

No. 2011SAR00129

For

TCT Mobile Limited

GSM dual bands mobile phone

Cristalk US

one touch 282A

With

Hardware Version: PIO

Software Version: B17

FCCID: RAD217

Issued Date: 2011-11-11

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

1 TEST LABORATORY	3
1.1 TESTING LOCATION	
1.2 TESTING ENVIRONMENT	
1.4 Signature	
2 CLIENT INFORMATION	4
2.1 APPLICANT INFORMATION	
2.2 Manufacturer Information	
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (•
3.1 ABOUT EUT	
3.3 Internal Identification of AE used during the test	
4 CHARACTERISTICS OF THE TEST	5
4.1 APPLICABLE LIMIT REGULATIONS	
4.2 APPLICABLE MEASUREMENT STANDARDS	
5 OPERATIONAL CONDITIONS DURING TEST	
5.1 SCHEMATIC TEST CONFIGURATION	
5.2 SAR MEASUREMENT SET-UP	
5.4 E-FIELD PROBE CALIBRATION	8
5.5 OTHER TEST EQUIPMENT	
5.7 SYSTEM SPECIFICATIONS	
6 CONDUCTED OUTPUT POWER MEASUREMENT	10
6.1 Summary	
6.2 CONDUCTED POWER	
7 TEST RESULTS	
7.1 DIELECTRIC PERFORMANCE	
7.2 System Validation	
7.4 SUMMARY OF MEASUREMENT RESULTS	13
7.5 CONCLUSION	
8 MEASUREMENT UNCERTAINTY	
9 MAIN TEST INSTRUMENTS	
ANNEX A MEASUREMENT PROCESS	
ANNEX B TEST LAYOUT	_
ANNEX C GRAPH RESULTS	_
ANNEX D SYSTEM VALIDATION RESULTS	
ANNEX E PROBE CALIBRATION CERTIFICATE	
ANNEY E DIDOLE CALIDRATION CERTIFICATE	0.4

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuan beilu, Haidian District, Beijing,P.R.China

Postal Code: 100191

Telephone: +86-10-62304633 Fax: +86-10-62304793

1.2 Testing Environment

Temperature: $18^{\circ}\text{C} \sim 25^{\circ}\text{C}$, Relative humidity: $30\% \sim 70\%$ Ground system resistance: $< 0.5 \ \Omega$

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader: Qi Dianyuan
Test Engineer: Lin Xiaojun

Testing Start Date: November 3, 2011
Testing End Date: November 4, 2011

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory

(Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name: TCT Mobile Limited

Address /Post: 5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai Postal Code: 201203 Country: P. R. China

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

2.2 Manufacturer Information

Company Name: TCT Mobile Limited

Address /Post: 5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China. 201203

City: Shanghai
Postal Code: 201203
Country: P. R. China

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description: GSM dual bands mobile phone

Model Name: Cristalk US
Marketing Name: one touch 282A

Frequency Band: GSM 850 / PCS 1900

3.2 Internal Identification of EUT used during the test

EUT ID* SN or IMEI HW Version SW Version

EUT1 012916000020407 / 012916000020431 PIO B17

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB31L0000C1	1	BYD
AE2	Battery	CAB31L0000C2	1	BAK
AE3	mono headset	CCB3160A11C1	1	Juwei
AE4	mono headset	CCB3160A11C4	1	Meihao
AE5	mono headset	CCB3160A15C1		Juwei
AE6	mono headset	CCB3160A15C4		Meihao

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE3 and AE5 are the same, so they can use the same results. AE4 and AE6 are also the same, so they can use the same results.

^{*}EUT ID: is used to identify the test sample in the lab internally.

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

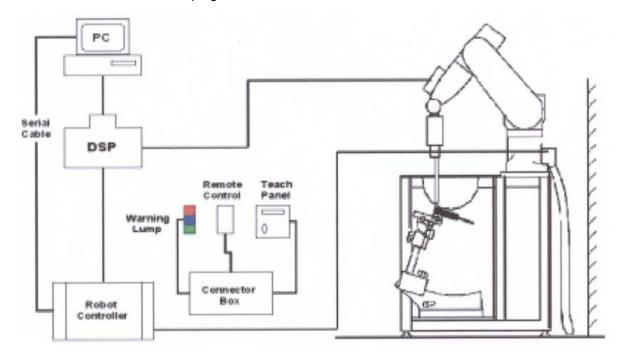
OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.



The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic

solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL

1810

Additional CF for other liquids and frequencies

upon request

Picture 3: ES3DV3 E-field

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to

probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Picture4:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

Picture 5: Device Holder

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum

exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the

evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

5.6 Equivalent Tissues

Picture 6: Generic Twin Phantom

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the Head Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz			
Water	41.45			
Sugar	56.0			
Salt	1.45			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ=0.90			
MIXTURE %	FREQUENCY 1900MHz			
Water	55.242			
Glycol monobutyl	44.452			
Salt	0.306			
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40			

Table 2. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz				
Water	52.5				
Sugar	45.0				
Salt	1.4				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ =0.97				
MIXTURE %	FREQUENCY 1900MHz				
Water	69.91				
Glycol monobutyl	29.96				
Salt	0.13				
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52				

5.7 System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

6 CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

6.2 Conducted Power

6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with CMU200. These measurements were done at low, middle and high channels.

6.2.2 Measurement result

The conducted power for GSM 850/1900 is as following:

The conducted perior for commons in the contract of the contra							
GSM	Conducted Power (dBm)						
850MHZ	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 128(824.2MHz)						
	33.11	33.17	33.21				
GSM	Conducted Power (dBm)						
1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	30.39	30.41	30.39				

6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 10 to Table 15 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 TEST RESULTS

7.1 Dielectric Performance

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz November 3, 2011 1900 MHz November 4, 2011

1	Frequency	Permittivity ε	Conductivity σ (S/m)
Target value	835 MHz	41.5	0.90
rarget value	1900 MHz	40.0	1.40
Measurement value	835 MHz	40.1	0.93
(Average of 10 tests)	1900 MHz	40.9	1.40

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz November 3, 2011 1900 MHz November 4, 2011

/	Frequency Permittivity ε		Conductivity σ (S/m)	
Target value	835 MHz	55.2	0.97	
Target value	1900 MHz	53.3	1.52	
Measurement value	835 MHz	53.9	0.95	
(Average of 10 tests)	1900 MHz	52.2	1.50	

7.2 System Validation

Table 6: System Validation of Head

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz November 3, 2011 1900 MHz November 4, 2011

Measurement Date . 000 Miliz Movember 3, 2011		1900 MI 12 140	veilibei 4, Z	<u> </u>				
	Dipole	Frequ	Frequency		Permittivity ε		Conductivity σ (S/m)	
	calibration	835	MHz	41	.6	0.9	92	
Liquid	Target value	1900	MHz	39).6	1.4	10	
parameters	Actural	835	835 MHz).1	0.93		
	Measurement value	1900 MHz		40.9		1.40		
	Frequency	Target value (W/kg)		Measure (W/	ed value kg)	Devia	ation	
Verification		10 g	1 g	10 g	1 g	10 g	1 g	
results		Average	Average	Average	Average	Average	Average	
	835 MHz	6.12	9.41	5.92	9.20	-3.27%	-2.23%	
	1900 MHz	20.1	39.4	19.64	38.6	-2.29%	-2.03%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

Table 7: System Validation of Body

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz November 3, 2011 1900 MHz November 4, 2011

Measurement Date : 650 MHz November 3, 2011								
	Dipole	Frequ	Frequency		Permittivity ε		Conductivity σ (S/m)	
	calibration	835	MHz	54	.5	0.9	97	
Liquid	Target value	1900	MHz	52	2.5	1.5	51	
parameters	Actural	835	MHz	53.9		0.95		
	Measurement value	1900 MHz		52.2		1.50		
	Frequency	Target value (W/kg)			ed value kg)	Devia	ation	
Verification results		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
	835 MHz	6.24	9.57	6.12	9.40	-1.92%	-1.78%	
	1900 MHz	20.9	41.4	20.6	40.8	-1.44%	-1.45%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

7.3 Evaluation of Multi-Batteries

Table 8: Pretest SAR Values (GSM 850 MHz Band)

Limit of SAR (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	
Test Case	Measurement Result (W/kg		
	10 g Average	1 g Average	
Left hand, Touch cheek, High frequency (CAB31L0000C1)	0.357	0.504	
Left hand, Touch cheek, High frequency (CAB31L0000C2)	0.349	0.490	

Note: According to the values in the above table, the battery, CAB31L0000C1, is the normal battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 9: Pretest SAR Values (GSM 850 MHz Band-Body)

Limit of SAR (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	
Test Case	Measurement Result (W/k		
	10 g Average	1 g Average	
Body, Towards Ground, Mid frequency (CAB31L0000C1)	0.666	0.926	
Body, Towards Ground, Mid frequency (CAB31L0000C2)	0.600	0.857	

Note: According to the values in the above table, the battery, CAB31L0000C1, is the normal battery. We'll perform the body measurement with this battery and retest on highest value point with others.

7.4 Summary of Measurement Results

Table 10: SAR Values (850MHz-Head) - with battery CAB31L0000C1

Limit of CAD (M//cm)	10 g	1 g	
Limit of SAR (W/kg)	Average	Average	
	2.0	1.6	Power
Test Case	Measurem	ent Result	Drift
	(W/	kg)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, High frequency (See Fig.1)	0.357	0.504	0.071
Left hand, Touch cheek, Mid frequency (See Fig.2)	0.330	0.462	-0.012
Left hand, Touch cheek, Low frequency (See Fig.3)	0.297	0.415	0.033
Left hand, Tilt 15 Degree, High frequency (See Fig.4)	0.213	0.294	0.00688
Left hand, Tilt 15 Degree, Mid frequency (See Fig.5)	0.202	0.278	0.031
Left hand, Tilt 15 Degree, Low frequency (See Fig.6)	0.180	0.247	-0.036
Right hand, Touch cheek, High frequency (See Fig.7)	0.277	0.380	0.197
Right hand, Touch cheek, Mid frequency (See Fig.8)	0.259	0.353	0.019
Right hand, Touch cheek, Low frequency (See Fig.9)	0.249	0.341	0.017
Right hand, Tilt 15 Degree, High frequency (See Fig.10)	0.189	0.264	0.00279
Right hand, Tilt 15 Degree, Mid frequency (See Fig.11)	0.181	0.249	-0.052
Right hand, Tilt 15 Degree, Low frequency (See Fig.12)	0.174	0.242	-0.00688

Table 11: SAR Values (1900MHz-Head) - with battery CAB31L0000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	Power
Test Case	Measurem	ent Result	Drift
	(W/	kg)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, High frequency (See Fig.13)	0.257	0.396	0.058
Left hand, Touch cheek, Mid frequency (See Fig.14)	0.223	0.347	-0.022
Left hand, Touch cheek, Low frequency (See Fig.15)	0.178	0.274	0.059
Left hand, Tilt 15 Degree, High frequency (See Fig.16)	0.058	0.089	0.046
Left hand, Tilt 15 Degree, Mid frequency (See Fig.17)	0.090	0.142	0.041
Left hand, Tilt 15 Degree, Low frequency (See Fig.18)	0.103	0.162	-0.156
Right hand, Touch cheek, High frequency (See Fig.19)	0.322	0.505	-0.191
Right hand, Touch cheek, Mid frequency (See Fig.20)	0.297	0.479	0.001
Right hand, Touch cheek, Low frequency (See Fig.21)	0.238	0.398	0.096
Right hand, Tilt 15 Degree, High frequency (See Fig.22)	0.064	0.097	0.033
Right hand, Tilt 15 Degree, Mid frequency (See Fig.23)	0.074	0.114	-0.099
Right hand, Tilt 15 Degree, Low frequency(See Fig.24)	0.096	0.144	0.045

Table 12: SAR Values (850MHz-Head) - with battery CAB31L0000C2

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average	Power
Test Case	Measurem (W/	Drift (dB)	
	10 g Average	1 g Average	
Left hand, Touch cheek, High frequency (See Fig.25)	0.349	0.490	0.011

Table 13: SAR Values (850MHz-Body) - with battery CAB31L0000C1

Limit of SAR (W/kg)	10 g Average 2.0	1g Average 1.6	Power	
Test Case		Measurement Result (W/kg)		
	10 g Average	1 g Average		
Body, Towards Ground, High frequency (See Fig.26)	0.639	0.893	-0.003	
Body, Towards Ground, Mid frequency (See Fig.27)	0.666	0.926	-0.014	
Body, Towards Ground, Low frequency (See Fig.28)	0.659	0.910	0.038	
Body, Towards Phantom, High frequency (See Fig.29)	0.343	0.475	-0.078	
Body, Towards Phantom, Mid frequency (See Fig.30)	0.332	0.457	-0.069	
Body, Towards Phantom, Low frequency (See Fig.31)	0.316	0.435	0.032	
Body, Towards Ground, Mid frequency with Headset_CCB3160A11C1 (See Fig.32)	0.516	0.747	0.111	
Body, Towards Ground, Mid frequency with Headset_CCB3160A11C4 (See Fig.33)	0.568	0.791	-0.039	

Table 14: SAR Values (1900MHz-Body) - with battery CAB31L0000C1

Limit of SAR (W/kg)	10 g Average	1g Average	Power	
Test Case		Measurement Result (W/kg)		
	10 g Average	1 g Average		
Body, Towards Ground, High frequency (See Fig.34)	0.245	0.401	0.024	
Body, Towards Ground, Mid frequency (See Fig.35)	0.272	0.455	0.031	
Body, Towards Ground, Low frequency (See Fig.36)	0.255	0.431	-0.079	
Body, Towards Phantom, High frequency (See Fig.37)	0.104	0.166	0.011	

Body, To	wards Phan	tom, Mid fre	0.112	0.179	-0.135			
Body, Towards Phantom, Low frequency (See Fig.39)						0.116	0.187	-0.036
Body, Towards Ground, Mid frequency with						0.262	0.437	0.039
Headset	_CCB3160 <i>A</i>	A11C1 (See		0.202	0.437	0.000		
Body,	Towards	Ground,	0.266	0.444	0.089			
Headset	_CCB3160 <i>A</i>	A11C4 (See		0.200	0.444	0.069		

Table 15: SAR Values (850MHz-Body) - with battery CAB31L0000C2

Limit of SAR (W/kg)	10 g Average	1g Average		
	2.0	1.6	Power	
Test Case		Measurement Result (W/kg)		
	10 g Average	1 g Average		
Body, Towards Ground, Mid frequency (See Fig.42)	0.600	0.857	-0.024	

7.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

The maximum SAR values are obtained at the case of GSM 850 Body, Towards Ground, Mid frequency (Table 13), and the value are: 0.666(10g), 0.926(1g).

8 Measurement Uncertainty

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient	В	0	R	$\sqrt{3}$	1	1	0	0	∞
	conditions-noise									
10	RF ambient	В	0	R	$\sqrt{3}$	1	1	0	0	∞
	conditions-reflection									
11	Probe positioned	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞

	mech. restrictions									
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test	sample related			•	•		l.	l		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phai	ntom and set-up									
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_{c}^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					18.5	18.2	

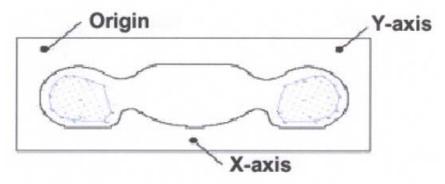
9 MAIN TEST INSTRUMENTS

Table 16: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	February 15, 2011	One year	
02	Power meter	NRVD	102083	September 11, 2011	One year	
03	Power sensor	NRV-Z5	100595	September 11, 2011	One year	
04	Signal Generator	E4438C	MY49070393	November 13, 2010	One Year	
05	Amplifier	VTL5400	0505	No Calibration Requested		
06	BTS	8960	MY48365192	November 18, 2010	One year	
07	E-field Probe	SPEAG ES3DV3	3149	September 24, 2011	One year	
08	DAE	SPEAG DAE4	771	November 21, 2010	One year	
09	Dipole Validation Kit	SPEAG D835V2	443	February 26, 2010	Two years	
10	Dipole Validation Kit	SPEAG D1900V2	541	February 26, 2010	Two years	

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:


Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 30 mm \times 30 mm \times 30 mm was assessed by measuring 7 \times 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

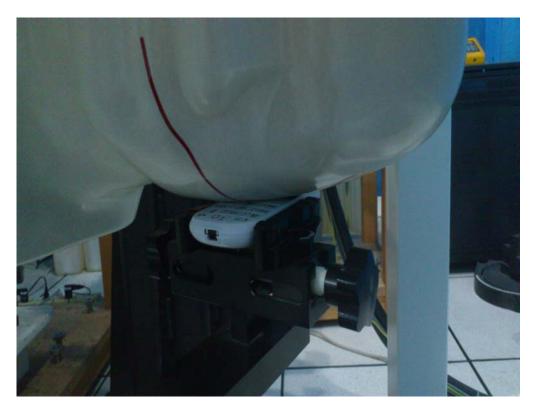
- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.


Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

Picture A: SAR Measurement Points in Area Scan

ANNEX B TEST LAYOUT

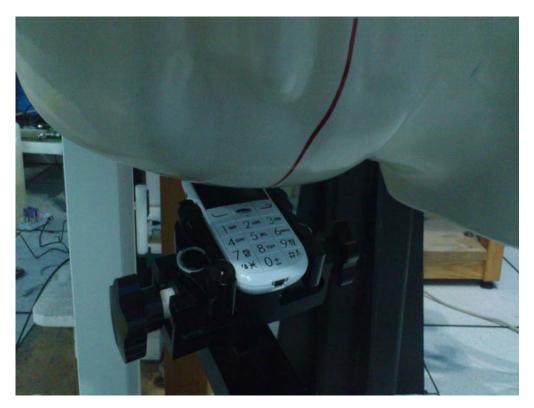
Picture B1: Specific Absorption Rate Test Layout



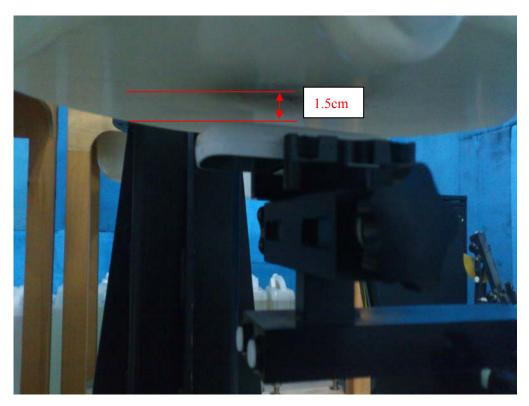
Picture B2: Liquid depth in the Flat Phantom (850 MHz)

Picture B3 Liquid depth in the Flat Phantom (1900MHz)

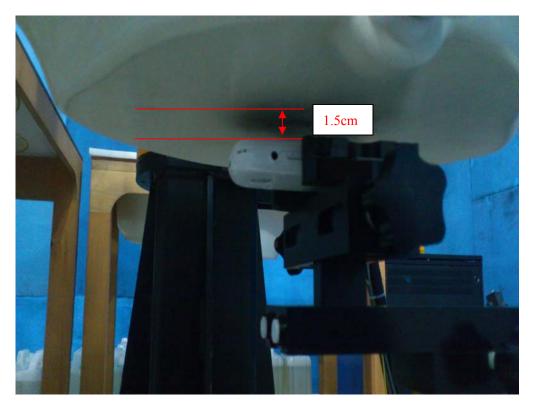
Picture B4: Left Hand Touch Cheek Position



Picture B5: Left Hand Tilt 15° Position



Picture B6: Right Hand Touch Cheek Position



Picture B7: Right Hand Tilt 15° Position

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B9: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B10: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2011-11-3 8:09:22 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 40.0$; $\rho = 1000 \text{ mHz}$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.542 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.648 W/kg

SAR(1 g) = 0.504 mW/g; SAR(10 g) = 0.357 mW/g

Maximum value of SAR (measured) = 0.529 mW/g

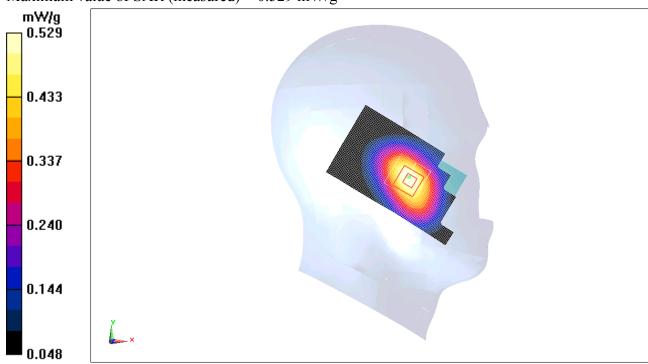


Fig. 1 850MHz CH251

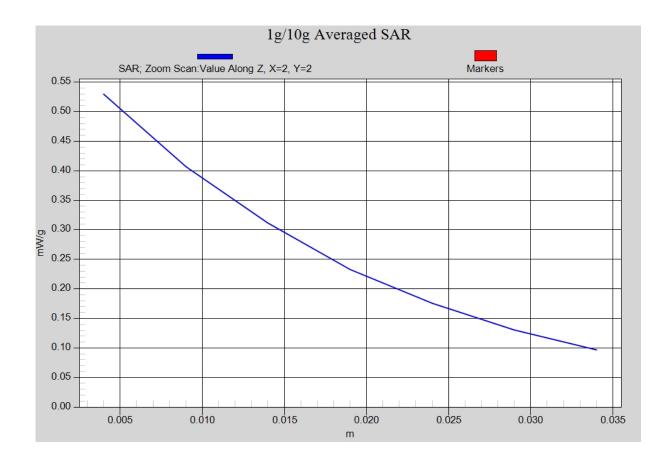


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

850 Left Cheek Middle

Date/Time: 2011-11-3 8:23:46 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 40.1$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.492 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.462 mW/g; SAR(10 g) = 0.330 mW/g

Maximum value of SAR (measured) = 0.487 mW/g

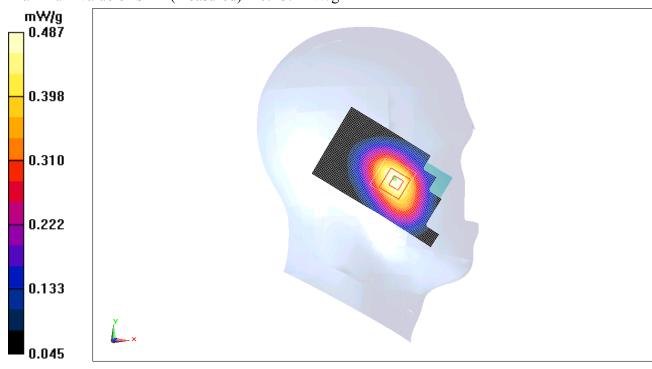


Fig. 2 850 MHz CH190

850 Left Cheek Low

Date/Time: 2011-11-3 8:38:05 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.441 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.536 W/kg

SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.297 mW/g

Maximum value of SAR (measured) = 0.438 mW/g

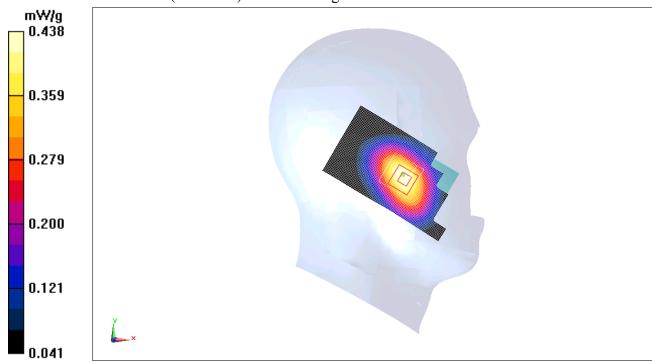


Fig. 3 850 MHz CH128

850 Left Tilt High

Date/Time: 2011-11-3 8:52:49 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 40.0$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.324 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = 0.00688 dB

Peak SAR (extrapolated) = 0.385 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.307 mW/g

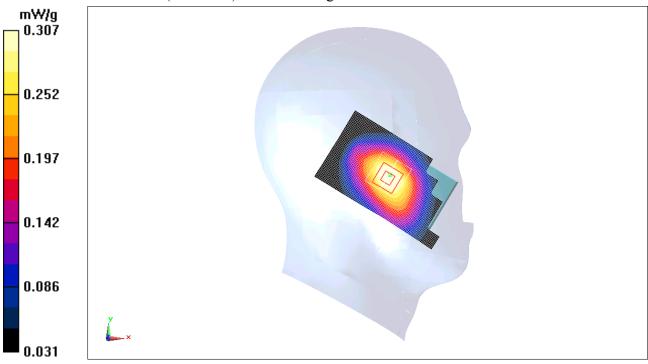


Fig.4 850 MHz CH251

850 Left Tilt Middle

Date/Time: 2011-11-3 9:07:10 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 40.1$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.306 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.202 mW/g

Maximum value of SAR (measured) = 0.290 mW/g

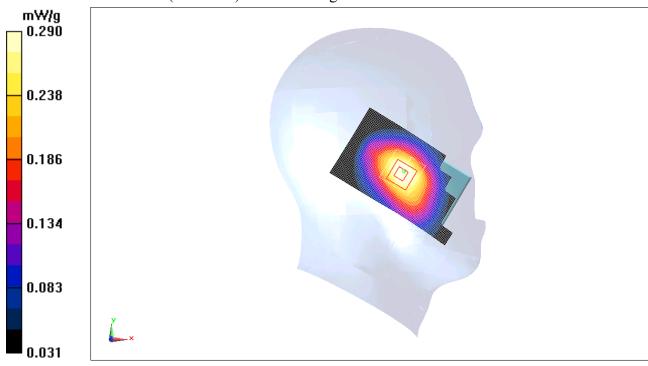


Fig.5 850 MHz CH190

850 Left Tilt Low

Date/Time: 2011-11-3 9:21:28 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.273 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.180 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

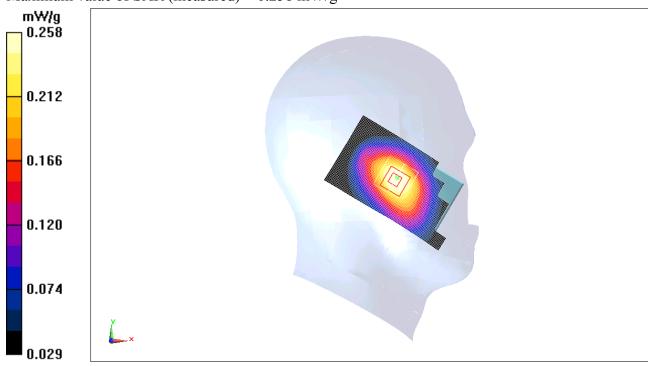


Fig. 6 850 MHz CH128

850 Right Cheek High

Date/Time: 2011-11-3 9:36:02 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 40.0$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.397 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.42 V/m; Power Drift = 0.197 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.277 mW/g

Maximum value of SAR (measured) = 0.405 mW/g

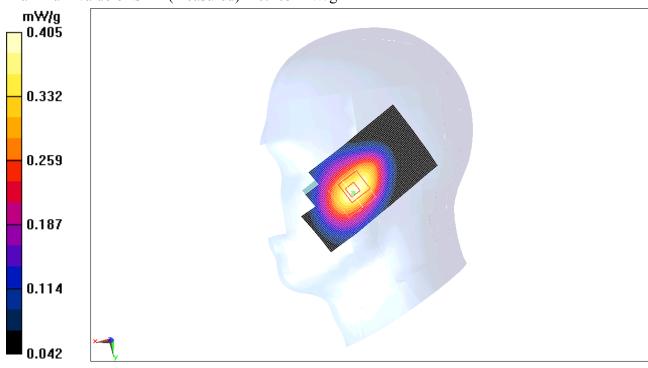


Fig. 7 850 MHz CH251

850 Right Cheek Middle

Date/Time: 2011-11-3 9:50:21 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 40.1$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.381 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.52 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.439 W/kg

SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.259 mW/g

Maximum value of SAR (measured) = 0.380 mW/g



Fig. 8 850 MHz CH190

850 Right Cheek Low

Date/Time: 2011-11-3 10:04:43

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.359 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.28 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.431 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.249 mW/g

Maximum value of SAR (measured) = 0.361 mW/g

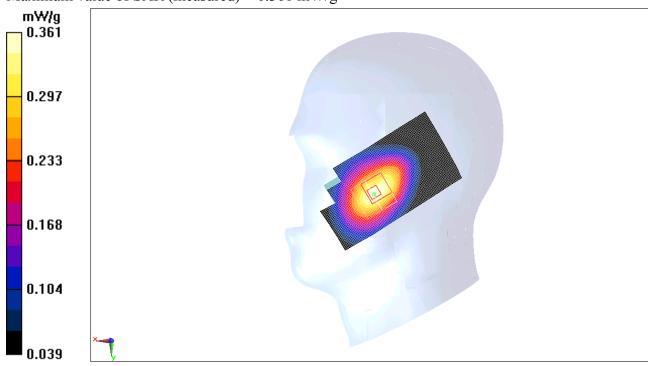


Fig. 9 850 MHz CH128

850 Right Tilt High

Date/Time: 2011-11-3 10:19:04

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 40.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.283 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = 0.00279 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.189 mW/g

Maximum value of SAR (measured) = 0.282 mW/g

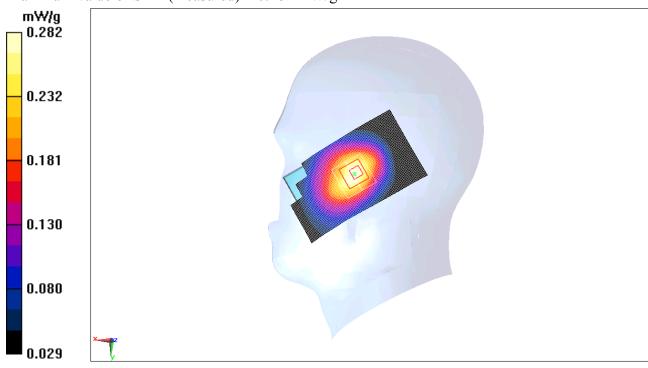


Fig.10 850 MHz CH251

850 Right Tilt Middle

Date/Time: 2011-11-3 10:33:25 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 40.1$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.266 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 0.321 W/kg

SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.181 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

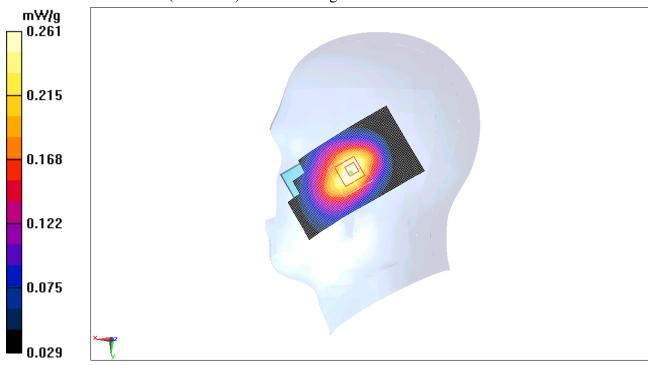


Fig.11 850 MHz CH190

850 Right Tilt Low

Date/Time: 2011-11-3 10:47:48 Electronics: DAE4 Sn771

Medium: Head 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.926 \text{ mho/m}$; $\epsilon r = 40.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.259 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.00688 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.174 mW/g

Maximum value of SAR (measured) = 0.260 mW/g

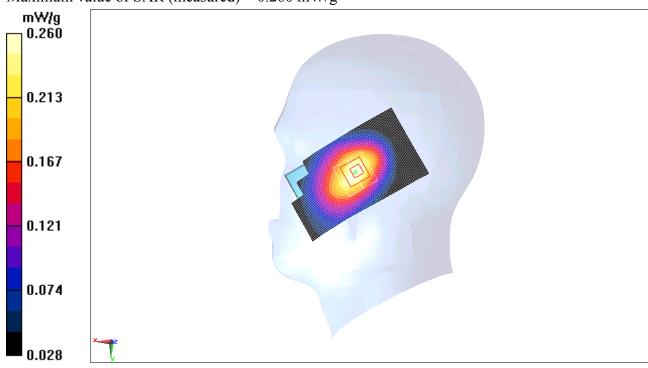


Fig. 12 850 MHz CH128

1900 Left Cheek High

Date/Time: 2011-11-4 8:10:23 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.437 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.57 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.257 mW/g

Maximum value of SAR (measured) = 0.429 mW/g

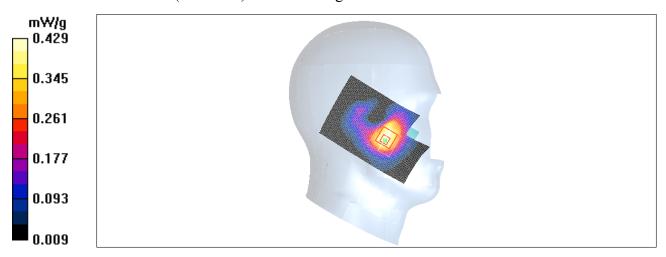


Fig. 13 1900 MHz CH810

1900 Left Cheek Middle

Date/Time: 2011-11-4 8:24:44 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.389 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.67 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.347 mW/g; SAR(10 g) = 0.223 mW/gMaximum value of SAR (measured) = 0.377 mW/g

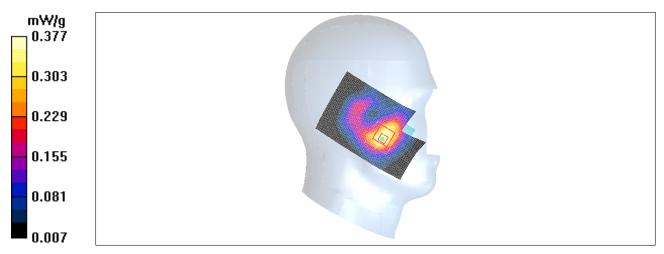


Fig. 14 1900 MHz CH661

1900 Left Cheek Low

Date/Time: 2011-11-4 8:39:03 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 41.0$; $\rho = 1.37$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.305 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = 0.059 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.274 mW/g; SAR(10 g) = 0.178 mW/g

Maximum value of SAR (measured) = 0.297 mW/g

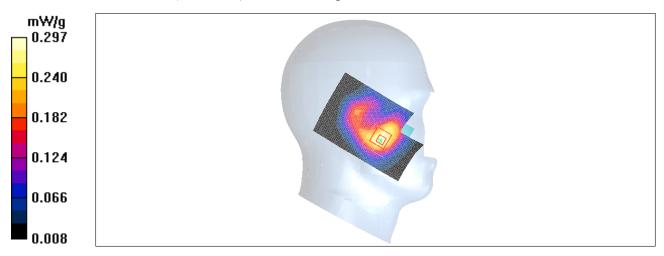


Fig. 15 1900 MHz CH512

1900 Left Tilt High

Date/Time: 2011-11-4 8:53:38 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.107 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.90 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.058 mW/g

Maximum value of SAR (measured) = 0.096 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.90 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.070 mW/g; SAR(10 g) = 0.046 mW/g

Maximum value of SAR (measured) = 0.074 mW/g

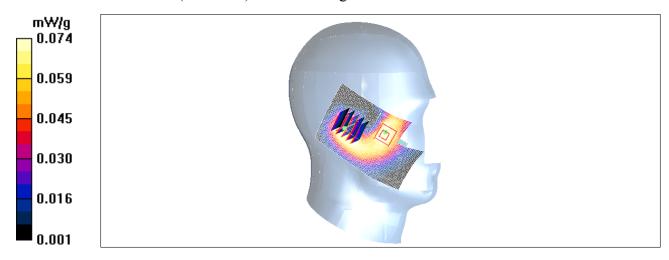


Fig.16 1900 MHz CH810

1900 Left Tilt Middle

Date/Time: 2011-11-4 9:07:58 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.178 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.21 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.142 mW/g; SAR(10 g) = 0.090 mW/g

Maximum value of SAR (measured) = 0.153 mW/g

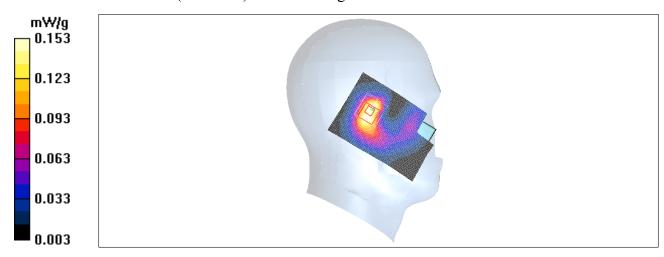


Fig. 17 1900 MHz CH661

1900 Left Tilt Low

Date/Time: 2011-11-4 9:22:20 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 41.0$; $\rho = 1.37$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.196 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.35 V/m; Power Drift = -0.156 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.162 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.175 mW/g

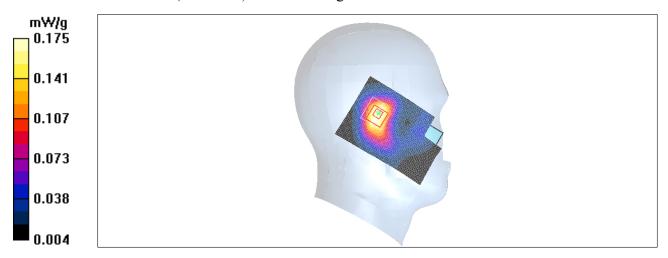


Fig. 18 1900 MHz CH512

1900 Right Cheek High

Date/Time: 2011-11-4 9:37:01 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.589 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.39 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.505 mW/g; SAR(10 g) = 0.322 mW/g

Maximum value of SAR (measured) = 0.538 mW/g

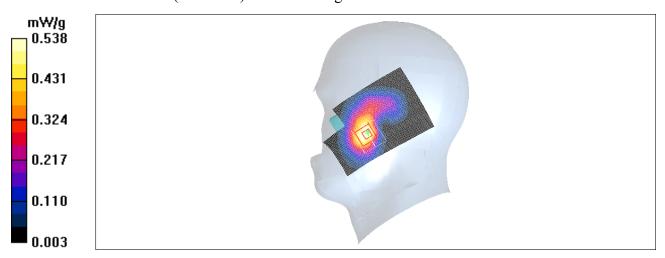


Fig. 19 1900 MHz CH810

Fig. 19-1 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Cheek Middle

Date/Time: 2011-11-4 9:51:24 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.558 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.25 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.693 W/kg

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.297 mW/g

Maximum value of SAR (measured) = 0.513 mW/g

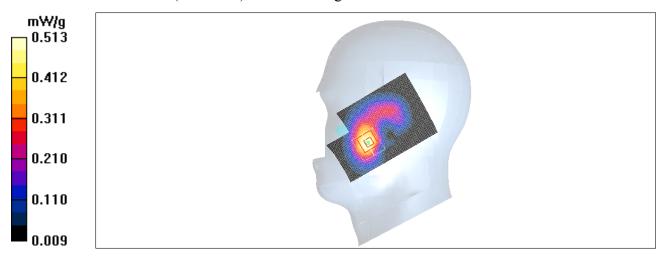


Fig. 20 1900 MHz CH661

1900 Right Cheek Low

Date/Time: 2011-11-4 10:05:46

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 41.0$; $\rho = 1.37$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.463 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.53 V/m; Power Drift = 0.096 dB

Peak SAR (extrapolated) = 0.592 W/kg

SAR(1 g) = 0.398 mW/g; SAR(10 g) = 0.238 mW/g

Maximum value of SAR (measured) = 0.428 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.53 V/m; Power Drift = 0.096 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.277 mW/g; SAR(10 g) = 0.178 mW/g

Maximum value of SAR (measured) = 0.300 mW/g

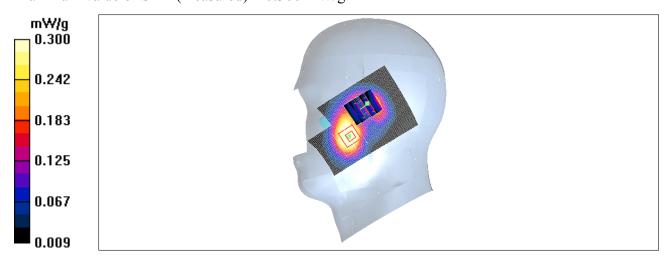


Fig. 21 1900 MHz CH512

1900 Right Tilt High

Date/Time: 2011-11-4 10:20:15 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.109 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.98 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.102 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.98 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.092 mW/g; SAR(10 g) = 0.059 mW/g

Maximum value of SAR (measured) = 0.095 mW/g

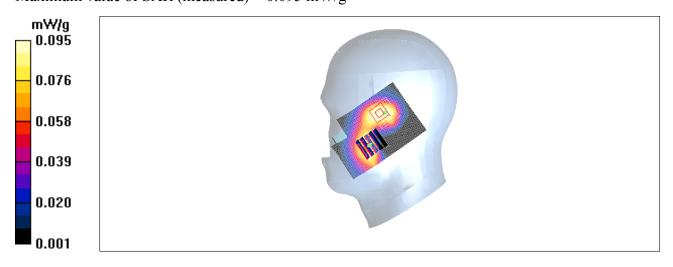


Fig. 22 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 2011-11-4 10:34:39

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.133 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.51 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 0.165 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.074 mW/g

Maximum value of SAR (measured) = 0.121 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.51 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.080 mW/g

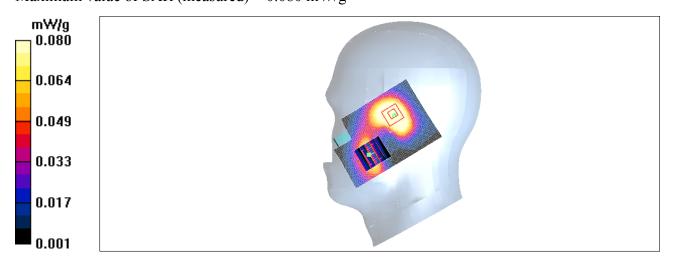


Fig.23 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 2011-11-4 10:48:55

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 41.0$; $\rho = 1.37$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.171 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.89 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.144 mW/g; SAR(10 g) = 0.096 mW/g

Maximum value of SAR (measured) = 0.152 mW/g

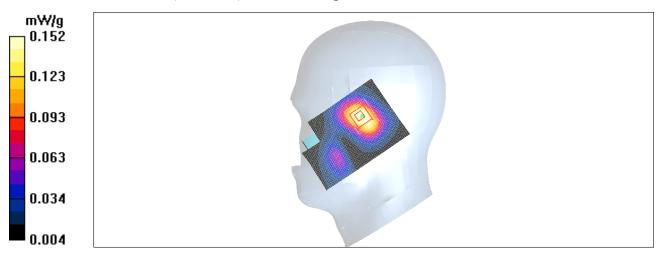


Fig.24 1900 MHz CH512

850 Left Cheek High with battery CAB31L0000C2

Date/Time: 2011-11-3 11:05:16

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 40.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.535 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.1 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.632 W/kg

SAR(1 g) = 0.490 mW/g; SAR(10 g) = 0.349 mW/g

Maximum value of SAR (measured) = 0.517 mW/g

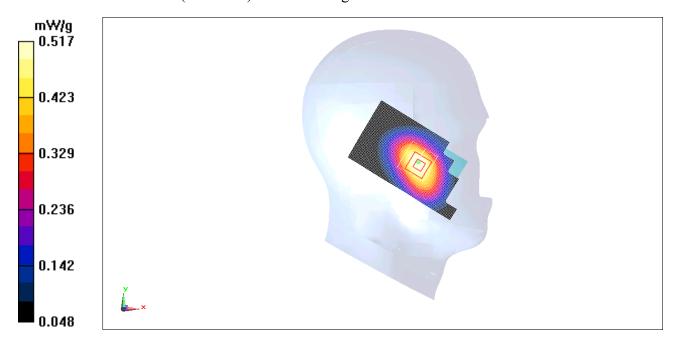


Fig. 25 850MHz CH251

850 Body Towards Ground High

Date/Time: 2011-11-3 13:52:33

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.97 \text{ mho/m}$; $\epsilon r = 53.8$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.985 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.893 mW/g; SAR(10 g) = 0.639 mW/g

Maximum value of SAR (measured) = 0.939 mW/g

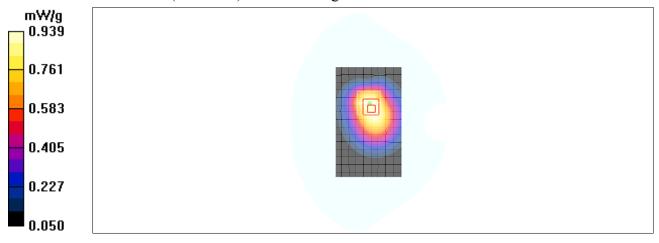


Fig. 26 850 MHz CH251

850 Body Towards Ground Middle

Date/Time: 2011-11-3 13:37:03

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 53.9$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.03 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 28.9 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.926 mW/g; SAR(10 g) = 0.666 mW/g

Maximum value of SAR (measured) = 0.969 mW/g

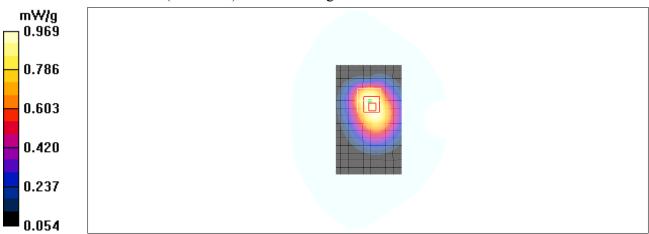


Fig. 27 850 MHz CH190

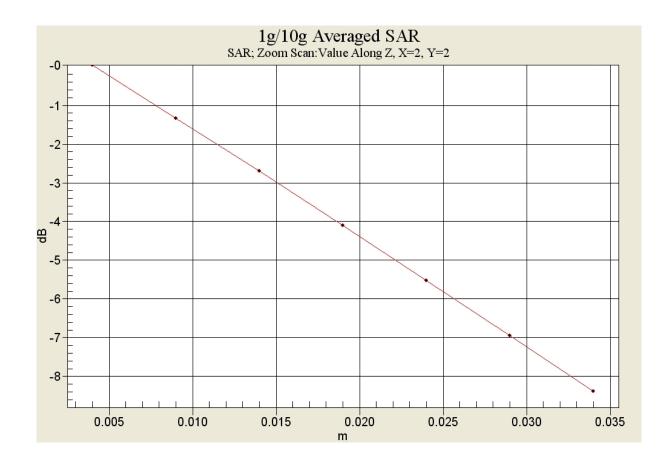


Fig. 27-1 Z-Scan at power reference point (850 MHz CH190)

850 Body Towards Ground Low

Date/Time: 2011-11-3 14:08:00

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943$ mho/m; $\epsilon r = 54.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.01 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.5 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.910 mW/g; SAR(10 g) = 0.659 mW/g

Maximum value of SAR (measured) = 0.950 mW/g

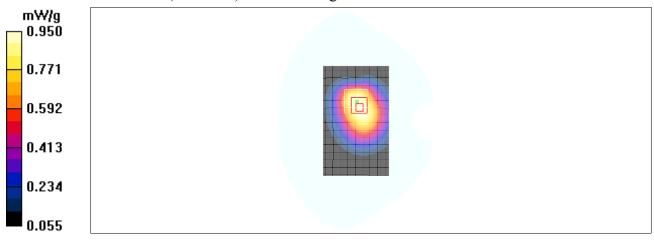


Fig. 28 850 MHz CH128

850 Body Towards Phantom High

Date/Time: 2011-11-3 14:23:49

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.97 \text{ mho/m}$; $\epsilon r = 53.8$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.505 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.7 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.475 mW/g; SAR(10 g) = 0.343 mW/g

Maximum value of SAR (measured) = 0.505 mW/g

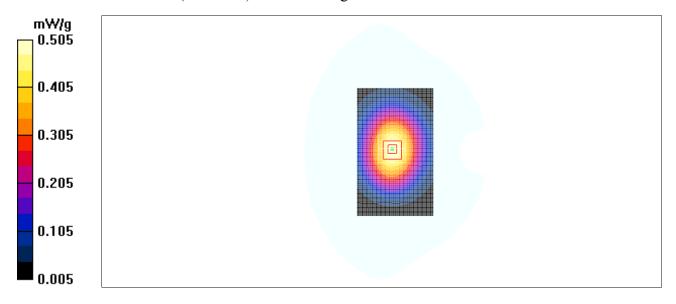


Fig. 29 850 MHz CH251

850 Body Towards Phantom Middle

Date/Time: 2011-11-3 14:39:22

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 53.9$; $\rho = 1000 \text{ mHz}$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.486 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 20.1 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 0.593 W/kg

SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.332 mW/g

Maximum value of SAR (measured) = 0.482 mW/g

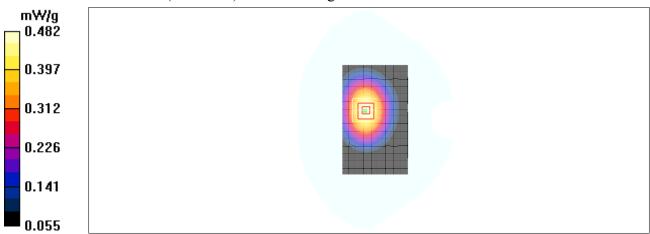


Fig. 30 850 MHz CH190

850 Body Towards Phantom Low

Date/Time: 2011-11-3 14:54:50

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943 \text{ mho/m}$; $\epsilon r = 54.0$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.459 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.6 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 0.565 W/kg

SAR(1 g) = 0.435 mW/g; SAR(10 g) = 0.316 mW/g

Maximum value of SAR (measured) = 0.459 mW/g

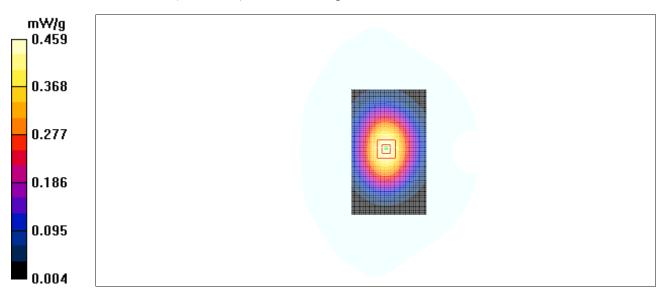


Fig. 31 850 MHz CH128

850 Body Towards Ground Middle with Headset CCB3160A11C1

Date/Time: 2011-11-3 15:11:26

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 53.9$; $\rho = 1000 \text{ mHz}$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.809 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.747 mW/g; SAR(10 g) = 0.516 mW/g

Maximum value of SAR (measured) = 0.783 mW/g

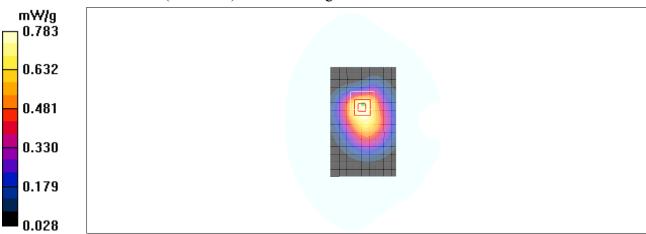


Fig. 32 850 MHz CH190

850 Body Towards Ground Middle with Headset CCB3160A11C4

Date/Time: 2011-11-3 15:28:51 Electronics: DAE4 Sn771

Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 53.9$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.844 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 28.8 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.791 mW/g; SAR(10 g) = 0.568 mW/g

Maximum value of SAR (measured) = 0.835 mW/g

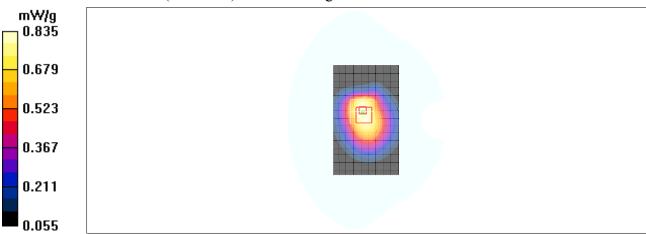


Fig. 33 850 MHz CH190

1900 Body Towards Ground High

Date/Time: 2011-11-4 13:35:11 Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.464 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.35 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.677 W/kg

SAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.245 mW/gMaximum value of SAR (measured) = 0.428 mW/g

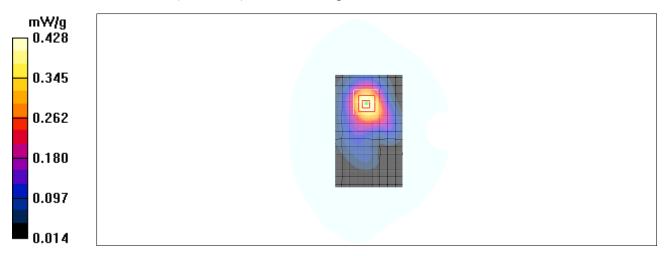


Fig. 34 1900 MHz CH810

1900 Body Towards Ground Middle

Date/Time: 2011-11-4 13:50:37

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.512 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 8.13 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.455 mW/g; SAR(10 g) = 0.272 mW/g

Maximum value of SAR (measured) = 0.483 mW/g

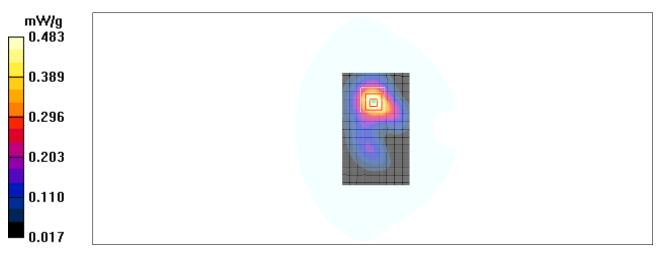


Fig. 35 1900 MHz CH661

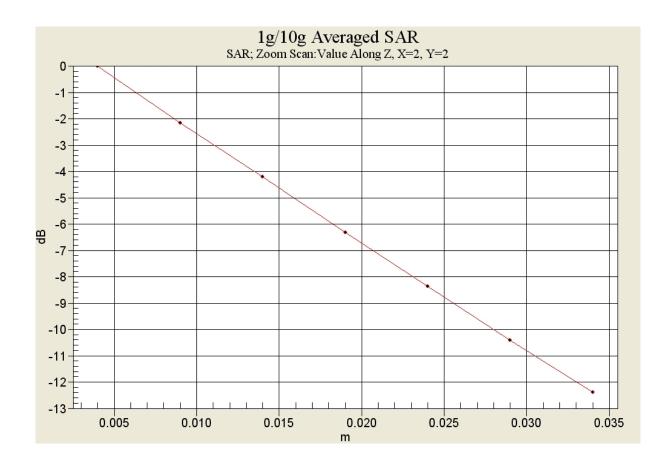


Fig. 35-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Towards Ground Low

Date/Time: 2011-11-4 14:06:02

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 52.3$; $\rho = 1.46$ mho/m; $\epsilon r = 52.3$; $\epsilon r = 52.3$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.485 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.32 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.255 mW/g

Maximum value of SAR (measured) = 0.467 mW/g

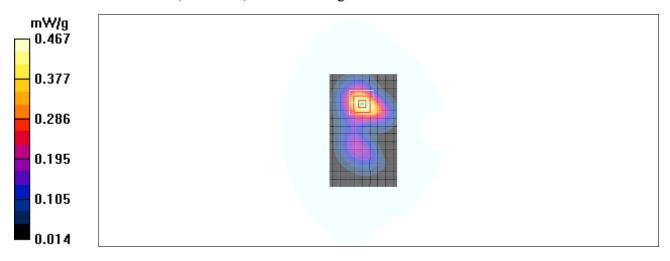


Fig. 36 1900 MHz CH512

1900 Body Towards Phantom High

Date/Time: 2011-11-4 14:21:26

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.182 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.25 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.265 W/kg

SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.104 mW/gMaximum value of SAR (measured) = 0.178 mW/g

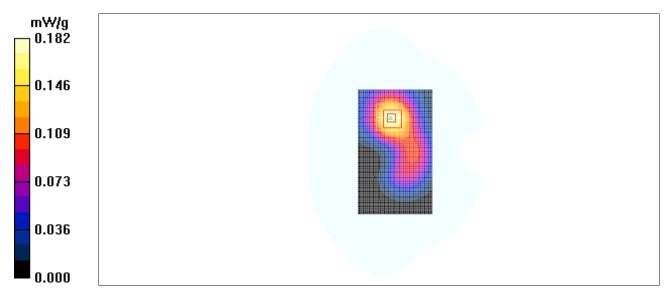


Fig. 37 1900 MHz CH810

1900 Body Towards Phantom Middle

Date/Time: 2011-11-4 14:36:51 Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.197 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.20 V/m; Power Drift = -0.135 dB

Peak SAR (extrapolated) = 0.283 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.112 mW/gMaximum value of SAR (measured) = 0.193 mW/g

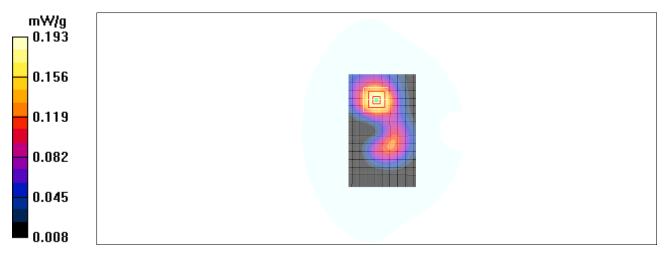


Fig. 38 1900 MHz CH661

1900 Body Towards Phantom Low

Date/Time: 2011-11-4 14:52:24

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 52.3$; $\rho = 1.46$ mho/m; $\epsilon r = 52.3$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Low/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.207 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.00 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.293 W/kg

SAR(1 g) = 0.187 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.202 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.00 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.084 mW/gMaximum value of SAR (measured) = 0.140 mW/g

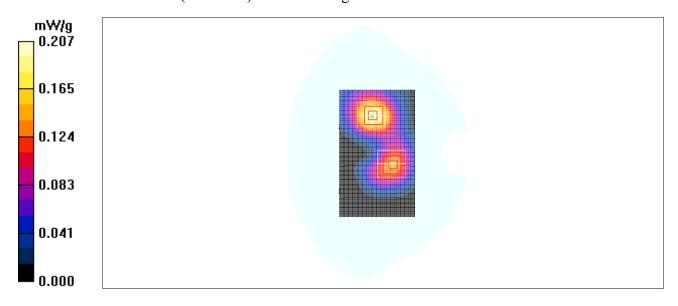


Fig. 39 1900 MHz CH512

1900 Body Towards Ground Middle with Headset CCB3160A11C1

Date/Time: 2011-11-4 15:09:35

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.494 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 8.20 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.262 mW/gMaximum value of SAR (measured) = 0.468 mW/g

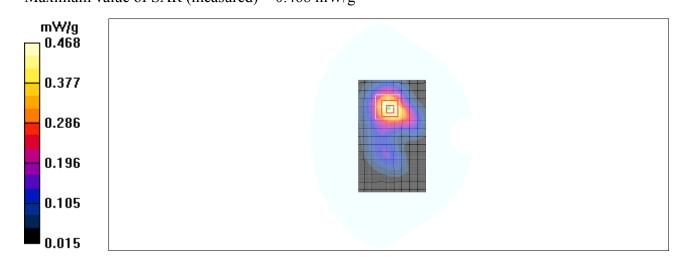


Fig. 40 1900 MHz CH661

1900 Body Towards Ground Middle with Headset CCB3160A11C4

Date/Time: 2011-11-4 15:26:42

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.501 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 8.43 V/m; Power Drift = 0.089 dB

Peak SAR (extrapolated) = 0.750 W/kg

SAR(1 g) = 0.444 mW/g; SAR(10 g) = 0.266 mW/gMaximum value of SAR (measured) = 0.476 mW/g

0.476

0.384

0.292

0.199

0.107

0.014

Fig. 41 1900 MHz CH661

850 Body Towards Ground Middle with battery CAB31L0000C2

Date/Time: 2011-11-3 15:45:46

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon r = 53.9$; $\rho = 1000 \text{ mHz}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.938 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.1 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.857 mW/g; SAR(10 g) = 0.600 mW/g

Maximum value of SAR (measured) = 0.902 mW/g

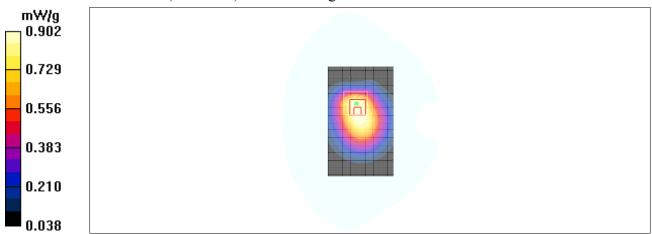


Fig. 42 850 MHz CH190

ANNEX D SYSTEM VALIDATION RESULTS

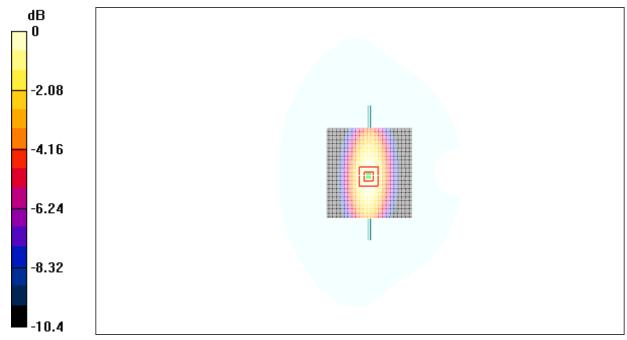
835MHz

Date/Time: 2011-11-3 7:29:31 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)


System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.52 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = 0.084 dB

Peak SAR (extrapolated) = 3.32 W/kg

SAR(1 g) = 2.30 mW/g; SAR(10 g) = 1.48 mW/gMaximum value of SAR (measured) = 2.46 mW/g

0 dB = 2.46 mW/g

Fig.43 validation 835MHz 250mW

835MHz

Date/Time: 2011-11-3 13:10:47

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.57 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = 0.108 dB

Peak SAR (extrapolated) = 3.30 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/gMaximum value of SAR (measured) = 2.42 mW/g

-2.08
-4.16
-6.24
-8.32
-10.4

0 dB = 2.42 mW/g

Fig.44 validation 835MHz 250mW

1900MHz

Date/Time: 2011-11-4 7:30:19 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.6 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 14.3 W/kg

SAR(1 g) = 9.65 mW/g; SAR(10 g) = 4.91 mW/gMaximum value of SAR (measured) = 10.2 mW/g

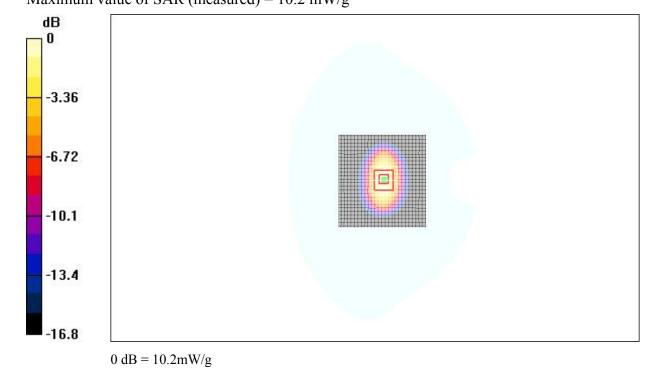


Fig.45 validation 1900MHz 250mW

1900MHz

Date/Time: 2011-11-4 13:08:27

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

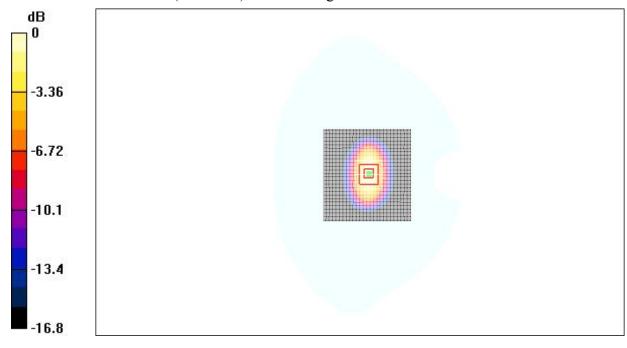
Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.4 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 91.9 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 15.1 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.15 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

0 dB = 10.7 mW/g

Fig.46 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION CERT	IFICATE							
Object ES		ES3DV3-SN: 3149						
potential and the second and the second contract of the second contr		QA CAL-01.v6 Calibration procedure for dosimetric E-field probes						
Calibration date:	Se	September 24, 2011						
Condition of the calibrated it	tem In	Tolerance						
Calibration Equipment used (N Primary Standards	1&TE critical for ca	libration) Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration					
A THE STREET	THE RESIDENCE OF THE PARTY OF T		atr Con					
Power meter E4419B	GB41293874	5-May-11 (METAS, NO. 251-00388)	May-12					
Power sensor E4412A	MY41495277	5-May-11 (METAS, NO. 251-00388)	May-12					
Reference 3 dB Attenuator	SN:S5054 (3c)	11-Aug-11 (METAS, NO. 251-00403)	Aug-12					
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-11 (METAS, NO. 251-00389)	May-12					
Reference 30 dB Attenuator DAE4	SN:S5129 (30b)	11-Aug-11 (METAS, NO. 251-00404)	Aug-12					
Reference Probe ES3DV2	SN:617 SN: 3013	10-Jun-11 (SPEAG, NO.DAE4-907_Jun11) 12-Jan-11 (SPEAG, NO. ES3-3013_Jan11)	Jun-12 Jan-12					
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration					
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-10)	In house check: Oct-11					
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-10)	In house check: Nov-11					
	Name	Function	Signature					
Calibrated by:	Katja Pokovic	Technical Manager	I Hafe					
Approved by:	Niels Kuster	Quality Manager	11					
	And in contrast of the last		Issued: September 24, 201					

Certificate No: ES3DV3-3149_Sep11 Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3DV3-3149_Sep11 Page 2 of 11

ES3DV3 SN: 3149 September 24, 2011

Probe ES3DV3

SN: 3149

Manufactured: June 12, 2007

Calibrated: September 24, 2011

Calibrated for DASY/EASY System

(Note: non-compatible with DASY2 system!)

Certificate No: ES3DV3-3149_Sep11 Page 3 of 11

ES3DV3 SN: 3149 September 24, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.14	1.23	1.29	±10.1%
$DCP(mV)^{B}$	94	95	91	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	300.0	±1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3DV3-3149_Sep11 Page 4 of 11

A The uncertainties of NormX, Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5 and 6).

B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

ES3DV3 SN: 3149 September 24, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149

Calibration Parameter Determined in Head Tissue Simulating Media

f[MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.90	6.56	6.56	6.56	0.91	1.13	±12.0%
900	41.5	0.97	6.34	6.34	6.34	0.83	1.26	±12.0%
1800	40.0	1.40	5.18	5.18	5.18	0.69	1.47	±12.0%
1900	40.0	1.40	5.03	5.03	5.03	0.72	1.38	±12.0%
2100	39.8	1.49	4.58	4.58	4.58	0.66	1.34	±12.0%
2450	39.2	1.80	4.35	4.35	4.35	0.67	1.36	±12.0%

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

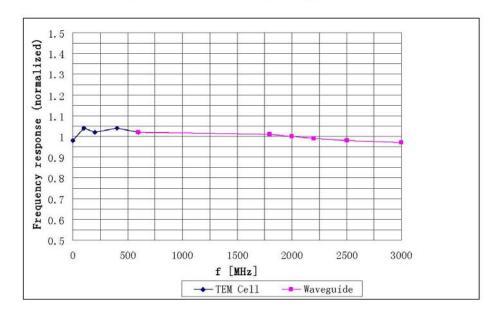
Certificate No: ES3DV3-3149_Sep11 Page 5 of 11

ES3DV3 SN: 3149 September 24, 2011

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3149

Calibration Parameter Determined in Body Tissue Simulating Media

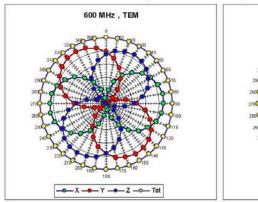
f[MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.97	6.22	6.22	6.22	0.76	1.26	±12.0%
900	55.0	1.05	6.02	6.02	6.02	0.99	1.06	±12.0%
1800	53.3	1.52	4.97	4.97	4.97	0.75	1.34	±12.0%
1900	53.3	1.52	4.68	4.68	4.68	0.62	1.33	±12.0%
2100	53.5	1.57	4.35	4.35	4.35	0.68	1.34	±12.0%
2450	52.7	1.95	4.13	4.13	4.13	0.71	1.35	±12.0%

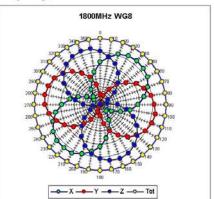

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

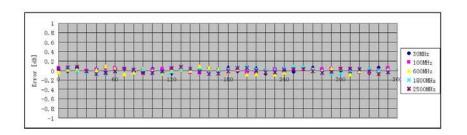
Certificate No: ES3DV3-3149_Sep11 Page 6 of 11

ES3DV3 SN: 3149 September 24, 2011

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

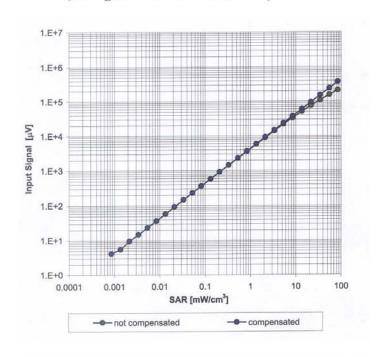

Uncertainty of Frequency Response of E-field: ±5.0% (k=2)

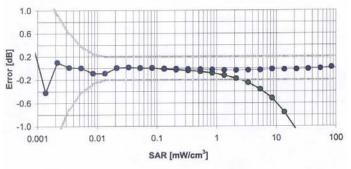

Certificate No: ES3DV3-3149_Sep11 Page 7 of 11



ES3DV3 SN: 3149 September 24, 2011

Receiving Pattern (ϕ), $\theta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)


Certificate No: ES3DV3-3149_Sep11 Page 8 of 11

ES3DV3 SN: 3149 September 24, 2011

Dynamic Range f(SAR_{head}) (Waveguide: WG8, f = 1800 MHz)

Uncertainty of Linearity Assessment: ±0.5% (k=2)

Certificate No: ES3DV3-3149_Sep11 Page 9 of 11