Report No.: RXA1204-0048SAR

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.30 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhố/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	10000	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Aug11

Report No.: RXA1204-0048SAR

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 7.5 jΩ	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

Certificate No: D1900V2-5d060_Aug11

Page 4 of 8

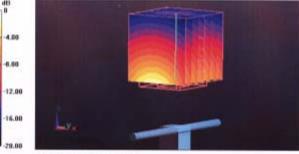
Report No.: RXA1204-0048SAR

Page 197 of 220

DASY5 Validation Report for Head TSL Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

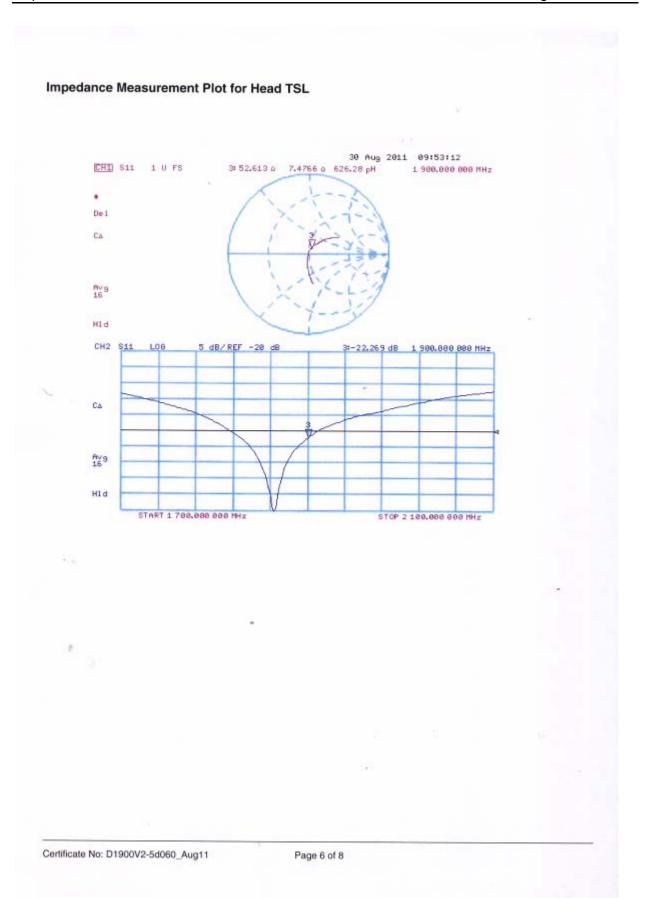

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.636 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.535 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 12.600 mW/g


 $0 \, dB = 12.600 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

Page 5 of 8

Report No.: RXA1204-0048SAR

Page 198 of 220

Report No.: RXA1204-0048SAR

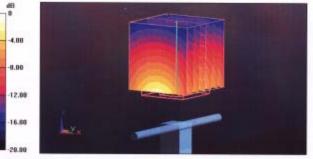
Page 199 of 220

Date: 31.08.2011

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

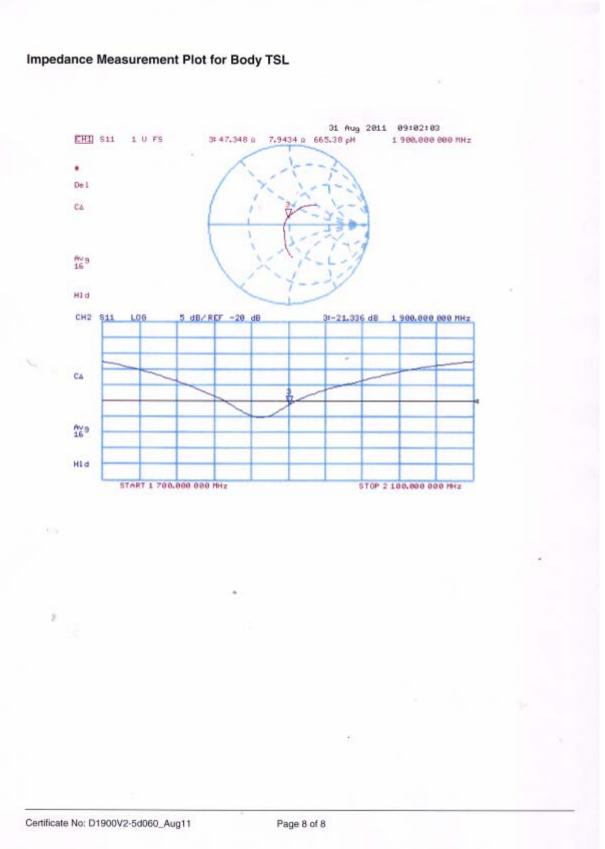

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.57 mho/m; ε_r = 53.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = -0.0099 dB Peak SAR (extrapolated) = 18.663 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g Maximum value of SAR (measured) = 13.397 mW/g


 $0 \, dB = 13.400 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

Page 7 of 8

Report No.: RXA1204-0048SAR

Page 200 of 220

Report No.: RXA1204-0048SAR

Report No.: RXA1204-0048SAR

ANNEX G: DAE4 Calibration Certificate

Report No.: RXA1204-0048SAR

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	ry of	Hac MRA	S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredite The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatories	to the EA	reditation No.: SCS 108
Client TA Shanghai (Auden)	Cert	ificate No: DAE4-1317_Jan12
CALIBRATION O	CERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 1317	
Calibration procedure(s)	QA CAL-06.v24 Calibration procee	dure for the data acquisiti	on electronics (DAE)
Calibration date:	January 23, 2012		
÷			
		subbility are given on the following	pages and are part of the certificate.
All calibrations have been conduc Calibration Equipment used (M&	cted in the closed laboratory	rfacility: environment temperature	
Calibration Equipment used (M& Primary Standards	cted in the closed laboratory TE critical for calibration)	r facility: environment temperature Cal Date (Certificate No.)	(22 ± 3)*C and humidity < 70%, Scheduled Calibration
Calibration Equipment used (M& Primary Standards	cted in the closed laboratory TE critical for calibration)	r facility: environment temperature	(22 ± 3)*C and humidity < 70%,
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house)	(22 ± 3)*C and humidity < 70%, Scheduled Calibration Sep-12 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	r facility: environment temperature Cal Date (Certificate No.) 28-Sep-11 (No:11450)	(22 ± 3)*C and humidity < 70%, Scheduled Calibration Sep-12
	Cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house)	(22 ± 3)*C and humidity < 70%, Scheduled Calibration Sep-12 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house)	(22 ± 3)*C and humidity < 70%, Scheduled Calibration Sep-12 Scheduled Check
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V2.1	cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house) 05-Jan-12 (in house check)	(22 ± 3)*C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house) 05-Jan-12 (in house check)	(22 ± 3)*C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V2.1	Cited in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 - Name Dominique Steffen	Cal Date (Certificate No.) 28-Sep-11 (No:11450) Check Date (in house) 05-Jan-12 (in house check) Function Technician	(22 ± 3)*C and humidity < 70%. Scheduled Calibration Sep-12 Scheduled Check In house check: Jan-13 Signature

Certificate No: DAE4-1317_Jan12

Page 1 of 5

Report No.: RXA1204-0048SAR

Page 204 of 220

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

s

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accred

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: RXA1204-0048SAR

DC Voltage Measurement

A/D -	Converte	er Reso	lution
-------	----------	---------	--------

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV		-1+3mV

Calibration Factors	x	Y	z
High Range	404.064 ± 0.1% (k=2)	404.056 ± 0.1% (k=2)	403.955 ± 0.1% (k=2)
Low Range	3.98762 ± 0.7% (k=2)	3.98737 ± 0.7% (k=2)	3.98343 ± 0.7% (k=2)

Connector Angle

۱

Connector Angle to be used in DASY system	117.0°±1°
---	-----------

Certificate No: DAE4-1317_Jan12

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.18	-1.75	-0.00
Channel X + Input	20001.35	0.46	0.00
Channel X - Input	-19997.31	1.96	-0.01
Channel Y + Input	199993.18	-1.24	-0.00
Channel Y + Input	20001.40	0.60	0.00
Channel Y - Input	-20000.04	-0.70	0.00
Channel Z + Input	199991.58	-2.43	-0.00
Channel Z + Input	19999.62	-1.14	-0.01
Channel Z - Input	-20001.31	-1.83	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.74	-0.89	-0.04
Channel X + Input	202.18	-0.01	-0.01
Channel X - Input	-197.58	0.36	-0.18
Channel Y + Input	2000.34	-1.20	-0.06
Channel Y + Input	199.67	-2.39	-1.18
Channel Y - Input	-197.64	0.32	-0.16
Channel Z + Input	2000.69	-0.78	-0.04
Channel Z + Input	200.84	-1.16	-0.57
Channel Z - Input	-198.45	-0.47	0.24

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-23.40	-24.98
	- 200 +	28.01	26.12
Channel Y	200	-2.57	-2.75
	- 200	1.67	1.31
Channel Z	200	-11.92	-11.43
	- 200	9.80	9.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-2.15	-4.41
Channel Y	200	7.18		-2.47
Channel Z	200	7.44	5.46	

Certificate No: DAE4-1317_Jan12

Report No.: RXA1204-0048SAR

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16081	17027
Channel Y	16103	16170
Channel Z	16221	16651

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.45	-1.32	0.40	0.32
Channel Y	-2.63	-3.99	-1.68	0.42
Channel Z	-0.67	-3.07	1.36	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

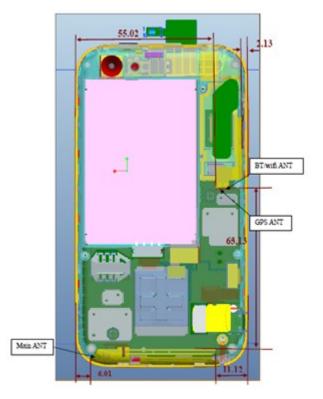
8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX H: The EUT Appearances and Test Configuration


a: EUT

b: Battery

Report No.: RXA1204-0048SAR

Page 211 of 220

c: Back View

d: Stereo Headset 1

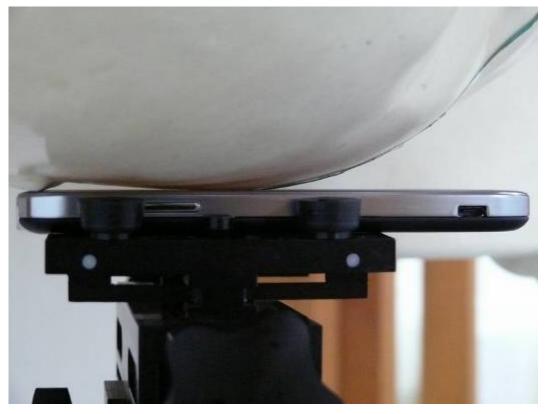
Report No.: RXA1204-0048SAR

e: Stereo Headset 2


f: Stereo Headset 3

Picture 8: Constituents of EUT

Report No.: RXA1204-0048SAR



Picture 9: Left Hand Touch Cheek Position

Picture 10: Left Hand Tilt 15 Degree Position

Report No.: RXA1204-0048SAR

Picture 11: Right Hand Touch Cheek Position

Report No.: RXA1204-0048SAR

Page 215 of 220

Picture 12: Right Hand Tilt 15 Degree Position

Picture 13: Back Side, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1204-0048SAR

Picture 14: Front Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 15: Left Edge, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1204-0048SAR

Picture 16: Right Edge, the distance from handset to the bottom of the Phantom is 10mm

Picture 17: Bottom Edge, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1204-0048SAR

Picture 18: Back Side with Stereo Headset 1, the distance from handset to the bottom of the Phantom is 10mm

Picture 19: Front Side with Stereo Headset 2, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1204-0048SAR

Picture 20: Front Side with Stereo Headset 3, the distance from handset to the bottom of the Phantom is 10mm

Picture 21: Front Side with Stereo Headset 1, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RXA1204-0048SAR

Picture 22: Front Side with Stereo Headset 2, the distance from handset to the bottom of the Phantom is 10mm

Picture 23: Front Side with Stereo Headset 3, the distance from handset to the bottom of the Phantom is 10mm