Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC China Certificate No: EX3DV4-3617_Jul10 **CALIBRATION CERTIFICATE** EX3DV4-SN: 3617 Object QA CAL-01.v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: July 9, 2010 Condition of the calibrated item In Tolerance This calibration certify documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted at an environment temperature (22±3)°C and humidity<70% Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Data (Calibrated by, Certification NO.) Scheduled Calibration Power meter E4419B GB41293874 6-May-10 (METAS, NO. 251-00388) May-11 MY41495277 6-May-10 (METAS, NO. 251-00388) May-11 Power sensor E4412A Reference 3 dB Attenuator SN:S5054 (3c) 12-Aug-09 (METAS, NO. 251-00403) Aug-10 4-May-10 (METAS, NO. 251-00389) Reference 20 dB Attenuator SN:S5086 (20b) May-11 12-Aug-09 (METAS, NO. 251-00404) Reference 30 dB Attenuator SN:S5129 (30b) Aug-10 SN:617 11-Jun-10 (SPEAG, NO.DAE4-907_Jun10) Jun-11 Reference Probe ES3DV2 SN: 3013 13-Jan-10 (SPEAG, NO. ES3-3013_Jan10) Jan-11 Scheduled Calibration Secondary Standards Check Data (in house) RF generator HP8648C US3642U01700 4-Aug-99(SPEAG, in house check Oct-09) In house check: Oct-10 18-Oct-01(SPEAG, in house check Nov-09) In house check: Nov-10 Network Analyzer HP 8753E US37390585 Name Function Signature Calibrated by: Technical Manager Katja Pokovic Quality Manager Niels Kuster Approved by: Issued: July 9, 2010 This calibration certificate shall not be reported except in full without written approval of the laboratory. Certificate No: EX3DV4-3617_Jul10 Page 1 of 9 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConF DCP Polarization φ tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. July 9, 2010 ## **Probe EX3DV4** SN: 3617 Manufactured: May 3, 2007 Calibrated: July 9, 2010 Calibrated for DASY4 System Certificate No: EX3DV4-3617_Jul10 Page 3 of 9 July 9, 2010 DASY - Parameters of Probe: EX3DV4 SN:3617 Sensitivity in Free Space^A Diode Compression^B | NormX | 0.420±10.1% | $\mu V/(V/m)^2$ | DCP X | 89mV | |-------|-------------|-----------------|-------|------| | NormY | 0.440±10.1% | $\mu V/(V/m)^2$ | DCP Y | 88mV | | NormZ | 0.310±10.1% | $\mu V/(V/m)^2$ | DCP Z | 91mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8 **Boundary Effect** TSL 2450MHz Typical SAR gradient: 11% per mm | Sensor Center to Phantom Surface Distance | | 2.0 mm | 3.0 mm | |-------------------------------------------|------------------------------|--------|--------| | SARbe[%] | Without Correction Algorithm | 3.7 | 1.8 | | SARbe[%] | With Correction Algorithm | 0.1 | 0.0 | TSL 5200MHz Typical SAR gradient: 25% per mm | Sensor Center to | o Phantom Surface Distance | 2.0 mm | 3.0 mm | |------------------|------------------------------|--------|--------| | SARbe[%] | Without Correction Algorithm | 10.1 | 3.7 | | SARbe[%] | With Correction Algorithm | 0.2 | 0.1 | Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2,which for a normal distributio Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: EX3DV4-3617_Jul10 Page 4 of 9 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8). July 9, 2010 ## Frequency Response of E-Field Uncertainty of Frequency Response of E-field: ±6.3% (k=2) Certificate No: EX3DV4-3617_Jul10 Page 5 of 9 July 9, 2010 Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) July 9, 2010 # Dynamic Range f(SAR_{head}) (Waveguide: WG8, f = 1800 MHz) Uncertainty of Linearity Assessment: ±0.6% (k=2) EX3DV4 SN: 3617 July 9, 2010 ## **Conversion Factor Assessment** | f[MHz] | Validity[MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | Convl | Uncertainty | |--------|----------------------------|------|----------------|----------------|-------|-------|-------|--------------------| | 2300 | $\pm 50 / \pm 100$ | Head | 39.5±5% | $1.67 \pm 5\%$ | 0.33 | 1.02 | 7.23 | $\pm 11.8\% (k=2)$ | | 2450 | $\pm 50 / \pm 100$ | Head | $39.2 \pm 5\%$ | $1.80 \pm 5\%$ | 0.33 | 1.00 | 7.19 | $\pm 11.8\% (k=2)$ | | 2600 | $\pm 50 / \pm 100$ | Head | 39.0±5% | $1.96 \pm 5\%$ | 0.36 | 1.21 | 7.16 | $\pm 11.8\%$ (k=2) | | 3500 | $\pm 50 / \pm 100$ | Head | 37.9±5% | $2.91 \pm 5\%$ | 0.34 | 1.35 | 6.48 | $\pm 11.8\% (k=2)$ | | 5200 | $\pm 50 / \pm 100$ | Head | 36.0±5% | $4.66 \pm 5\%$ | 0.35 | 1.60 | 5.33 | $\pm 13.1\%$ (k=2) | | 5800 | $\pm 50 / \pm 100$ | Head | $35.3 \pm 5\%$ | $5.27 \pm 5\%$ | 0.35 | 1.60 | 4.69 | \pm 13.1% (k=2) | | | | | | | | | | | | 2300 | $\pm 50/\pm 100$ | Body | $52.8 \pm 5\%$ | $1.85 \pm 5\%$ | 0.30 | 1.01 | 6.95 | $\pm 11.8\% (k=2)$ | | 2450 | $\pm 50 / \pm 100$ | Body | $52.7 \pm 5\%$ | $1.95 \pm 5\%$ | 0.36 | 1.00 | 6.88 | $\pm 11.8\% (k=2)$ | | 2600 | $\pm 50 / \pm 100$ | Body | $52.5 \pm 5\%$ | $2.16 \pm 5\%$ | 0.36 | 1.05 | 6.84 | $\pm 11.8\% (k=2)$ | | 3500 | $\pm 50 / \pm 100$ | Body | $51.3 \pm 5\%$ | $3.30\pm5\%$ | 0.33 | 1.40 | 5.02 | ±11.8% (k=2) | | 5200 | $\pm 50 / \pm 100$ | Body | 49.0±5% | $5.30 \pm 5\%$ | 0.35 | 1.70 | 4.64 | ±13.1% (k=2) | | 5800 | $\pm 50 / \pm 100$ | Body | $48.2 \pm 5\%$ | $6.00 \pm 5\%$ | 0.30 | 1.70 | 4.53 | $\pm 13.1\%$ (k=2) | Certificate No: EX3DV4-3617_Jul10 Page 8 of 9 $^{^{\}rm c}$ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. July 9, 2010 ## **Deviation from Isotropy** Error (ϕ, θ) , f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ±2.6% (k=2) #### ANNEX F DIPOLE CALIBRATION CERTIFICATE 835 MHz Dipole Calibration Certificate ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V5.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | 2mm Oval Phantom ELI4 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.92mho/m ± 6 % | | Head TSL temperature during test | (21.7 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | 85元 15. 5. 14. 14. 17 | |-------------------------------------------------------|--------------------|------------------------------| | SAR measured | 250 mW input power | 2.38 mW / g | | SAR normalized | normalized to 1W | 9.52 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 9.41 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | The Bush Property | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.54 mW / g | | SAR normalized | normalized to 1W | 6.16 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 6.12 mW /g ± 16.5 % (k=2) | Certificate No: D835V2-443_Feb10 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6% | 0.97mho/m ± 6 % | | Body TSL temperature during test | (21.9 ± 0.2) °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.41 mW / g | | SAR normalized | normalized to 1W | 9.64 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 9.57 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | But But by | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.57 mW / g | | SAR normalized | normalized to 1W | 6.28 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 6.24 mW /g ± 16.5 % (k=2) | Certificate No: D835V2-443_Feb10 Page 4 of 9 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7Ω -3.7 jΩ | |--------------------------------------|---------------| | Return Loss | - 25.9dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.4Ω - 5.1 jΩ | | |--------------------------------------|----------------|--| | Return Loss | -25.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | September 3, 2001 | | DASY5 Validation Report for Head TSL Date/Time: 2010-2-26 14:31:40 Test Laboratory: TMC, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443 Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; $\epsilon_{\rm r}$ = 41.6; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: ES3DV3 - SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.09 Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 #### Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.54 mW/g Maximum value of SAR (measured) = 2.71 mW/g 0 dB = 2.71 mW/g ## Telecommunication Metrology Center of MIIT #### **DASY5 Validation Report for Body TSL** Date/Time: 2010-2-26 9:52:36 Test Laboratory: TMC, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443 Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Body 835MHz Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: ES3DV3 - SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.09 Electronics: DAE4 Sn771; Calibration: 19.11.09 Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 #### Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.0 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.70 mW/g 0 dB = 2.70 mW/g #### 1900 MHz Dipole Calibration Certificate ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|------------------------|---------------------------| | Extrapolation | Advanced Extrapolation | the state of the state of | | Phantom | 2mm Oval Phantom ELI4 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | Factor of the Paris | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.40mho/m ± 6 % | | Head TSL temperature during test | (21.9 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | · 中的 图 可达 | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.91 mW / g | | SAR normalized | normalized to 1W | 39.6 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 39.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.05 mW / g | | SAR normalized | normalized to 1W | 20.2 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 20.1 mW /g ± 16.5 % (k=2) | Certificate No: D1900V2-541_Feb10 Page 3 of 9 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" Body TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6% | 1.51 mho/m ± 6 % | | Body TSL temperature during test | (21.8 ± 0.2) °C | N | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.4 mW / g | | SAR normalized | normalized to 1W | 41.6 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 41.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.24 mW / g | | SAR normalized | normalized to 1W | 21.0 mW/g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 20.9 mW /g ± 16.5 % (k=2) | Certificate No: D1900V2-541_Feb10 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.8Ω + 4.0 jΩ | |--------------------------------------|----------------| | Return Loss | - 23.7dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.9Ω + 7.1 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 22.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| | Licotriodi Doidy (orio di ostro) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | October 4, 2001 | DASY5 Validation Report for Head TSL Date/Time: 2010-2-26 15:20:47 Test Laboratory: TMC, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541 Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.40 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: ES3DV3 - SN3149; ConvF(5.03, 5.03, 5.03); Calibrated: 25.09.09 • Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 #### Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.1 V/m; Power Drift = -0.057 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.05 mW/gMaximum value of SAR (measured) = 11.5 mW/g 0 dB = 11.5 mW/g ## 工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT #### **DASY5 Validation Report for Body TSL** Date/Time: 2010-2-26 10:41:08 Test Laboratory: TMC, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541 Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ , = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: ES3DV3 - SN3149; ConvF(4.68, 4.68, 4.68); Calibrated: 25.09.09 • Electronics: DAE4 Sn771; Calibration: 19.11.09 • Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 #### Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.2 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.24 mW/g Maximum value of SAR (measured) = 12.0 mW/g 0 dB = 12.0 mW/g Certificate No: D1900V2-541_Feb10 #### 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### TMC (Auden) Certificate No: D2450V2-853_Sep10 CALIBRATION CERTIFICATE Object D2450V2 - SN: 853 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: September 27, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A US37292783 06-Oct-09 (No. 217-01086) Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 29, 2010 Certificate No: D2450V2-853_Sep10 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Callbration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ### Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | V52.2 | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | with Space | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.74 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | 117 111110/111 2 0 // | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | W. Harrison | |-------------------------------------------|--------------------|------------------------------------------| | SAR measured | 250 mW input power | 13.1 mW / g | | SAR normalized | normalized to 1W | | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW / g
53.2 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.16 mW / g | | SAR normalized | normalized to 1W | 24.6 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | N | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.95 mho/m ± 6 % | | Body TSL temperature during test | (21.6 ± 0.2) °C | | 1.33 HHO/H ± 6 % | ## SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 40.0 111. | | SAR normalized | normalized to 1W | 12.9 mW / g | | SAR for nominal Body TSL parameters | | 51.6 mW / g | | 24y Foc parameters | normalized to 1W | 51.5 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | | | SAR normalized | normalized to 1W | 5.98 mW / g | | SAR for nominal Body TSL parameters | | 23.9 mW / g | | Total body for parameters | normalized to 1W | 23.9 mW / g ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.6 Ω + 2.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | | | | | - 25.8 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.4 Ω + 4.4 iΩ | |--------------------------------------|-----------------| | Return Loss | CANADA A BATTA | | | - 27.1 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | | |----------------------------------|----------| | , (| 1.164 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | SI LAG | | | November 10, 2009 | ## DASY5 Validation Report for Head TSL Date/Time: 24.09.2010 14:10:17 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.74 mho/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics; DAE4 Sn601; Calibrated: 10.06.2010 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) - Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) Pin=250 mW/d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.7 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/g Maximum value of SAR (measured) = 16.7 mW/g 0 dB = 16.7 mW/g