Report No. RXA1205-0154HAC02R1

Page 1 of 55

ANSI C63.19 TEST REPORT

Product Name	GSM dual band mobile phone
Model Name	B11Q lifestyle
Marketing Name	TCL 5185
FCC ID	RAD277
Client	TCT Mobile Limited

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Product Name	GSM dual band mobile phone	Model	B11Q lifestyle
Report No.	RXA1205-0154HAC02R1	FCC ID	RAD277
Client	TCT Mobile Limited		
Manufacturer	TCT Mobile Limited		
Reference Standard(s)	ANSI C63.19-2007: American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.		
Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. General Judgment: T3 (Stamp) Date of issue: May 15 th , 2012		
Comment	The test result only responds to the r	neasured sample.	

Approved by 和 4中

Revised by <u>麦</u>数多

Performed by_

许红杨

Director SAR Manager

SAR Engineer

TABLE OF CONTENT

1. General Information		4
1.1. Notes of the Test Report		4
1.2. Testing Laboratory		4
1.3. Applicant Information		5
1.4. Manufacturer Information		5
1.5. Information of EUT		6
1.6. The Ambient Conditions during Test		8
1.7. T-Coil signal quality categories of ea	ich tested Mode	8
1.8. Test Date		8
2. Test Information		9
2.1. Operational Conditions during Test		9
2.1.1. General Description of Test Pro	cedures	9
2.1.2. GSM Test Configuration		9
2.1.3. WCDMA Test Configuration		9
2.2. T-Coill Measurements System Confi	guration	10
2.2.1. T-coil Measurement Set-up		10
2.2.2. AM1D Probe		12
_	nstrument (AMMI)	
2.2.4. Helmholtz Calibration Coil (AMC	CC)	14
2.2.5. Test Arch Phantom & Phone Po	ositioner	14
•	rence plane	
2.4. T-Coil Test Procedueres		17
3. T-Coil Performance Requirements		18
3.1. T-Coil coupling field intensity		18
3.3. Signal quality		19
4. Summary Test Results		20
4.1. GSM 850		20
4.2. GSM 1900		21
5. Measurement Uncertainty		22
6. Main Test Instruments		24
ANNEX A: Test Layout		25
ANNEX B: Graph Results		26
-		
ANNEX F: The FUT Appearances and Test C		54

Report No. RXA1205-0154HAC02R1

Page 4 of 55

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai
Post code: 201201
Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RXA1205-0154HAC02R1

Page 5 of 55

1.3. Applicant Information

Company: TCT Mobile Limited

5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Address:

Shanghai, P.R. China. 201203

City: Shanghai

Postal Code: 201203

Country: P.R. China

Contact: Gong Zhizhou

Telephone: 0086-21-61460890

Fax: 0086-21-61460602

1.4. Manufacturer Information

Company: TCT Mobile Limited

Address: 5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area

Shanghai, P.R. China. 201203

City: Shanghai

Postal Code: 201203

Country: P.R. China

Telephone: 0086-21-61460890

Fax: 0086-21-61460602

Page 6 of 55

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Product Name:	GSM dual band mobile phone		
IMEI:	013299000000069		
Hardware Version:	LOT1		
Software Version:	VA67		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Supporting Mode(s):	GSM 850/GSM 1900; (tested)		
Test Modulation:	(GSM)GMSK		
Device Class:	В		
	Max Number of Timeslots in Uplink		4
GPRS Multislot Class(12):	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
	Mode	Tx (MHz)	Rx (MHz)
Operating Frequency Range(s):	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8
Tost Channel (Middle):	190 (GSM 850) (tested)		
Test Channel(Middle):	661 (GSM 1900)	(tested)	
Power Class:	GSM 850: 4, tested with power level 5		
1 Owel Class.	GSM 1900: 1, tested with power level 0		

Report No. RXA1205-0154HAC02R1 Page 7 of 55

Auxiliary Equipment Details

AE:Battery

Model: CAB23A0000C1

Manufacturer: BYD

SN: B3221100E2A

Equipment Under Test (EUT) is a GSM dual band mobile phone. The device has an internal antenna for GSM Tx/Rx, and the other is BT antenna that is used for Tx/Rx.T-Coil is tested for GSM 850, GSM 1900. Bluetooth mode doesn't have voice capability, and does not operate in the held to ear mode for providing handset service.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Ambient Conditions during Test

Temperature	Min. = 18°C, Max. = 28 °C	
Relative humidity	Min. = 0%, Max. = 80%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

1.7. T-Coil signal quality categories of each tested Mode

Mode	Category
GSM 850	Т3
GSM 1900	Т3

1.8. Test Date

The test performed on May 10, 2012.

2. Test Information

2.1. Operational Conditions during Test

2.1.1. General Description of Test Procedures

The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame The EUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. EUT holder on the yellow base plate of the Test Arch phantom. During the test, the EUT is selected on T-Coil mode, the LCD backlight is turn off and volume is adjusted to maximum level.

2.1.2. GSM Test Configuration

A communication link is set up with a System Simulator (SS) by RF cable, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 190 respectively in the case of GSM 850, allocated to 661 respectively in the case of GSM 1900. T-Coil configurations is measured in Speechcod/Hendset Low using System Simulator (SS) of CMU200, at the same time the EUT shall be operated at its maximum RF output power setting.

2.1.3. WCDMA Test Configuration

A communication link is set up with a System Simulator (SS) by RF cable, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) are allocated to 9400 respectively in the case of WCDMA Band II, allocated to 4182 respectively in the case of WCDMA Band V. T-Coil configurations is measured in voice mode with 12.2kps RMC using System Simulator (SS) of CMU200, at the same time the EUT shall be operated at its maximum RF output power setting.

2.2. T-Coill Measurements System Configuration

2.2.1. T-coil Measurement Set-up

These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

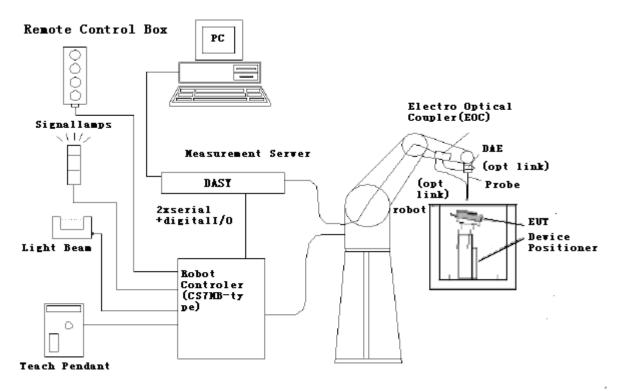
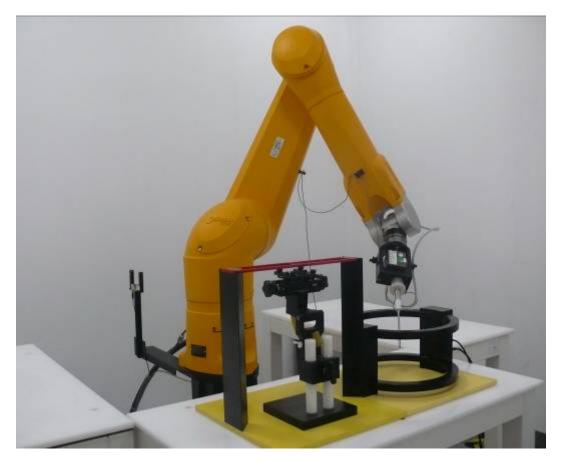



Figure 1 T-Coil Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

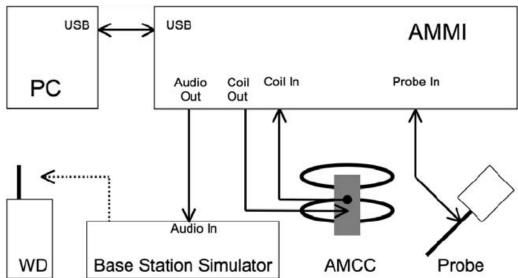


Figure 2 T-Coil Test Measurement Set-up

2.2.2. AM1D Probe

The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards).

Specification

frequency range	0.1 - 20 kHz (RF sensitivity <-100 dB, fully RF shielded)
sensitivity	<-50 dB A/m @ 1 kHz
pre-amplifier	40 dB, symmetric
dimensions	tip diameter / length: 6 / 290 mm, sensor according to ANSI-C63.19

Figure 3 AM1D Probe

2.2.3. Audio Magnetic Measurement Instrument (AMMI)

The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface.

Figure 4 AMMI front panel

Port description:

Audio Out	BNC, audio signal to the base station simulator, for >5000hm load	
Coil Out	BNC, test and calibration signal to the AMCC (top connector), for 500hm	
Con Out	load	
Coil In	XLR, monitor signal from the AMCC BNO connector, 600 Ohm	
Probe In	XLR, probe signal and phantom supply to the probe Lemo connector	

Figure 5 AMMI rear side

Sampling rate	48 kHz / 24 bit
Dynamic range	85 dB
Test signal generation	User selectable and predefined (vis PC)
Calibration	Auto-calibration / full system calibration using AMCC with monitor output
Dimensions	482 x 65 x 270 mm

2.2.4. Helmholtz Calibration Coil (AMCC)

The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 50Ohm, and a shunt resistor of 10Ohm permits monitoring the current with a scale of 1:10

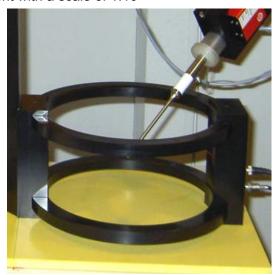


Figure 6 AMCC

Port description:

Signal	Connector	Resistance
Coil In	BNC	Typically 50Ohm
Coil Monitor	BNO	10Ohm±1% (100mV corresponding to 1 A/m)

Specification:

2.2.5. Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times$

The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper surface at the origin of the coordinates, and the "user point \Height Check 0.5 mm" is 0.5mm above the center, allowing verication of the gap of 0.5mm while the probe is positioned there.

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB.

Figure 7 T-coil Phantom & Device Holder

2.3. T-Coil measurement points and reference plane

The following figure illustrates the three standard probe orientations. Position 1 is the axial orientation of the probe coil; orientation 2 and orientation 3 are radial orientations. The space between the measurement positions is not fixed. It is recommended that a scan of the EUT be done for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil.

- 1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear.
- 2) The measurement plane is parallel to, and 10 mm in front of, the reference plane.
- 3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point.
- 4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the EUT and shall be located in the same half of the phone as the EUT receiver. In a EUT handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide.
- 5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position.
- 6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point.

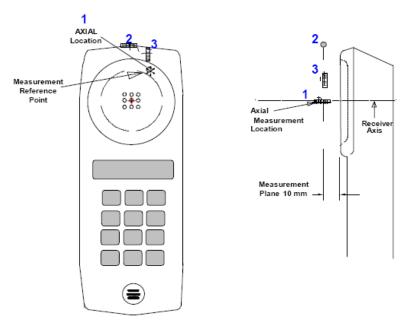


Figure 8 Axis and planes for EUT audio frequency magnetic field measurements

Report No. RXA1205-0154HAC02R1

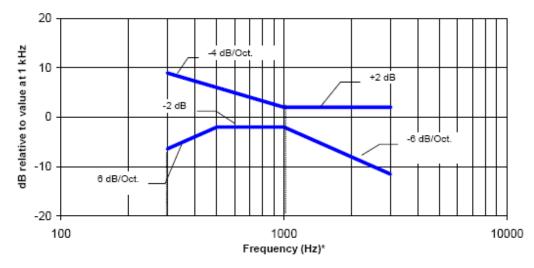
Page 17 of 55

2.4. T-Coil Test Procedueres

The following illustrate a typical test scan over a wireless communications device:

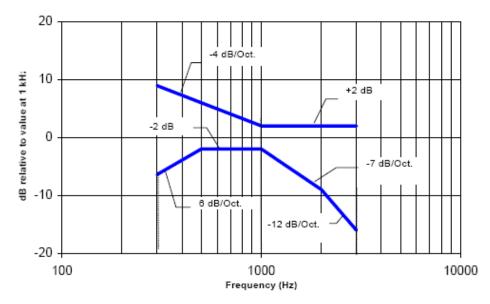
- 1) Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.
- 2) Set the reference drive level of signal voice defined in C63.19 per 6.3.2.1.
- 3) The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit of C63.19 per 7.3.2.
- 4) The DUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 5) The DUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.
- 6) The DUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility.
- 7) Determined the optimal measurement locations for the DUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 6.3.4.4. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan.
- 8) All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of there samples.
- 9) At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for axial,radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis.
- 10) Corrected for the frequency response after the DUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job.
- 11) In SEMCAD postprocessing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report.

3. T-Coil Performance Requirements


In order to be rated for T-Coil use, a EUT shall meet the requirements for signal level and signal quality contained in this part.

3.1. T-Coil coupling field intensity

When measured as specified in ANSI C63.19, the T-Coil signal shall be \geq –18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.


3.2. Frequency response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. The following figures provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.

NOTE-Frequency response is between 300 Hz and 3000 Hz.

Figure 9 Magnetic field frequency response for EUTs with a field ≤ −15 dB (A/m) at 1 kHz

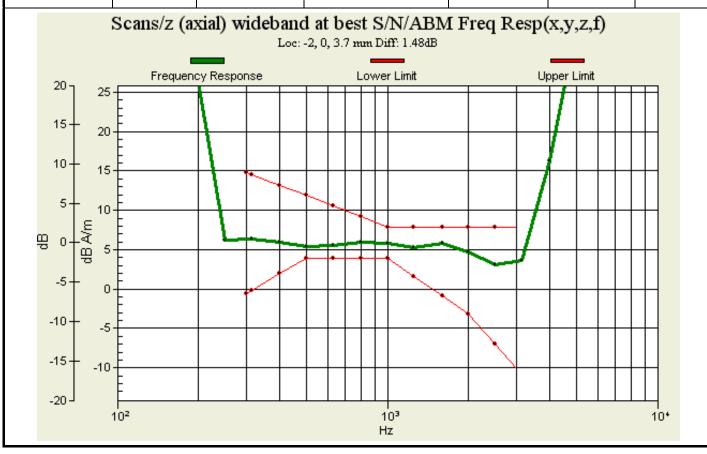
NOTE-Frequency response is between 300 Hz and 3000 Hz.

Figure 10 Magnetic field frequency response for EUTs with a field that exceeds –15 dB(A/m) at 1 kHz

3.3. Signal quality

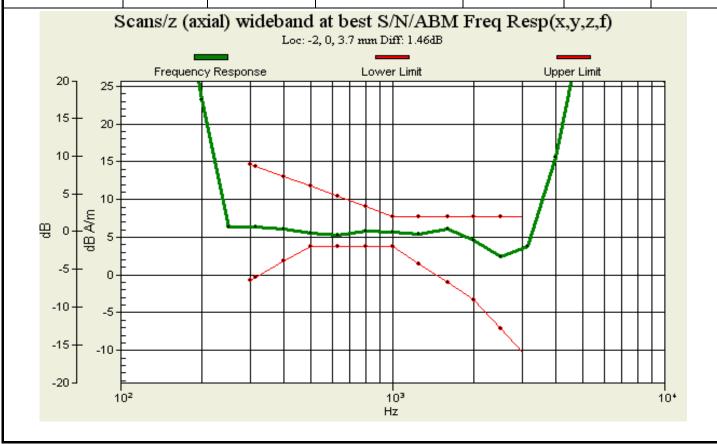
This part provides the signal quality requirement for the intended T-Coil signal from a EUT. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels.

The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per Table 1


Table 1: T-Coil signal quality categories

Category	Telephone parameters	
	WD signal quality	
	[(signal + noise) – to – noise ratio in decibels]	
Category T1	0 dB to 10 dB	
Category T2	10 dB to 20 dB	
Category T3	20 dB to 30 dB	
Category T4	> 30 dB	

4. Summary Test Results


4.1. GSM 850

Band-Channel	Probe Orientation	Measurement Position (x,y)[mm]	ABM1≥ -18dB(A/m) (Signal)	SNR(ABM1/ ABM2)(dB)	Frequency Response	T-Rating
	x (Radial):	(-9,0)	-3.38	22.9	,	ТЗ
GSM 850-CH190	y (Radial):	(-3,-3)	-7.89	36.6	,	T4
	z (Axial):	(-2,0)	4.36	25.6	Pass	T4

4.2. GSM 1900

Band-Channel	Probe Orientation	Measurement Position (x,y)[mm]	ABM1≥ -18dB(A/m) (Signal)	SNR(ABM1/A BM2)(dB)	Frequency Response	T-Rating
	x (Radial):	(-9,0)	-3.42	27.1		Т3
GSM 1900- CH661	y (Radial):	(0,-3)	-6.73	44.3		T4
	z (Axial):	(-2,0)	4.19	29.7	Pass	T4

Note:

- 1. The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing.
- 2. Signal strength measurement scan plots are presented in Annex B.

Report No. RXA1205-0154HAC02R1

Page 22 of 55

5. Measurement Uncertainty

No.	Error source	Туре	Uncertainty Value a _i (%)	Prob. Dist.	k	ABM 1c _i	ABM2 c _i	Std. Unc. ABM1 u_i^i (%)	Std. Unc. ABM2 u'_i (%)	Degree of freedom V _{eff} or v _i
1	System Repeatability	Α	0.016	N	1	1	1	0.016	0.016	9
Prob	e Sensitivity			ı		ı	Γ			
2	Reference Level	В	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	8
3	AMCC Geometry	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
4	AMCC Current	В	0.6	R	$\sqrt{3}$	1	1	0.4	0.4	80
5	Probe Positioning during Calibration	В	0.1	R	$\sqrt{3}$	1	1	0.1	0.1	8
6	Noise Contribution	В	0.7	R	$\sqrt{3}$	0.014 3	1	0.0	0.4	8
7	Frequency Slope	В	5.9	R	$\sqrt{3}$	0.1	1	0.3	3.5	8
Prob	e System									
8	Repeatability / Drift	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
9	Linearity / Dynamic Range	В	0.6	N	1	1	1	0.4	0.4	8
10	Acoustic Noise	В	1.0	R	$\sqrt{3}$	0.1	1	0.1	0.6	8
11	Probe Angle	В	2.3	R	$\sqrt{3}$	1	1	1.4	1.4	8
12	Spectral Processing	В	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	8
13	Integration Time	В	0.6	N	1	1	5	0.6	3.0	8
14	Field Distribution	В	0.2	R	$\sqrt{3}$	1	1	0.1	0.1	8
Test	Signal									
15	Ref.Signal Spectral Response	В	0.6	R	$\sqrt{3}$	0	1	0.0	0.4	8
Posit	tioning									
16	Probe Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	8
17	Phantom Thickness	В	0.9	R	$\sqrt{3}$	1	1	0.5	0.5	8

Report No. RXA1205-0154HAC02R1

Page 23 of 55

18	DUT Positioning	В	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	∞
Exte	rnal Contributions									
19	RF Interference	В	0.0	R	$\sqrt{3}$	1	0.3	0.0	0.0	8
20	Test Signal Variation	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
	Combined Std. Uncertainty (ABM Field)		u_c	$=\sqrt{\sum_{i=1}^{20} \alpha_i}$	$c_i^2 u_i^2$			4.1	6.1	
Expanded Std. Uncertainty		ı	$u_e = 2u_c$	N		<i>k</i> = 2		8.2	12.2	

Report No. RXA1205-0154HAC02R1

Page 24 of 55

6. Main Test Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Audio Magnetic 1D Field Probe	AM1DV3	3082	February 17, 2012	One years
02	Audio Magnetic Calibration Coil	SD HAC P02A	1112	N/A	N/A
03	Audio Measuring Instrument	AMMI	1101	N/A	N/A
04	DAE	DAE4	871	November 22, 2011	One year
05	Software	DASY5, V5.2 Build 162;	N/A	N/A	N/A
06	Software	SEMCAD X Version 14.0 Build 59	N/A	N/A	N/A
07	Universal Radio Communication Tester CMU 200		118133 May 26, 2011		One year
08	TMFS	TMFS	1018	December 6, 2010	Two years

*****END OF REPORT BODY*****

ANNEX A: Test Layout

Picture 1: HAC T-Coil System Layout

Report No. RXA1205-0154HAC02R1 Page 26 of 55

ANNEX B: Graph Results

T-Coil GSM 850 X longitudinal

Date/Time: 5/10/2012 4:48:14 PM

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 850 HAC_TCoil_WD_Emission/Scans/x (longitudinal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	Telephone	parameters	WD	signal	quality
Category	[(signal+no	ise)-to-noise ı	ratio in	decibel	s]
Category T1		0 dB to	10 dB		
Category T2		10 dB to	20 dB		
Category T3		20 dB to	30 dB		
Category T4		> 30	dB		

Cursor:

ABM1 comp = -3.22 dB A/m BWC Factor = 0.163995 dB Location: -8.3, 0, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/x (longitudinal) fine 3mm 42 x 6/ABM Signal(x,y,z) (15x3x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Report No. RXA1205-0154HAC02R1

Page 27 of 55

	Catagory	Telephone parameters WD signal quality
Category	[(signal+noise)-to-noise ratio in decibels]	
	Category T1	0 dB to 10 dB
	Category T2	10 dB to 20 dB
	Category T3	20 dB to 30 dB
	Category T4	> 30 dB

Cursor:

ABM1 comp = -3.36 dB A/m BWC Factor = 0.163995 dB Location: -6, 0, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/x (longitudinal) fine 3mm 42 x 6/ABM SNR(x,y,z) (15x3x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Catagory	Telephone	parameters	WD	signal	quality
Category	[(signal+no	ise)-to-noise ı	ratio in	decibel	s]
Category T1		0 dB to	10 dB		
Category T2		10 dB to	20 dB		
Category T3		20 dB to	30 dB		
Category T4		> 30	dB		

Cursor:

ABM1/ABM2 = 22.9 dB ABM1 comp = -3.38 dB A/m BWC Factor = 0.163995 dB Location: -9, 0, 3.7 mm Report No. RXA1205-0154HAC02R1

Page 28 of 55

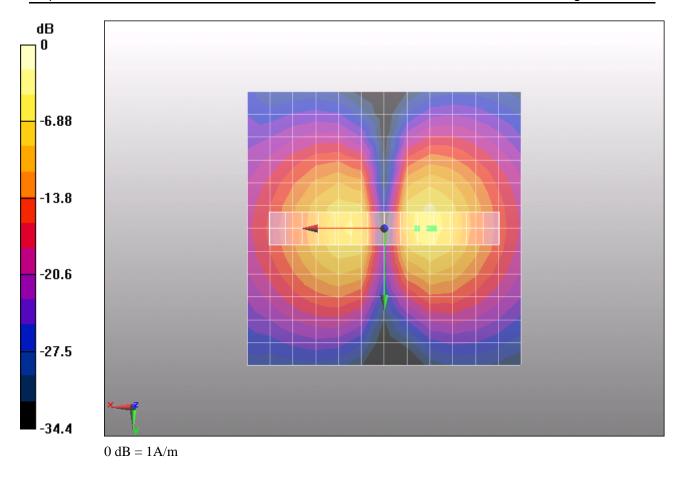


Figure 11 T-Coil GSM 850 X longitudinal

T-Coil GSM 850 Y transversal

Date/Time: 5/10/2012 5:00:53 PM

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 850 HAC_TCoil_WD_Emission/Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Talanhona naramaters WD signal quality

Cursor:

ABM1 comp = -3.27 dB A/m BWC Factor = 0.163995 dB Location: 0, -8.3, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/y (transversal) fine 3mm 6 x 42/ABM Signal(x,y,z) (3x15x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Report No. RXA1205-0154HAC02R1

Page 30 of 55

Category		Telephone	parameters	WD	signal	quality
Category	[(signal+no	ise)-to-noise r	atio ir	n decibel	s]	
Ca	ategory T1		0 dB to 1	I0 dB		
Ca	ategory T2		10 dB to	20 dB		
Ca	ategory T3		20 dB to	30 dB		
Ca	ategory T4		> 30 (dB		

Cursor:

ABM1 comp = -3.52 dB A/m BWC Factor = 0.163995 dB Location: 0, -9, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/y (transversal) fine 3mm 6 x 42/ABM SNR(x,y,z) (3x15x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Catagory	Telephone	parameters	WD	signal	quality
Category	[(signal+no	ise)-to-noise ı	ratio in	decibel	s]
Category T1		0 dB to	10 dB		
Category T2		10 dB to	20 dB		
Category T3		20 dB to	30 dB		
Category T4		> 30	dB		

Cursor:

ABM1/ABM2 = 36.6 dB ABM1 comp = -7.89 dB A/m BWC Factor = 0.163995 dB Location: -3, -3, 3.7 mm

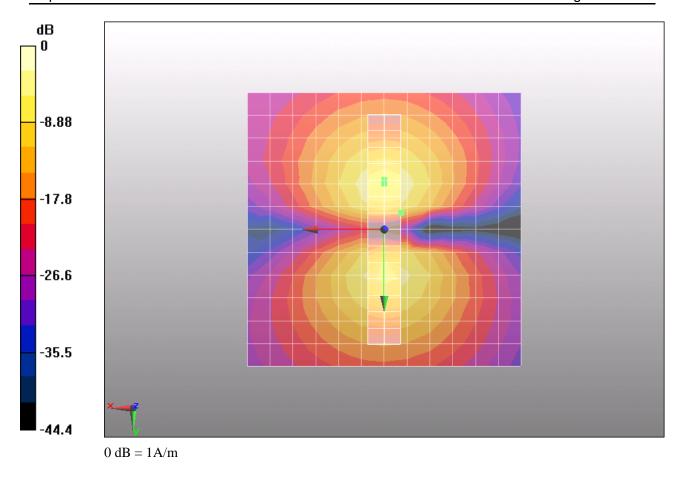


Figure 12 T-Coil GSM 850 Y transversal

Report No. RXA1205-0154HAC02R1

Page 32 of 55

T-Coil GSM 850 Z Axial

Date/Time: 5/10/2012 4:37:39 PM

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 850 HAC_TCoil_WD_Emission/Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1 comp = 4.9 dB A/m BWC Factor = 0.163995 dB Location: 0, 0, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/z (axial) fine 2mm 8 x 8/ABM Signal(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category Telephone parameters WD signal quality

[(signal+noise)-to-noise ratio in decibels]

Category T1 0 dB to 10 dB
Category T2 10 dB to 20 dB
Category T3 20 dB to 30 dB
Category T4 > 30 dB

Cursor:

ABM1 comp = 4.79 dB A/m BWC Factor = 0.163995 dB Location: 0, 0, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category T1
Category T2
Category T3
Category T4

Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]

O dB to 10 dB

10 dB to 20 dB

20 dB to 30 dB

> 30 dB

Cursor:

ABM1/ABM2 = 25.6 dB ABM1 comp = 4.36 dB A/m BWC Factor = 0.163995 dB Location: -2, 0, 3.7 mm

GSM 850 HAC_TCoil_WD_Emission/Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 66.12

Measure Window Start: 0ms
Measure Window Length: 2000ms

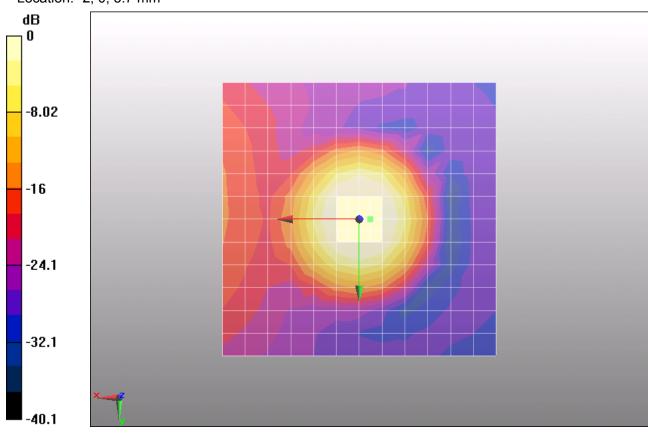
BWC applied: 10.8 dB

Device Reference Point: 0, 0, -6.3 mm

Category Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]

Category T1 0 dB to 10 dB

Report No. RXA1205-0154HAC02R1


Page 34 of 55

Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

Diff = 1.48 dB

BWC Factor = 10.8 dB Location: -2, 0, 3.7 mm

 $0\;dB=1A/m$

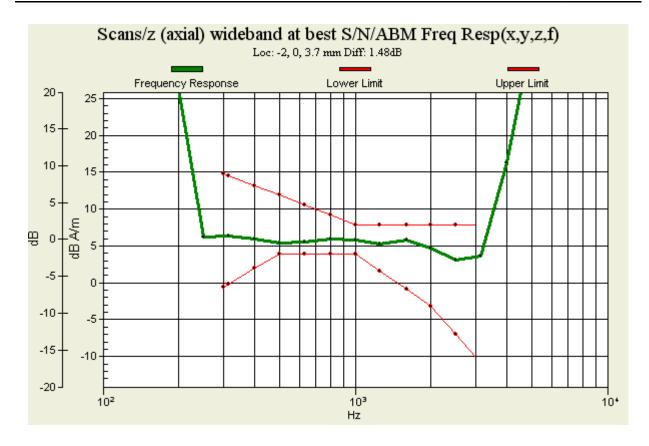


Figure 13 T-Coil GSM 850 Z Axial

T-Coil GSM 1900 X longitudinal

Date/Time: 5/10/2012 5:25:35 PM

Communication System: GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 1900 HAC_TCoil_WD_Emission/Scans/x (longitudinal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Telephone parameters WD signal quality

Cursor:

ABM1 comp = -3.42 dB A/m BWC Factor = 0.163995 dB Location: -8.3, 0, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/x (longitudinal) fine 3mm 42 x 6/ABM Signal(x,y,z) (15x3x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Report No. RXA1205-0154HAC02R1

Page 37 of 55

Catagory	Telephone parameters WD signal quality
Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1 comp = -3.42 dB A/m BWC Factor = 0.163995 dB Location: -9, 0, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/x (longitudinal) fine 3mm 42 x 6/ABM SNR(x,y,z) (15x3x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]			
Category T1	0 dB to 10 dB			
Category T2	10 dB to 20 dB			
Category T3	20 dB to 30 dB			
Category T4	> 30 dB			

Telephone parameters WD signal quality

Cursor:

ABM1/ABM2 = 27.1 dB ABM1 comp = -3.42 dB A/m BWC Factor = 0.163995 dB Location: -9, 0, 3.7 mm

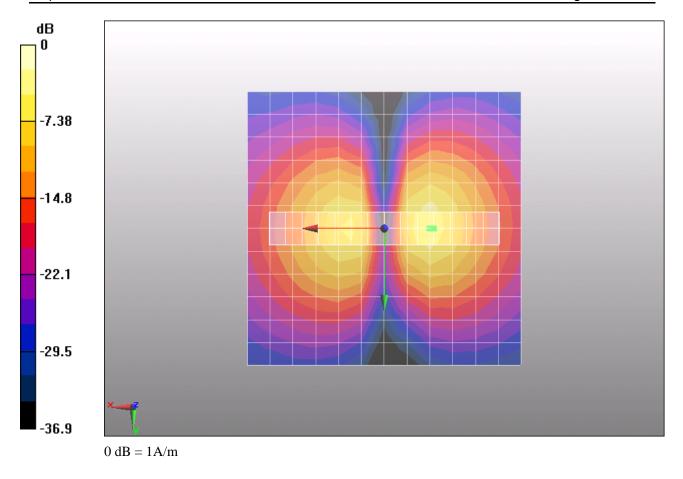


Figure 14 T-Coil GSM 1900 X longitudinal

T-Coil GSM 1900 Y transversal

Date/Time: 5/10/2012 5:43:37 PM

Communication System: GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 1900 HAC_TCoil_WD_Emission/Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Telephone parameters WD signal quality

Cursor:

ABM1 comp = -3.35 dB A/m BWC Factor = 0.163995 dB Location: 0, -8.3, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/y (transversal) fine 3mm 6 x 42/ABM Signal(x,y,z) (3x15x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Report No. RXA1205-0154HAC02R1

Page 40 of 55

Category	Telephone parameters WD signal quality
outogory	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1 comp = -3.51 dB A/m BWC Factor = 0.163995 dB Location: 0, -9, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/y (transversal) fine 3mm 6 x 42/ABM SNR(x,y,z) (3x15x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-to-noise ratio in decibels]			
	,			
Category T1	0 dB to 10 dB			
Category T2	10 dB to 20 dB			
Category T3	20 dB to 30 dB			
Category T4	> 30 dB			

Telephone parameters WD signal quality

Cursor:

ABM1/ABM2 = 44.3 dB ABM1 comp = -6.73 dB A/m BWC Factor = 0.163995 dB Location: 0, -3, 3.7 mm



Figure 15 T-Coil GSM 1900 Y transversal

T-Coil GSM 1900 Z Axial

Date/Time: 5/10/2012 5:15:14 PM

Communication System: GSM; Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV3 - 3082; ; Calibrated: 2/17/2012 Electronics: DAE4 Sn871; Calibrated: 11/22/2011

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

GSM 1900 HAC_TCoil_WD_Emission/Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

[(signal+noise)-to-noise ratio in decibels]			
0 dB to 10 dB			
10 dB to 20 dB			
20 dB to 30 dB			
> 30 dB			

Telephone parameters WD signal quality

Cursor:

ABM1 comp = 4.68 dB A/m BWC Factor = 0.163995 dB Location: 0, 0, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/z (axial) fine 2mm 8 x 8/ABM Signal(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Report No. RXA1205-0154HAC02R1

Page 43 of 55

Category	Telephone parameters WD signal quality
Category	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

GSM 1900 HAC_TCoil_WD_Emission/Scans/z (axial) fine 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 33.76

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.163995 dB

Device Reference Point: 0, 0, -6.3 mm

Category	lelephone parameters WD signal quality
oategory	[(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1/ABM2 = 29.7 dB ABM1 comp = 4.19 dB A/m BWC Factor = 0.163995 dB Location: -2, 0, 3.7 mm

GSM 1900 HAC_TCoil_WD_Emission/Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 66.12

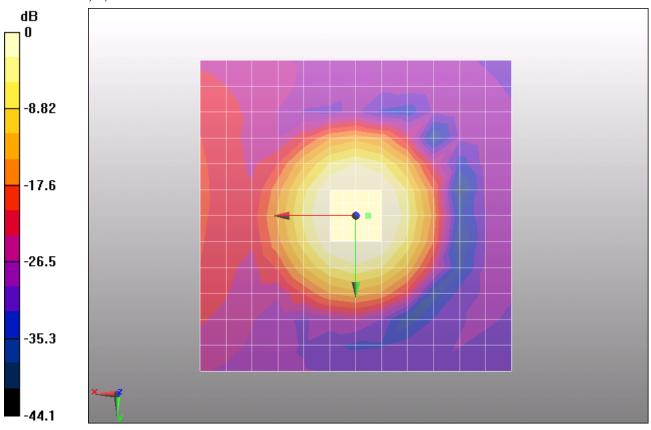
Measure Window Start: 0ms

Measure Window Length: 2000ms

BWC applied: 10.8 dB

Device Reference Point: 0, 0, -6.3 mm

Category	[(signal+noise)-		U	. ,
Category T1		0 dB to 10 dB		
Category T2		10 dB to 20 dB		
Category T3		20 dB to 30 dB		
Category T4		> 30 dB		


Cursor:

Report No. RXA1205-0154HAC02R1

Page 44 of 55

Diff = 1.46 dB

BWC Factor = 10.8 dB Location: -2, 0, 3.7 mm

0 dB = 1A/m

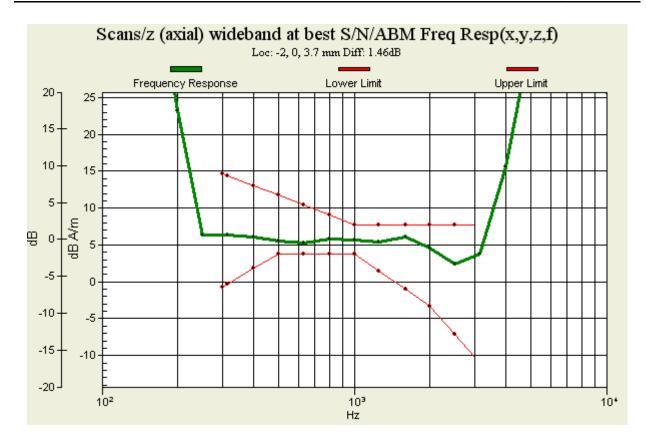


Figure 16 T-Coil GSM 1900 Z Axial

ANNEX C: Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No.11450) Sep-12 Reference Probe AM1DV3 SN: 3000 17-Aug-11 (No. AM1D-3000_Aug11) Aug-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Calibrated by: Claudio Leubler Laboratory Technician Name Function Signature Laboratory Technician Approved by: Fin Bornholt R&D Director Function Fin Bornholt Fin Bornholt Fin Bornholt R&D Director Function Find Fin Bornholt Find Fin Bornholt Fin Bornholt Find Find Find Find Find Find Find Find	TA Shanghai (A	Auden)	Cert	ificate No: AM1DV3-3082_Feb12
Calibration procedure(s) Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date: February 17, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration SN: 0910278 29.5%p-11 (No.11450) Sep-12 Reference Probe AM1DV3 SN: 0910278 29.5%p-11 (No.11450) Aug-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Aug-12 Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Calibrated by: Fin Bornholt R&D Director Function Signature Laboratory Technician Fin Bornholt R&D Director Fin Bornholt R&D Director	CALIBRATION C	ERTIFICAT	E	
Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date: February 17, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Self-they Multimeter Type 2001 SN: 0810278 29-Sep-11 (No:11450) Sep-12 Aug-12 Aug-12 Aug-12 (No. DAE4-781_Apr11) Aug-12 Apr-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Laboratory Technician Signature Claudio Leubler Laboratory Technician Financial Function Function Claudio Leubler Fin Bornhott R&D Director F. Barnellul Approved by: Fin Bornhott R&D Director F. Barnellul Approved by:	Object	AM1DV3 - SN:	3082	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Sep-12 Reference Probe AM1DV3 SN: 3000 17-Aug-11 (No. AM10-3000_Aug11) Aug-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMACC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Laboratory Technician Name Function Signature Laboratory Technician Fin Bomholt R&D Director Fin Bomholt Fin Bomholt R&D Director Fin Bomholt Fin Bomholt Fin Bomholt R&D Director Fin Bomholt Fin Bomholt R&D Director Fin Bomholt Fin Bomholt R&D Director Fin Bomholt Fin Bomholt Fin Bomholt Fin Bomholt R&D Director Fin Bomholt Fi	Calibration procedure(s)	Calibration prod	edure for AM1D magnetic	field probes and TMFS in the
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No:11450) Sep-12 Reference Probe AM1DV3 SN: 3000 17-Aug-11 (No. AM1D-3000_Aug11) Aug-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Laboratory Technician Primary Standards Name Function Signature Laboratory Technician Signature Laboratory Technician	Calibration date:	February 17, 20	112	
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No:11450) Sep-12 Reference Probe AM1DV3 SN: 3000 17-Aug-11 (No. AM1D-3000_Aug11) Aug-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Laboratory Technician Primary Standards Name Function Signature Laboratory Technician Signature Laboratory Technician				
Reithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No:11450) Sep-12 Aug-12 Aug-12 Aug-12 Apr-12 Apr-	The measurements and the unce	rtainties with confidence	probability are given on the following	pages and are part of the certificate.
Secondary Standards	Calibration Equipment used (M&	TE critical for calibration)		
Reference Probe AM1DV3 SN: 3000 17-Aug-11 (No. AM1D-3000_Aug11) Aug-12 Apr-12 DAE4 SN: 781 20-Apr-11 (No. DAE4-781_Apr11) Apr-12 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Claudio Leubler Laboratory Technician Approved by: Fin Bomholt R&D Director F. Aprolius	Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
AMCC 1050 a 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Claudio Leubler Laboratory Technician Approved by: Fin Bornholt R&D Director F. SmoliseLL	Reference Probe AM1DV3	SN: 3000	17-Aug-11 (No. AM1D-3000_Aug	(11) Aug-12
AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Name Function Signature Laboratory Technician Approved by: Fin Bornholt R&D Director F. Smolisel	Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrated by: Claudio Leubler Laboratory Technician Approved by: Fin Bornholt R&D Director F. Employed	AMCC	1050		1) Oct-13
Approved by: Fin Bornholt R&D Director F. Smiles L		Name	Function	Şignature (
	Calibrated by:	Claudio Leubler	Laboratory Technicis	Val
Issued: February 20, 2012	Approved by:	Fin Bornholt	R&D Director	F. Embell
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			en actionale explination to differen	Issued: February 20, 2012

Certificate No: AM1D-3082_Feb12

Page 1 of 3

Report No. RXA1205-0154HAC02R1

Page 47 of 55

References

[1] ANSI C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

[2] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below.

The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test
 Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest"
 orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
 - RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for
 fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz
 magnetic field signal. Its angle is determined from the two minima at nominally +120° and -120°
 rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding
 to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from
 the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for
 radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is
 compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by
 the geometry and the current through the coil, which is monitored on the precision shunt resistor of the
 coil.

AM1D probe identification and configuration data

Item	AM1DV3 Audio Magnetic 1D Field Probe	
Type No Serial No	SP AM1 001 BA	
Serial No	3082	

Overall length	296 mm	
Tip diameter	6.0 mm (at the tip)	
Sensor offset	3.0 mm (centre of sensor from tip)	
Internal Amplifier	20 dB	

Manufacturer / Origin	Schmid & Partner Engineering AG, Zürich, Switzerland
Manufacturing date	May 28, 2010
Last calibration date	November 29, 2010

Calibration data

Connector rotation angle (in DASY system) 5.0 ° +/- 3.6 ° (k=2)

Sensor angle (in DASY system) 0.62 ° +/- 0.5 ° (k=2)

Sensitivity at 1 kHz (in DASY system) 0.00739 V / (A/m) +/- 2.2 % (k=2)

ANNEX D: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

TA-SH (Auden)

Certificate No: DAE4-871_Nov11

Accreditation No.: SCS 108

- al chests - Disken Dr. d. staken Dr.	Personal Telephones Compa		カップ 清明線を検索器としております機能を設定した。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
CALIBRATION C			
Object	DAE4 - SD 000 D	04 BJ - SN: 871	
Calibration procedure(s)	QA CAL-06.v23 Calibration proced	lure for the data acquisition electron	ilos (DAE)
Calibration date:	November 22, 20		
		nal standards, which realize the physical units of bbability are given on the following pages and are	
All calibrations have been conducted	ed in the closed laboratory	facility: environment temperature (22 ± 3)°C and	l humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	I _{ID} #	Check Date (in house)	Sahadulad Chaek
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check)	Scheduled Check In house check: Jun-12*
	•		
Calibrated by:	Name Andrea Guntli	Function Technician	Signature A-WW
Approved by:	Fin Bomholt	R&D Director i -V	Muus
This calibration certificate shall not	be reproduced except in f	ull without written approval of the laboratory.	Issued: November 22, 2011

Certificate No: DAE4-871_Nov11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No. RXA1205-0154HAC02R1

Page 51 of 55

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: $1LSB = 61 \ nV$, full range = $-1.....+3 \ mV$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	Z
High Range	404.749 ± 0.1% (k=2)	404.733 ± 0.1% (k=2)	405.174 ± 0.1% (k=2)
Low Range	3.98175 ± 0.7% (k=2)	3.93601 ± 0.7% (k=2)	3.96830 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199991.9	-0.91	-0.00
Channel X	+ Input	20000.28	0.48	0.00
Channel X	- Input	-19998.51	0.59	-0.00
Channel Y	+ Input	200003.0	1.24	0.00
Channel Y	+ Input	19999.67	0.17	0.00
Channel Y	- Input	-20000.04	-0.34	0.00
Channel Z	+ Input	200010.1	-0.11	-0.00
Channel Z	+ Input	19999.33	-0.07	-0.00
Channel Z	- Input	-20001.45	-0.85	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.0	0.05	0.00
Channel X	+ Input	199.81	-0.09	-0.04
Channel X	- Input	-199.63	0.37	-0.19
Channel Y	+ Input	1999.9	-0.22	-0.01
Channel Y	+ Input	198.81	-1.19	-0.59
Channel Y	- Input	-201.62	-1.72	0.86
Channel Z	+ Input	2000.4	0.48	0.02
Channel Z	+ Input	199.30	-0.70	-0.35
Channel Z	- Input	-200.86	-1.06	0.53

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.43	13.13
	- 200 -	-12.22	-13.72
Channel Y	200	-10.07	-9.78
	- 200	9.61	8.66
Channel Z	200	-0.56	-0.83
	- 200	-0.01	0.11

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.08	0.09
Channel Y	200	3.19	-	4.59
Channel Z	200	0.90	-0.06	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15519
Channel Y	16179	17567
Channel Z	15791	15270

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.03	-1.16	2.66	0.46
Channel Y	-0.63	-3.22	0.29	0.46
Channel Z	-0.87	-2.03	0.28	0.46

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX E: The EUT Appearances and Test Configuration

a: EUT

b: Battery

Picture 2: Constituents of EUT

Picture 3: Test Setup