工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7Ω -3.7 jΩ | |--------------------------------------|---------------| | Return Loss | - 25.9dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.4Ω - 5.1 jΩ | |--------------------------------------|----------------| | Return Loss | -25.6dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | September 3, 2001 | ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **DASY5 Validation Report for Head TSL** Date/Time: 2010-2-26 14:31:40 Test Laboratory: TMC, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443 Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; $\epsilon_{\rm r}$ = 41.6; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: • Probe: ES3DV3 - SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.09 Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 ### Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.71 mW/g $0 \, dB = 2.71 \, mW/g$ # 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **DASY5 Validation Report for Body TSL** Date/Time: 2010-2-26 9:52:36 Test Laboratory: TMC, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443 Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Body 835MHz Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; $\epsilon_{\rm r}$ = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section ### DASY5 Configuration: • Probe: ES3DV3 - SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.09 • Electronics: DAE4 Sn771; Calibration: 19.11.09 Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 ### Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.0 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.70 mW/g $0 \, dB = 2.70 \, mW/g$ ### 1900 MHz Dipole Calibration Certificate # 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Glossary: N/A TSL tissue simulating liquid sensitivity in TSL / NORMx,y,z ConvF not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.