

TEST REPORT

Report No.: SRTC2012-H024-E0024

Product Name: GSM/GPRS/EDGE/UMTS

Digital Mobile Phone with Bluetooth and WiFi

Product Model: ONE TOUCH 902A

Applicant: TCT Mobile Limited

Manufacturer: TCT Mobile Limited

Specification: FCC Part 24E, Part 22H, Part 2

(October 1, 2009 edition)

IC RSS-132 (Issue 2, September 2005)

IC RSS-133 (Issue 5, February 2009)

IC RSS-Gen (Issue 3, December 2010)

FCC ID: RAD243

IC: 9238A-0009

The State Radio_monitoring_center Testing Center (SRTC) No.80 Beilishi Road Xicheng District Beijing, China Tel: 86-10-68009202 Fax: 86-10-68009205

CONTENTS

1. General information	3
1.1 Notes of the test report	3
1.2 Information about the testing laboratory	3
1.3 Applicant's details	3
1.4 Manufacturer's details	3
1.5 Application details	1
1.6 Reference specification	1
1.7 Information of EUT	1
1.7.1 General information	1
1.7.2 EUT details	5
1.7.3 Auxiliary equipment details	5
2. Test information7	7
2.1 Summary of the test results	7
2.2 Test result	3
2.2.1 WCDMA Band II	3
2.2.1.1 RF Power Output-FCC Part24.232(b)/IC RSS-133§6.4	3
2.2.1.2 Effective Isotropic Radiated Power-FCC Part24.232(b)/IC RSS-133§6.4)
2.2.1.3 Occupied Bandwidth-FCC Part2.1049/IC RSS-Gen§4.6.112	2
2.2.1.4 Emission Bandwidth-FCC Part24.238(b)/IC RSS-Gen§4.6.116	
2.2.1.5 Conducted Spurious Emissions-FCC Part2.1051/24.238/IC RSS-133§6.520)
2.2.1.6 Band Edges Compliance-FCC Part24.238(b)/IC RSS-133§6.524	1
2.2.1.7 Frequency Stability-FCC Part2.1055/24.235/IC RSS-133§6.327	7
2.2.1.8 Radiated Spurious Emissions-FCC Part2.1053/24.238/IC RSS-133§6.529	
2.2.1.9 Receiver Spurious Emissions-IC RSS-133§6.6	1
2.2.2 WCDMA Band V	
2.2.2.1 RF Power Output-FCC Part22.913(a)/IC RSS-132§4.4	5
2.2.2.2 Effective Radiated Power-FCC Part22.913(a)/IC RSS-132§4.437	7
2.2.2.3 Occupied Bandwidth-FCC Part2.1049/IC RSS-Gen§4.6.140	
2.2.2.4 Emission Bandwidth-FCC Part22.917(b)/IC RSS-Gen§4.6.144	1
2.2.2.5 Conducted Spurious Emissions-FCC Part2.1051/22.917/IC RSS-132§4.548	3
2.2.2.6 Band Edges Compliance-FCC Part22.917(b)/IC RSS-132§4.552	2
2.2.2.7 Frequency Stability-FCC Part2.1055/22.355/IC RSS-132§4.355	5
2.2.2.8 Radiated Spurious Emissions- FCC Part2.1053/22.917(a)/IC RSS-132§4.557	7
2.2.2.9 Receiver Spurious Emissions-IC RSS-132§4.662	2
2.3 List of test equipments	
Appendix65	5

1. General information

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company: Address: City:	The State Radio_monitoring_center Testing Center (SRTC) No.80 Beilishi Road, Xicheng District, Beijing China Beijing	
Country or Region:		
Contacted person:		
Tel:	+86 10 68009181 +86 10 68009202	
Fax:	+86 10 68009195 +86 10 68009205	
Email:	wangjf@srrc.org.cn / wangjunfeng@srtc.org.cn	
1.3 Applicant's d	letails	
Company:	TCT Mobile Limited	
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area	
City:	Shanghai	
Country or Region:	P.R.China	
Grantee Code:	RAD	
Contacted person: Gong Zhizhou		
Tel:	+86-21-61460890	
Fax:	+86-21-61460602	
Email:	zhizhou.gong@jrdcom.com	
1.4 Manufacturer's details		

Company:	TCT Mobile Limited
Address:	5F, C building, No. 232, Liang Jing Road ZhangJiang
	High-Tech Park, Pudong Area
City:	Shanghai
Country or Region	: P.R.China
Contacted person:	Gong Zhizhou
Tel:	+86-21-61460890
Fax:	+86-21-61460602
Email:	zhizhou.gong@jrdcom.com

1.5 Application details

Date of reception of test sample: 6th Mar 2012 Date of test: 9th Mar 2012 to 20th Mar 2012

1.6 Reference specification

FCC Part 24E, Part22H, Part 2 (October 1, 2009 edition) IC RSS-132 (Issue 2, September 2005) IC RSS-133 (Issue 5, February 2009) IC RSS-Gen (Issue 3, December 2010)

1.7 Information of EUT

1.7.1 General information

Name of EUT	GSM/GPRS/EDGE/UMTS Digital Mobile Phone with Bluetooth and WiFi	
FCC ID	RAD243	
IC	9238A-0009	
Frequency range	WCDMA Band II: Tx:1850~1910MHz Rx:1930~1990MHz WCDMA Band V: Tx:824~849MHz Rx:869~894MHz Rx:869~894MHz	
Rated output power	WCDMA Band II:24.0dBm WCDMA Band V:24.0dBm	
Modulation type	QPSK	
Emission Designator	4M50F9W	
Duplex mode	FDD	
Duplex spacing:	WCDMA Band II:80MHz WCDMA Band V:45MHz	
Antenna type	Fixed Internal	
Power Supply	Battery or charger	
Rated Power Supply Voltage	3.7V	
Extreme Temperature	Lowest: -30°C Highest: +50°C	
Extreme Voltage	Minimum: 3.5V Maximum: 4.2V	
HW Version	PIO01	
SW Version	SW134	

1.7.2 EUT details

Product Name	Product Model	IMEI
GSM/GPRS/EDGE/UMTS Digital Mobile Phone with Bluetooth and WiFi	ONE TOUCH 902A	013022000020460

1.7.3 Auxiliary equipment details

Equipment	Charger
Manufacturer	HUIZHOU BYD ELECTRONIC CO., LTD.
Model Number	CBA3002AG0C1
Input Voltage	100V-240V a.c.
Output Voltage	5.0V d.c.
Frequency	50/60Hz

Equipment	Charger
Manufacturer	HUIZHOU BYD ELECTRONIC CO., LTD.
Model Number	CBA3001AG0C1
Input Voltage	100V-240V a.c.
Output Voltage	5.0V d.c.
Frequency	50/60Hz

Equipment	Charger
Manufacturer	HUIZHOU BYD ELECTRONIC CO., LTD.
Model Number	CBA3001AG0C2
Input Voltage	100V-240V a.c.
Output Voltage	5.0V d.c.
Frequency	50/60Hz

Equipment	Charger
Manufacturer	Ten Pao International Ltd.
Model Number	CBA3000AG0C1
Input Voltage	100V-240V a.c.
Output Voltage	5.0V d.c.
Frequency	50/60Hz

Equipment	Battery	
Manufacturer	SHENZHEN BAK BATTERY CO., LTD	
Model Number	CAB31L0000C2	
Capacity	1000mAh	
Rated Voltage	3.7V d.c.	
Equipment	Data Cable	
Manufacturer	Shen Zhen Ju Wei Electronic Co., LTD	
Model Number	CDA3122002C1	
Equipment	Data Cable	
Manufacturer	Huizhou Shenghua Industry Co., Ltd	
Model Number	CDA3122002C2	

Equipment	Data Cable
Manufacturer	Shen Zhen Ju Wei Electronic Co., LTD
Model Number	CDA3122005C1

Equipment	Data Cable
Manufacturer	Huizhou Shenghua Industry Co., Ltd
Model Number	CDA3122005C2

Note: As the information described above, there are four different models of charger manufactured by two different companies, and four different models of data cable manufactured by two different companies.

The relevant tests have been performed in order to verify in which combination case (EUT exercised by only one model of charger and one model of data cable) the EUT would have the worst features. So all the tests shown in this test report are performed when the EUT exercised by the charger CBA3000AG0C1 and the data cable CDA3122005C2.

2. Test information

2.1 Summary of the test results

No.	Test case	FCC and IC reference	Verdict
		FCC Part22.913(a)/24.232(b)	
1	RF Power Output	IC RSS-132 § 4.4	Pass
		IC RSS-133 § 6.4	
	Effective Radiated Power	FCC Part22.913(a)/24.232(b)	
2	and	IC RSS-132 § 4.4	Pass
	Effective Isotropic Radiated Power	IC RSS-133 §6.4	
3	Occupied Bandwidth	FCC Part2.1049	Pass
3		IC RSS-Gen § 4.6.1	rass
4	Emission Bandwidth	FCC Part22.917(b)/24.238(b)	Pass
4		IC RSS-Gen § 4.6.1	1 835
	Spurious Emissions at antonno	FCC Part2.1051/22.917/24.238	
5	Spurious Emissions at antenna terminal	IC RSS-132 § 4.5	Pass
	terminal	IC RSS-133 § 6.5	
		FCC Part22.917(b)/24.238(b)	
6	Band Edges Compliance	IC RSS-132 § 4.5	Pass
		IC RSS-133 § 6.5	
		FCC Part2.1055/22.355/24.235	
7	Frequency Stability	IC RSS-132 § 4.3	Pass
		IC RSS-133 § 6.3	
		FCC Part2.1053/22.917(a)/24.238	
8	Radiated Spurious Emissions	IC RSS-132 § 4.5	Pass
		IC RSS-133 §6.5	
9		IC RSS-132 § 4.6	Deee
9	Receiver Spurious Emissions	IC RSS-133 §6.6	Pass

This Test Report Is Issued by:
Mr. Song Qizhu
Director of the test labChecked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Wang Junfeng
Deputy director of the test labImage: Checked by:
Mr. Li Boyu
Test engineerIssued date:Image: Checked by:
Mr. Li Boyu
Test engineerImage: Checked by:
Test engineerImage

 The State Radio_monitoring_center Testing Center (SRTC)

 Tel: 86-10-68009202
 68009203

 Fax: 86-10-68009195
 68009205

Page number: 7 of 65

2.2 Test result

2.2.1 WCDMA Band II

2.2.1.1 RF Power Output-FCC Part24.232(b)/IC RSS-133 § 6.4

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. Then the test data can be read at the tester screen. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

The measurement will be conducted at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band II)

Limits	≤24dBm
--------	--------

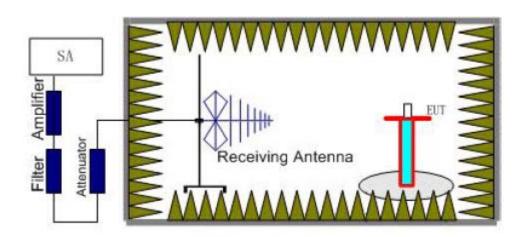
Test result:

WCDMA Mode:

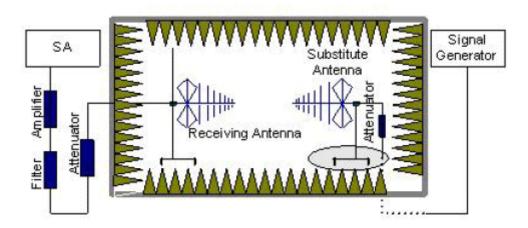
Carrier frequency (MHz)	Channel No.	RF Power Output (dBm)
1852.4	9262	23.4
1880.0	9400	23.4
1907.6	9538	23.2

HSDPA/HSUPA Mode:

Carrier frequency (MHz)	Channel No.	RF Power Output (dBm)
1852.4	9262	23.3
1880.0	9400	23.3
1907.6	9538	23.0



2.2.1.2 Effective Isotropic Radiated Power-FCC Part24.232(b)/IC RSS-133 § 6.4


Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test setup:

Step 1

Test procedure:

The measurements procedures in TIA-603C-2004 are used.

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was placed on a 2.4 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna

mast 3 meters from the EUT. The height of receiving antenna is 2.4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used and RBW is set to 3MHz. Then the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum power value on spectrum analyzer or receiver. And the maximum value of the receiver should be recorded as (Pr).

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator. To repeat the same procedure as step1 and the level of signal generator will be adjusted till the same power value on the spectrum analyzer or receiver. The ERP/EIRP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

A power (Pmea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A "reference path loss" should be calculated after test. The attenuation of "reference path loss" is the cable loss between the Signal Source with the Substitution Antenna (Pca) and the Substitution Antenna Gain (Ga).

The measurement results are obtained as described below:

Power (EIRP) = Pmea+ Pca+ Ga

The measurement will be done at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band II).

Limits	≤33dBm
--------	--------

Test result:

WCMDA Mode:

Frequency (MHz)	Peak EIRP(dBm)	Pca Cable loss	Ga Antenna Gain (dB)	Pmea (dBm)	Polarization
1852.4	21.1	-5.0	8.6	17.5	Vertical
1880.0	21.8	-5.0	8.6	18.2	Vertical
1907.6	21.4	-5.0	8.6	17.8	Vertical

Frequency: 1852.4MHz

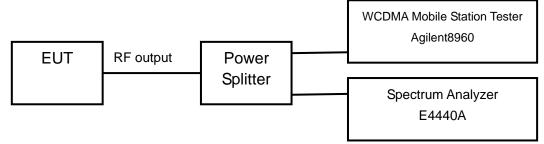
Peak EIRP (dBm) =Pmea (17.5dBm)+Pca(-5.0dB)+Ga(8.6dB) = 21.1 dBm

HSDPA/HSUPA Mode:

Frequency (MHz)	Peak EIRP(dBm)	Pca Cable loss	Ga Antenna Gain (dB)	Pmea (dBm)	Polarization
1852.4	22.3	-5.0	8.6	18.7	Vertical
1880.0	21.6	-5.0	8.6	18.0	Vertical
1907.6	21.2	-5.0	8.6	17.6	Vertical

Frequency: 1852.4MHz

Peak EIRP (dBm) =Pmea (18.7dBm)+Pca(-5.0dB)+Ga(8.6dB) = 22.3 dBm



2.2.1.3 Occupied Bandwidth-FCC Part2.1049/IC RSS-Gen § 4.6.1

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

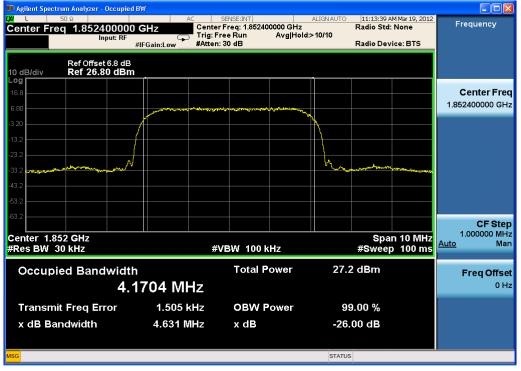
Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 30kHz on spectrum analyzer. The bandwidth of 99% power can be read on spectrum analyzer. The measurement will be conducted at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band II)

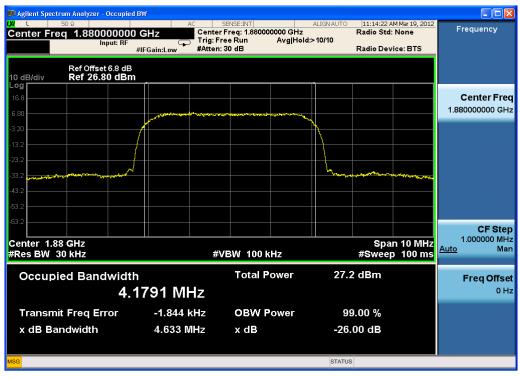
Limits: No specific occupied bandwidth requirements in FCC part 2.1049 and IC RSS-Gen \S 4.6.1

Test result:

WCDMA Mode:

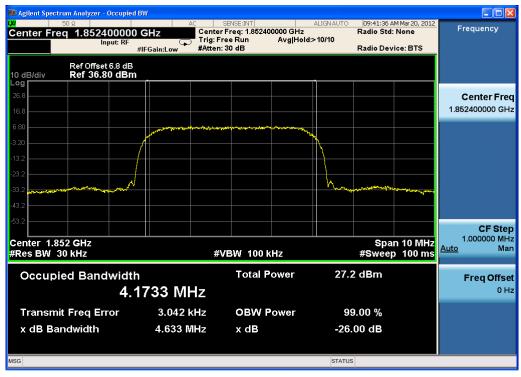

Carrier frequency (MHz)	Channel No.	Bandwidth of 99%Power(MHz)
1852.4	9262	4.1704
1880.0	9400	4.1791
1907.6	9538	4.1758

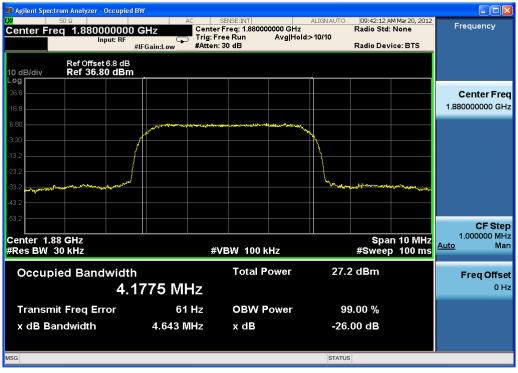
HSDPA/HSUPA Mode:


Carrier frequency (MHz)	Channel No.	Bandwidth of 99%Power(MHz)
1852.4	9262	4.1733
1880.0	9400	4.1775
1907.6	9538	4.1710

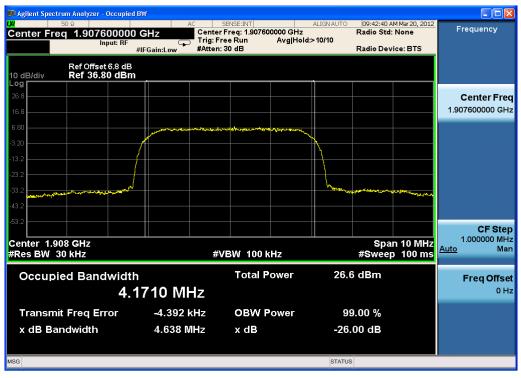
WCDMA Mode:

Channel 9262

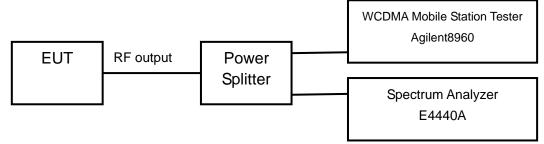




Channel 9538


HSDPA/HSUPA Mode:

Channel 9400



2.2.1.4 Emission Bandwidth-FCC Part24.238(b)/IC RSS-Gen § 4.6.1

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

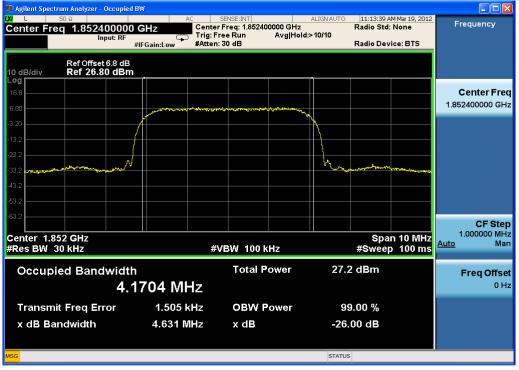
Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The emission bandwidth is measured using spectrum analyzer. RBW is set to 30kHz on spectrum analyzer. The bandwidth of -26dBc power can be read on spectrum analyzer. The measurement will be conducted at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band II)

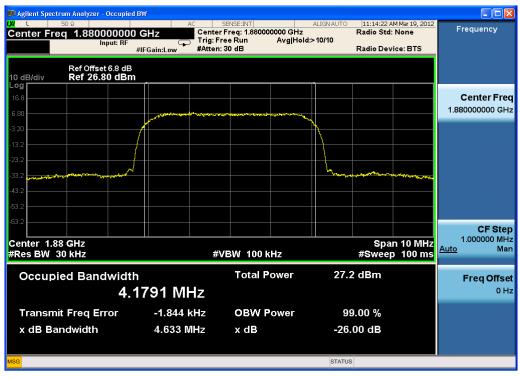
Limits: No specific emission bandwidth requirements in FCC part 24.238(b) and IC RSS-Gen \S 4.6.1

Test result:

WCDMA Mode:

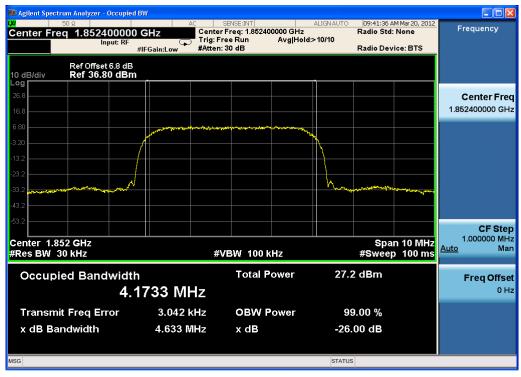

Carrier frequency (MHz)	Channel No.	Bandwidth of -26dBc Power (MHz)
1852.4	9262	4.631
1880.0	9400	4.633
1907.6	9538	4.661

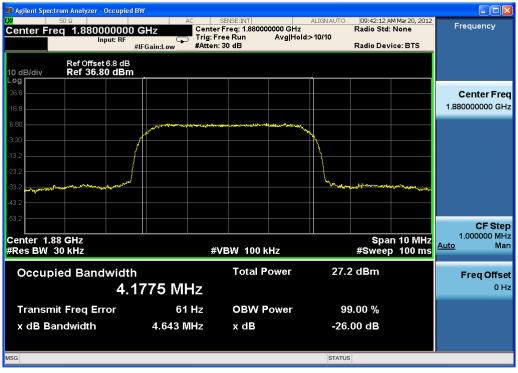
HSDPA/HSUPA Mode:


Carrier frequency (MHz)	Channel No.	Bandwidth of -26dBc Power (MHz)
1852.4	9262	4.633
1880.0	9400	4.643
1907.6	9538	4.638

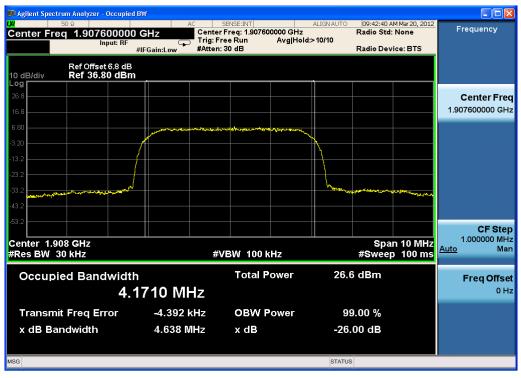
WCDMA Mode:

Channel 9262

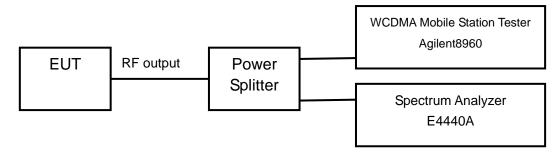




Channel 9538


HSDPA/HSUPA Mode:

Channel 9400



2.2.1.5 Conducted Spurious Emissions-FCC Part2.1051/24.238/IC RSS-133 § 6.5

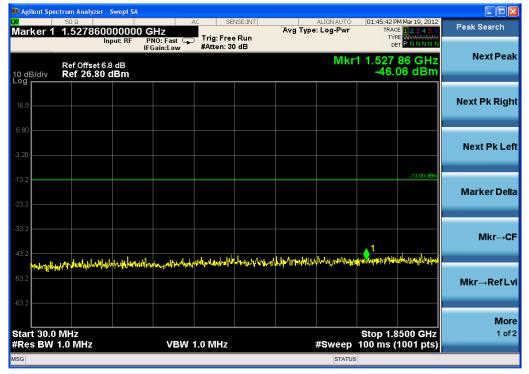
Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

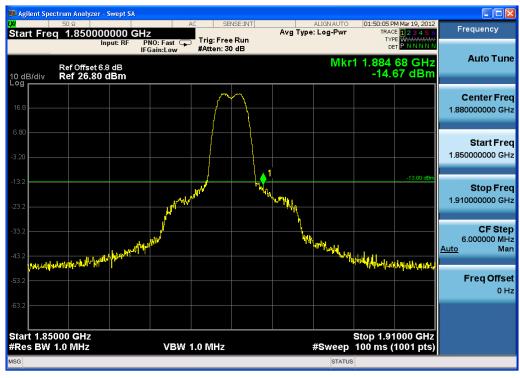
Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to 20GHz (higher than the 10th harmonic of the carrier). The peak detector is used and RBW is set to 1MHz on spectrum analyzer.

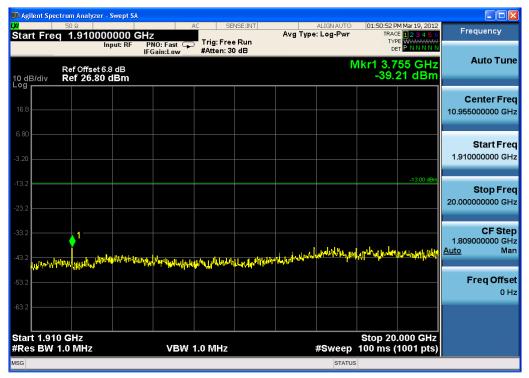

The measurement will be conducted at one channel No 9400 (middle channel of WCDMA band II)

Limits ≤-13dBm


Test result: Refer to the following figures.

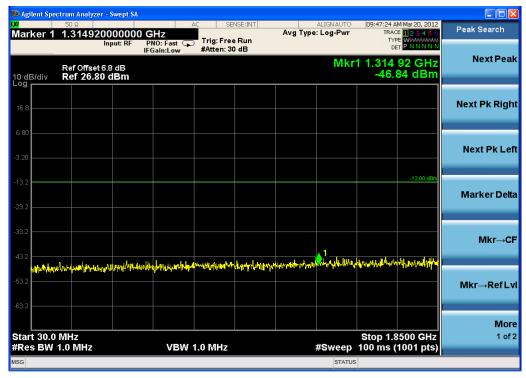
WCDMA Mode:

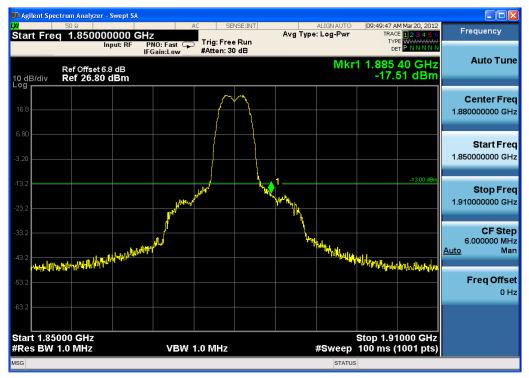
Channel 9400, 30MHz~1850MHz



Channel 9400, 1850MHz~1910MHz

Note: The signal beyond the limit is the base station simulator carrier.


Page number: 21 of 65


Channel 9400, 1910MHz~20GHz

HSDPA/HSUPA Mode:

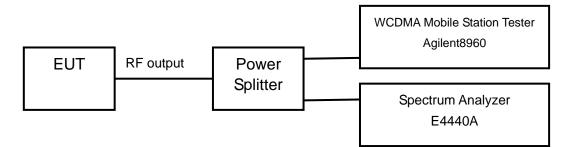
Channel 9400, 30MHz~1850MHz

Channel 9400, 1850MHz~1910MHz

Note: The signal beyond the limit is the base station simulator carrier.

Channel 9400, 1910MHz~20GHz

Page number: 23 of 65



2.2.1.6 Band Edges Compliance-FCC Part24.238(b)/IC RSS-133 § 6.5

Ambient condition:

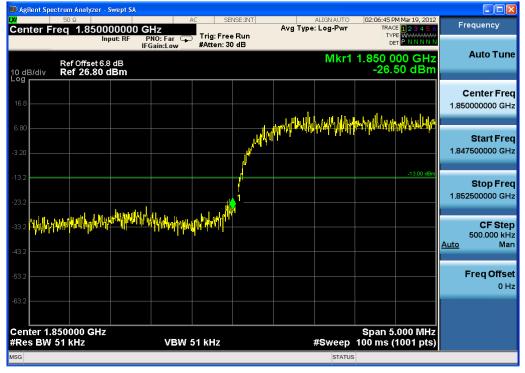
Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer. The peak detector is used and RBW is set to at least 1% of the emission bandwidth on spectrum analyzer.

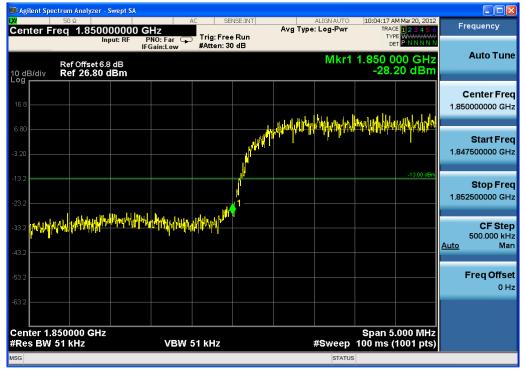
The measurement will be conducted at two channels No9262 and No9538 (Bottom and top channels of WCDMA band II)


Limits	≤-13dBm
--------	---------

Test result: Refer to the following figures.

No.: SRTC2012-H024-E0024 FCC ID: RAD243 IC: 9238A-0009

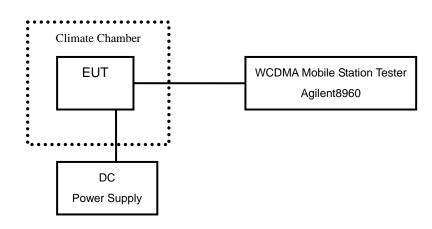
WCDMA Mode:



Channel 9262

HSDPA/HSUPA Mode:

Channel 9262



2.2.1.7 Frequency Stability-FCC Part2.1055/24.235/IC RSS-133 § 6.3

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test setup:

Test Procedure:

A radio link shall be established between EUT and Tester. The tester will sample the transmitter RF output signal and measure its frequency. The temperature inside the climate chamber is varied from -30 to +50° C in 10° C step size, and also the DC power supply voltage to the EUT is varied from 3.5 to 4.2 V. The measurement will be conducted at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band II).

Limits:

No specific frequency stability requirements in FCC part 2.1055 and part 24.235. According to the standard of RSS-133 § 6.3, the carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations.

Test result:

WCDMA Mode:

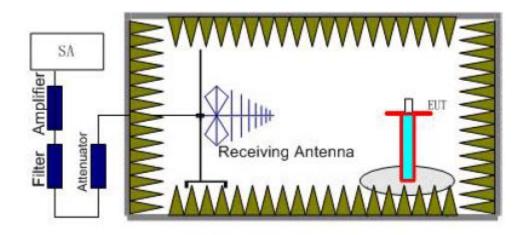
Tomporaturo(°C)	Test Result (ppm)@3.7V		
Temperature(°C)	Channel 9262	Channel 9400	Channel 9538
-30	0.003	0.004	0.002
-20	0.002	0.002	0.001
-10	0.003	0.002	0.001
0	0.002	0.000	0.003
+10	0.002	0.003	0.002
+20	0.004	0.001	0.002
+30	0.002	0.001	0.003
+40	0.001	0.003	0.001
+50	0.002	0.001	0.001

	Test Result (ppm)@20°C		
Voltage (V)	Channel 9262	Channel 9400	Channel 9538
3.5	0.002	0.003	0.002
4.2	0.003	0.005	0.002

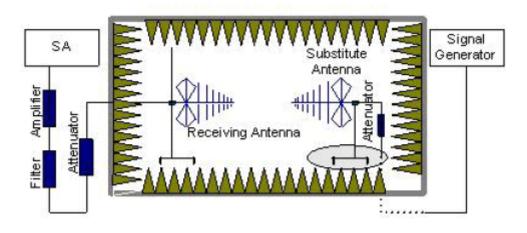
HSDPA/HSUPA Mode:

Tomporaturo(°C)	Test Result (ppm)@3.7V		
Temperature(°C)	Channel 9262	Channel 9400	Channel 9538
-30	0.003	0.002	0.002
-20	0.002	0.001	0.001
-10	0.001	0.002	0.000
0	0.002	0.001	0.001
+10	0.001	0.002	0.002
+20	0.002	0.001	0.000
+30	0.001	0.002	0.002
+40	0.002	0.000	0.001
+50	0.002	0.001	0.002

	Test Result (ppm)@20°C		
Voltage (V)	Channel 9262	Channel 9400	Channel 9538
3.5	0.001	0.001	0.002
4.2	0.002	0.001	0.001



2.2.1.8 Radiated Spurious Emissions-FCC Part2.1053/24.238/IC RSS-133 § 6.5


Ambient condition

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Step 1

Test procedure:

The measurements procedures in TIA-603C-2004 are used.

The spectrum was scanned from 30MHz to the 10th harmonic of the highest frequency generated within the equipment.

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was

placed on a 2.4 meter high non-conductive table at a 3 meter test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is 2.4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer or receiver. The spectrum analyzer scans from 30MHz to 20GHz (higher than the 10th harmonic of the carrier). The peak detector is used and RBW is set to 1MHz on spectrum analyzer. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer or receiver. A notch filter is necessary in the band near to the carrier frequency. A high pass filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

A power (Pmea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A "reference path loss" should be calculated after test. The attenuation of "reference path loss" is the cable loss between the Signal Source with the Substitution Antenna (Pca) and the Substitution Antenna Gain (Ga).

Calculation procedure:

The data of cable loss and antenna gain has been calibrated in full testing frequency range before the testing.

The power of the Radiated Spurious Emissions is calculated by adding the cable loss and antenna gain. The basic equation with a sample calculation is as followed:

 $Power(EIRP) = P_{mea} + P_{ca} + G_{a}$

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP – 2.15 (dB).

Assumed the power of signal source record is -20dBm. A cable loss of -30dB, and an antenna gain of 11dB are added. $P=P_{mea}+P_{ca}+G_{a}=(-20dBm)+(-30dB)+(11dB)=-39dBm$

The measurement will be done at carrier frequencies that pertain to bottom (Channel 9262), middle (Channel 9400) and top (Channel 9538) channels of WCDMA band II.

Test result:

WCDMA Mode:

Channel 9262

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2056.57	-38.1	-5.6	8.6	-41.1	-13	Vertical
2556.15	-40.1	-5.7	8.6	-43.0	-13	Vertical
2762.56	-34.4	-5.8	8.9	-37.5	-13	Vertical I
6992.41	-41.2	-8.6	12.7	-45.3	-13	Horizontal
10023.58	-38.7	-11.8	13.6	-40.5	-13	Vertical
17865.29	-33.2	-13.9	12.3	-31.6	-13	Vertical

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2056.24	-37.9	-5.6	8.6	-40.9	-13	Vertical
2556.40	-39.7	-5.7	8.6	-42.6	-13	Vertical
2763.43	-34.5	-5.8	8.9	-37.6	-13	Vertical
6993.52	-41.7	-8.6	12.7	-45.8	-13	Horizontal
9987.93	-38.3	-13.7	13.8	-38.4	-13	Vertical
10023.28	-39.1	-11.8	13.6	-40.9	-13	Vertical

Channel 9538

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2067.92	-38.4	-5.6	8.6	-41.4	-13	Vertical
2552.28	-39.6	-5.7	8.6	-42.7	-13	Vertical
2776.26	-35.0	-5.8	8.9	-38.1	-13	Vertical
6993.42	-41.8	-8.6	12.7	-45.9	-13	Horizontal I
10005.23	-39.1	-11.8	13.6	-40.9	-13	Horizontal
17863.69	-32.9	-13.9	12.3	-31.3	-13	Vertical

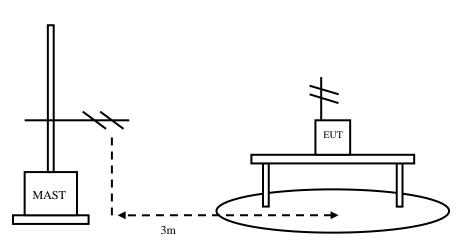
HSDPA/HSUPA Mode:

Channel 9262

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2633.87	-38.1	-5.7	8.7	-41.1	-13	Vertical
2828.06	-40.1	-5.8	8.9	-43.2	-13	Vertical
2960.92	-34.4	-5.9	8.9	-38.4	-13	Horizontal
6991.98	-43.7	-8.6	12.7	-47.8	-13	Horizontal
10042.08	-41.8	-11.8	13.6	-43.6	-13	Horizontal
17867.74	-43.2	-13.9	12.3	-41.6	-13	Vertical

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2054.51	-41.7	-5.6	8.6	-44.7	-13	Vertical
2553.91	-42.3	-5.7	8.6	-45.2	-13	Vertical
2761.52	-41.2	-5.8	8.9	-44.3	-13	Vertical
6993.99	-41.7	-8.6	12.7	-45.8	-13	Horizontal
9983.97	-43.3	-13.7	13.8	-43.4	-13	Horizontal
10024.05	-45.1	-11.8	13.6	-46.9	-13	Horizontal

Frequency (MHz)	Power (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2067.92	-41.1	-5.6	8.6	-44.1	-13	Vertical
2552.28	-39.8	-5.7	8.6	-42.7	-13	Vertical
2776.26	-42.0	-5.8	8.9	-45.1	-13	Horizontal
6993.42	-41.5	-8.6	12.7	-45.6	-13	Horizontal
10025.99	-43.9	-11.8	13.6	-45.7	-13	Horizontal
17860.01	-44.9	-13.9	12.3	-43.3	-13	Horizontal



2.2.1.9 Receiver Spurious Emissions-IC RSS-133 § 6.6

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	54%	101.5kPa

Test Setup:

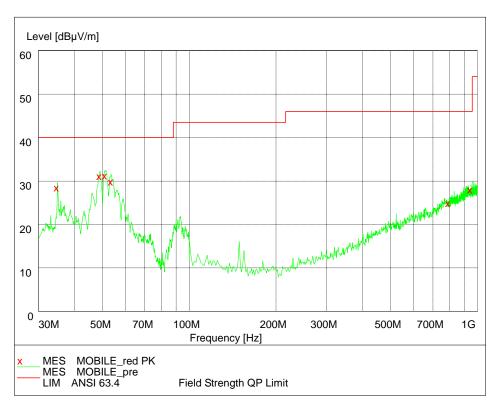
Test Procedure:

The EUT should be placed on a non-metallic table 80cm above the ground plane. The receive antennas shall be moved from 1 to 4 meters. The distance between EUT and receive antenna should be 3 meters.

The EUT should work in idle mode. The accessories of the EUT are connected with the EUT such as headset etc.

Then start the test software ES-K1. Sweep the whole frequency band through the range from 30MHz to 1GHz, using receive log period antenna HL562.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The EUT is laid in two modes as follow: 1. put the EUT in horizontal direction; 2. put the EUT in vertical direction.


The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Limit:

Spurious Frequency (MHz)	Field Strength at 3 metres				
	Detector Unit (microvolts/m) Unit (dBµV/m)				
30~88	Quasi-peak	100	40		
88~216	Quasi-peak	150	43.5		
216~960	Quasi-peak	200	46		
960~1000	Quasi-peak	500	54		
Above 1000	Average	500	54		

Test result:

WCDMA Band II

Note: For measurement above 1GHz, all emissions level measured were more than 10dB below the limit.

2.2.2 WCDMA Band V

2.2.2.1 RF Power Output-FCC Part22.913(a)/IC RSS-132 § 4.4

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. Then the test data can be read at the tester screen. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration.

The measurement will be conducted at three channels No4132, No4183 and No4233 (Bottom, middle and top channels of WCDMA band V)

Limits	≤24dBm
--------	--------

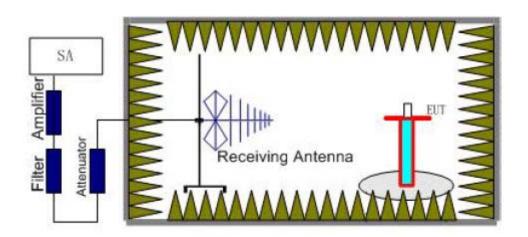
Test result:

WCDMA Mode:

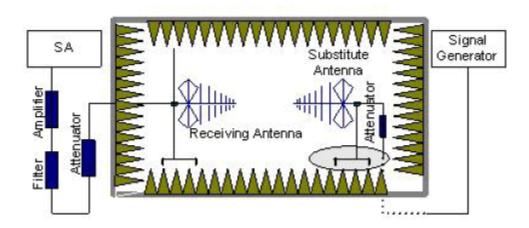
Carrier frequency (MHz)	Channel No.	RF Power Output (dBm)
826.4	4132	23.4
836.6	4183	23.5
846.6	4233	23.5

HSDPA/HSUPA Mode:

Carrier frequency (MHz)	Channel No.	RF Power Output (dBm)
826.4	4132	23.4
836.6	4183	23.3
846.6	4233	23.4



2.2.2.2 Effective Radiated Power-FCC Part22.913(a)/IC RSS-132 § 4.4


Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test setup:

Step 1

Test procedure:

The measurements procedures in TIA-603C-2004 are used.

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was placed on a 2.4 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna

mast 3 meters from the EUT. The height of receiving antenna is 2.4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used and RBW is set to 3MHz. Then the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum power value on spectrum analyzer or receiver. And the maximum value of the receiver should be recorded as (Pr).

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator. To repeat the same procedure as step1 and the level of signal generator will be adjusted till the same power value on the spectrum analyzer or receiver. The ERP/EIRP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

A power (Pmea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A "reference path loss" should be calculated after test. The attenuation of "reference path loss" is the cable loss between the Signal Source with the Substitution Antenna (Pca) and the Substitution Antenna Gain (Ga).

The measurement results are obtained as described below:

Power (EIRP) = Pmea+ Pca+ Ga

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP – 2.15 (dB).

The measurement will be done at three channels No4132, No4183 and No4233 (Bottom, middle and top channels of WCDMA band V)

Limits	≤38.5dBm
--------	----------

Test result:

WCDMA Mode:

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
826.4	23.0	-3.8	8.6	2.15	20.35	Vertical
836.6	23.5	-3.8	8.6	2.15	20.85	Vertical
846.6	23.9	-3.8	8.6	2.15	21.25	Vertical

Frequency: 826.4MHz

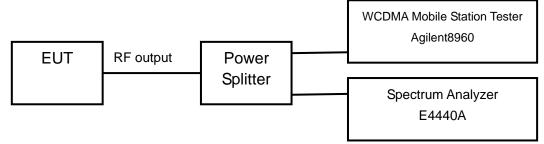
Peak ERP (dBm) = Pmea (20.35dBm)+Pca (-3.8dB)+Ga (8.6dB)-2.15dB=23.0dBm

HSDPA/HSUPA Mode:

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss (dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
826.4	22.3	-3.8	8.6	2.15	19.65	Vertical
836.6	22.8	-3.8	8.6	2.15	20.15	Vertical
846.6	23.1	-3.8	8.6	2.15	20.45	Vertical

Frequency: 826.4MHz

Peak ERP (dBm) = Pmea (19.65dBm)+Pca (-3.8dB)+Ga (8.6dB)-2.15dB=22.3dBm



2.2.2.3 Occupied Bandwidth-FCC Part2.1049/IC RSS-Gen § 4.6.1

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

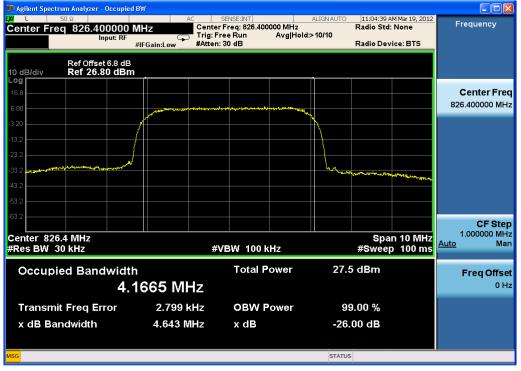
Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 30kHz on spectrum analyzer. The bandwidth of 99% power can be read on spectrum analyzer. The measurement will be conducted at three channels No4132, No4183 and No4233 (Bottom, middle and top channels of WCDMA band V)

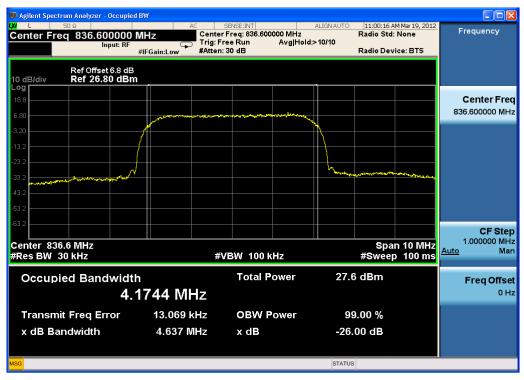
Limits: No specific occupied bandwidth requirements in FCC part 2.1049 and IC RSS-Gen \S 4.6.1

Test result:

WCDMA Mode:

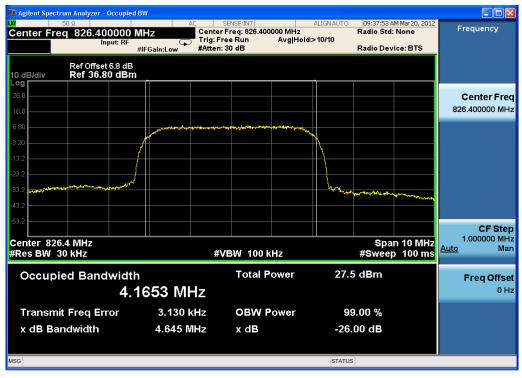

Carrier frequency (MHz)	Channel No.	Bandwidth of 99% Power (MHz)
826.4	4132	4.1665
836.6	4183	4.1744
846.6	4233	4.1734

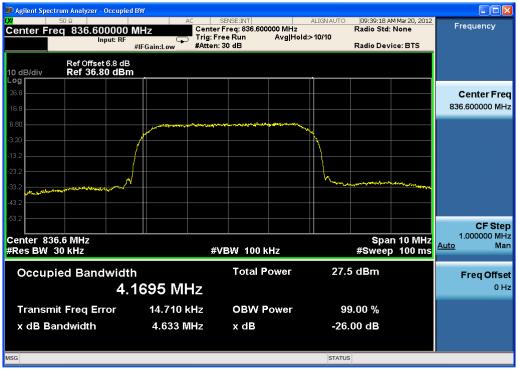
HSDPA/HSUPA Mode:


Carrier frequency (MHz)	Channel No.	Bandwidth of 99% Power (MHz)
826.4	4132	4.1653
836.6	4183	4.1695
846.6	4233	4.1804

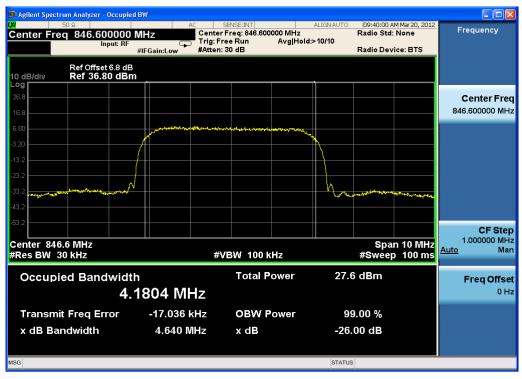
WCDMA Mode:

Channel 4132

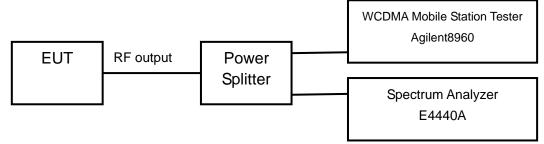




Channel 4233


HSDPA/HSUPA Mode:

Channel 4183



2.2.2.4 Emission Bandwidth-FCC Part22.917(b)/IC RSS-Gen § 4.6.1

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

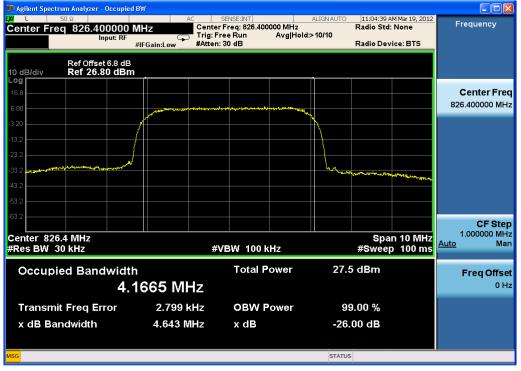
Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 30kHz on spectrum analyzer. The bandwidth of -26dBc power can be read on spectrum analyzer. The measurement will be conducted at three channels No9262, No9400 and No9538 (Bottom, middle and top channels of WCDMA band V)

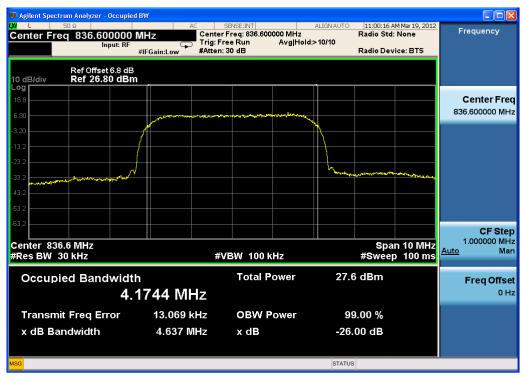
Limits: No specific emission bandwidth requirements in FCC part 22.917(b) and IC RSS-Gen \S 4.6.1

Test result:

WCDMA Mode:

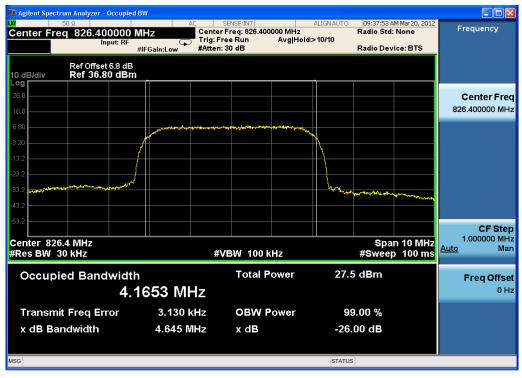

Carrier frequency (MHz)	Channel No.	Bandwidth of -26dBc Power (MHz)
826.4	4132	4.643
836.6	4183	4.637
846.6	4233	4.627

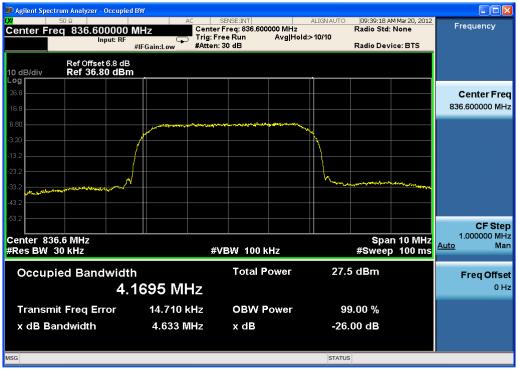
HSDPA/HSUPA Mode:


Carrier frequency (MHz)	Channel No.	Bandwidth of -26dBc Power (MHz)
826.4	4132	4.645
836.6	4183	4.633
846.6	4233	4.640

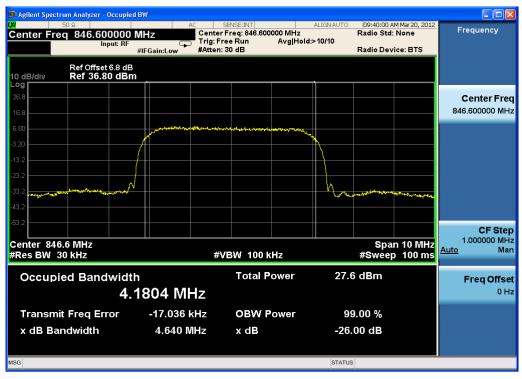
WCDMA Mode:

Channel 4132

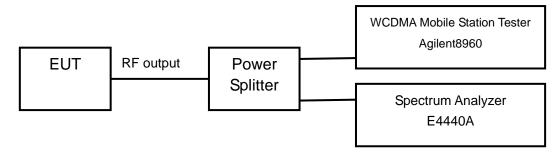




Channel 4233


HSDPA/HSUPA Mode:

Channel 4183



2.2.2.5 Conducted Spurious Emissions-FCC Part2.1051/22.917/IC RSS-132 § 4.5

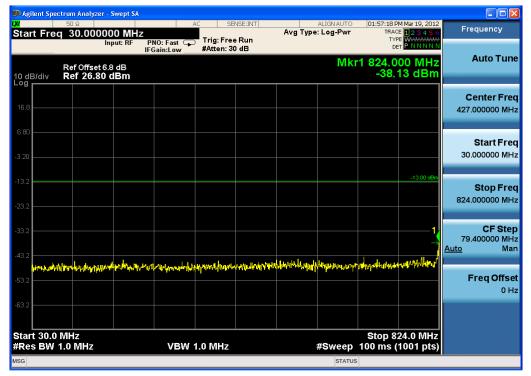
Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to 9GHz (higher than the 10th harmonic of the carrier). The peak detector is used and RBW is set to 1MHz on spectrum analyzer.


The measurement will be conducted at one channel No 4183 (middle channel of WCDMA band V)

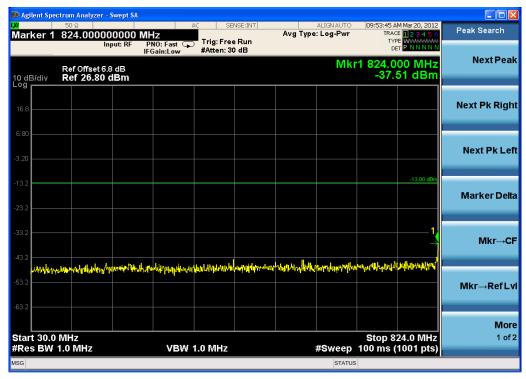
Limits ≤-13dBm

Test result: Refer to the following figures.

WCDMA Mode:

Channel 4183, 30MHz~824MHz

Channel 4183, 824MHz~849MHz


Note: The signal beyond the limit is the base station simulator carrier.

50 Ω	AC S	SENSE:INT	ALIGN AUTO	02:00:03 PM Mar 19, 2012	Deels Occurrie
arker 1 849.00000000 N Input: RF	HZ PNO: Fast Trig: Fro FGain:Low #Atten: 3	ee Run	g Type: Log-Pwr	TRACE 123456 TYPE WWWWWW DET PNNNNN	Peak Search
Ref Offset 6.8 dB				Mkr1 849 MHz -26.66 dBm	NextPea
6.8					Next Pk Rig
.20					Next Pk Le
3.2 3.2 2 1				-13.00 dBm	Marker De
22 22 majue Jaub Jaron Holen (1999)	Mataliales , dolardo, Internece	VUIII	······································	anti-the call the call	Mkr→C
					Mkr→RefL
tart 849 MHz Res BW 1.0 MHz	VBW 1.0 MHz		#Sweep	Stop 9.000 GHz 100 ms (1001 pts)	Мо 1 о

Channel 4183, 849MHz~9GHz

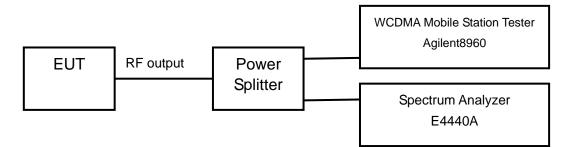
HSDPA/HSUPA Mode:

Channel 4183, 30MHz~824MHz

Channel 4183, 824MHz~849MHz

Note: The signal beyond the limit is the base station simulator carrier.

Channel 4183, 849MHz~9GHz



2.2.2.6 Band Edges Compliance-FCC Part22.917(b)/IC RSS-132 § 4.5

Ambient condition:

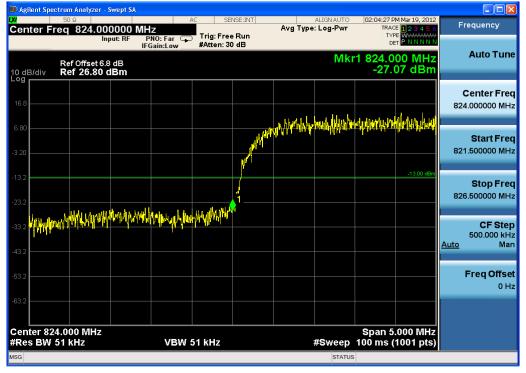
Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Test procedure:

After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer. The peak detector is used and RBW is set to at least 1% of the emission bandwidth on spectrum analyzer.

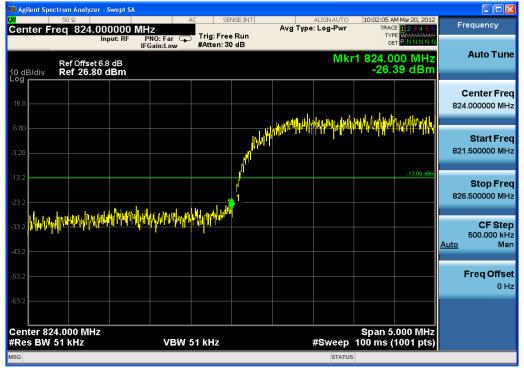
The measurement will be conducted at two channels No4132 and No4233 (Bottom and top channels of WCDMA band V)


Limits	≤-13dBm
--------	---------

Test result: Refer to the following figures.

No.: SRTC2012-H024-E0024 FCC ID: RAD243 IC: 9238A-0009

WCDMA Mode:



Channel 4132

HSDPA/HSUPA Mode:

Channel 4132



2.2.2.7 Frequency Stability-FCC Part2.1055/22.355/IC RSS-132 § 4.3

Ambient condition:

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test setup:

Test Procedure:

A radio link shall be established between EUT and Tester. The tester will sample the transmitter RF output signal and measure its frequency. The temperature inside the climate chamber is varied from -30 to +50° C in 10° C step size, and also the DC power supply voltage to the EUT is varied from 3.5 to 4.2 V. The measurement will be conducted at three channels No4132, No4183 and No4233 (Bottom, middle and top channels of WCDMA band V).

Limits:

No specific frequency stability requirements in FCC part 2.1055 and part 22.355. According to the standard of IC RSS-132 § 4.3, the carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations.

Test result: WCDMA Mode:

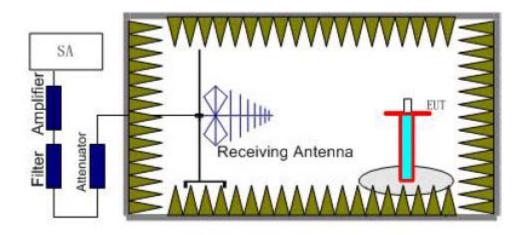
Tomporatura(°C)	Te	Test Result (ppm)@3.7V				
Temperature(°C)	Channel 4132	Channel 4183	Channel 4233			
-30	0.001	0.002	0.003			
-20	0.003	0.003	0.003			
-10	0.002	0.002	0.002			
0	0.004	0.002	0.002			
+10	0.001	0.004	0.001			
+20	0.004	0.005	0.003			
+30	0.002	0.001	0.002			
+40	0.001	0.004	0.004			
+50	0.004	0.006	0.001			

	Test Result (ppm)@20°C			
Voltage (V)	Channel 4132	Channel 4183	Channel 4233	
3.5	0.003	0.002	0.001	
4.2	0.003	0.003	0.002	

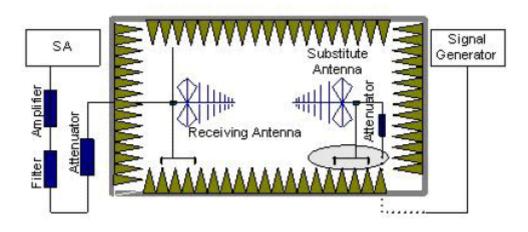
HSDPA/HSUPA Mode:

Tomporatura(°C)	Test Result (ppm)@3.7V				
Temperature(°C)	Channel 4132	Channel 4183	Channel 4233		
-30	0.004	0.005	0.002		
-20	0.003	0.004	0.004		
-10	0.005	0.003	0.003		
0	0.003	0.002	0.007		
+10	0.003	0.004	0.006		
+20	0.002	0.004	0.004		
+30	0.005	0.002	0.003		
+40	0.002	0.006	0.004		
+50	0.007	0.005	0.002		

	Test Result (ppm)@20°C			
Voltage (V)	Channel 4132	Channel 4183	Channel 4233	
3.5	0.002	0.003	0.002	
4.2	0.002	0.005	0.003	



2.2.2.8 Radiated Spurious Emissions- FCC Part2.1053/22.917(a)/IC RSS-132 § 4.5


Ambient condition

Temperature	Relative humidity	Pressure
21°C	44%	101.5kPa

Test Setup:

Step 1

Test procedure:

The measurements procedures in TIA-603C-2004 are used.

The spectrum was scanned from 30MHz to the 10th harmonic of the highest frequency generated within the equipment.

Step 1:

The measurement is carried out in the fully anechoic chamber. EUT was

placed on a 2.4 meter high non-conductive table at a 3 meter test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is 2.4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. The measurement is carried out using a spectrum analyzer or receiver. The spectrum analyzer scans from 30MHz to 20GHz (higher than the 10th harmonic of the carrier). The peak detector is used and RBW is set to 1MHz on spectrum analyzer. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer or receiver. A notch filter is necessary in the band near to the carrier frequency. A high pass filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

A power (Pmea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A "reference path loss" should be calculated after test. The attenuation of "reference path loss" is the cable loss between the Signal Source with the Substitution Antenna (Pca) and the Substitution Antenna Gain (Ga).

Calculation procedure:

The data of cable loss and antenna gain has been calibrated in full testing frequency range before the testing.

The power of the Radiated Spurious Emissions is calculated by adding the cable loss and antenna gain. The basic equation with a sample calculation is as followed:

 $Power(EIRP) = P_{mea} + P_{ca} + G_{a}$

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP – 2.15 (dB).

Assumed the power of signal source record is -20dBm. A cable loss of -30dB, and an antenna gain of 11dB are added. $P=P_{mea}+P_{ca}+G_{a}=(-20dBm)+(-30dB)+(11dB)=-39dBm$

The measurement will be done at carrier frequencies that pertain to bottom (Channel 4132), middle (Channel 4183) and top (Channel 4233) channels of WCDMA band V.

Test result:

WCDMA Mode: Channel 4132

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2077.84	-38.4	-5.6	8.6	-41.4	-13	Vertical
2557.41	-39.5	-5.7	8.6	-42.4	-13	Horizontal
2774.72	-34.6	-5.8	8.9	-37.7	-13	Vertical
6995.49	-41.6	-8.6	12.7	-45.7	-13	Vertical
9993.51	-38.8	-11.8	13.6	-40.6	-13	Vertical
17872.27	-32.4	-13.9	12.3	-30.8	-13	Horizontal

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2068.37	-38.3	-5.6	8.6	-41.3	-13	Vertical
2552.53	-39.1	-5.7	8.6	-42.0	-13	Horizontal
2775.38	-34.5	-5.8	8.9	-37.6	-13	Vertical
6993.65	-41.8	-8.6	12.7	-45.9	-13	Vertical
10005.7	-38.7	-11.8	13.6	-40.5	-13	Vertical
17863.5	-32.6	-13.9	12.3	-31.0	-13	Vertical

Channel 4233

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2067.92	-38.4	-5.6	8.6	-41.4	-13	Vertical
2552.62	-39.6	-5.7	8.6	-42.5	-13	Horizontal
2776.46	-35.0	-5.8	8.9	-38.1	-13	Vertical
6993.28	-41.8	-8.6	12.7	-45.9	-13	Horizontal
10005.93	-39.1	-11.8	13.6	-40.9	-13	Horizontal
17863.12	-32.9	-13.9	12.3	-31.3	-13	Vertical

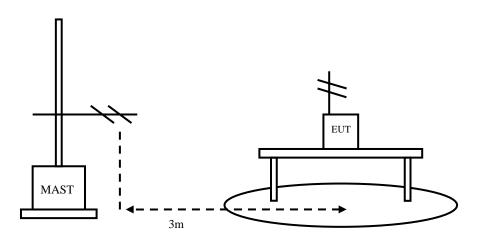
HSDPA/HSUPA Mode:

Channel 4132

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2076.95	-41.2	-5.6	8.6	-44.2	-13	Vertical
2556.71	-39.9	-5.7	8.6	-42.8	-13	Horizontal
2772.75	-42.3	-5.8	8.9	-45.4	-13	Vertical
6993.99	-44.2	-8.6	12.7	-48.3	-13	Horizontal
9983.97	-43.9	-11.8	13.6	-45.7	-13	Vertical
17879.76	-44.7	-13.9	12.3	-43.1	-13	Horizontal

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2068.53	-40.7	-5.6	8.6	-43.7	-13	Vertical
2573.55	-39.4	-5.7	8.6	-42.3	-13	Horizontal
2772.74	-43.0	-5.8	8.9	-46.1	-13	Vertical
6993.99	-41.7	-8.6	12.7	-45.8	-13	Horizontal
10024.05	-42.5	-11.8	13.6	-44.3	-13	Horizontal
17859.72	-45.0	-13.9	12.3	-43.4	-13	Horizontal

Frequency (MHz)	Power (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Pmea (dBm)	Limited (dBm)	Polarization
2065.73	-40.7	-5.6	8.6	-43.7	-13	Vertical
2553.91	-39.2	-5.7	8.6	-42.1	-13	Vertical
2775.55	-41.0	-5.8	8.9	-44.1	-13	Vertical
6991.98	-42.1	-8.6	12.7	-46.2	-13	Horizontal
10004.01	-43.1	-11.8	13.6	-44.9	-13	Horizontal
17879.76	-44.9	-13.9	12.3	-43.3	-13	Horizontal



2.2.2.9 Receiver Spurious Emissions-IC RSS-132 § 4.6

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	54%	101.5kPa

Test Setup:

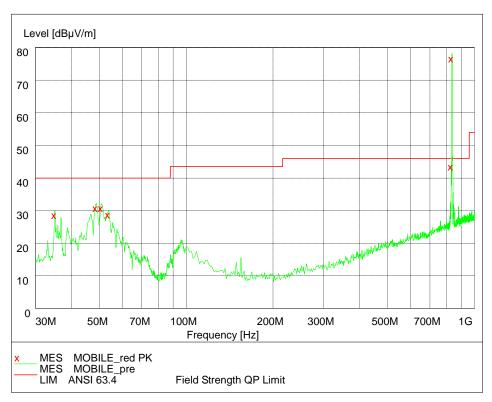
Test Procedure:

The EUT should be placed on a non-metallic table 80cm above the ground plane. The receive antennas shall be moved from 1 to 4 meters. The distance between EUT and receive antenna should be 3 meters.

The EUT should work in idle mode. The accessories of the EUT are connected with the EUT such as headset etc.

Then start the test software ES-K1. Sweep the whole frequency band through the range from 30MHz to 1GHz, using receive log period antenna HL562.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The EUT is laid in two modes as follow: 1. put the EUT in horizontal direction; 2. put the EUT in vertical direction.


The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Limit:

Spurious Frequency (MHz)	Field Strength at 3 metres			
	Detector	Unit (dBµV/m)		
30~88	Quasi-peak	100	40	
88~216	Quasi-peak	150	43.5	
216~960	Quasi-peak	200	46	
960~1000	Quasi-peak	500	54	
Above 1000	Average	500	54	

Test result:

WCDMA band V

Note: The signal beyond the limit is the base station simulator carrier. For measurement above 1GHz, all emissions level measured were more than 10dB below the limit.

2.3 List of test equipments

No.	Name/Model	Manufacturer	S/N	Calibration Due Date
1	E5515C(8960) Mobile Station Tester	Agilent	MY48367401	2012.8
2	N9020A Spectrum Analyzer	Agilent	MY48010771	2012.8
3	DC Power Supply E3645A	Agilent	MY40000740	2012.8
4	Power Splitter 11850C	Agilent	026057	2012.8
5	12.65m×8.03m×7.50m Fully-Anechoic Chamber	FRANKONIA		
6	Turn table Diameter:1m	HD		
7	Antenna master FAC(MA4.0)	MATURO		
8	HF 906 Double-Ridged Waveguide Horn Antenna	R&S	100030	2012.8
9	HL562 Ultra log antenna	R&S	100016	2012.8
10	3160-09 Receive antenna	SCHWARZ-BECK	002058-002	2012.8
11	ESI 40 EMI test receiver	R&S	100015	2012.8
12	CMU 200 Radio tester	R&S	114667	2012.8
13	23.18m×16.88m×9.60m Semi-Anechoic Chamber	FRANKONIA		2012.8
14	SH-241Climatic Chamber	ESPEC	92000390	2012.8

No.: SRTC2012-H024-E0024 FCC ID: RAD243 IC: 9238A-0009

Appendix

Appendix1 Test Setup