

850 Body Towards Phantom High with GPRS

Date/Time: 2011-3-22 14:24:53

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.97 \text{ mho/m}$; $\epsilon r = 53.9$; $\rho = 1000 \text{ mHz}$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.982 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.5 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.913 mW/g; SAR(10 g) = 0.636 mW/g

Maximum value of SAR (measured) = 0.974 mW/g

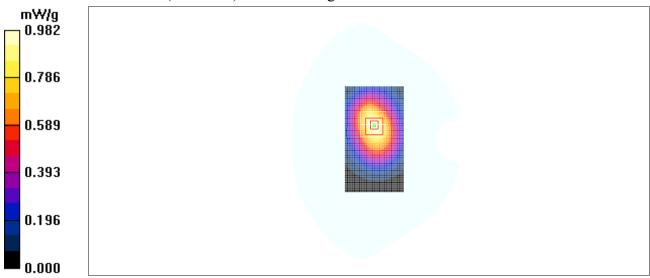


Fig. 29 850 MHz CH251

850 Body Towards Phantom Middle with GPRS

Date/Time: 2011-3-22 14:40:27

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.0$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.994 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 28.8 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.926 mW/g; SAR(10 g) = 0.647 mW/g

Maximum value of SAR (measured) = 0.980 mW/g

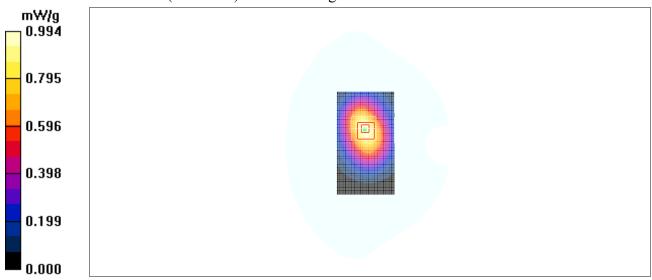


Fig. 30 850 MHz CH190

850 Body Towards Phantom Low with GPRS

Date/Time: 2011-3-22 14:55:58

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943$ mho/m; $\epsilon r = 54.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.02 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.8 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.955 mW/g; SAR(10 g) = 0.667 mW/gMaximum value of SAR (measured) = 1.02 mW/g

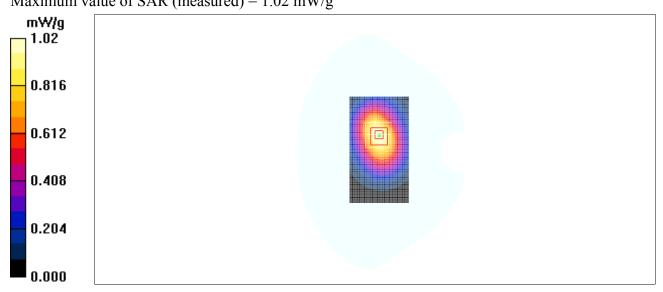


Fig. 31 850 MHz CH128

850 Body Towards Ground Low with Headset_CCA30B4000C3

Date/Time: 2011-3-22 15:12:33

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943 \text{ mho/m}$; $\epsilon r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.852 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 25.1 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.795 mW/g; SAR(10 g) = 0.543 mW/g

Maximum value of SAR (measured) = 0.853 mW/g

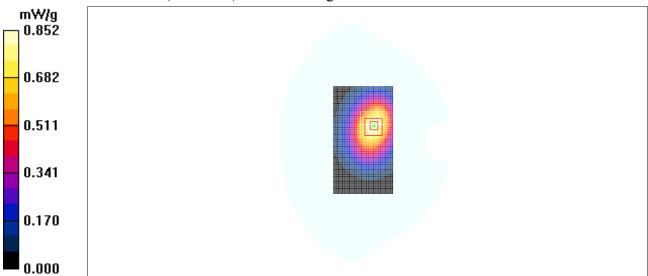


Fig. 32 850 MHz CH128

850 Body Towards Ground Low with Headset_CCA30B4010C4

Date/Time: 2011-3-22 15:28:40

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943 \text{ mho/m}$; $\epsilon r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.943 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.8 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.890 mW/g; SAR(10 g) = 0.616 mW/g

Maximum value of SAR (measured) = 0.948 mW/g

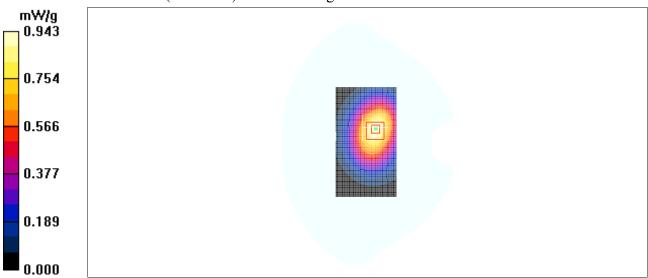


Fig. 33 850 MHz CH128

850 Body Towards Ground Low with Headset_CCA30B4010C5

Date/Time: 2011-3-22 15:45:19

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943 \text{ mho/m}$; $\epsilon r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.903 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.1 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.845 mW/g; SAR(10 g) = 0.583 mW/g

Maximum value of SAR (measured) = 0.902 mW/g

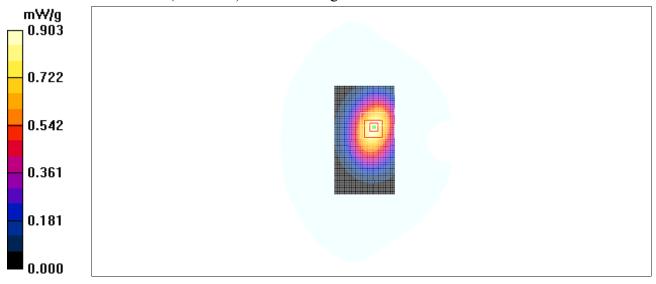


Fig. 34 850 MHz CH128

1900 Body Towards Ground High with GPRS

Date/Time: 2011-3-23 13:41:08

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.821 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.0 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.686 mW/g; SAR(10 g) = 0.400 mW/g

Maximum value of SAR (measured) = 0.743 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.0 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 0.723 W/kg

SAR(1 g) = 0.460 mW/g; SAR(10 g) = 0.284 mW/g

Maximum value of SAR (measured) = 0.498 mW/g

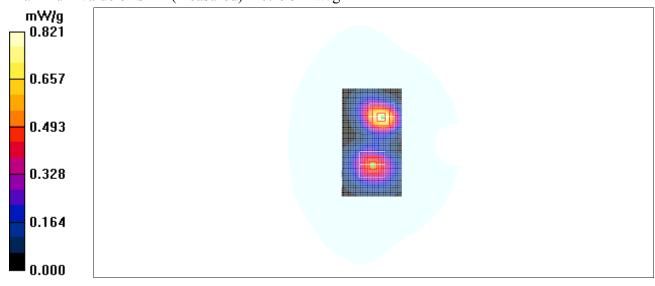


Fig. 35 1900 MHz CH810

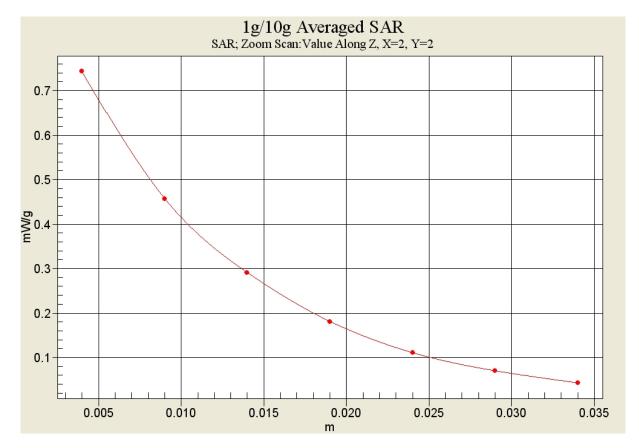


Fig. 35-1 Z-Scan at power reference point (1900 MHz CH810)

1900 Body Towards Ground Middle with GPRS

Date/Time: 2011-3-23 13:56:25

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.757 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = 0.099 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.637 mW/g; SAR(10 g) = 0.371 mW/g

Maximum value of SAR (measured) = 0.691 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = 0.099 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.295 mW/g

Maximum value of SAR (measured) = 0.511 mW/g

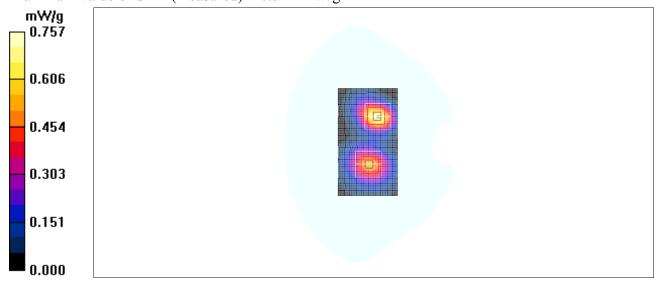


Fig. 36 1900 MHz CH661

1900 Body Towards Ground Low with GPRS

Date/Time: 2011-3-23 14:11:47

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon r = 52.4$; $\rho = 1.47$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.669 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.947 W/kg

SAR(1 g) = 0.573 mW/g; SAR(10 g) = 0.334 mW/g

Maximum value of SAR (measured) = 0.622 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.722 W/kg

SAR(1 g) = 0.472 mW/g; SAR(10 g) = 0.296 mW/gMaximum value of SAR (measured) = 0.508 mW/g

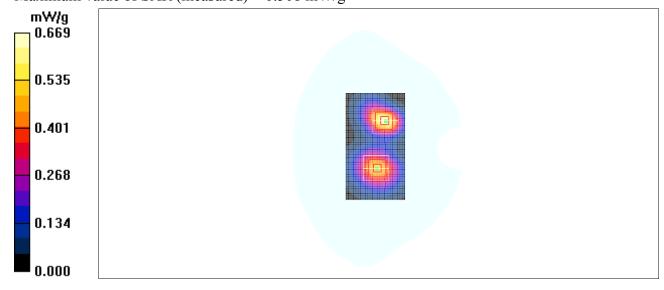


Fig. 37 1900 MHz CH512

1900 Body Towards Phantom High with GPRS

Date/Time: 2011-3-23 14:28:01 Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.473 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.434 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.465 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.582 W/kg

SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.216 mW/g

Maximum value of SAR (measured) = 0.389 mW/g

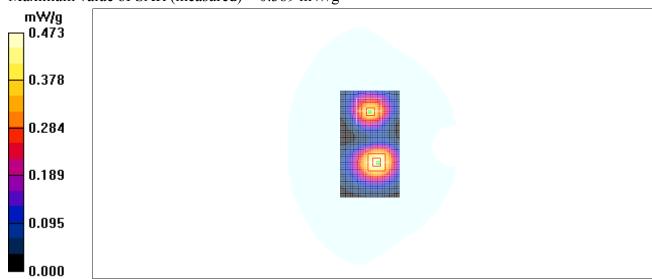


Fig. 38 1900 MHz CH810

1900 Body Towards Phantom Middle with GPRS

Date/Time: 2011-3-23 14:43:29

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.459 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.659 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.265 mW/g

Maximum value of SAR (measured) = 0.456 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.319 mW/g; SAR(10 g) = 0.190 mW/g

Maximum value of SAR (measured) = 0.343 mW/g

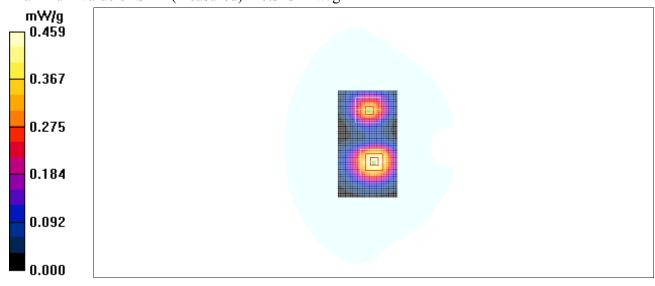


Fig. 39 1900 MHz CH661

1900 Body Towards Phantom Low with GPRS

Date/Time: 2011-3-23 14:58:50

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon r = 52.4$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.460 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.653 W/kg

SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.267 mW/g

Maximum value of SAR (measured) = 0.458 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.299 mW/g; SAR(10 g) = 0.179 mW/gMaximum value of SAR (measured) = 0.326 mW/g

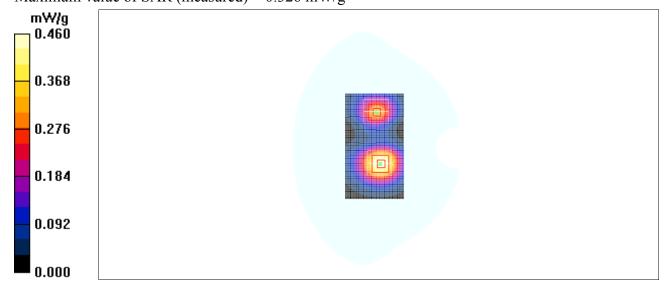


Fig. 40 1900 MHz CH512

1900 Body Towards Ground High with Headset_CCA30B4000C3

Date/Time: 2011-3-23 15:15:22

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.614 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.82 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 0.859 W/kg

SAR(1 g) = 0.514 mW/g; SAR(10 g) = 0.298 mW/gMaximum value of SAR (measured) = 0.560 mW/g

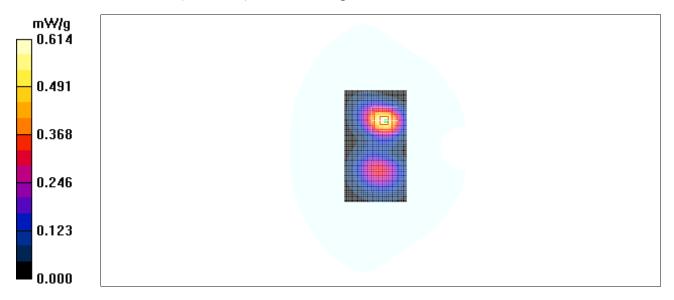


Fig. 41 1900 MHz CH810

1900 Body Towards Ground High with Headset_CCA30B4010C4

Date/Time: 2011-3-23 15:31:43

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.605 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.29 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 0.848 W/kg

SAR(1 g) = 0.505 mW/g; SAR(10 g) = 0.295 mW/gMaximum value of SAR (measured) = 0.545 mW/g

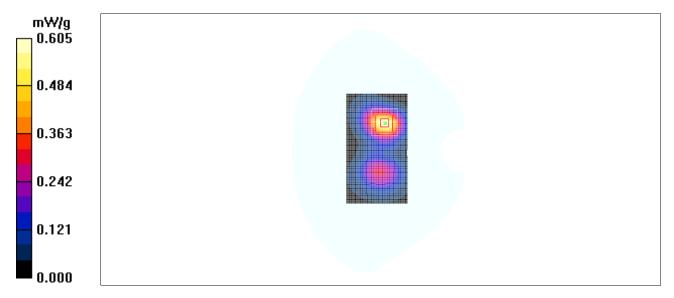


Fig. 42 1900 MHz CH810

1900 Body Towards Ground High with Headset_CCA30B4010C5

Date/Time: 2011-3-23 15:48:35

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.586 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.69 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.822 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.281 mW/gMaximum value of SAR (measured) = 0.531 mW/g

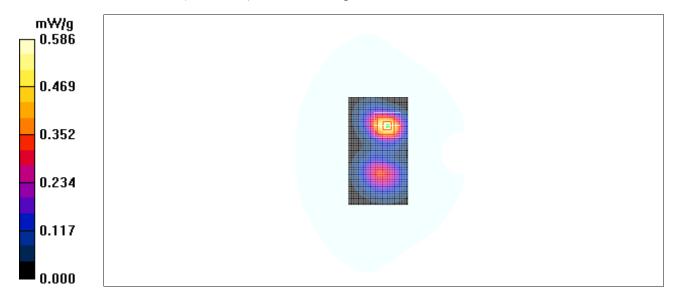


Fig. 43 1900 MHz CH810

850 Body Towards Ground Low with GPRS with battery CAB2170000C1

Date/Time: 2011-3-22 16:04:47

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.943 \text{ mho/m}$; $\epsilon r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.30 mW/g

Toward Ground Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.1 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.832 mW/g

Maximum value of SAR (measured) = 1.28 mW/g

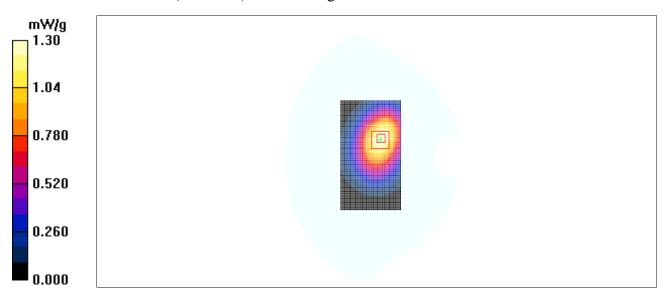


Fig. 44 850 MHz CH128

ANNEX D SYSTEM VALIDATION RESULTS

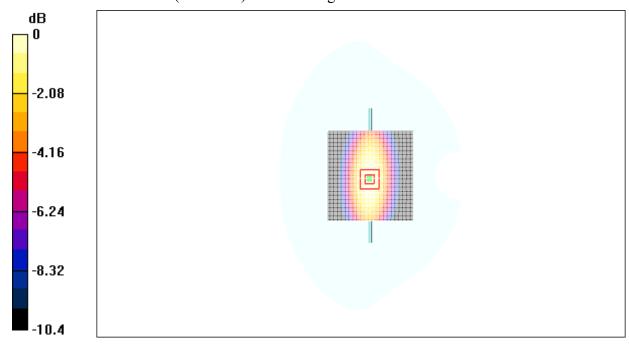
835MHz

Date/Time: 2011-3-22 7:28:09 Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)


System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.60 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = 0.088 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.51 mW/gMaximum value of SAR (measured) = 2.50 mW/g

0 dB = 2.50 mW/g

Fig.45 validation 835MHz 250mW

835MHz

Date/Time: 2011-3-22 13:14:52

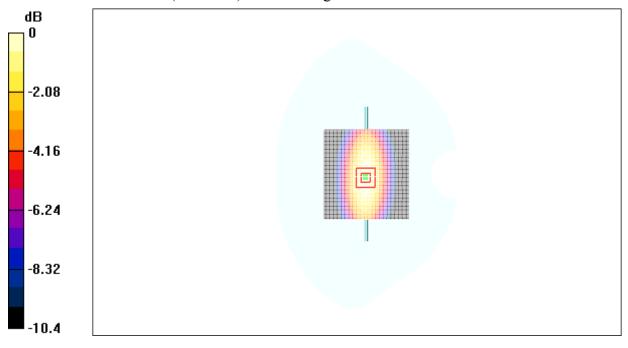
Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 54.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.55 mW/g


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.5 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 3.30 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.41 mW/g

0 dB = 2.41 mW/g

Fig.46 validation 835MHz 250mW

1900MHz

Date/Time: 2011-3-23 7:28:34 Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.3 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.7 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 14.6 W/kg

SAR(1 g) = 9.72 mW/g; SAR(10 g) = 4.90 mW/g

Maximum value of SAR (measured) = 10.4 mW/g

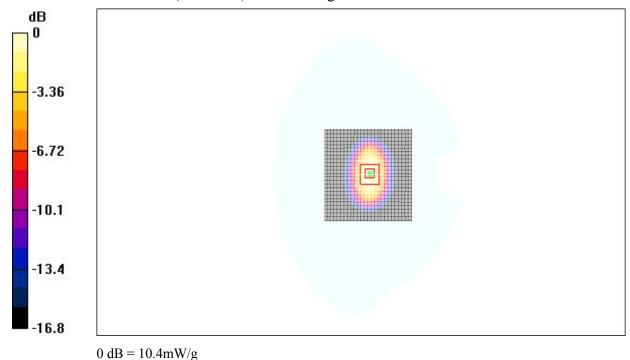


Fig.47 validation 1900MHz 250mW

1900MHz

Date/Time: 2011-3-23 13:19:54

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.4 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 91.4 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.11 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

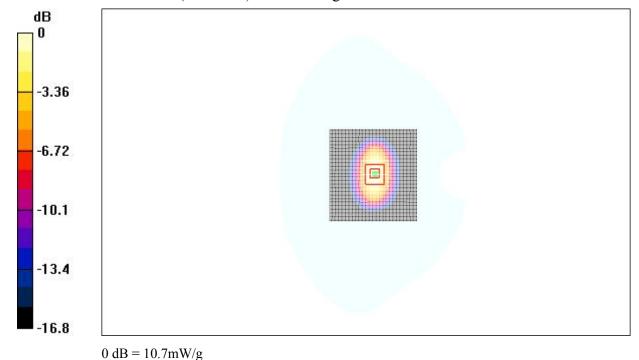


Fig.48 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION CERT	IFICATE		
Object	ES	3DV3-SN: 3149	
Calibration procedure(s)		CAL-01.v6 libration procedure for dosimetric E-fiel	d probes
Calibration date:	Se	ptember 25, 2010	
Condition of the calibrated it	tem In	Tolerance	
Calibration Equipment used (N	//&TE critical for cal	· · · · · · · · · · · · · · · · · · ·	
Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-10 (METAS, NO. 251-00388)	May-11
Power sensor E4412A	MY41495277	5-May-10 (METAS, NO. 251-00388)	May-11
Reference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-10 (METAS, NO. 251-00403)	Aug-11
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-10 (METAS, NO. 251-00389)	May-11
DAE4	SN:S5129 (30b) SN:617	10-Aug-10 (METAS, NO. 251-00404) 10-Jun-10 (SPEAG, NO.DAE4-907_Jun10)	Aug-11 Jun-11
Reference Probe ES3DV2	SN: 3013	12-Jan-10 (SPEAG, NO. ES3-3013_Jan10)	Jan-11
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-09)	In house check: Oct-10
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-09)	In house check: Nov-10
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	A. M.f.
Approved by:	Niels Kuster	Quality Manager	112

Certificate No: ES3DV3-3149_Sep10 Page 1 of 9

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3DV3-3149_ Sep10 Page 2 of 9

Probe ES3DV3

SN: 3149

Manufactured: June 12, 2007

Calibrated: September 25, 2010

Calibrated for DASY4 System

Certificate No: ES3DV3-3149_ Sep10 Page 3 of 9

DASY - Parameters of Probe: ES3DV3 SN:3149

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.14±10.1%	$\mu V/(V/m)^2$	DCP X	94mV
NormY	1.23±10.1%	$\mu V/(V/m)^2$	DCP Y	95mV
NormZ	1.29±10.1%	$\mu V/(V/m)^2$	DCP Z	91mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8

Boundary Effect

TSL 900MHz Typical SAR gradient: 5% per mm

Sensor Center to	o Phantom Surface Distance	3.0 mm	4.0 mm
SARbe[%]	Without Correction Algorithm	3.8	1.6
SARbe[%]	With Correction Algorithm	0.8	0.7

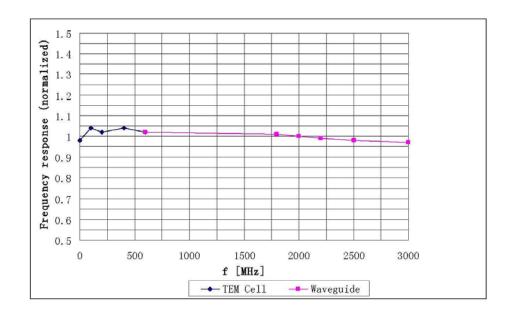
TSL 1810MHz Typical SAR gradient: 10% per mm

Sensor Center t	o Phantom Surface Distance	3.0 mm	4.0 mm
SARbe[%]	Without Correction Algorithm	6.8	3.6
SARbe[%]	With Correction Algorithm	0.4	0.2

Sensor Offset

Probe Tip to Sensor Center 2.0 mm

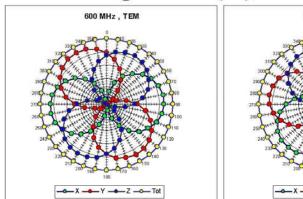
The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2,which for a normal distributio Corresponds to a coverage probability of approximately 95%.

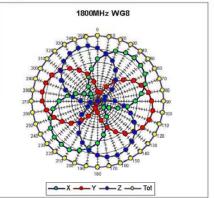

^B Numerical linearization parameter: uncertainty not required.

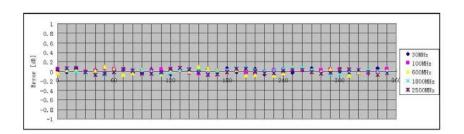
Certificate No: ES3DV3-3149_ Sep10 Page 4 of 9

 $^{^{}A}$ The uncertainties of NormX,Y,Z do not affect the E^{2} -field uncertainty inside TSL (see Page 8).

Frequency Response of E-Field

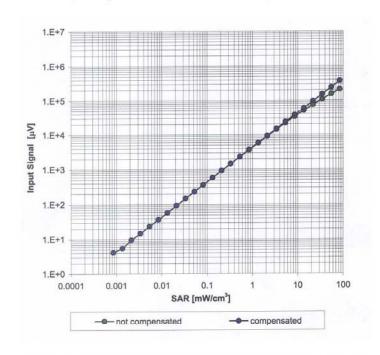


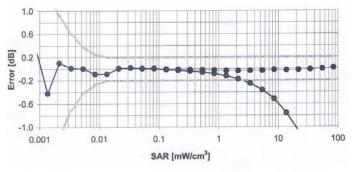

Uncertainty of Frequency Response of E-field: ±5.0% (k=2)


Certificate No: ES3DV3-3149_ Sep10 Page 5 of 9

Receiving Pattern (ϕ), θ =0°

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

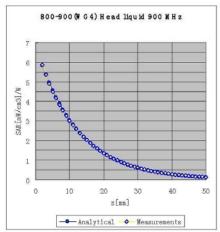

Certificate No: ES3DV3-3149_ Sep10 Page 6 of 9

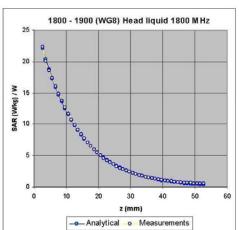


ES3DV3 SN: 3149

September 25, 2010

Dynamic Range f(SAR_{head}) (Waveguide: WG8, f = 1800 MHz)

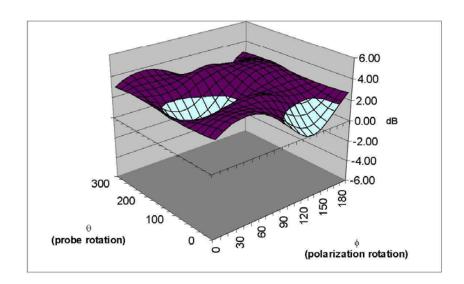



Uncertainty of Linearity Assessment: ±0.5% (k=2)

Certificate No: ES3DV3-3149_ Sep10 Page 7 of 9

Conversion Factor Assessment

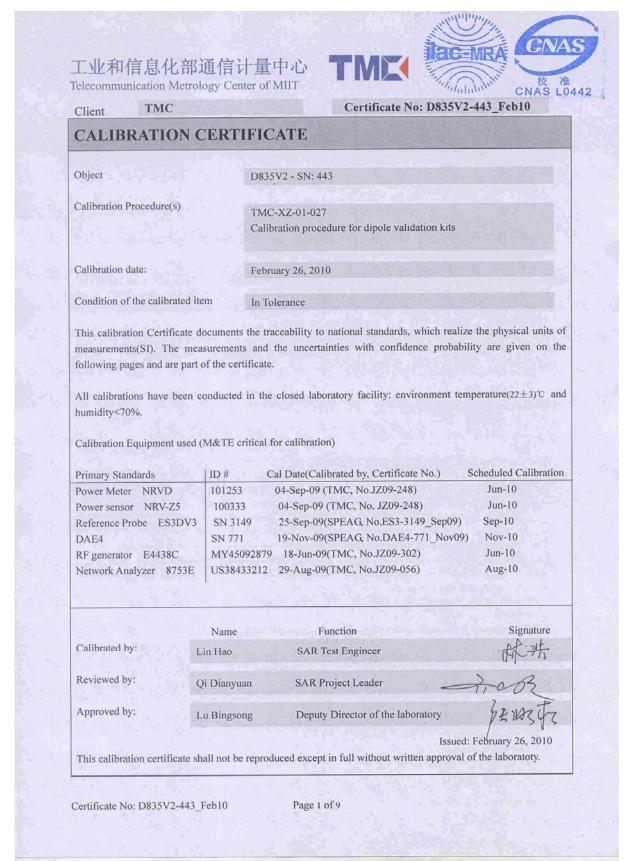
f[MHz]	Validity[MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
850	±50 /±100	Head	41.5±5%	0.90±5%	0.91	1.13	6.56	±11.0% (k=2)
900	±50 /±100	Head	41.5±5%	0.97±5%	0.83	1.26	6.34	±11.0% (k=2)
1800	±50 /±100	Head	40.0±5%	1.40±5%	0.69	1.47	5.18	±11.0% (k=2)
1900	±50 /±100	Head	40.0±5%	1.40±5%	0.72	1.38	5.03	±11.0% (k=2)
2100	±50 /±100	Head	39.8±5%	1.49±5%	0.66	1.34	4.58	±11.0% (k=2)
850	±50 /±100	Body	55.2±5%	0.97±5%	0.76	1.26	6.22	±11.0% (k=2)
900	±50 /±100	Body	55.0±5%	1.05±5%	0.99	1.06	6.02	±11.0% (k=2)
1800	±50 /±100	Body	53.3±5%	1.52±5%	0.75	1.34	4.97	±11.0% (k=2)
1900	±50 /±100	Body	53.3±5%	1.52±5%	0.62	1.33	4.68	±11.0% (k=2)
2100	±50 /±100	Body	53.5±5%	1.57±5%	0.68	1.34	4.35	±11.0% (k=2)


 $^{^{\}rm C}$ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty $\,$ is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3DV3-3149_ Sep10 Page 8 of 9

Deviation from Isotropy

Error (ϕ, θ) , f = 900 MHz


Uncertainty of Spherical Isotropy Assessment: ±2.5% (k=2)

Certificate No: ES3DV3-3149_ Sep10 Page 9 of 9

ANNEX F DIPOLE CALIBRATION CERTIFICATE

835 MHz Dipole Calibration Certificate

工业和信息化部通信计量中心

Telecommunication Metrology Center of MIIT

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

工业和信息化部通信计量中心 TMIT Telecommunication Metrology Center of MIIT

Measurement Conditions

ASY system configuration, as far as	not given on page 1.	
DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz + 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.92mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		-3

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	85元 15. 5. 14. 14. 17
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.41 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	A BUT M
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.12 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb10

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

工业和信息化部通信计量中心

Telecommunication Metrology Center of MIIT

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6%	0.97mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	But the Park of
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.24 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb10

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω -3.7 jΩ
Return Loss	- 25.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4Ω - 5.1 jΩ
Return Loss	-25.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

工业和信息化部通信计量中心

Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Head TSL

Date/Time: 2010-2-26 14:31:40

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Head 835MHz

Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; $\epsilon_{\rm r}$ = 41.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

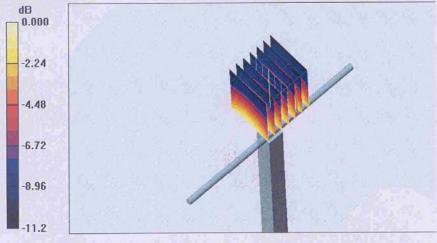
Probe: ES3DV3 - SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.09

Electronics: DAE4 Sn771; Calibration: 19.11.09

• Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

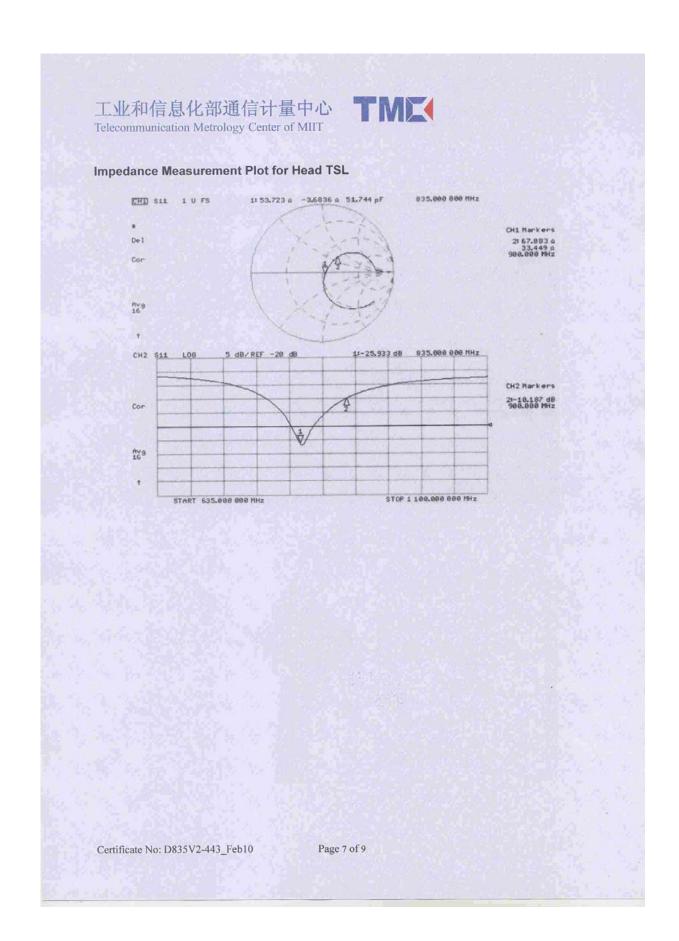
Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 3.11 W/kg


SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.71 mW/g

0 dB = 2.71 mW/g

Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Body TSL

Date/Time: 2010-2-26 9:52:36

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Body 835MHz

Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ = 54.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

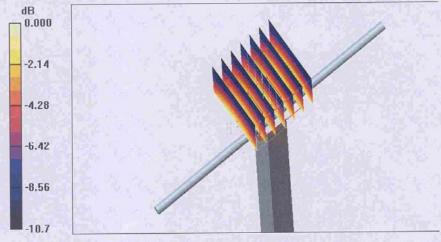
Probe: ES3DV3 - SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.09

Electronics: DAE4 Sn771; Calibration: 19.11.09

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

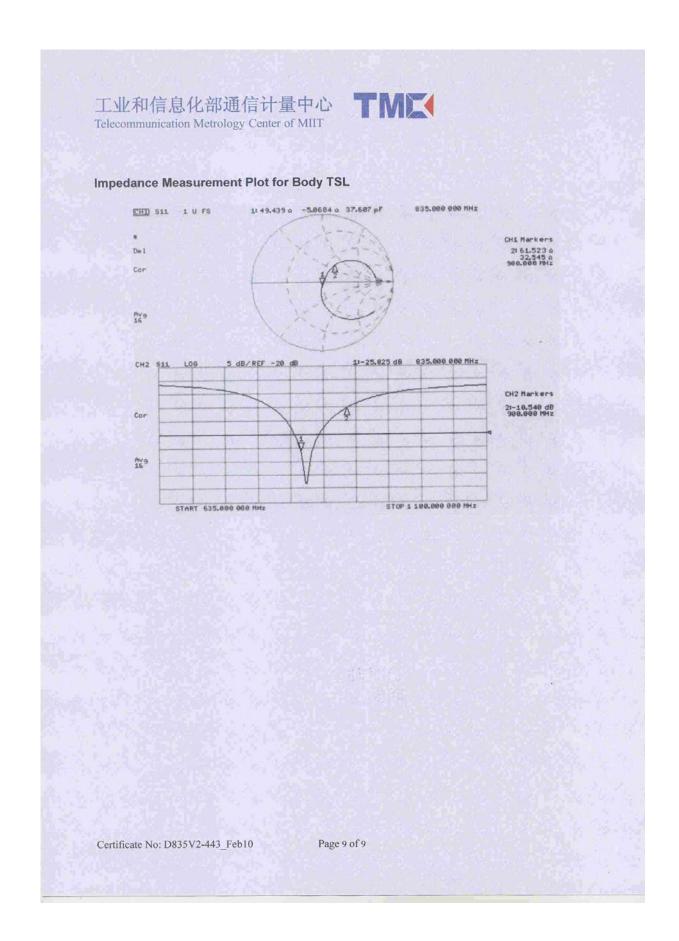
Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.0 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 3.78 W/kg


SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g

Maximum value of SAR (measured) = 2.70 mW/g

0 dB = 2.70 mW/g

1900 MHz Dipole Calibration Certificate

Issued: February 26, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Deputy Director of the laboratory

Lu Bingsong

Approved by:

工业和信息化部通信计量中心

Telecommunication Metrology Center of MIIT

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	the state of the state of
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	Factor of the Paris
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	5 5 14 B
SAR measured	250 mW input power	9.91 mW / g
SAR normalized	normalized to 1W	39.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.05 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.1 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-541_Feb10

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6%	1.51 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	N	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	41.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-541_Feb10

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

工业和信息化部通信计量中心 Telecommunication Metrology Center of MITT

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8Ω + 4.0 jΩ	
Return Loss	- 23.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω + 7.1 jΩ	
Return Loss	- 22.6dB	EW

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
Licotriodi Doidy (orio di ostro)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 4, 2001	

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Head TSL

Date/Time: 2010-2-26 15:20:47

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.40 mho/m; ϵ_r = 39.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(5.03, 5.03, 5.03); Calibrated: 25.09.09

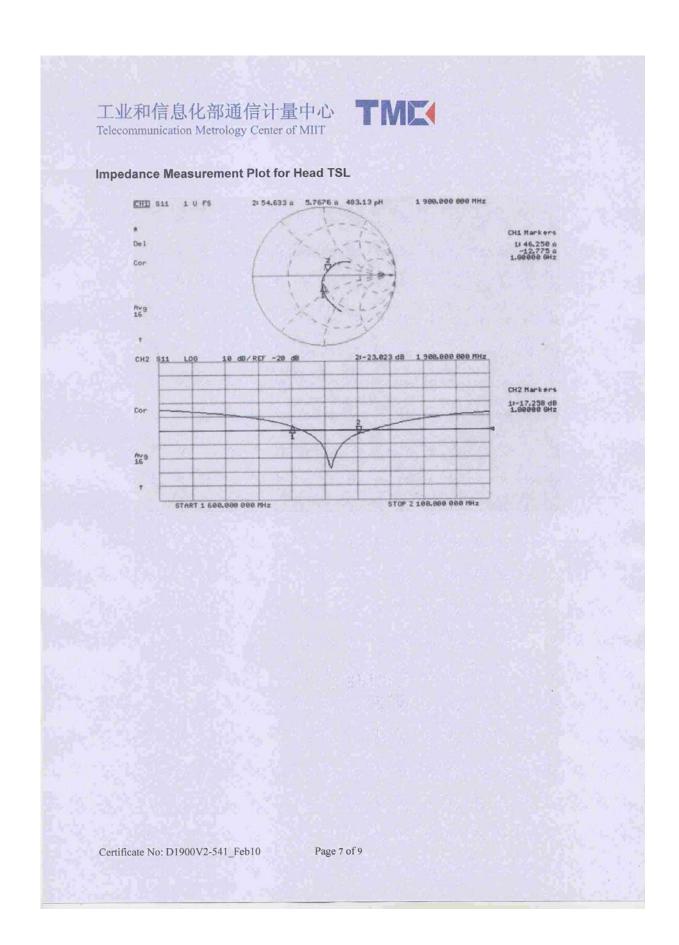
Electronics: DAE4 Sn771; Calibration: 19.11.09

• Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 85.1 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.05 mW/gMaximum value of SAR (measured) = 11.5 mW/g

工业和信息化部通信计量中心

Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Body TSL

Date/Time: 2010-2-26 10:41:08

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ , = 52.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

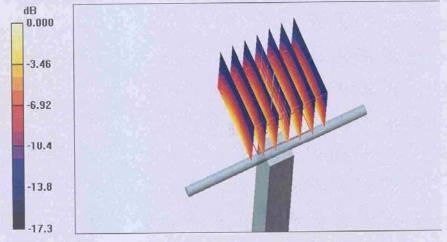
• Probe: ES3DV3 - SN3149; ConvF(4.68, 4.68, 4.68); Calibrated: 25.09.09

• Electronics: DAE4 Sn771; Calibration: 19.11.09

• Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

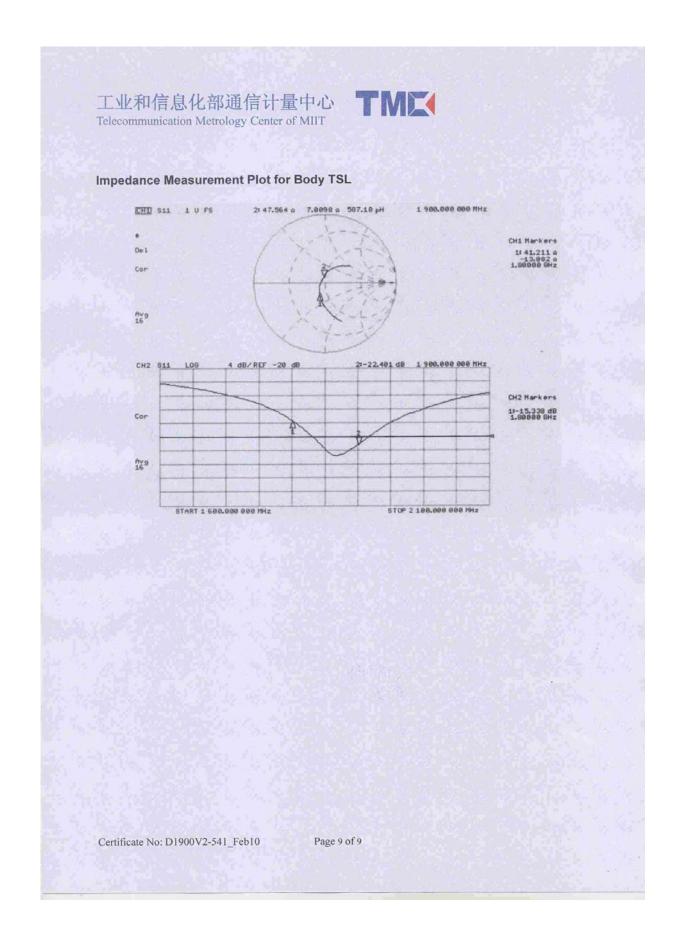
Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.2 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.24 mW/g


Maximum value of SAR (measured) = 12.0 mW/g

0 dB = 12.0 mW/g

Certificate No: D1900V2-541_Feb10

