No.2011SAR00088 Page 1 of 108

No. 2011SAR00088

For

TCT Mobile Limited

GSM dual band mobile phone

U11 Color US

one touch 217A

With

Hardware Version: Proto

Software Version: V210

FCCID: RAD200

Issued Date: 2011-07-20

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. <u>www.emcite.com</u>

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

1 TEST LABORATORY	3
1.1 TESTING LOCATION	3
1.2 Testing Environment	
1.3 PROJECT DATA	
1.4 Signature	
2 CLIENT INFORMATION	4
2.1 Applicant Information	
2.2 MANUFACTURER INFORMATION	
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1 About EUT	
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
4 CHARACTERISTICS OF THE TEST	6
4.1 APPLICABLE LIMIT REGULATIONS	
4.2 APPLICABLE MEASUREMENT STANDARDS	6
5 OPERATIONAL CONDITIONS DURING TEST	7
5.1 Schematic Test Configuration	
5.2 SAR MEASUREMENT SET-UP	
5.3 DASY4 E-FIELD PROBE SYSTEM	
5.4 E-FIELD PROBE CALIBRATION	
5.6 Equivalent Tissues	
5.7 System Specifications	
6 CONDUCTED OUTPUT POWER MEASUREMENT	12
6.1 SUMMARY	12
6.2 Conducted Power	12
7 TEST RESULTS	13
7.1 Dielectric Performance	13
7.2 System Validation	
7.3 EVALUATION OF MULTI-BATTERIES.	
7.4 Summary of Measurement Results 7.5 Conclusion	
8 MEASUREMENT UNCERTAINTY	
9 MAIN TEST INSTRUMENTS	
	-
ANNEX A MEASUREMENT PROCESS	
ANNEX C GRAPH RESULTS	
ANNEX D SYSTEM VALIDATION RESULTS	
ANNEX E PROBE CALIBRATION CERTIFICATE	-
ANNEX F DIPOLE CALIBRATION CERTIFICATE	91

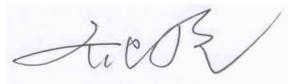
1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω


Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	July 7, 2011
Testing End Date:	July 8, 2011

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Limited	
Address /Post:	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,	
Address /Post.	Pudong Area Shanghai, P.R. China. 201203	
City:	Shanghai	
Postal Code:	201203	
Country:	P. R. China	
Telephone:	0086-21-61460890	
Fax:	0086-21-61460602	

2.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address (Dest	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P. R. China
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description:	GSM dual band mobile phone
Model Name:	U11 Color US
Marketing Name:	one touch 217A
Frequency Band:	GSM 850 / PCS 1900

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	012808000000135	Proto	V210
	012808000000176		

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB2170000C1	/	BYD
AE2	Battery	CAB229A000C1	/	BAK
AE3	Battery	CAB30M0000C1	/	BYD
AE4	Battery	CAB30M0000C2	/	BAK
AE5	Battery	CAB30B4000C1	/	BYD
AE6	Headset	CCA23L0A10C1	/	LianYun
AE6	Headset	CCA23L0A10C2	/	JuWei
AE6	Headset	CCA23L0A15C1	/	LianYun
AE6	Headset	CCA23L0A15C2	/	JuWei

*AE ID: is used to identify the test sample in the lab internally.

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

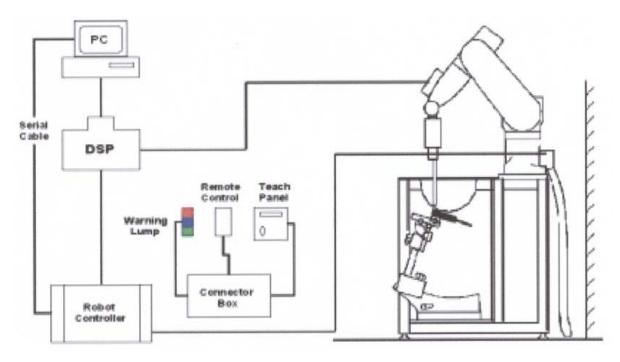
OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.


The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core	
	Interleaved sensors	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL	
	1810	
	Additional CF for other liquids and frequencies	
	upon request	

Picture 3: ES3DV3 E-field

No.2011SAR00088 Page 9 of 108

10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz) Frequency ± 0.2 dB in HSL (rotation around probe axis) Directivity ± 0.3 dB in tissue material (rotation normal to probe axis) 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB Dynamic Range Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm Application General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones

Picture4:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),
 ∆T = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

Picture 5: Device Holder

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum

exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0. l mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AvailableSpecial

Picture 6: Generic Twin Phantom

5.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

MIXTURE %	FREQUENCY 850MHz	
Water	41.45	
Sugar	56.0	
Salt	1.45	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ=0.92	

Table 1. Composition of the Head Tissue Equivalent Matter

MIXTURE %	FREQUENCY 1900MHz	
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40	
Table 2. Composition of the Body Tissue Equivalent Matter		

MIXTURE %	FREQUENCY 850MHz				
Water	52.5				
Sugar	45.0				
Salt	1.4				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.99				
MIXTURE %	FREQUENCY 1900MHz				
Water	69.91				
Glycol monobutyl	29.96				
Salt	0.13				
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52				

5.7 System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L Repeatability: ±0.02 mm No. of Axis: 6 Data Acquisition Electronic (DAE) System <u>Cell Controller</u> Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 <u>Data Converter</u> Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

6 CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

6.2 Conducted Power

6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with CMU200. These measurements were done at low, middle and high channels.

6.2.2 Measurement result

The conducted power for GSM 850/1900 is as following:

	•						
GSM	Conducted Power (dBm)						
850MHZ	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 128(824.2MHz)						
	32.61	32.55	32.56				
GSM	Conducted Power (dBm)						
1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
	30.36	30.36	30.45				

6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 10 to Table 21 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 TEST RESULTS

7.1 Dielectric Performance

Table 4: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 38%.								
Liquid temperature during the test: 22.5°C								
Measurement Date : 850 MHz July 7, 2011 1900 MHz July 8, 2011								
/ Frequency Permittivity ε Conductivity σ (S/m)								
Townstown	835 MHz	41.5	0.90					
Target value	1900 MHz	40.0	1.40					
Measurement value	835 MHz	41.8	0.91					
(Average of 10 tests) 1900 MHz 39.7 1.37								
Table 5: Dialactric Porform	anaa of Body Tioou	o Simulating Liquid						

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 38%.

Liquid temperature during the test: 22.5°C

Measurement Date : 850 MHz July 7, 2011 1900 MHz July 8, 2011

<u>·····································</u>						
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835 MHz	55.2	0.97			
Target value	1900 MHz	53.3	1.52			
Measurement value	835 MHz	53.8	0.95			
(Average of 10 tests)	1900 MHz	53.1	1.51			

7.2 System Validation

Table 6: System Validation of Head

Measurement is made at temperature 23.0 °C and relative humidity 38%.							
Liquid temper	Liquid temperature during the test: 22.5°C						
Measurement Date : 850 MHz July 7, 2011 1900 MHz July 8, 2011 Dipole Frequency Permittivity ε Conductivity σ (S/m)							
	calibration	835	MHz	41	.6	0.9	92
Liquid	-		1900 MHz		39.6		40
parameters	Actural	835	MHz	41	.8	0.9	91
	Measurement value	1900	MHz	39).7	1.3	37
	Frequency	Target value Mo (W/kg)		Measure (W/	ed value kg)	Devia	ation
Verification results		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average
	835 MHz	6.12	9.41	6.22	9.75	1.63%	3.61%
	1900 MHz	20.1	39.4	19.79	39.21	-1.54%	-0.48%

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

Table 7: System Validation of Body

	ystern vandation	0.2049						
Measurement is made at temperature 23.0 °C and relative humidity 38%.								
Liquid temper	Liquid temperature during the test: 22.5°C							
Measuremen	t Date : 850 MHz	July 7, 201 [,]	<u>1</u> 1900 M	Hz July 8, 2	<u>011</u>			
DipoleFrequencyPermittivity εConductivity σ (S/m)								
	calibration	835	MHz	54	.5	0.9	97	
Liquid	Target value	1900	MHz	52	2.5	1.5	51	
parameters	Actural	835	MHz	53	8.8	0.9	95	
Measureme value		1900 MHz		53.1		1.51		
	Frequency	•	Target valueMeasured value(W/kg)(W/kg)		Devia	ation		
Verification results		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
localio	835 MHz	6.24	9.57	6.14	9.49	-1.60%	-0.84%	
	1900 MHz	20.9	41.4	20.69	41.0	-1.00%	-0.97%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

7.3 Evaluation of Multi-Batteries

Table 8: Pretest SAR Values (GSM 850 MHz Band-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	
Test Case	Measurement Result (W/kg)		
	10 g Average	1 g Average	
Right hand, Touch cheek, Top frequency (CAB30M0000C2)	0.750	1.1	
Right hand, Touch cheek, Top frequency (CAB2170000C1)	0.745	1.08	
Right hand, Touch cheek, Top frequency (CAB229A000C1)	0.745	1.09	
Right hand, Touch cheek, Top frequency (CAB30M0000C1)	0.743	1.08	
Right hand, Touch cheek, Top frequency (CAB30B4000C1)	0.740	1.08	

Note: According to the values in the above table, the battery, CAB30M0000C2, is the normal battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 9: Pretest SAR Values (GSM 850 MHz Band-Body)

Limit of SAR (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	
Test Case	Measurement Result (W/kg)		
	10 g Average	1 g Average	
Body, Towards Ground, Mid frequency (CAB30M0000C2)	0.496	0.719	

Body, Towards Ground, Mid frequency (CAB2170000C1)	0.492	0.714
Body, Towards Ground, Mid frequency (CAB229A000C1)	0.493	0.714
Body, Towards Ground, Mid frequency (CAB30M0000C1)	0.458	0.661
Body, Towards Ground, Mid frequency (CAB30B4000C1)	0.457	0.660

Note: According to the values in the above table, the battery, CAB30M0000C2, is the normal battery. We'll perform the body measurement with this battery and retest on highest value point with others.

7.4 Summary of Measurement Results

Table 10: SAR Values (850MHz-Head) - with battery CAB30M0000C2

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	Power
Test Case	Measurem	ent Result	Drift
	(W)	′kg)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency (See Fig.1)	0.750	1.08	0.020
Left hand, Touch cheek, Mid frequency (See Fig.2)	0.734	1.05	-0.031
Left hand, Touch cheek, Bottom frequency (See Fig.3)	0.719	1.02	-0.023
Left hand, Tilt 15 Degree, Top frequency (See Fig.4)	0.296	0.410	0.076
Left hand, Tilt 15 Degree, Mid frequency (See Fig.5)	0.295	0.405	-0.155
Left hand, Tilt 15 Degree, Bottom frequency (See Fig.6)	0.295	0.407	-0.034
Right hand, Touch cheek, Top frequency (See Fig.7)	0.750	1.1	-0.101
Right hand, Touch cheek, Mid frequency (See Fig.8)	0.741	1.08	-0.025
Right hand, Touch cheek, Bottom frequency (See Fig.9)	0.742	1.08	-0.025
Right hand, Tilt 15 Degree, Top frequency (See Fig.10)	0.299	0.420	-0.00786
Right hand, Tilt 15 Degree, Mid frequency (See Fig.11)	0.308	0.430	-0.039
Right hand, Tilt 15 Degree, Bottom frequency (See Fig.12)	0.317	0.441	0.00159

Table 11: SAR Values (1900MHz-Head) - with battery CAB30M0000C2

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
Test Case	2.0 1.6 Measurement Result (W/kg)		Drift (dB)
	10 g Average	1 g Average	
Left hand, Touch cheek, Top frequency (See Fig.13)	0.459	0.760	0.147
Left hand, Touch cheek, Mid frequency (See Fig.14)	0.464	0.758	-0.147
Left hand, Touch cheek, Bottom frequency (See Fig.15)	0.465	0.753	-0.056

No.2011SAR00088 Page 16 of 108

0.271	0.449	0.021
0.281	0.459	-0.056
0.261	0.423	-0.003
0.534	0.890	-0.128
0.540	0.892	0.018
0.554	0.915	0.067
0.294	0.488	0.056
0.294	0.481	0.049
0.287	0.466	0.036
	0.281 0.261 0.534 0.540 0.554 0.294 0.294	0.281 0.459 0.261 0.423 0.534 0.890 0.540 0.892 0.554 0.915 0.294 0.488 0.294 0.481

Table 12: SAR Values (850MHz-Head) - with battery CAB2170000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Bower	
	2.0 1.6		Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(00)	
Right hand, Touch cheek, Mid frequency (See Fig.25)	0.745	1.08	-0.021	

Table 13: SAR Values (850MHz-Head) - with battery CAB229A000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Dowor	
Limit of SAR (W/Rg)	2.0 1.6		Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(ub)	
Right hand, Touch cheek, Mid frequency (See Fig.26)	0.745	1.09	0.059	
	-	-		

Table 14: SAR Values (850MHz-Head) - with battery CAB30M0000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Bower	
Limit of SAR (W/Rg)	2.0 1.6		Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(ub)	
Right hand, Touch cheek, Mid frequency (See Fig.27)	0.743	1.08	0.012	

Table 15: SAR Values (850MHz-Head) - with battery CAB30B4000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Dowor	
	2.0 1.6		Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(00)	
Right hand, Touch cheek, Mid frequency (See Fig.28)	0.740	1.08	-0.034	

Table 16: SAR Values (850MHz-Body) - with battery CAB30M0000C2

Limit of SAD (M/kg)	10 g Average	1g Average			
Limit of SAR (W/kg)	2.0	1.6	Power		
- 10	Measurement	Drift			
Test Case	10 g Average	1 g	(dB)		
	io g Atolugo	Average			
Body, Towards Ground, Top frequency (See Fig.29)	0.493	0.717	-0.062		
Body, Towards Ground, Mid frequency (See Fig.30)	0.496	0.719	-0.049		

Body, Towards Ground, Bottom frequency (See Fig.31)	0.493	0.714	-0.004
Body, Towards Phantom, Top frequency (See Fig.32)	0.396	0.574	-0.146
Body, Towards Phantom, Mid frequency (See Fig.33)	0.410	0.594	-0.100
Body, Towards Phantom, Bottom frequency (See Fig.34)	0.406	0.587	-0.010
Body, Towards Ground, Mid frequency with Headset CCA23L0A10C1(See Fig.35)	0.386	0.562	0.032
Body, Towards Ground, Mid frequency with Headset CCA23L0A15C2(See Fig.36)	0.418	0.604	0.022

Table 17: SAR Values (1900MHz-Body) - with battery CAB30M0000C2

Limit of SAR (W/kg)	10 g Average 2.0	Power	
Test Case	Measurem (W/	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Ground, Top frequency (See Fig.37)	0.303	0.509	-0.048
Body, Towards Ground, Mid frequency (See Fig.38)	0.314	0.526	-0.096
Body, Towards Ground, Bottom frequency (See Fig.39)	0.334	0.558	-0.154
Body, Towards Phantom, Top frequency (See Fig.40)	0.166	0.269	-0.139
Body, Towards Phantom, Mid frequency (See Fig.41)	0.164	0.264	-0.097
Body, Towards Phantom, Bottom frequency (See Fig.42)	0.178	0.286	-0.058
Body, Towards Ground, Bottom frequency with Headset CCA23L0A10C1(See Fig.43)	0.326	0.548	-0.009
Body, Towards Ground, Bottom frequency with Headset CCA23L0A15C2(See Fig.44)	0.330	0.553	-0.125

Table 18: SAR Values (850MHz- Body) - with battery CAB2170000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Dever	
	2.0	1.6	Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(00)	
Body, Towards Ground, Mid frequency (See Fig.45)	0.492	0.714	-0.011	

Table 19: SAR Values (850MHz- Body) - with battery CAB229A000C1

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average 1.6	Power
Test Case	Measurement	Drift (dB)	
	10 g Average	1 g Average	(00)
Body, Towards Ground, Mid frequency (See Fig.46)	0.493	0.714	0.022

Table 20: SAR Values (850MHz- Body) - with battery CAB30M0000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
	2.0	1.6	Drift
Test Case	Measurement	(dB)	
	10 g Average	1 g Average	(ub)
Body, Towards Ground, Mid frequency (See Fig.47)	0.458	0.661	-0.096
Table 21: SAR Values (850MHz- Body) - with batter	y CAB30B40000	21	
Limit of SAR (W/kg)	10 g Average	1 g Average	Devier
Limit of SAR (W/kg)	2.0	1.6	Power Drift
Test Case	Measurement	Result (W/kg)	(dB)
	10 g Average	1 g Average	(ub)
Body, Towards Ground, Mid frequency (See Fig.48)	0.457	0.660	-0.003

7.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

The maximum SAR values are obtained at the case of **GSM 850 Head**, **Right hand**, **Touch cheek**, **Top frequency (See Fig.7)**, and the value are: **0.750(10g)**, **1.1(1g)**.

8 Measurement Uncertainty

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	Measurement system									
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	œ
12	Probe positioning	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞

					1	1			1	1
	with respect to									
	phantom shell									
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	x
Test	sample related									
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	00
Phar	ntom and set-up									
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	x
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	x
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257
-	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					18.5	18.2	

9 MAIN TEST INSTRUMENTS

Table 22: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	HP 8753E	US38433212	August 4,2010	One year
02	Power meter	NRVD	102083	September 11, 2010	One year
03	Power sensor	NRV-Z5	100542		
04	Signal Generator	E4438C	MY49070393	November 13, 2010	One Year
05	Amplifier	VTL5400	0505	No Calibration Requested	
06	BTS	8960	MY48365192	November 18, 2010	One year
07	E-field Probe	SPEAG ES3DV3	3149	September 25, 2010	One year
08	DAE	SPEAG DAE4	771	November 21, 2010	One year
09	Dipole Validation Kit	SPEAG D835V2	443	February 26, 2010	Two years
10	Dipole Validation Kit	SPEAG D1900V2	541	February 26, 2010	Two years

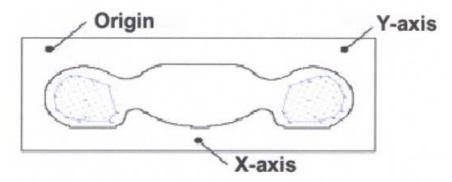
END OF REPORT BODY

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.


Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

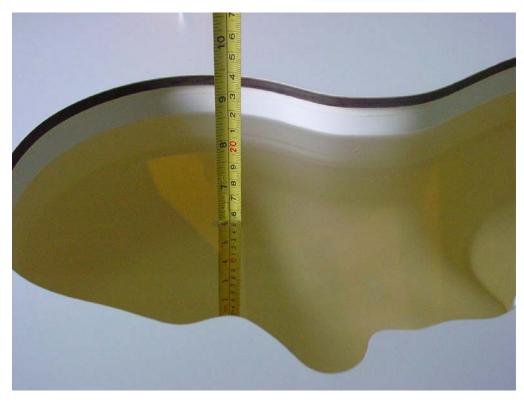
a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

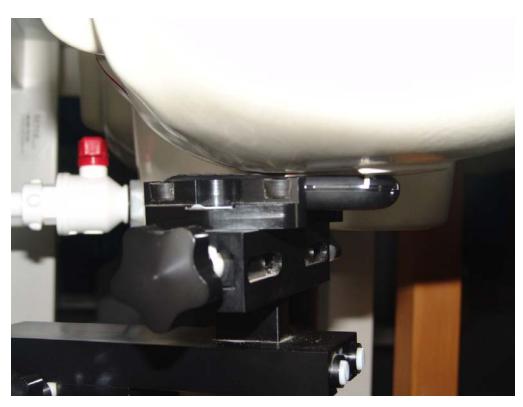
Picture A: SAR Measurement Points in Area Scan



No.2011SAR00088 Page 21 of 108

ANNEX B TEST LAYOUT

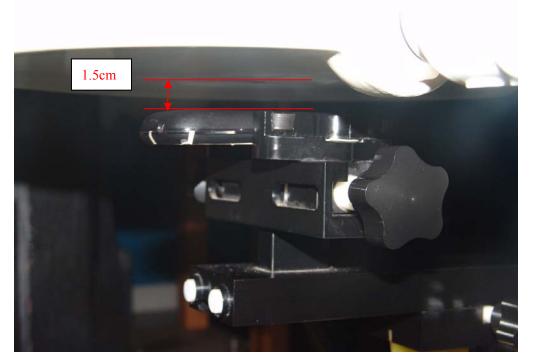
Picture B1: Specific Absorption Rate Test Layout



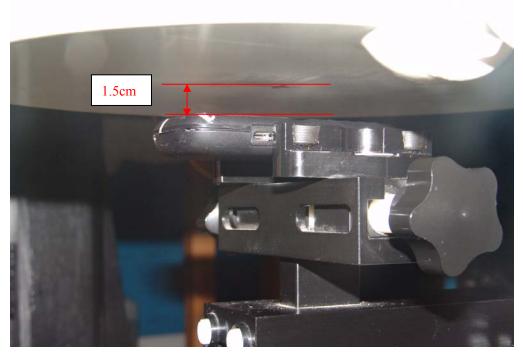
Picture B2: Liquid depth in the Flat Phantom (850 MHz)

Picture B3 Liquid depth in the Flat Phantom (1900MHz)

Picture B4: Left Hand Touch Cheek Position


Picture B5: Left Hand Tilt 15° Position

Picture B6: Right Hand Touch Cheek Position

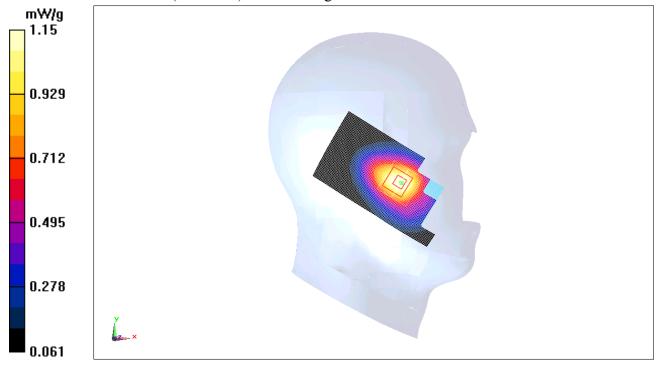


Picture B7: Right Hand Tilt 15° Position

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B9: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B10: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

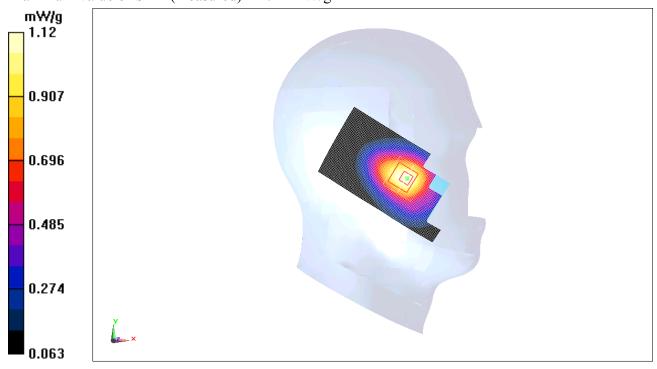

ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2011-7-7 8:01:07 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.19 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.6 V/m; Power Drift = 0.020 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.751 mW/gMaximum value of SAR (measured) = 1.15 mW/g


850 Left Cheek Middle

Date/Time: 2011-7-7 8:17:58 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.14 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.031 dBPeak SAR (extrapolated) = 1.42 W/kgSAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.734 mW/gMaximum value of SAR (measured) = 1.12 mW/g

850 Left Cheek Low

Date/Time: 2011-7-7 8:32:24 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.11 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 1.37 W/kg SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.719 mW/gMaximum value of SAR (measured) = 1.08 mW/g

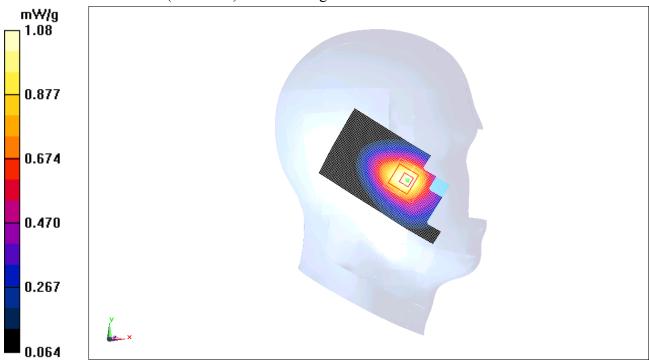


Fig. 3 850 MHz CH128

850 Left Tilt High

Date/Time: 2011-7-7 8:50:07 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.441 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.1 V/m; Power Drift = 0.076 dB Peak SAR (extrapolated) = 0.546 W/kg

SAR(1 g) = 0.410 mW/g; SAR(10 g) = 0.296 mW/g

Maximum value of SAR (measured) = 0.430 mW/g

Fig.4 850 MHz CH251

850 Left Tilt Middle

Date/Time: 2011-7-7 9:15:34 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.436 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 12.4 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.405 mW/g; SAR(10 g) = 0.295 mW/g

Maximum value of SAR (measured) = 0.429 mW/g

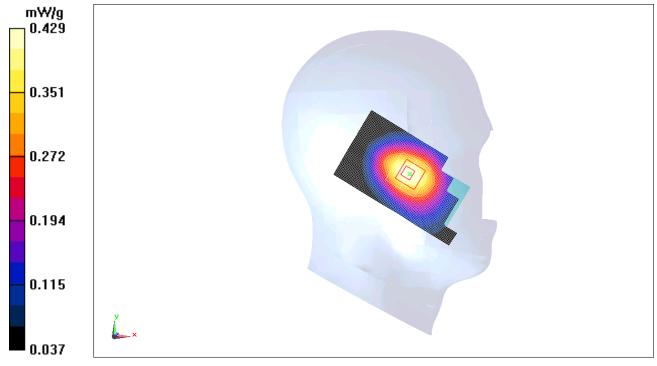


Fig.5 850 MHz CH190

850 Left Tilt Low

Date/Time: 2011-7-7 9:31:43 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.433 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.6 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 0.527 W/kg SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.295 mW/g Maximum value of SAR (measured) = 0.432 mW/g

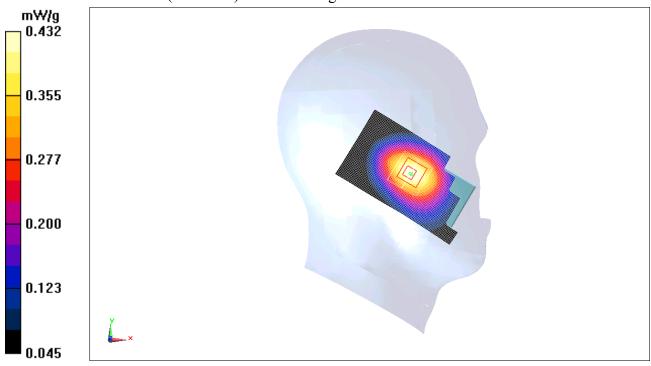


Fig. 6 850 MHz CH128

850 Right Cheek High

Date/Time: 2011-7-7 9:53:11 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.19 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.750 mW/g

Maximum value of SAR (measured) = 1.17 mW/g

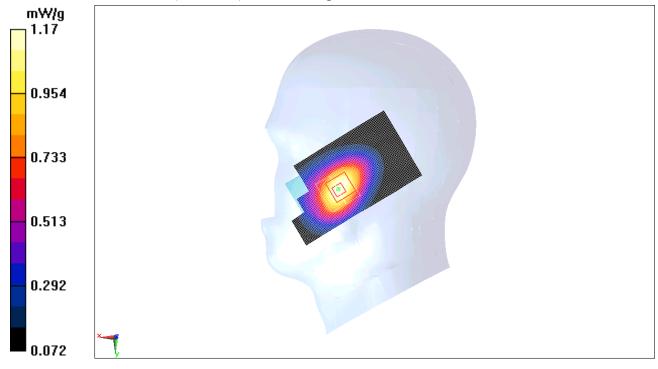


Fig. 7 850 MHz CH251

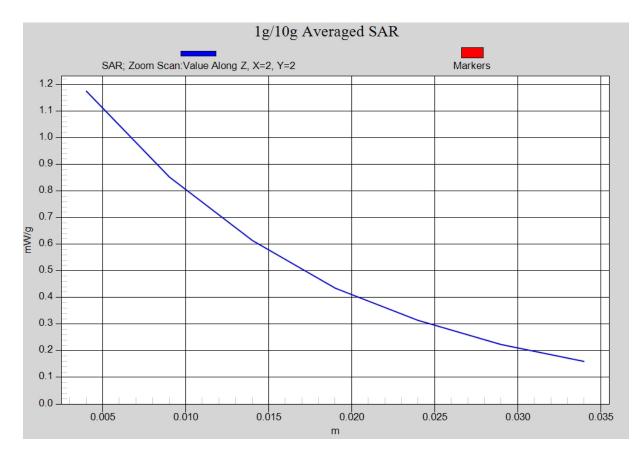
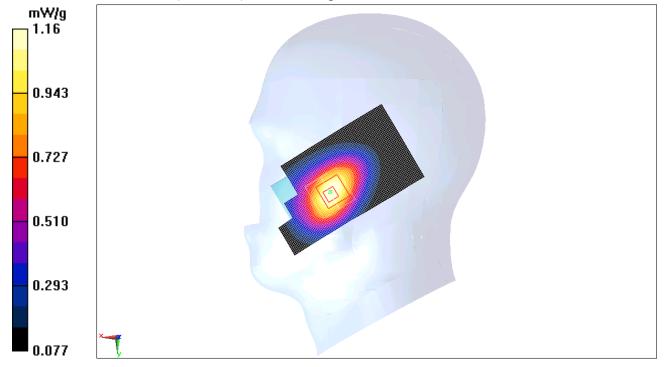


Fig. 7-1 Z-Scan at power reference point (850 MHz CH251)


850 Right Cheek Middle

Date/Time: 2011-7-7 10:09:18 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.16 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.017 dBPeak SAR (extrapolated) = 1.54 W/kgSAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.741 mW/gMaximum value of SAR (measured) = 1.16 mW/g

850 Right Cheek Low

Date/Time: 2011-7-7 10:26:57 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.16 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.9 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 1.53 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.742 mW/g Maximum value of SAR (measured) = 1.15 mW/g

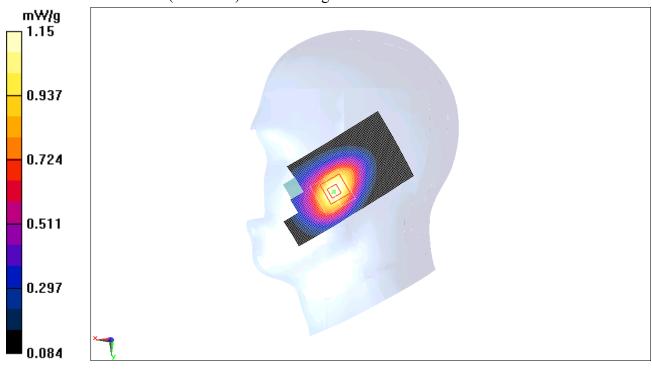
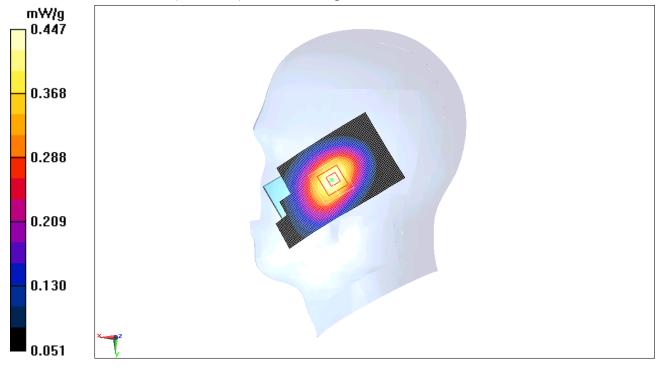


Fig. 9 850 MHz CH128

850 Right Tilt High

Date/Time: 2011-7-7 10:49:06 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)


Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.446 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.00786 dB

Peak SAR (extrapolated) = 0.552 W/kg

SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.299 mW/g

Maximum value of SAR (measured) = 0.447 mW/g

850 Right Tilt Middle

Date/Time: 2011-7-7 11:06:22 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.459 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.2 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.430 mW/g; SAR(10 g) = 0.308 mW/g

Maximum value of SAR (measured) = 0.455 mW/g

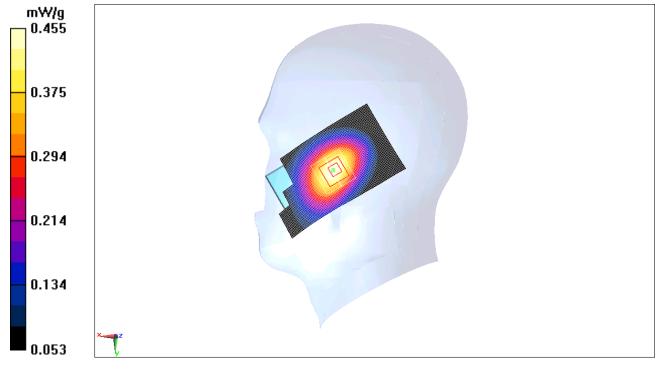


Fig.11 850 MHz CH190

850 Right Tilt Low

Date/Time: 2011-7-7 11:25:50 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.474 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = 0.00159 dB Peak SAR (extrapolated) = 0.577 W/kg SAR(1 g) = 0.441 mW/g; SAR(10 g) = 0.317 mW/g Maximum value of SAR (measured) = 0.466 mW/g

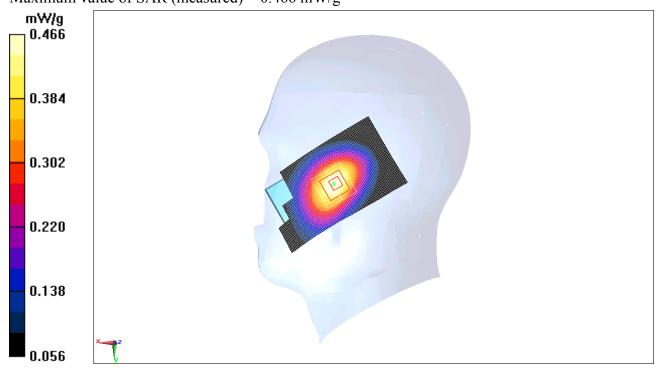
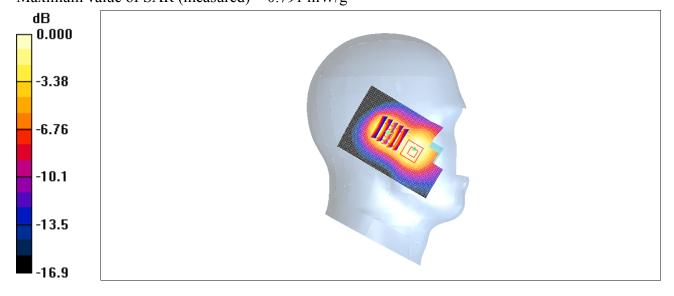


Fig. 12 850 MHz CH128


1900 Left Cheek High

Date/Time: 2011-7-8 8:22:07 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.841 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = 0.147 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.760 mW/g; SAR(10 g) = 0.459 mW/gMaximum value of SAR (measured) = 0.796 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = 0.147 dBPeak SAR (extrapolated) = 1.08 W/kgSAR(1 g) = 0.729 mW/g; SAR(10 g) = 0.446 mW/gMaximum value of SAR (measured) = 0.791 mW/g

1900 Left Cheek Middle

Date/Time: 2011-7-8 8:43:11 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.859 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.147 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.758 mW/g; SAR(10 g) = 0.464 mW/g Maximum value of SAR (measured) = 0.819 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.147 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.728 mW/g; SAR(10 g) = 0.443 mW/g Maximum value of SAR (measured) = 0.753 mW/g

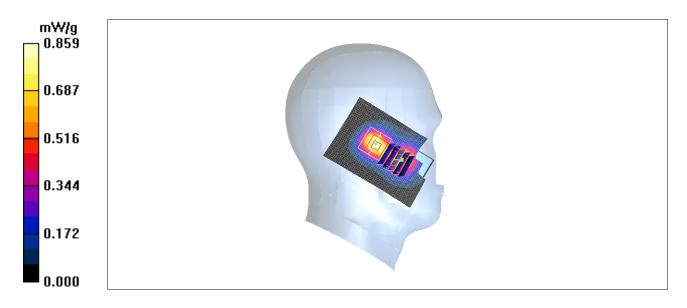
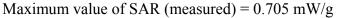


Fig. 14 1900 MHz CH661


1900 Left Cheek Low

Date/Time: 2011-7-8 9:02:41 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.864 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.753 mW/g; SAR(10 g) = 0.465 mW/gMaximum value of SAR (measured) = 0.823 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.4 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 0.967 W/kg SAR(1 g) = 0.671 mW/g; SAR(10 g) = 0.414 mW/g

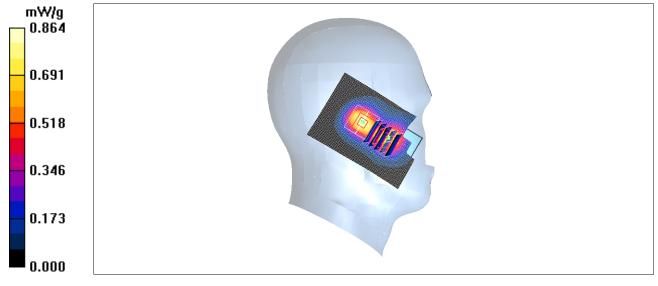


Fig. 15 1900 MHz CH512

1900 Left Tilt High

Date/Time: 2011-7-8 9:25:27 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.512 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.1 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 0.691 W/kg SAR(1 g) = 0.449 mW/g; SAR(10 g) = 0.271 mW/g Maximum value of SAR (measured) = 0.480 mW/g

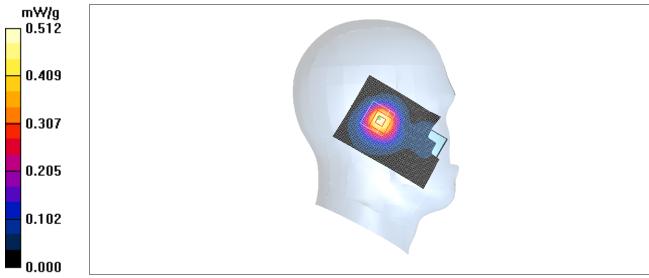


Fig.16 1900 MHz CH810

1900 Left Tilt Middle

Date/Time: 2011-7-8 9:40:06 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.526 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 0.697 W/kgSAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.281 mW/gMaximum value of SAR (measured) = 0.485 mW/g

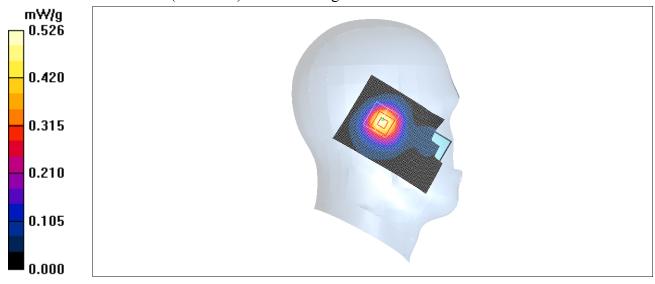


Fig. 17 1900 MHz CH661

1900 Left Tilt Low

Date/Time: 2011-7-8 9:56:15 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.480 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.423 mW/g; SAR(10 g) = 0.261 mW/g

Maximum value of SAR (measured) = 0.453 mW/g

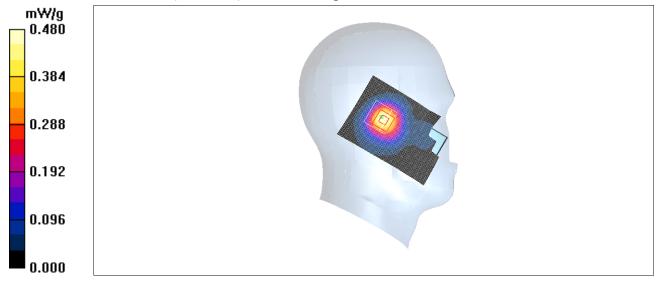


Fig. 18 1900 MHz CH512

1900 Right Cheek High

Date/Time: 2011-7-8 10:18:42 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.04 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.9 V/m; Power Drift = -0.128 dBPeak SAR (extrapolated) = 1.31 W/kgSAR(1 g) = 0.890 mW/g; SAR(10 g) = 0.534 mW/gMaximum value of SAR (measured) = 0.979 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.9 V/m; Power Drift = -0.128 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.741 mW/g; SAR(10 g) = 0.432 mW/gMaximum value of SAR (measured) = 0.820 mW/g

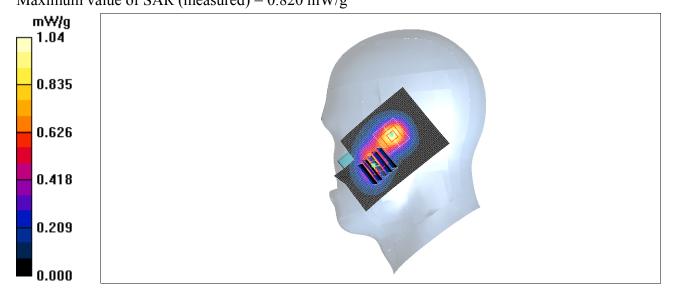


Fig. 19 1900 MHz CH810

1900 Right Cheek Middle

Date/Time: 2011-7-8 10:40:02 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.03 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.540 mW/g Maximum value of SAR (measured) = 0.972 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.732 mW/g; SAR(10 g) = 0.428 mW/g

Maximum value of SAR (measured) = 0.806 mW/g

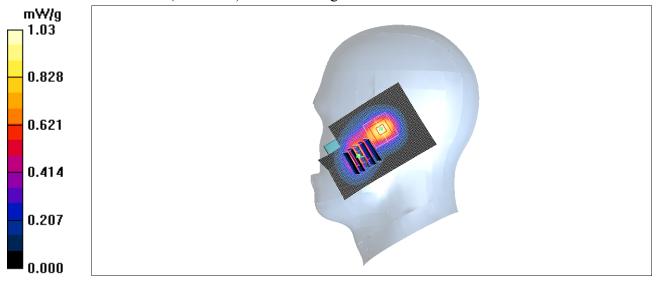


Fig. 20 1900 MHz CH661

1900 Right Cheek Low

Date/Time: 2011-7-8 11:06:47 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.05 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = 0.067 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.915 mW/g; SAR(10 g) = 0.554 mW/gMaximum value of SAR (measured) = 1.00 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = 0.067 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.694 mW/g; SAR(10 g) = 0.404 mW/g

Maximum value of SAR (measured) = 0.761 mW/g

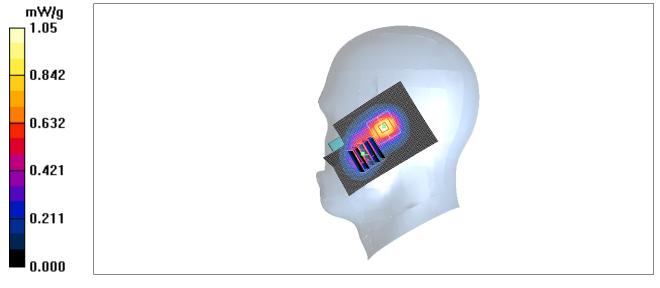


Fig. 21 1900 MHz CH512

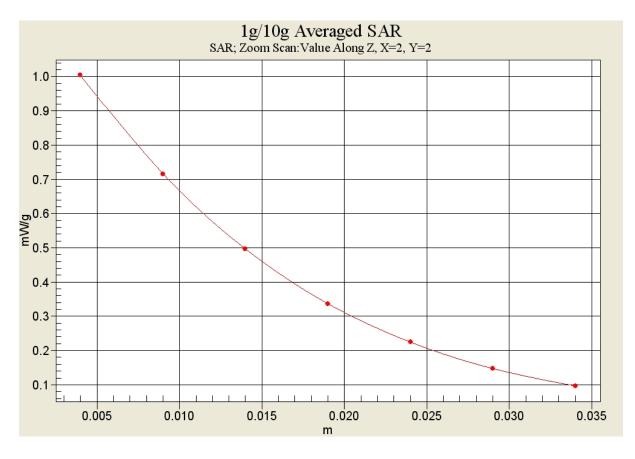


Fig. 21-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Right Tilt High

Date/Time: 2011-7-8 11:23:07 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.556 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.6 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.744 W/kg SAR(1 g) = 0.488 mW/g; SAR(10 g) = 0.294 mW/g Maximum value of SAR (measured) = 0.532 mW/g

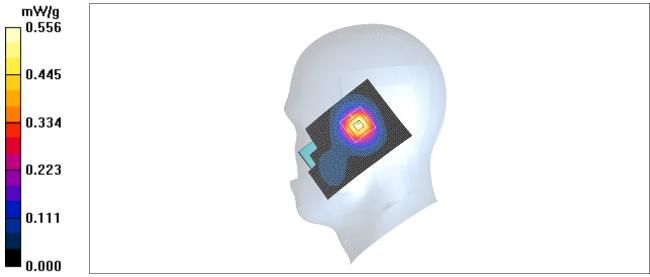


Fig. 22 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 2011-7-8 11:40:20 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.560 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.7 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 0.719 W/kg SAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.294 mW/g Maximum value of SAR (measured) = 0.523 mW/g

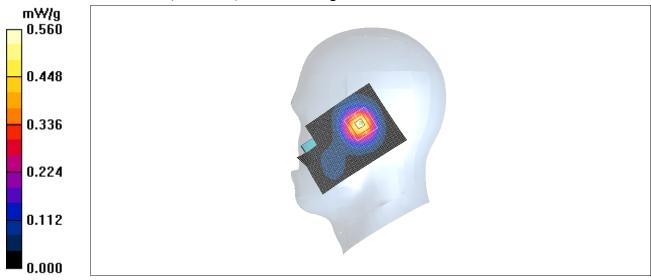


Fig.23 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 2011-7-8 11:58:17 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.545 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 12.3 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 0.690 W/kg

SAR(1 g) = 0.466 mW/g; SAR(10 g) = 0.287 mW/g

Maximum value of SAR (measured) = 0.502 mW/g

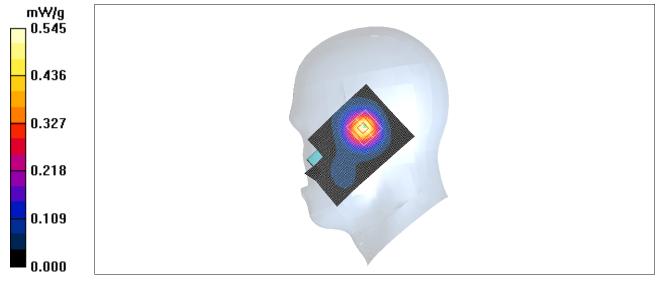


Fig.24 1900 MHz CH512

850 Right Cheek High with battery CAB2170000C1

Date/Time: 2011-7-7 11:48:33 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.16 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.8 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.745 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

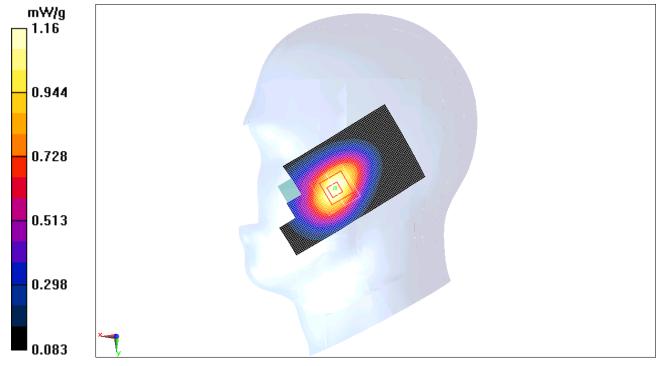


Fig. 25 850 MHz CH251

850 Right Cheek High with battery CAB229A000C1

Date/Time: 2011-7-7 12:07:13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.17 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.8 V/m; Power Drift = 0.059 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.745 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

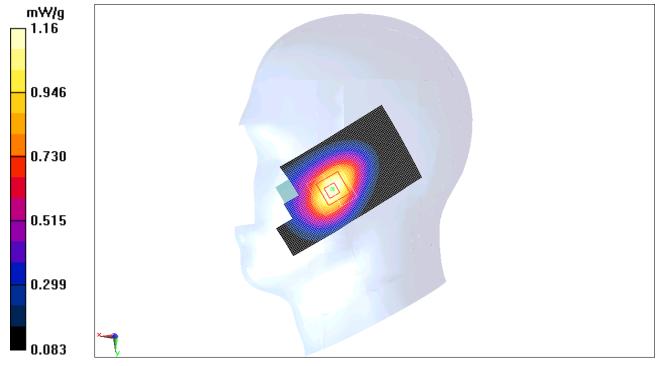
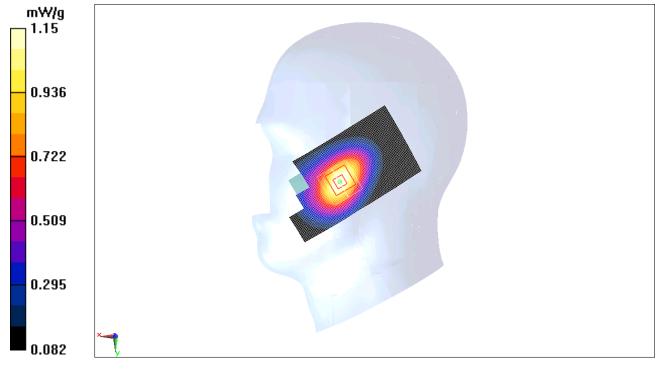


Fig. 26 850 MHz CH251

850 Right Cheek High with battery CAB30M0000C1

Date/Time: 2011-7-7 12:28:40 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)


Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.17 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.8 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 1.5 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.743 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

Fi. 27 850 MHz CH251

850 Right Cheek High with battery CAB30B4000C1

Date/Time: 2011-7-7 12:49:23 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.924$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.17 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 1.51 W/kg

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.740 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

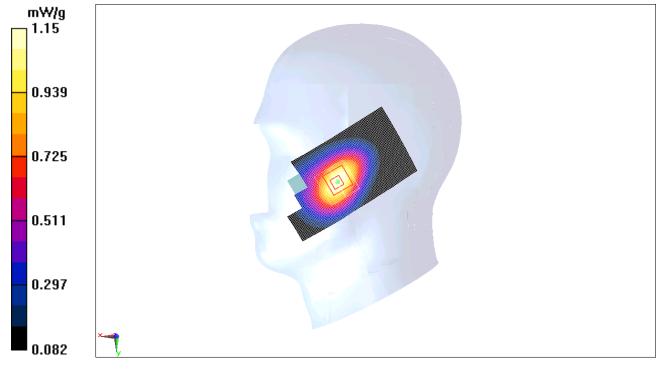


Fig. 28 850 MHz CH251

850 Body Towards Ground High

Date/Time: 2011-7-7 14:48:51 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.958$ mho/m; $\epsilon r = 53.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.770 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = -0.062 dBPeak SAR (extrapolated) = 0.991 W/kgSAR(1 g) = 0.717 mW/g; SAR(10 g) = 0.493 mW/gMaximum value of SAR (measured) = 0.766 mW/g

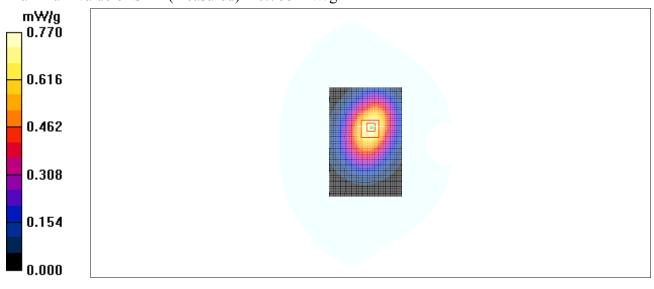


Fig. 29 850 MHz CH251

850 Body Towards Ground Middle

Date/Time: 2011-7-7 15:06:47 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.774 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 24.2 V/m; Power Drift = -0.049 dB Peak SAR (extrapolated) = 0.990 W/kg SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.496 mW/g Maximum value of SAR (measured) = 0.768 mW/g

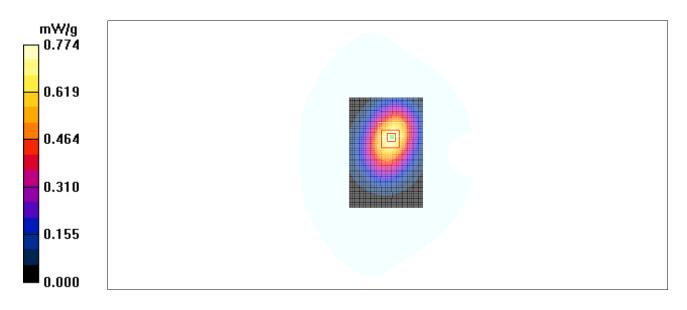


Fig. 30 850 MHz CH190

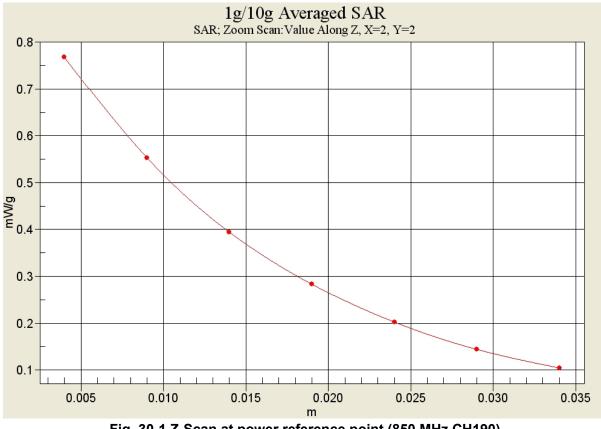


Fig. 30-1 Z-Scan at power reference point (850 MHz CH190)

850 Body Towards Ground Low

Date/Time: 2011-7-7 15:23:59 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.942$ mho/m; $\epsilon r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.767 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.970 W/kg SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.493 mW/g

Maximum value of SAR (measured) = 0.761 mW/g

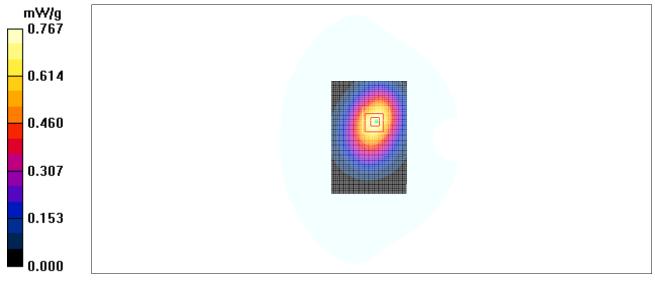


Fig. 31 850 MHz CH128

850 Body Towards Phantom High

Date/Time: 2011-7-7 15:42:10 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.958$ mho/m; $\epsilon r = 53.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.619 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.7 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 0.790 W/kg SAR(1 g) = 0.574 mW/g; SAR(10 g) = 0.396 mW/g

Maximum value of SAR (measured) = 0.617 mW/g

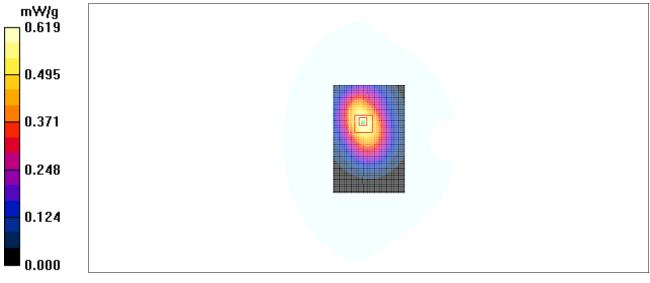


Fig. 32 850 MHz CH251

850 Body Towards Phantom Middle

Date/Time: 2011-7-7 16:01:27 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.642 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 23.7 V/m; Power Drift = -0.100 dB Peak SAR (extrapolated) = 0.825 W/kg SAR(1 g) = 0.594 mW/g; SAR(10 g) = 0.410 mW/g Maximum value of SAR (measured) = 0.635 mW/g

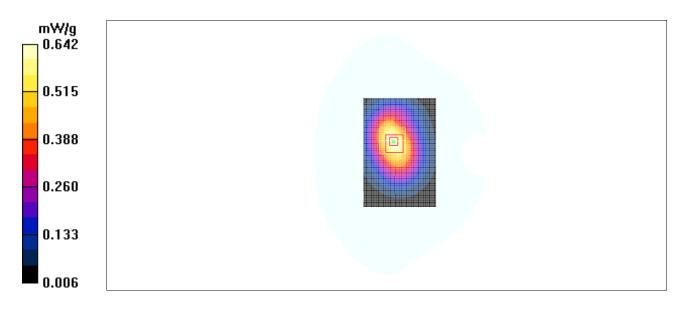


Fig. 33 850 MHz CH190

850 Body Towards Phantom Low

Date/Time: 2011-7-7 16:20:44 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.942$ mho/m; $\epsilon r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.629 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.4 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 0.809 W/kg SAR(1 g) = 0.587 mW/g; SAR(10 g) = 0.406 mW/g Maximum value of SAR (measured) = 0.628 mW/g

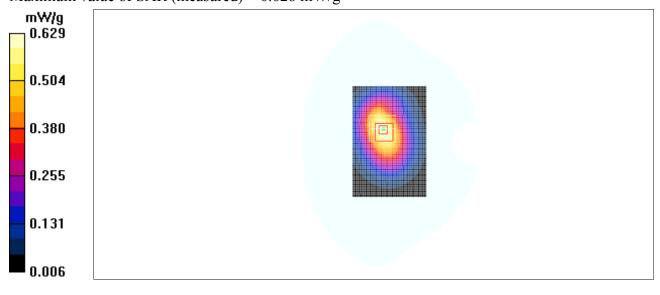


Fig. 34 850 MHz CH128

850 Body Towards Ground Middle with Headset CCA23L0A10C1

Date/Time: 2011-7-7 16:40:17 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.599 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 20.1 V/m; Power Drift = 0.032 dB Peak SAR (extrapolated) = 0.775 W/kg SAR(1 g) = 0.562 mW/g; SAR(10 g) = 0.386 mW/g Maximum value of SAR (measured) = 0.600 mW/g

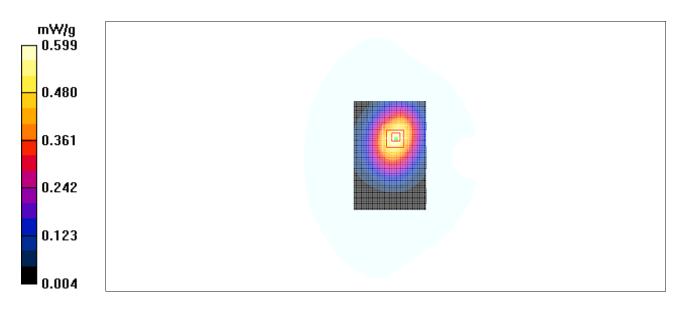


Fig. 35 850 MHz CH190

850 Body Towards Ground Middle with Headset CCA23L0A15C2

Date/Time: 2011-7-7 16:58:49 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.644 mW/g

Toward Ground Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 21.3 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 0.830 W/kg SAR(1 g) = 0.604 mW/g; SAR(10 g) = 0.418 mW/g Maximum value of SAR (measured) = 0.645 mW/g

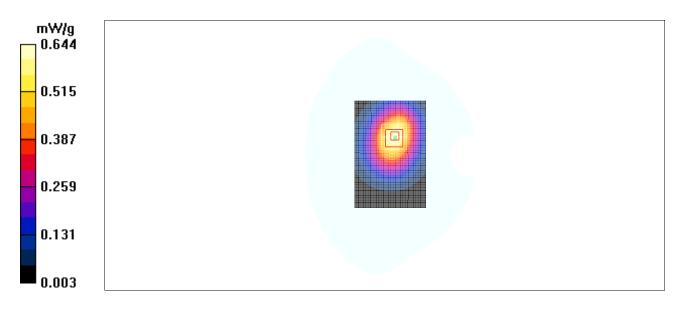


Fig. 36 850 MHz CH190

1900 Body Towards Ground High

Date/Time: 2011-7-8 14:20:41 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.603 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.3 V/m; Power Drift = -0.048 dB Peak SAR (extrapolated) = 0.866 W/kg SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.303 mW/g Maximum value of SAR (measured) = 0.542 mW/g

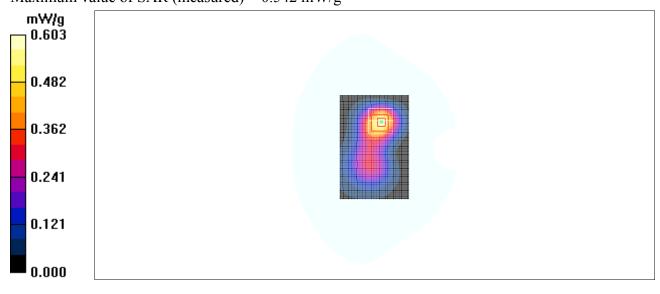


Fig. 37 1900 MHz CH810

1900 Body Towards Ground Middle

Date/Time: 2011-7-8 14:43:08 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 53.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.620 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.096 dB Peak SAR (extrapolated) = 0.889 W/kg SAR(1 g) = 0.526 mW/g; SAR(10 g) = 0.314 mW/g

Maximum value of SAR (measured) = 0.558 mW/g

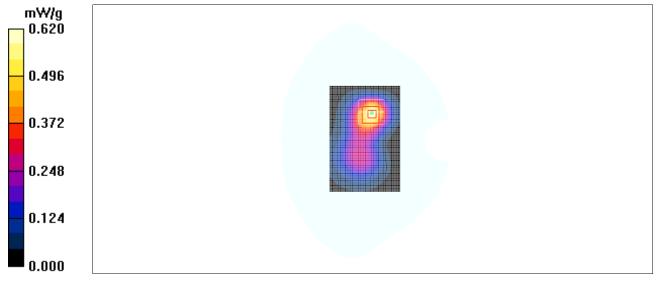


Fig. 38 1900 MHz CH661

1900 Body Towards Ground Low

Date/Time: 2011-7-8 15:02:17 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.659 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.154 dBPeak SAR (extrapolated) = 0.928 W/kgSAR(1 g) = 0.558 mW/g; SAR(10 g) = 0.334 mW/gMaximum value of SAR (measured) = 0.596 mW/g

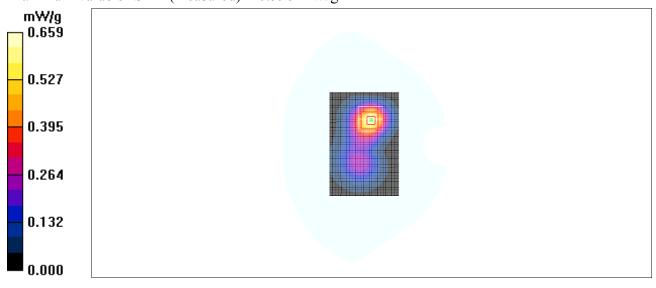


Fig. 39 1900 MHz CH512

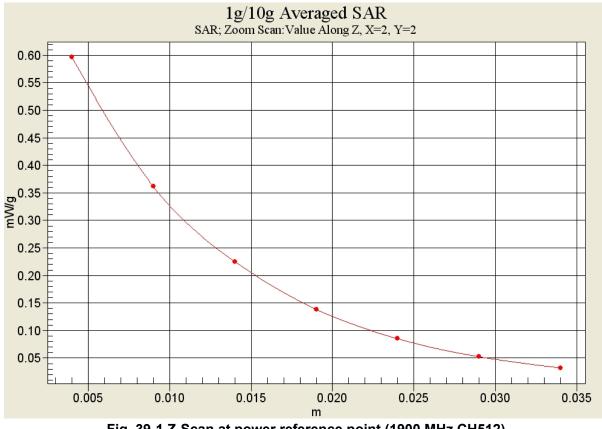


Fig. 39-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Phantom High

Date/Time: 2011-7-8 15:29:34 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.296 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.2 V/m; Power Drift = -0.239 dB Peak SAR (extrapolated) = 0.427 W/kg SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.166 mW/g Maximum value of SAR (measured) = 0.290 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.2 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 0.416 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.145 mW/g Maximum value of SAR (measured) = 0.267 mW/g

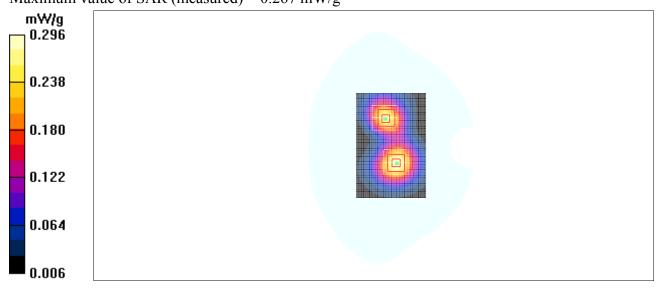


Fig. 40 1900 MHz CH810

1900 Body Towards Phantom Middle

Date/Time: 2011-7-8 15:53:04 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 53.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.291 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.84 V/m; Power Drift = -0.097 dB Peak SAR (extrapolated) = 0.419 W/kg SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.164 mW/g Maximum value of SAR (measured) = 0.286 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.84 V/m; Rever Drift = 0.007 dR

Reference Value = 9.84 V/m; Power Drift = -0.097 dB Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.226 mW/g; SAR(10 g) = 0.134 mW/gMaximum value of SAR (measured) = 0.243 mW/g

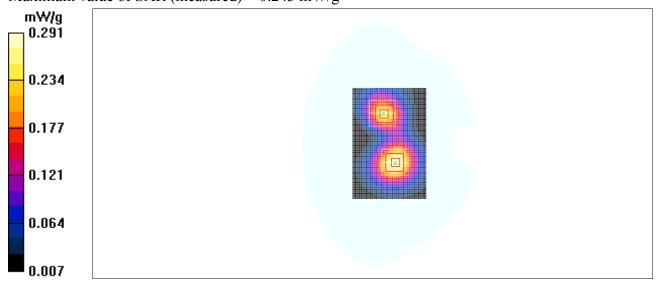
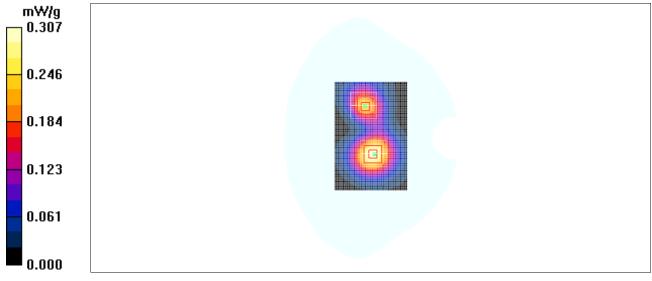


Fig. 41 1900 MHz CH661

1900 Body Towards Phantom Low

Date/Time: 2011-7-8 16:18:04 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)


Toward Phantom Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.307 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.5 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 0.442 W/kg SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.178 mW/g Maximum value of SAR (measured) = 0.309 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 0.372 W/kg SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.129 mW/g

Maximum value of SAR (measured) = 0.240 mW/g

1900 Body Towards Ground Low with Headset CCA23L0A10C1

Date/Time: 2011-7-8 16:30:17 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.646 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.79 V/m; Power Drift = -0.009 dBPeak SAR (extrapolated) = 1.02 W/kgSAR(1 g) = 0.548 mW/g; SAR(10 g) = 0.326 mW/gMaximum value of SAR (measured) = 0.586 mW/g

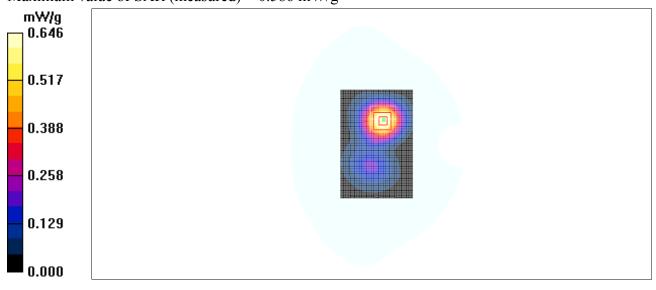


Fig. 43 1900 MHz CH512

1900 Body Towards Ground Low with Headset CCA23L0A15C2

Date/Time: 2011-7-8 16:52:45 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\epsilon r = 53.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.656 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.125 dBPeak SAR (extrapolated) = 0.927 W/kgSAR(1 g) = 0.553 mW/g; SAR(10 g) = 0.330 mW/gMaximum value of SAR (measured) = 0.581 mW/g

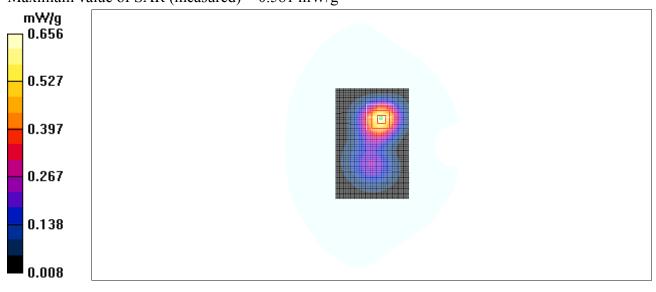


Fig. 44 1900 MHz CH512

850 Body Towards Ground Middle with battery CAB2170000C1

Date/Time: 2011-7-7 17:22:34 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.769 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 24.1 V/m; Power Drift = -0.011 dB Peak SAR (extrapolated) = 0.988 W/kg SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.492 mW/g Maximum value of SAR (measured) = 0.767 mW/g

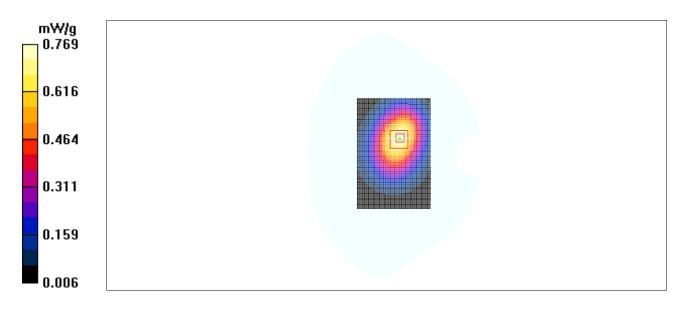


Fig. 45 850 MHz CH190

850 Body Towards Ground Middle with battery CAB229A000C1

Date/Time: 2011-7-7 17:46:07 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.768 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 24.1 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 0.980 W/kg SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.493 mW/g Maximum value of SAR (measured) = 0.761 mW/g

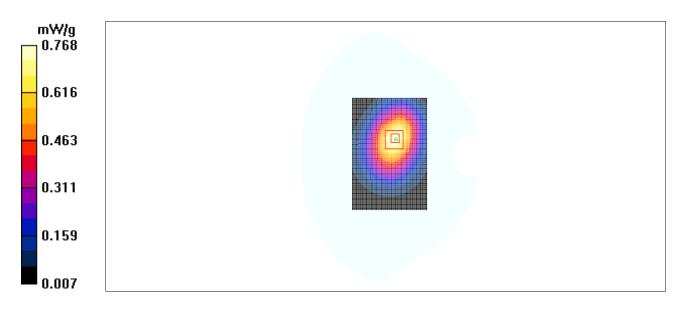


Fig. 46 850 MHz CH190

850 Body Towards Ground Middle with battery CAB30M0000C1

Date/Time: 2011-7-7 18:04:16 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.711 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 22.1 V/m; Power Drift = -0.096 dB Peak SAR (extrapolated) = 0.907 W/kg SAR(1 g) = 0.661 mW/g; SAR(10 g) = 0.458 mW/g Maximum value of SAR (measured) = 0.711 mW/g

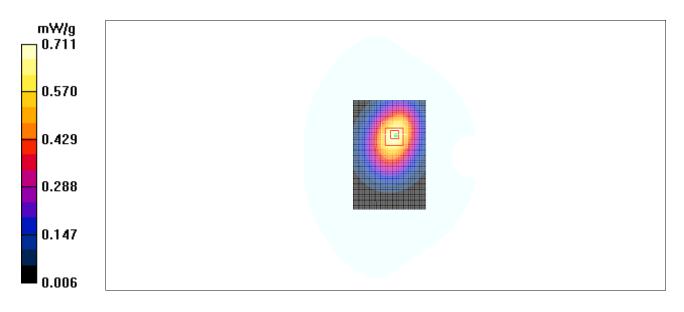


Fig. 47 850 MHz CH190

850 Body Towards Ground Middle with battery CAB30B4000C1

Date/Time: 2011-7-7 18:25:47 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.703 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 21.9 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.907 W/kg SAR(1 g) = 0.660 mW/g; SAR(10 g) = 0.457 mW/g Maximum value of SAR (measured) = 0.706 mW/g

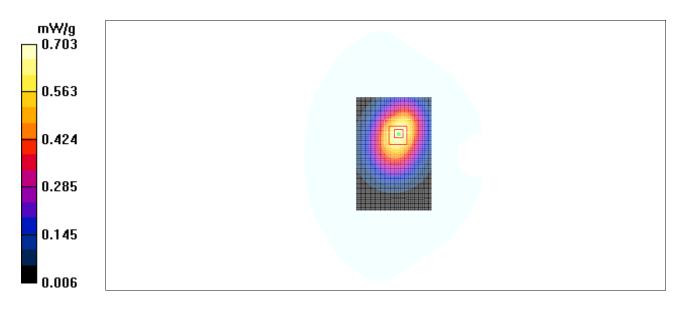
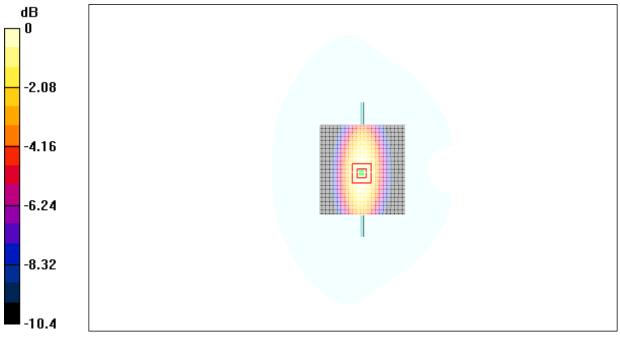


Fig. 48 850 MHz CH190


ANNEX D SYSTEM VALIDATION RESULTS

835MHz

Date/Time: 2011-7-7 7:04:19 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 41.8$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.69 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.8 V/m; Power Drift = 0.104 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.62 mW/g

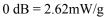
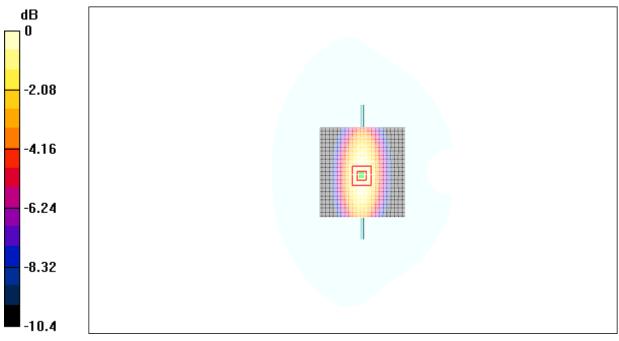


Fig.49 validation 835MHz 250mW


835MHz

Date/Time: 2011-7-7 13:50:07 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

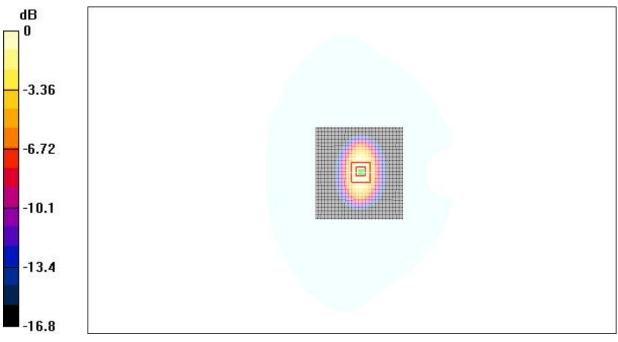
System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.60 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.5 V/m; Power Drift = 0.006 dB Peak SAR (extrapolated) = 3.34 W/kg SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.53 mW/g Maximum value of SAR (measured) = 2.45 mW/g

0 dB = 2.45 mW/g

Fig.50 validation 835MHz 250mW


1900MHz

Date/Time: 2011-7-8 7:11:24 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

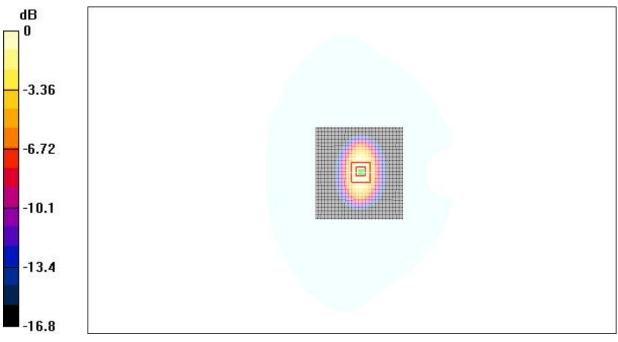
System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.7 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.6 V/m; Power Drift = -0.00758 dBPeak SAR (extrapolated) = 14.9 W/kg**SAR(1 g) = 9.80 \text{ mW/g}; SAR(10 g) = 4.94 \text{ mW/g}** Maximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Fig.51 validation 1900MHz 250mW


1900MHz

Date/Time: 2011-7-8 13:03:49 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.4 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.107 dBPeak SAR (extrapolated) = 15.4 W/kgSAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.17 mW/gMaximum value of SAR (measured) = 10.9 mW/g

0 dB = 10.9 mW/g

Fig.52 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S .Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

lent TMC China		Certifica	te No: ES3DV3-3149_Sep10
CALIBRATION CERT	IFICATE		
Object		ES3DV3-SN: 3149	
Calibration procedure(s)		QA CAL-01.v6	
		Calibration procedure for dosimetric E-field probes	
Calibration date:		September 25, 2010	
Condition of the calibrated it	tem In	Tolerance	
	ducted at an envir	onfidence probability are given on the following pag conment temperature (22±3) ⁰ C and humidity<70% ulibration)	
Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-10 (METAS, NO. 251-00388)	May-11
Power sensor E4412A	MY41495277	5-May-10 (METAS, NO. 251-00388)	May-11
Reference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-10 (METAS, NO. 251-00403)	Aug-11
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-10 (METAS, NO. 251-00389)	May-11
Reference 30 dB Attenuator	SN:S5129 (30b)	10-Aug-10 (METAS, NO. 251-00404)	Aug-11
DAE4	SN:617	10-Jun-10 (SPEAG, NO.DAE4-907_Jun10)	Jun-11
Reference Probe ES3DV2	SN: 3013	12-Jan-10 (SPEAG, NO. ES3-3013_Jan10)	Jan-11
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-09)	In house check: Oct-10
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-09)	In house check: Nov-10
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	alar Mate
Approved by:	Niels Kuster	Quality Manager	1 de
			Issued: September 25, 2010
This calibration certificate shal	I not be reported e	except in full without written approval of the laborate	and the design of the second
artificate No: ES2DV/2 214		Dogo 1 of 0	

Certificate No: ES3DV3-3149_Sep10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst GNIS. S PUBRA C S

Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConF DCP Polarization ϕ Polarization 9 tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of . power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 9

ES3DV3 SN: 3149

September 25, 2010

Probe ES3DV3

SN: 3149

Manufactured:

June 12, 2007

Calibrated:

September 25, 2010

Calibrated for DASY4 System

Certificate No: ES3DV3-3149_ Sep10

Page 3 of 9