工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ### **Additional Documentation:** d) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. # 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **Measurement Conditions** as far as not given on page 1 | DASY Version | DASY5 | V5.0 | |------------------------------|------------------------|------------------| | Extrapolation | Advanced Extrapolation | and the second | | Phantom | 2mm Oval Phantom ELI4 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | المنازات الماسات | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.0 ± 6 % | 1.42mho/m ± 6 % | | Head TSL temperature during test | (21.9 ± 0.2) °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.71 mW / g | | SAR normalized | normalized to 1W | 38.8 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 38.5 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.03 mW / g | | SAR normalized | normalized to 1W | 20.1 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 20.0 mW /g ± 16.5 % (k=2) | Certificate No: D1800V2-2d145_Feb10 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6% | 1.54mho/m ± 6 % | | Body TSL temperature during test | (21.8 ± 0.2) °C | - | | ### SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR normalized | normalized to 1W | 41.2 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 40.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.31 mW/g | | SAR normalized | normalized to 1W | 21.2 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 21.0 mW /g ± 16.5 % (k=2) | Certificate No: D1800V2-2d145_Feb10 Page 4 of 9 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **Appendix** ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 46.8Ω + 4.0 jΩ | |--------------------------------------|----------------| | Return Loss | - 25.7dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.9Ω + 7.1 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 22.6dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 4.224 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | XX | | |-----------------|-------------------| | Manufactured by | SPEAG | | Manufactured on | December 14, 2006 | # 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT ### **DASY5 Validation Report for Head TSL** Date/Time: 2010-2-25 14:23:52 Test Laboratory: TMC, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN: 2d145 Communication System: CW Frequency: 1800 MHz Duty Cycle: 1:1 Medium: Head 1800MHz Medium parameters used: f = 1800 MHz; σ = 1.42 mho/m; ϵ_r = 40.0; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: • Probe: ES3DV3 - SN3149; ConvF(5.18, 5.18, 5.18); Calibrated: 25.09.09 • Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 ## Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.4 V/m; Power Drift = 0.024 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.71 mW/g; SAR(10 g) = 5.03 mW/g Maximum value of SAR (measured) = 10.8 mW/g $0 \, dB = 10.8 \, mW/g$ # Telecommunication Metrology Center of MIIT **DASY5 Validation Report for Body TSL** Date/Time: 2010-2-25 15:30:07 Test Laboratory: TMC, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN: 2d145 Communication System: CW Frequency: 1800 MHz Duty Cycle: 1:1 Medium: Body 1800MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.54 \text{ mho/m}$; $\epsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### DASY5 Configuration: • Probe: ES3DV3 - SN3149; ConvF(4.97, 4.97, 4.97); Calibrated: 25.09.09 • Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW; DASY5, V5.0 Build 119.9; Postprocessing SW; SEMCAD, V13.2 Build 87 ### Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.9 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.31 mW/gMaximum value of SAR (measured) = 11.5 mW/g $0 \, dB = 11.5 \, mW/g$ Certificate No: D1800V2-2d145 Feb10 Page 8 of 9 ### 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### TMC (Auden) Certificate No: D2450V2-853_Sep10 CALIBRATION CERTIFICATE Object D2450V2 - SN: 853 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date September 27, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 29, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Callbration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Accreditation No.: SCS 108 Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ## Additional Documentation: d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.