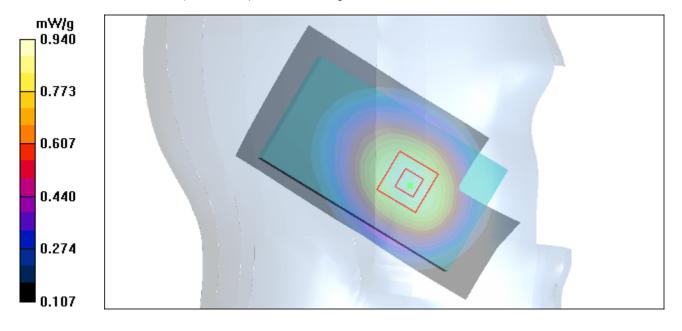
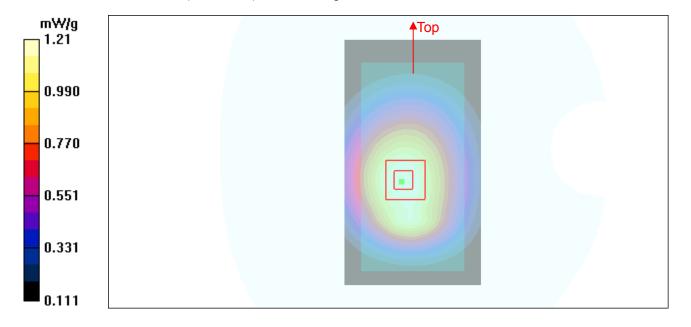


Figure 23 Left Hand Touch Cheek GSM 850 Channel 251

Report No.: RXA1205-0176SAR01R1


GSM 850 GPRS (2Txslots) Towards Ground High (Battery 1)

Date/Time: 5/9/2012 8:29:10 AM

Communication System: GSM850 + GPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.23 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.6 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 1.52 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.837 mW/g Maximum value of SAR (measured) = 1.21 mW/g

Report No.: RXA1205-0176SAR01R1

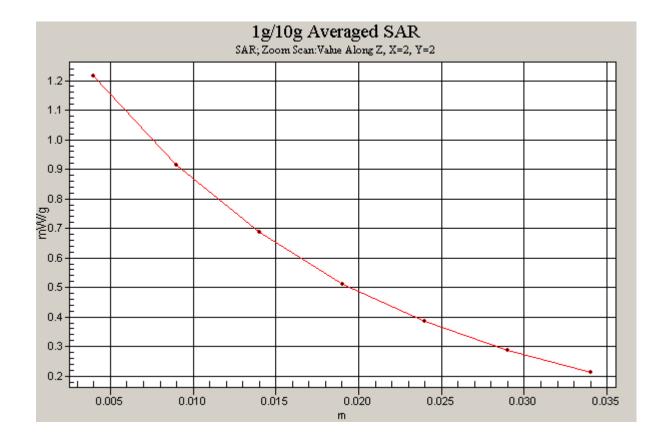


Figure 24 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 251

Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Ground Middle (Battery 1)

Date/Time: 5/9/2012 8:41:02 AM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 837 MHz; σ = 0.988 mho/m; ε_r = 54.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.21 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.4 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 1.52 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.830 mW/g Maximum value of SAR (measured) = 1.21 mW/g

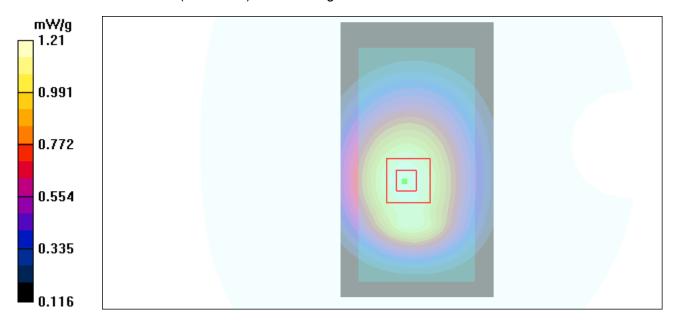


Figure 25 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 190

Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Ground Low (Battery 1)

Date/Time: 5/9/2012 8:54:24 AM

Communication System: GSM850 + GPRS(2Up); Frequency: 824.2 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.972 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.8 V/m; Power Drift = 0.038 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.747 mW/g Maximum value of SAR (measured) = 1.09 mW/g

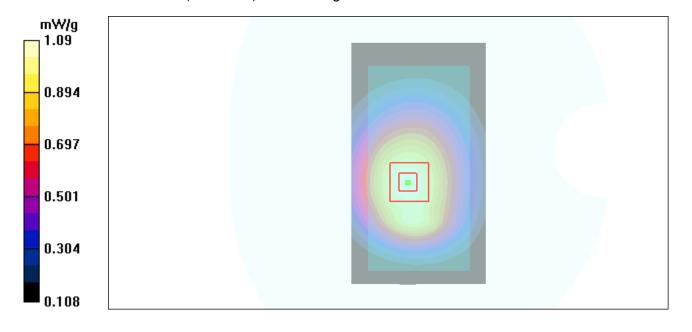
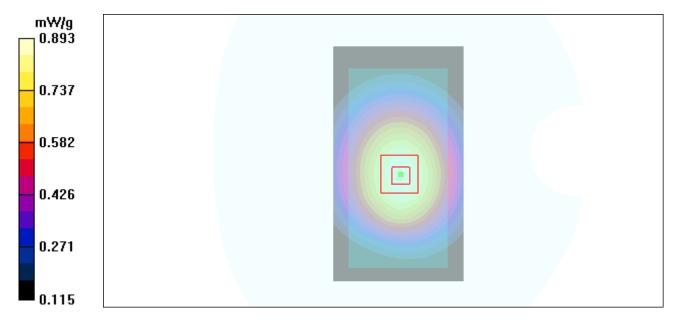


Figure 26 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 128


Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Phantom High (Battery 1)

Date/Time: 5/9/2012 9:34:34 AM Communication System: GSM850 + GPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ε_r = 54.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.893 mW/g

Towards Phantom High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.6 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.846 mW/g; SAR(10 g) = 0.624 mW/g Maximum value of SAR (measured) = 0.893 mW/g

Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Phantom Middle (Battery 1)

Date/Time: 5/9/2012 9:22:28 AM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 837 MHz; σ = 0.988 mho/m; ϵ_r = 54.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.870 mW/g

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.3 V/m; Power Drift = 0.004 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.824 mW/g; SAR(10 g) = 0.609 mW/g Maximum value of SAR (measured) = 0.869 mW/g

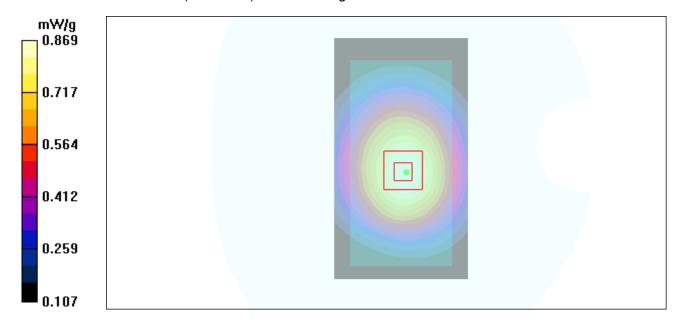


Figure 28 Body, Towards Phantom, GSM 850 GPRS (2Txslots) Channel 190

Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Phantom Low (Battery 1)

Date/Time: 5/9/2012 9:10:13 AM Communication System: GSM850 + GPRS(2Up); Frequency: 824.2 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 824.2 MHz; σ = 0.972 mho/m; ϵ_r = 54.4; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.746 mW/g

Towards Phantom Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.3 V/m; Power Drift = -0.042 dB Peak SAR (extrapolated) = 0.926 W/kg SAR(1 g) = 0.713 mW/g; SAR(10 g) = 0.528 mW/g Maximum value of SAR (measured) = 0.755 mW/g

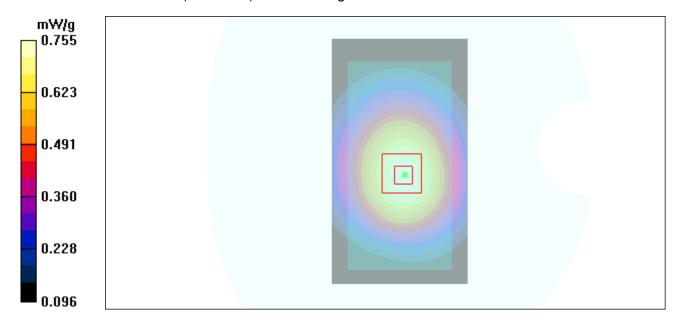


Figure 29 Body, Towards Phantom, GSM 850 GPRS (2Txslots) Channel 128

Report No.: RXA1205-0176SAR01R1

Page 58 of 120

GSM 850 with Stereo Headset 1 Towards Ground High (Battery 1)

Date/Time: 5/9/2012 10:16:18 AM

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ε_r = 54.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.318 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.8 V/m; Power Drift = 0.012 dB Peak SAR (extrapolated) = 0.427 W/kg SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.203 mW/g Maximum value of SAR (measured) = 0.314 mW/g

Figure 30 Body with Stereo Headset 1, Towards Ground, GSM 850 Channel 251

Report No.: RXA1205-0176SAR01R1

Page 59 of 120

GSM 850 with Stereo Headset 2 Towards Ground High (Battery 1)

Date/Time: 5/9/2012 10:03:55 AM

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.557 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.7 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 0.694 W/kg SAR(1 g) = 0.524 mW/g; SAR(10 g) = 0.380 mW/g Maximum value of SAR (measured) = 0.553 mW/g

Figure 31 Body with Stereo Headset 2, Towards Ground, GSM 850 Channel 251

Report No.: RXA1205-0176SAR01R1

GSM 850 GPRS (2Txslots) Towards Ground High (Battery 2)

Date/Time: 5/9/2012 9:48:22 AM

Communication System: GSM850 + GPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 849 MHz; σ = 1.01 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(9.38, 9.38, 9.38); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.17 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.1 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.801 mW/g Maximum value of SAR (measured) = 1.17 mW/g

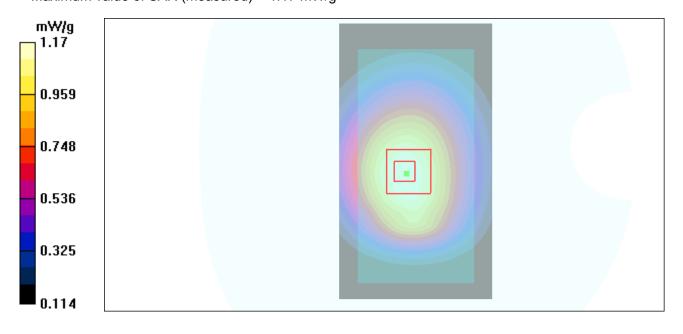
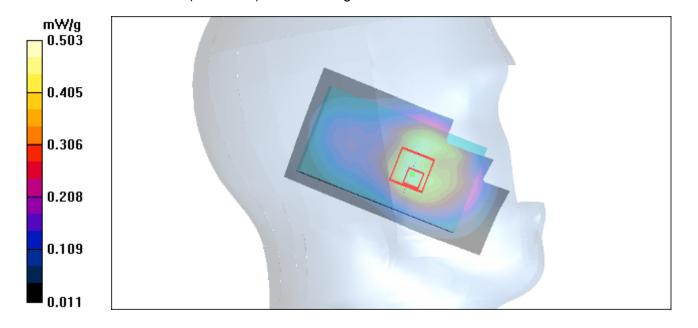


Figure 32 Body, Towards Ground, GSM 850 GPRS (2Txslots) Channel 251

Report No.: RXA1205-0176SAR01R1

Page 61 of 120


GSM 1900 Left Cheek High (Battery 1)

Date/Time: 5/10/2012 3:23:55 PM Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.4 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

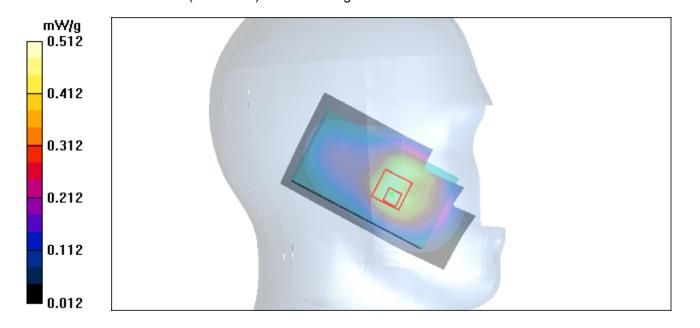
TA Technology (Shanghai) Co., Ltd. Test Report

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.493 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.4 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 0.725 W/kg SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.292 mW/g Maximum value of SAR (measured) = 0.503 mW/g

Figure 33 Left Hand Touch Cheek GSM 1900 Channel 810

Report No.: RXA1205-0176SAR01R1


Page 62 of 120

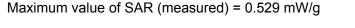
GSM 1900 Left Cheek Middle (Battery 1)

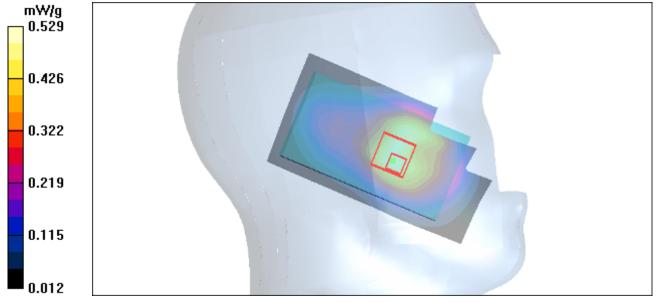
Date/Time: 5/10/2012 3:11:19 PM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.503 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.029 dB Peak SAR (extrapolated) = 0.737 W/kg SAR(1 g) = 0.482 mW/g; SAR(10 g) = 0.300 mW/g Maximum value of SAR (measured) = 0.512 mW/g

Figure 34 Left Hand Touch Cheek GSM 1900 Channel 661


Report No.: RXA1205-0176SAR01R1


GSM 1900 Left Cheek Low (Battery 1)

Date/Time: 5/10/2012 3:37:42 PM Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.35 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.534 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.7 V/m; Power Drift = -0.051 dB Peak SAR (extrapolated) = 0.758 W/kg SAR(1 g) = 0.504 mW/g; SAR(10 g) = 0.320 mW/g

Figure 35 Left Hand Touch Cheek GSM 1900 Channel 512

Test Report

Report No.: RXA1205-0176SAR01R1

Page 64 of 120

GSM 1900 Left Tilt High (Battery 1)

Date/Time: 5/10/2012 4:17:53 PM Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.4 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd.

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.233 mW/g

Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.5 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.325 W/kg SAR(1 g) = 0.206 mW/g; SAR(10 g) = 0.123 mW/g Maximum value of SAR (measured) = 0.222 mW/g

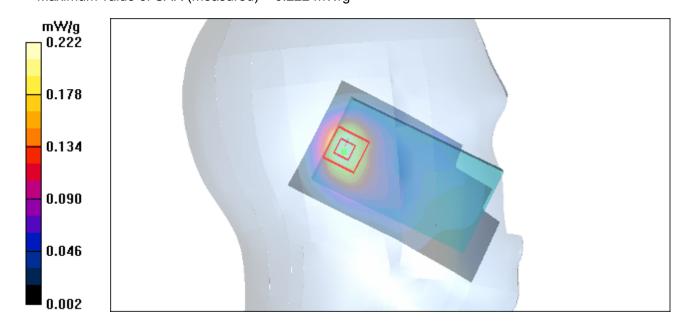
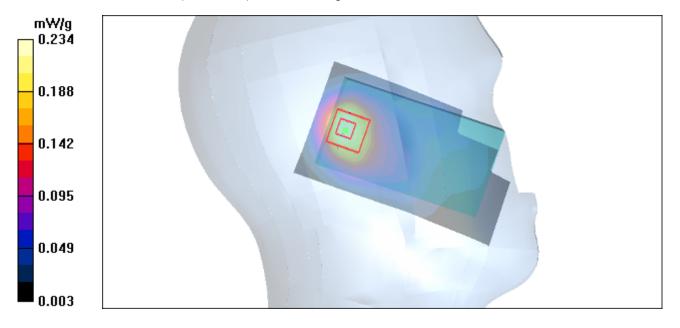


Figure 36 Left Hand Tilt 15° GSM 1900 Channel 810

Report No.: RXA1205-0176SAR01R1

Page 65 of 120

GSM 1900 Left Tilt Middle (Battery 1)


Date/Time: 5/10/2012 4:05:16 PM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

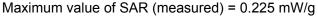
TA Technology (Shanghai) Co., Ltd. Test Report

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.239 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 0.339 W/kg SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.130 mW/g

Maximum value of SAR (measured) = 0.234 mW/g

Figure 37 Left Hand Tilt 15° GSM 1900 Channel 661


Report No.: RXA1205-0176SAR01R1

GSM 1900 Left Tilt Low (Battery 1)

Date/Time: 5/10/2012 3:52:42 PM Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.35 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.231 mW/g

Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = -0.011 dB Peak SAR (extrapolated) = 0.326 W/kg SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.128 mW/g

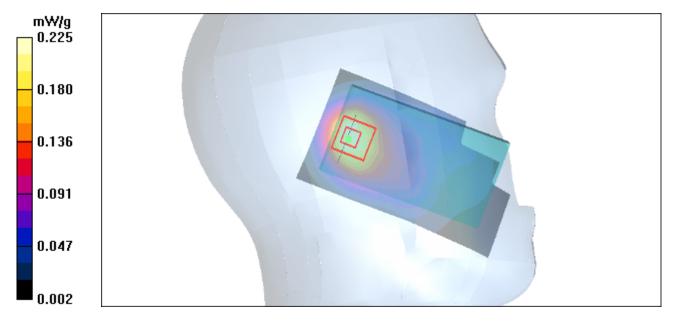


Figure 38 Left Hand Tilt 15° GSM 1900 Channel 512

Report No.: RXA1205-0176SAR01R1

Page 67 of 120

GSM 1900 Right Cheek High (Battery 1)

Date/Time: 5/10/2012 4:36:12 PM Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.4 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.565 mW/g

Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.32 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 0.858 W/kg SAR(1 g) = 0.517 mW/g; SAR(10 g) = 0.294 mW/g

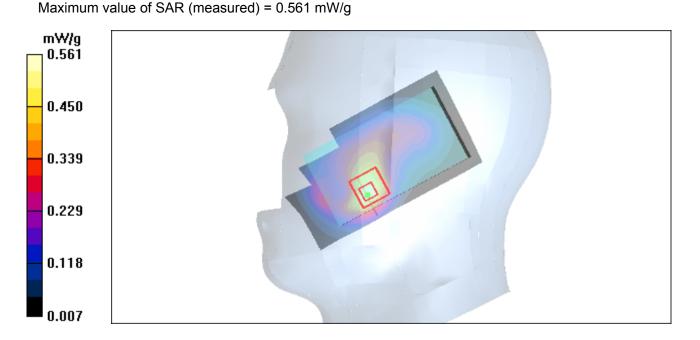


Figure 39 Right Hand Touch Cheek GSM 1900 Channel 810

Report No.: RXA1205-0176SAR01R1

Page 68 of 120

GSM 1900 Right Cheek Middle (Battery 1)

Date/Time: 5/10/2012 5:04:51 PM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ε_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.546 mW/g

Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.01 V/m; Power Drift = 0.066 dB Peak SAR (extrapolated) = 0.814 W/kg SAR(1 g) = 0.498 mW/g; SAR(10 g) = 0.287 mW/g

Maximum value of SAR (measured) = 0.536 mW/g

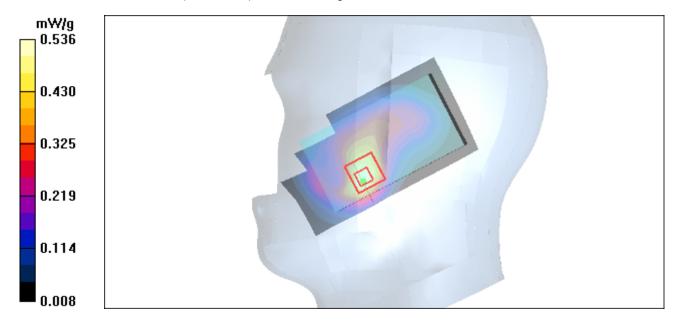
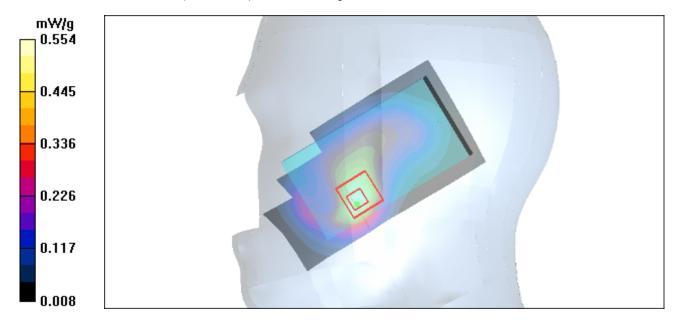


Figure 40 Right Hand Touch Cheek GSM 1900 Channel 661

Report No.: RXA1205-0176SAR01R1


GSM 1900 Right Cheek Low (Battery 1)

Date/Time: 5/10/2012 4:51:47 PM Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.35 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.571 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.06 V/m; Power Drift = 0.050 dB Peak SAR (extrapolated) = 0.851 W/kg SAR(1 g) = 0.518 mW/g; SAR(10 g) = 0.302 mW/g

Maximum value of SAR (measured) = 0.554 mW/g

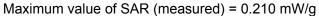
Report No.: RXA1205-0176SAR01R1



Figure 41 Right Hand Touch Cheek GSM 1900 Channel 512

Report No.: RXA1205-0176SAR01R1

TA Technology (Shanghai) Co., Ltd. Test Report


Page 71 of 120

GSM 1900 Right Tilt High (Battery 1)

Date/Time: 5/10/2012 5:30:53 PM Communication System: PCS 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1910 MHz; σ = 1.4 mho/m; ϵ_r = 40.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.220 mW/g

Tilt High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.303 W/kg SAR(1 g) = 0.196 mW/g; SAR(10 g) = 0.119 mW/g

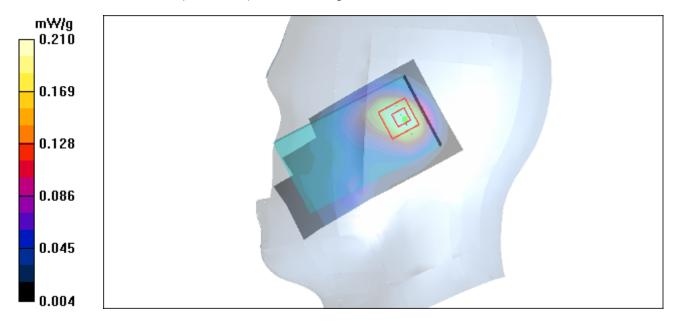
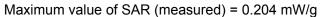


Figure 42 Right Hand Tilt 15° GSM 1900 Channel 810

Report No.: RXA1205-0176SAR01R1


Page 72 of 120

GSM 1900 Right Tilt Middle (Battery 1)

Date/Time: 5/10/2012 5:18:01 PM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.217 mW/g

Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 0.293 W/kg SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.118 mW/g

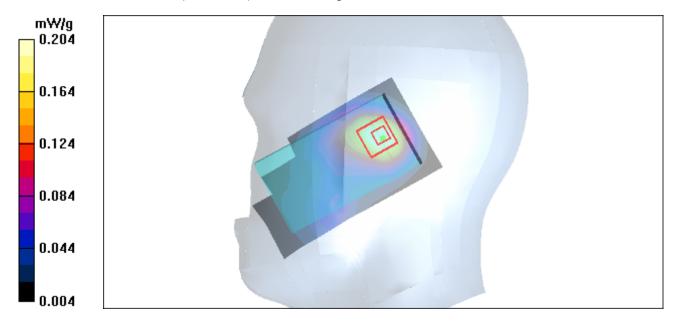


Figure 43 Right Hand Tilt 15° GSM 1900 Channel 661

Report No.: RXA1205-0176SAR01R1

GSM 1900 Right Tilt Low (Battery 1)

Date/Time: 5/10/2012 5:43:21 PM Communication System: PCS 1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.35 mho/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.9, 7.9, 7.9); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.214 mW/g

Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 0.286 W/kg SAR(1 g) = 0.191 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.199 mW/g

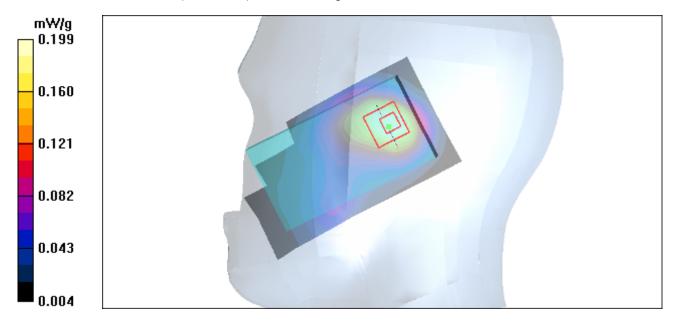


Figure 44 Right Hand Tilt 15° GSM 1900 Channel 512

Report No.: RXA1205-0176SAR01R1

Page 74 of 120

GSM 1900 GPRS (2Txslots) Towards Ground High (Battery 1)

Date/Time: 5/9/2012 6:11:05 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1910 MHz; σ = 1.56 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.518 mW/g

Towards Ground High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.8 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 0.786 W/kg SAR(1 g) = 0.464 mW/g; SAR(10 g) = 0.272 mW/g Maximum value of SAR (measured) = 0.502 mW/g

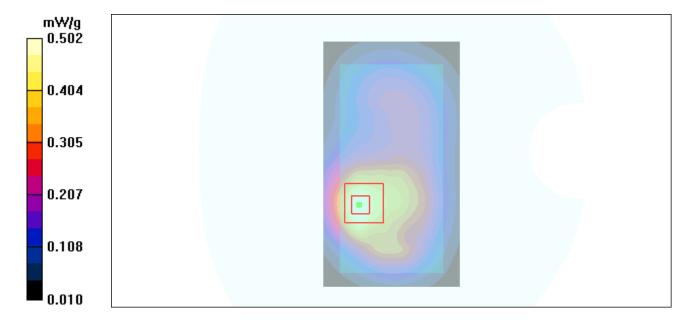
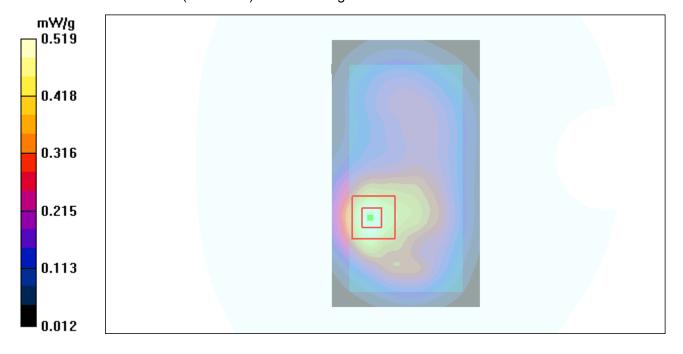


Figure 45 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 810

Report No.: RXA1205-0176SAR01R1


GSM 1900 GPRS (2Txslots) Towards Ground Middle (Battery 1)

Date/Time: 5/9/2012 5:57:11 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.543 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.0 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 0.794 W/kg SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.281 mW/g Maximum value of SAR (measured) = 0.519 mW/g

Report No.: RXA1205-0176SAR01R1

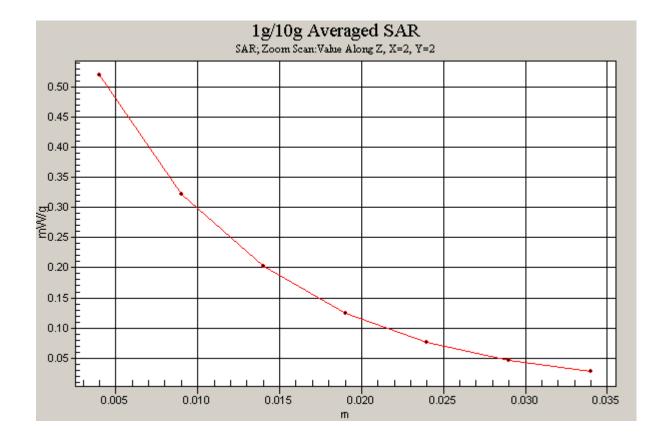


Figure 46 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 661

Test Report Report No.: RXA1205-0176SAR01R1

Page 77 of 120

GSM 1900 GPRS (2Txslots) Towards Ground Low (Battery 1)

Date/Time: 5/9/2012 6:23:32 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.51 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd.

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.522 mW/g

Towards Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 0.767 W/kg SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.271 mW/g Maximum value of SAR (measured) = 0.497 mW/g

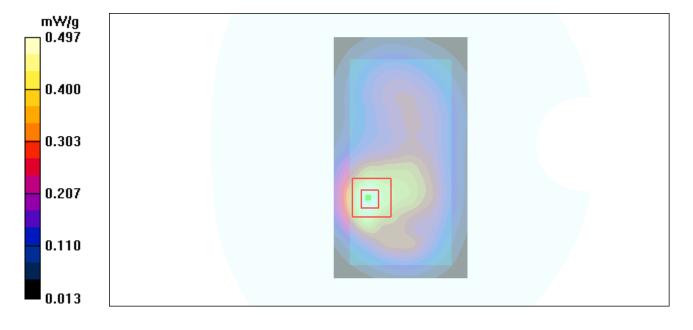


Figure 47 Body, Towards Ground, GSM 1900 GPRS (2Txslots) Channel 512

Report No.: RXA1205-0176SAR01R1

Page 78 of 120

GSM 1900 GPRS (2Txslots) Towards Phantom High (Battery 1)

Date/Time: 5/9/2012 6:38:25 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1910 MHz; σ = 1.56 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

TA Technology (Shanghai) Co., Ltd. Test Report

Towards Phantom High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.269 mW/g

Towards Phantom High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.90 V/m; Power Drift = 0.053 dB Peak SAR (extrapolated) = 0.414 W/kg SAR(1 g) = 0.255 mW/g; SAR(10 g) = 0.153 mW/g Maximum value of SAR (measured) = 0.274 mW/g

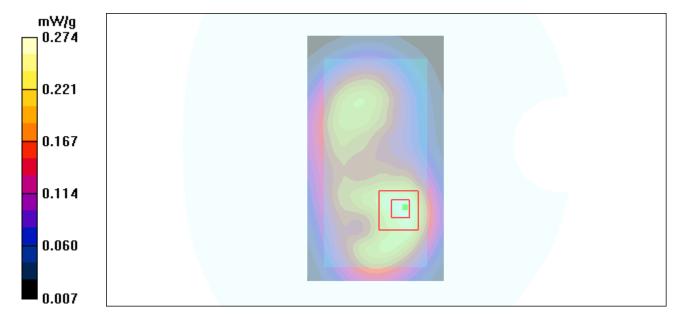


Figure 48 Body, Towards Phantom, GSM 1900 GPRS (2Txslots) Channel 810

Report No.: RXA1205-0176SAR01R1

Page 79 of 120

GSM 1900 GPRS (2Txslots) Towards Phantom Middle (Battery 1)

Date/Time: 5/9/2012 6:51:28 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.256 mW/g

Towards Phantom Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.2 V/m; Power Drift = -0.028 dB Peak SAR (extrapolated) = 0.362 W/kg SAR(1 g) = 0.225 mW/g; SAR(10 g) = 0.138 mW/g Maximum value of SAR (measured) = 0.249 mW/g

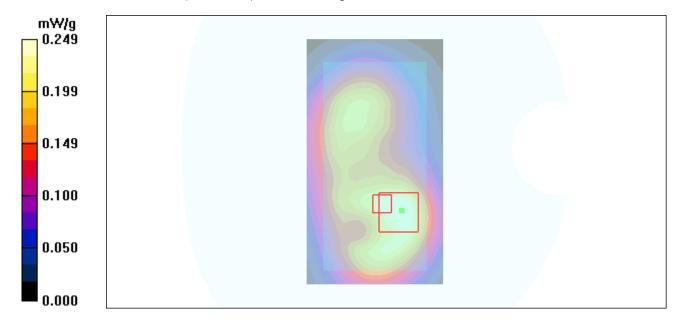


Figure 49 Body, Towards Phantom, GSM 1900 GPRS (2Txslots) Channel 661

Report No.: RXA1205-0176SAR01R1

Page 80 of 120

GSM 1900 GPRS (2Txslots) Towards Phantom Low (Battery 1)

Date/Time: 5/9/2012 7:08:26 AM Communication System: PCS 1900+GPRS(2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.51 mho/m; ϵ_r = 52.3; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.279 mW/g

Towards Phantom Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 0.423 W/kg SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.161 mW/g Maximum value of SAR (measured) = 0.288 mW/g

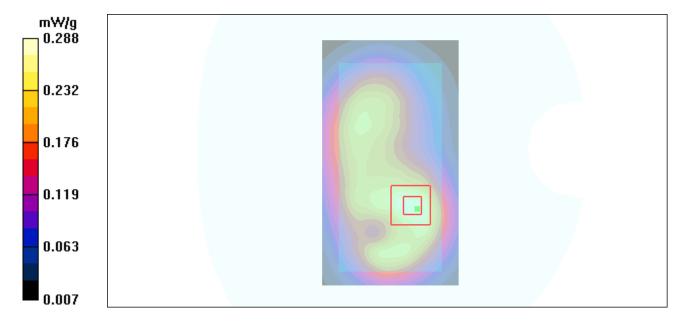


Figure 50 Body, Towards Phantom, GSM 1900 GPRS (2Txslots) Channel 512

Report No.: RXA1205-0176SAR01R1

GSM 1900 with Stereo Headset 1 Towards Ground Middle (Battery 1)

Date/Time: 5/9/2012 7:43:43 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.292 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.0 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 0.435 W/kg SAR(1 g) = 0.259 mW/g; SAR(10 g) = 0.151 mW/g Maximum value of SAR (measured) = 0.282 mW/g

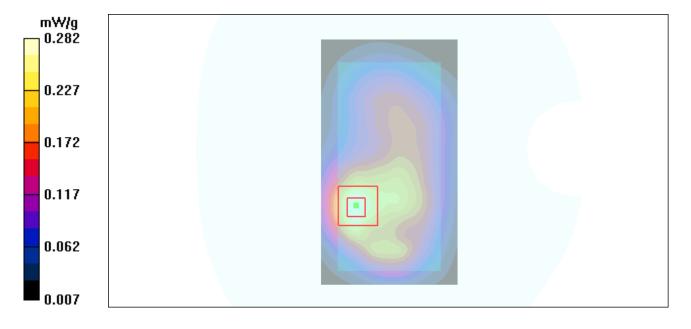


Figure 51 Body with Stereo Headset 1, Towards Ground, GSM 1900 Channel 661

Report No.: RXA1205-0176SAR01R1

GSM 1900 with Stereo Headset 2 Towards Ground Middle (Battery 1)

Date/Time: 5/9/2012 7:57:16 AM Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: EX3DV4 - SN3816; ConvF(7.51, 7.51, 7.51); Calibrated: 10/3/2011 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.327 mW/g

Towards Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.69 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 0.493 W/kg SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.171 mW/g Maximum value of SAR (measured) = 0.316 mW/g

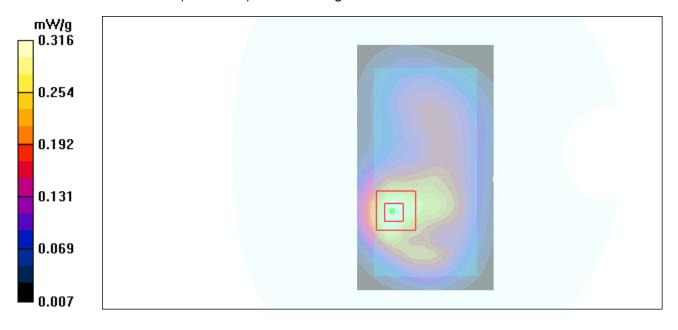


Figure 52 Body with Stereo Headset 2, Towards Ground, GSM 1900 Channel 661

Report No.: RXA1205-0176SAR01R1

ANNEX D: Probe Calibration Certificate

Engineering AG Zeughausstrasse 43, 8004 Zur	Dry of	Hac MRA	Schweizerischer Kalibrierdien Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ice is one of the signatorie	is to the EA	No.: SCS 108
Client TMC Shangha			EX3-3816_Oct11
CALIBRATION	CERTIFICAT	E	
Object	EX3DV4 - SN:38	16	
Calibration procedure(s)	THE REPORT OF A DESCRIPTION OF A DESCRIP	DA CAL-12.v7, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4 -
Calibration date:	October 3, 2011		FURINE STATISTICS
Calibration Equipment used (Mi	&TE critical for calibration)	ry facility: environment temperature (22 ± 3)°C :	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
			Scheduled Calibration Apr-12
Primary Standards Power meter E4419B	ID GB41293874	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	Scheduled Calibration
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 65129 (30b) SN: 654 ID US3642U01700 *	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: 35129 (30b) SN: 3013 SN: 654 ID	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01389) 29-Mar-11 (No. 217-01387) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5096 (20b) SN: S5129 (30b) SN: 65129 (30b) SN: 654 ID US3642U01700 *	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 = US3642U01700 = US37390585	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 9648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID GB41293874 MY41499087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 * US37390585 Name Jeton Kastrati	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01389) 29-Mar-11 (No. 217-01387) 29-Mar-11 (No. 217-01387) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function Laboratory Technician	Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Report No.: RXA1205-0176SAR01R1

Page 84 of 120

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary.

Giussary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 3	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific a) Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques*, December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3816_Oct11

Report No.: RXA1205-0176SAR01R1

EX3DV4 - SN:3816

October 3, 2011

Probe EX3DV4

SN:3816

Manufactured: Calibrated: September 2, 2011 October 3, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3816_Oct11

Page 3 of 11

Page 85 of 120

Report No.: RXA1205-0176SAR01R1

EX3DV4-SN:3816

October 3, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3816

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.48	0.56	0.61	± 10.1 %
DCP (mV) ⁸	99.8	102.2	102.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	111.3	±2.7 %
			Y	0.00	0.00	1.00	127.3	
			Z	0.00	0.00	1.00	127.7	-

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. field value.

Certificate No: EX3-3816_Oct11

Page 4 of 11

EX3DV4- SN:3816

October 3, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3816

f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.97	9.97	9.97	0.11	1.00	± 13.4 %
750	41.9	0.89	9.47	9.47	9.47	0.62	0.78	± 12.0 %
835	41.5	0.90	9.22	9.22	9.22	0.76	0.66	± 12.0 %
1450	40.5	1.20	8.58	8.58	8.58	0.65	0.77	± 12.0 %
1750	40.1	1.37	8.23	8.23	8.23	0.80	0.58	± 12.0 %
1900	40.0	1.40	7.90	7.90	7.90	0.80	0.57	± 12.0 %
2450	39.2	1.80	7.17	7.17	7.17	0.66	0.64	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.64	0.67	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^{*} At frequencies below 3 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*ε* and *σ*) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3816_Oct11

Page 5 of 11

EX3DV4-SN:3816

October 3, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3816

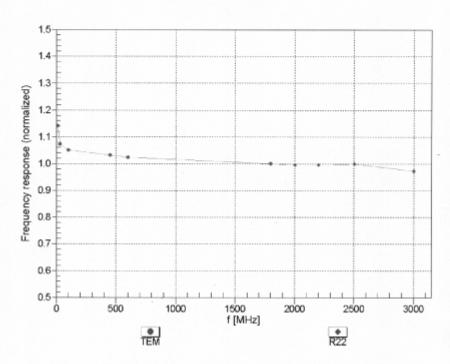
f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.83	10.83	10.83	0.02	1.00	± 13.4 %
750	55.5	0.96	9.50	9.50	9.50	0.80	0.70	± 12.0 %
835	55.2	0.97	9.38	9.38	9.38	0.68	0.69	± 12.0 %
1750	53.4	1.49	7.80	7.80	7.80	0.80	0.65	± 12.0 %
1900	53.3	1.52	7.51	7.51	7.51	0.80	0.65	± 12.0 %
2450	52.7	1.95	7.19	7.19	7.19	0.80	0.60	± 12.0 %
2600	52.5	2.16	7.14	7.14	7.14	0.80	0.59	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3816_Oct11

Page 6 of 11

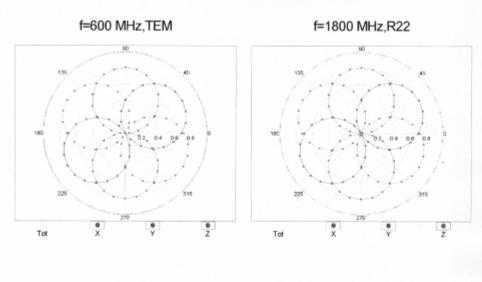

Report No.: RXA1205-0176SAR01R1

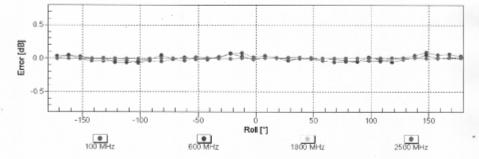
Page 89 of 120

October 3, 2011

EX3DV4- SN:3816

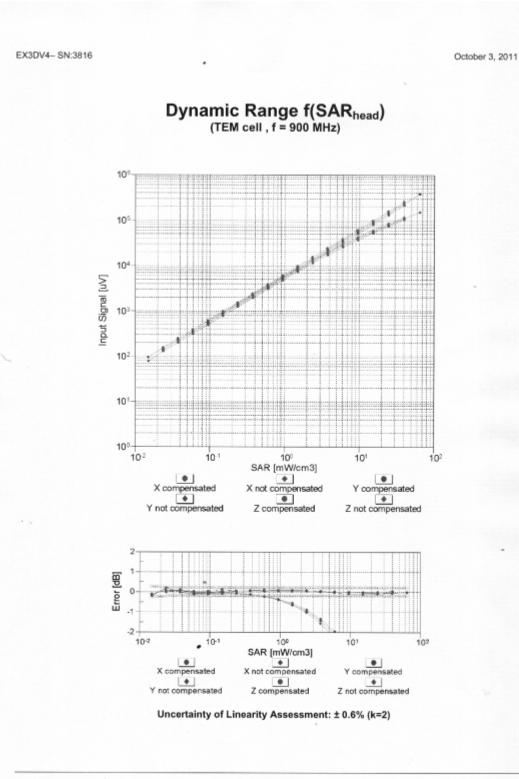
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Page 7 of 11


Report No.: RXA1205-0176SAR01R1

EX3DV4-SN:3816

October 3, 2011

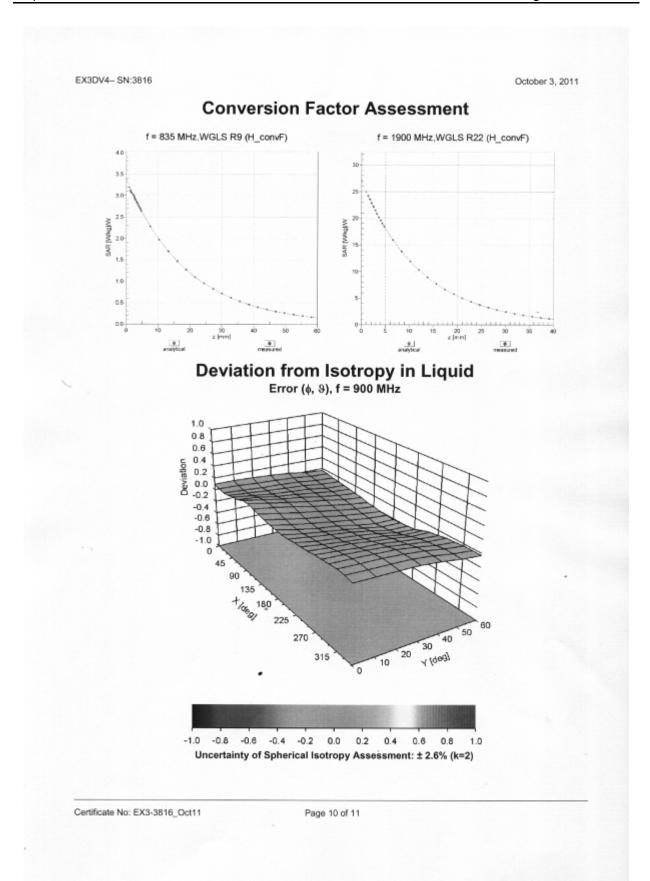


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 8 of 11

Report No.: RXA1205-0176SAR01R1

Page 91 of 120



Certificate No: EX3-3816_Oct11

Page 9 of 11

Report No.: RXA1205-0176SAR01R1

Page 92 of 120

Report No.: RXA1205-0176SAR01R1

EX3DV4- SN:3816

October 3, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3816

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3816_Oct11

Page 11 of 11

ANNEX E: D835V2 Dipole Calibration Certificate

	Carbon Tag, to regression carbonad		
occredited by the Swiss Accredite he Swiss Accreditation Servic	e is one of the signatorie	s to the EA	n No.: SCS 108
Iultilateral Agreement for the r			o: D835V2-4d020_Aug11
CALIBRATION	CERTIFICATE		
Object	D835V2 - SN: 4d	020	
Calibration procedure(s)	QA CAL-05.v8	dura for discle utilidation bits ob	000 700 MHz
	Calibration proce	dure for dipole validation kits abo	ove 700 Minz
Calibration date:	August 26, 2011		
	그는 아파는 아파가 지않는 아파가 아파 친구가 많은 것이 없다.	onal standards, which realize the physical un robability are given on the following pages ar	
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ortainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages are y facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate. C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ortainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	trainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power setsor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	trainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 5047 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	The closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 5047 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unco	artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047 2 / 06327 SN: 3205 SN: 601 - ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	The closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1205-0176SAR01R1

Page 95 of 120

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS BRD

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

s С S

Report No.: RXA1205-0176SAR01R1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.52 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	1
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW inpút power	1.59 mW / g

Certificate No: D835V2-4d020_Aug11

Report No.: RXA1205-0176SAR01R1

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ	
Return Loss	- 25.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG
Manufactured on	April 22, 2004

Certificate No: D835V2-4d020_Aug11

Page 4 of 8

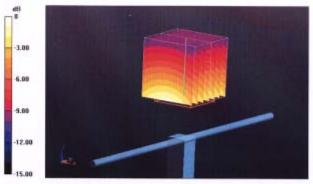
Report No.: RXA1205-0176SAR01R1

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

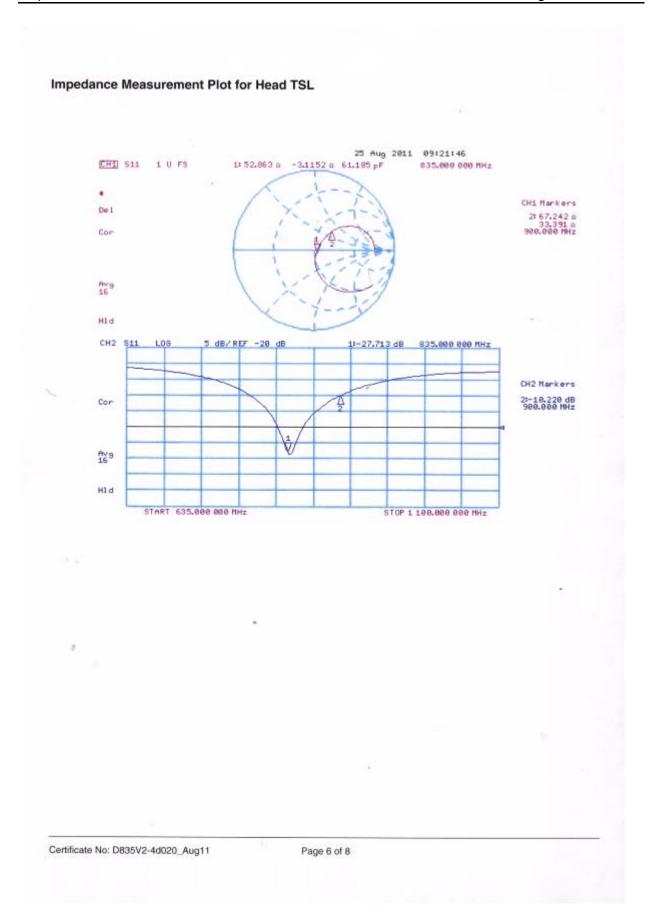

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

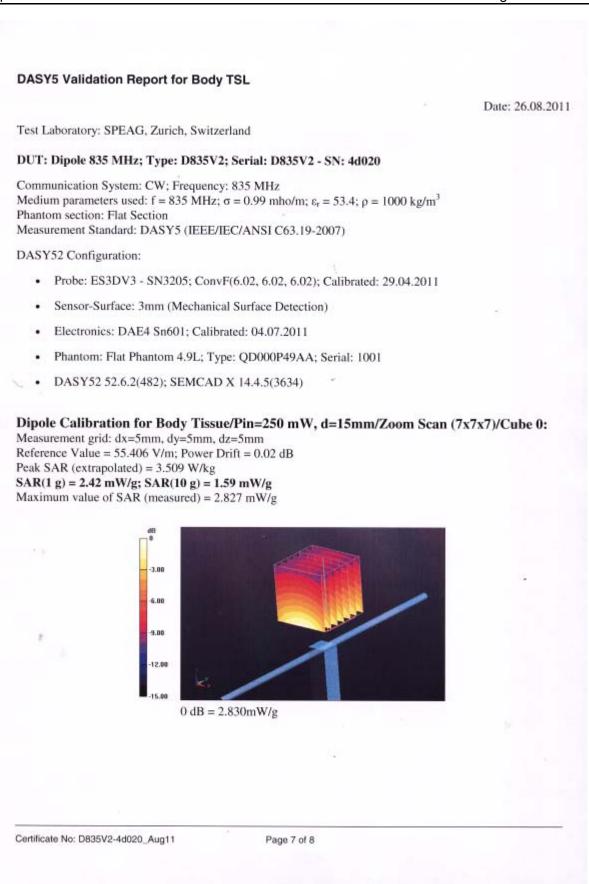
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.930 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.421 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.708 mW/g


 $0 \, dB = 2.710 \, mW/g$

Certificate No: D835V2-4d020_Aug11

Page 5 of 8


Report No.: RXA1205-0176SAR01R1

Page 99 of 120

Report No.: RXA1205-0176SAR01R1

Page 100 of 120

