No.2011SAR00027 Page 1 of 135



# No. 2011SAR00027

# For

# **TCT Mobile Limited**

# GSM/GPRS/EDGE 850/1900 dual band mobile phone

Onyx wifi A

one touch 813A

With

Hardware Version: PIO

Software Version: SW460

# FCCID: RAD172

Issued Date: 2011-04-22



No. DGA-PL-114/01-02

#### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

#### Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. <u>www.emcite.com</u>

©Copyright. All rights reserved by TMC Beijing.



# TABLE OF CONTENT

| 1 TEST LA         | BORATORY                                                 | 3   |
|-------------------|----------------------------------------------------------|-----|
|                   | IG LOCATION                                              |     |
|                   | NG ENVIRONMENT                                           |     |
|                   | CT DATA<br>fure                                          |     |
|                   | INFORMATION                                              |     |
|                   | CANT INFORMATION                                         |     |
|                   | FACTURER INFORMATION                                     |     |
|                   | ENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)        |     |
|                   | сте UT                                                   |     |
|                   | VAL IDENTIFICATION OF EUT USED DURING THE TEST           |     |
| 3.3 INTERN        | NAL IDENTIFICATION OF AE USED DURING THE TEST            | 5   |
| 4 CHARAC          | TERISTICS OF THE TEST                                    | 5   |
| 4.1 APPLIC        | CABLE LIMIT REGULATIONS                                  | 5   |
| 4.2 APPLIC        | CABLE MEASUREMENT STANDARDS                              | 5   |
| 5 OPERAT          | IONAL CONDITIONS DURING TEST                             | 6   |
|                   | IATIC TEST CONFIGURATION                                 |     |
|                   | Aeasurement Set-up                                       |     |
|                   | E-FIELD PROBE SYSTEM<br>D PROBE CALIBRATION              |     |
|                   | TEST EQUIPMENT                                           |     |
|                   | alent Tissues                                            |     |
|                   | M SPECIFICATIONS                                         |     |
|                   | CTED OUTPUT POWER MEASUREMENT                            |     |
|                   | ARY                                                      |     |
|                   | JCTED POWER                                              |     |
| _                 | SULTS                                                    | -   |
|                   | CTRIC PERFORMANCE                                        |     |
| /. <b>2</b> 0101E | ATION OF MULTI-BATTERIES                                 |     |
| 7.4 SUMMA         | ARY OF MEASUREMENT RESULTS                               | 15  |
|                   | ARY OF MEASUREMENT RESULTS (BLUETOOTH AND WIFI FUNCTION) |     |
|                   |                                                          |     |
|                   |                                                          | -   |
|                   | ST INSTRUMENTS                                           |     |
|                   | MEASUREMENT PROCESS                                      |     |
|                   | TEST LAYOUT                                              | _   |
| ANNEX C           | GRAPH RESULTS                                            |     |
| ANNEX D           |                                                          |     |
| ANNEX E           | PROBE CALIBRATION CERTIFICATE                            |     |
| ANNEX F           | DIPOLE CALIBRATION CERTIFICATE                           | 109 |



# 1 Test Laboratory

# **1.1 Testing Location**

| Company Name: | TMC Beijing, Telecommunication Metrology Center of MIIT   |
|---------------|-----------------------------------------------------------|
| Address:      | No 52, Huayuan beilu, Haidian District, Beijing,P.R.China |
| Postal Code:  | 100191                                                    |
| Telephone:    | +86-10-62304633                                           |
| Fax:          | +86-10-62304793                                           |

## **1.2 Testing Environment**

| Temperature:              | 18°C~25 °C, |
|---------------------------|-------------|
| Relative humidity:        | 30%~ 70%    |
| Ground system resistance: | < 0.5 Ω     |

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

## 1.3 Project Data

| Project Leader:     | Qi Dianyuan    |
|---------------------|----------------|
| Test Engineer:      | Lin Xiaojun    |
| Testing Start Date: | March 26, 2011 |
| Testing End Date:   | March 28, 2011 |

# 1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)



# **2** Client Information

# 2.1 Applicant Information

| Company Name:   | TCT Mobile Limited                                                   |
|-----------------|----------------------------------------------------------------------|
| Address /Post:  | 4/F, South Building, No.2966, Jinke Road, Zhangjiang High-Tech Park, |
| Audress / Fusi. | Pudong, Shanghai, 201203, P.R.China                                  |
| City:           | Shanghai                                                             |
| Postal Code:    | 201203                                                               |
| Country:        | P. R. China                                                          |
| Contact Person: | Gong Zhizhou                                                         |
| Contact Email   | zhizhou.gong@jrdcom.com                                              |
| Telephone:      | 0086-21-61460890                                                     |
| Fax:            | 0086-21-61460602                                                     |

# 2.2 Manufacturer Information

| Company Name:   | TCT Mobile Limited                                                    |
|-----------------|-----------------------------------------------------------------------|
| Address /Post:  | 4/F, South Building, No. 2966, Jinke Road, Zhangjiang High-Tech Park, |
| Address /Post.  | Pudong, Shanghai, 201203, P.R.China                                   |
| City:           | Shanghai                                                              |
| Postal Code:    | 201203                                                                |
| Country:        | P. R. China                                                           |
| Contact Person: | Gong Zhizhou                                                          |
| Contact Email   | zhizhou.gong@jrdcom.com                                               |
| Telephone:      | 0086-21-61460890                                                      |
| Fax:            | 0086-21-61460602                                                      |



# **3 Equipment Under Test (EUT) and Ancillary Equipment (AE)**

## 3.1 About EUT

| EUT Description:       | GSM/GPRS/EDGE 850/1900 dual band mobile phone |  |
|------------------------|-----------------------------------------------|--|
| Model Name:            | Onyx wifi A                                   |  |
| Marketing Name:        | one touch 813A                                |  |
| GSM Frequency Band:    | GSM 850 / PCS 1900 / WiFi                     |  |
| GPRS Multislot Class:  | 12                                            |  |
| EGPRS Multislot Class: | 12                                            |  |
| GPRS capability Class: | В                                             |  |

## 3.2 Internal Identification of EUT used during the test

| EUT ID* | SN or IMEI      | HW Version | SW Version |
|---------|-----------------|------------|------------|
| EUT1    | 012640000010362 | PIO        | SW460      |

\*EUT ID: is used to identify the test sample in the lab internally.

#### 3.3 Internal Identification of AE used during the test

| AE ID* | Description | Model        | SN | Manufacturer |
|--------|-------------|--------------|----|--------------|
| AE1    | Battery     | CAB31L0000C1 | ١  | BYD          |
| AE2    | Battery     | CAB31L0000C2 | ١  | BAK          |
| AE3    | Headset     | CCB3160A10C0 | ١  | Juwei        |
| AE4    | Headset     | CCB3160A10C3 | ١  | Lianchuang   |
|        |             |              |    |              |

\*AE ID: is used to identify the test sample in the lab internally.

# **4 CHARACTERISTICS OF THE TEST**

#### 4.1 Applicable Limit Regulations

**EN 50360–2001:** Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

**ANSI C95.1–1999:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 4.2 Applicable Measurement Standards

**EN 62209-1–2006:** Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close



proximity to the ear (frequency range of 300 MHz to 3 GHz).

**IEEE 1528–2003:** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

**OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01):** Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

**IEC 62209-1:** Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

**KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05:** SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas.

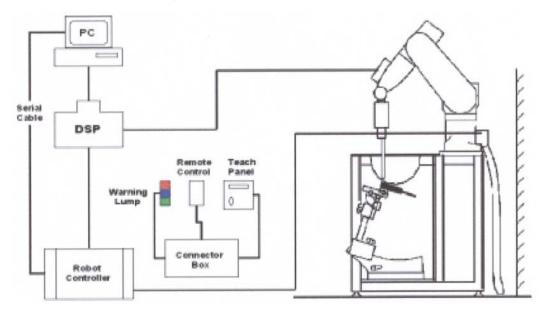
**KDB248227:** SAR measurement procedures for 802.112abg transmitters.

# **5 OPERATIONAL CONDITIONS DURING TEST**

#### 5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.


#### 5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than  $\pm$  0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition



unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.



Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

# 5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than  $\pm$  10%. The spherical isotropy was evaluated and found to be better than  $\pm$  0.25dB.

## **ES3DV3 Probe Specification**

Construction Symmetrical design with triangular core Interleaved sensors



# No.2011SAR00027 Page 8 of 135

Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

- Calibration Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 900 and HSL 1810
  - Additional CF for other liquids and frequencies upon request



Picture 3: ES3DV3 E-field

|               |                                                                                                                                | P      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|--------|
| Frequency     | 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4                                                                              | 4 GHz) |
| Directivity   | ± 0.2 dB in HSL (rotation around probe axis)<br>± 0.3 dB in tissue material (rotation normal to<br>probe axis)                 |        |
| Dynamic Range | 5 $\mu$ W/g to > 100 mW/g; Linearity: ± 0.2 dB                                                                                 |        |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 3.9 mm (Body: 12 mm)<br>Distance from probe tip to dipole centers: 2.0 mm |        |
| Application   | General dosimetry up to 4 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of mobile phones                      | D' (   |
|               |                                                                                                                                | Pictu  |



Picture4:ES3DV3 E-field probe

## 5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than  $\pm$  10%. The spherical isotropy was evaluated and found to be better than  $\pm$  0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

# No.2011SAR00027 Page 9 of 135



$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where:  $\Delta t$  = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),  $\Delta T$  = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m<sup>3</sup>).



Picture 5: Device Holder

# 5.5 Other Test Equipment

## 5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

## 5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

| Shell Thickness | 2±0. l mm                       |
|-----------------|---------------------------------|
| Filling Volume  | Approx. 20 liters               |
| Dimensions      | 810 x l000 x 500 mm (H x L x W) |
| Available       | Special                         |



Picture 6: Generic Twin Phantom



# 5.6 Equivalent Tissues

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, Glycol monobutyl, Preventol and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

| Table 1. Composition of the near riss                     | ue Equivalent Matter    |  |
|-----------------------------------------------------------|-------------------------|--|
| MIXTURE %                                                 | FREQUENCY 850MHz        |  |
| Water                                                     | 41.45                   |  |
| Sugar                                                     | 56.0                    |  |
| Salt                                                      | 1.45                    |  |
| Preventol                                                 | 0.1                     |  |
| Cellulose                                                 | 1.0                     |  |
| Dielectric Parameters Target Value                        | f=850MHz ε=41.5 σ=0.90  |  |
| MIXTURE %                                                 | FREQUENCY 1900MHz       |  |
| Water                                                     | 55.242                  |  |
| Glycol monobutyl                                          | 44.452                  |  |
| Salt                                                      | 0.306                   |  |
| Dielectric Parameters Target Value                        | f=1900MHz ε=40.0 σ=1.40 |  |
| MIXTURE %                                                 | FREQUENCY 2450MHz       |  |
| Water                                                     | 58.79                   |  |
| Glycol monobutyl                                          | 41.15                   |  |
| Salt                                                      | 0.06                    |  |
| Dielectric Parameters Target Value                        | f=2450MHz ε=39.2 σ=1.80 |  |
| Table 2. Composition of the Body Tissue Equivalent Matter |                         |  |
| MIXTURE %                                                 | FREQUENCY 850MHz        |  |
| Water                                                     | 52.5                    |  |

#### Table 1. Composition of the Head Tissue Equivalent Matter

| Table 2. Composition of the Body Tissue Equivalent Matter |                         |  |  |  |  |  |
|-----------------------------------------------------------|-------------------------|--|--|--|--|--|
| MIXTURE %                                                 | FREQUENCY 850MHz        |  |  |  |  |  |
| Water                                                     | 52.5                    |  |  |  |  |  |
| Sugar                                                     | 45.0                    |  |  |  |  |  |
| Salt                                                      | 1.4                     |  |  |  |  |  |
| Preventol                                                 | 0.1                     |  |  |  |  |  |
| Cellulose                                                 | 1.0                     |  |  |  |  |  |
| Dielectric Parameters Target Value                        | f=850MHz ε=55.2 σ=0.97  |  |  |  |  |  |
| MIXTURE %                                                 | FREQUENCY 1900MHz       |  |  |  |  |  |
| Water                                                     | 69.91                   |  |  |  |  |  |
| Glycol monobutyl                                          | 29.96                   |  |  |  |  |  |
| Salt                                                      | 0.13                    |  |  |  |  |  |
| Dielectric Parameters Target Value                        | f=1900MHz ε=53.3 σ=1.52 |  |  |  |  |  |
| MIXTURE %                                                 | FREQUENCY 2450MHz       |  |  |  |  |  |
| Water                                                     | 72.60                   |  |  |  |  |  |
| Glycol monobutyl                                          | 27.22                   |  |  |  |  |  |
| Salt                                                      | 0.18                    |  |  |  |  |  |
| Dielectric Parameters Target Value                        | f=2450MHz ε=52.7 σ=1.95 |  |  |  |  |  |



## 5.7 System Specifications

## Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L Repeatability: ±0.02 mm No. of Axis: 6 Data Acquisition Electronic (DAE) System Cell Controller Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

# 6 CONDUCTED OUTPUT POWER MEASUREMENT

## 6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

## 6.2 Conducted Power

#### 6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels.

#### 6.2.2 Measurement result

#### Table 3: The conducted power for GSM 850/1900

| GSM     | Conducted Power (dBm)  |                       |                        |  |  |
|---------|------------------------|-----------------------|------------------------|--|--|
| 850MHZ  | Channel 251(848.8MHz)  | Channel 190(836.6MHz) | Channel 128(824.2MHz)  |  |  |
|         | 32.55                  | 32.47                 | 32.42                  |  |  |
| GSM     |                        | Conducted Power (dBm) |                        |  |  |
| 1900MHZ | Channel 810(1909.8MHz) | Channel 661(1880MHz)  | Channel 512(1850.2MHz) |  |  |
|         | 30.00                  | 30.12                 | 30.68                  |  |  |



| Table 4: The co | nauctea pov | ver for GPI          | RS 850/190 | u and EGPRS | 850/1900 |                      |       |
|-----------------|-------------|----------------------|------------|-------------|----------|----------------------|-------|
| GSM 850         | Measu       | ired Power           | (dBm)      | calculation | Avera    | Averaged Power (dBm) |       |
| GPRS            | 251         | 190                  | 128        |             | 251      | 190                  | 128   |
| 1 Txslot        | 32.25       | 32.21                | 32.15      | -9.03dB     | 23.22    | 23.18                | 23.12 |
| 2 Txslots       | 30.02       | 30.00                | 30.01      | -6.02dB     | 24.00    | 23.98                | 23.99 |
| 3Txslots        | 28.30       | 28.30                | 28.31      | -4.26dB     | 24.04    | 24.04                | 24.05 |
| 4 Txslots       | 27.07       | 27.06                | 27.08      | -3.01dB     | 24.06    | 24.05                | 24.07 |
| GSM 850         | Measu       | ired Power           | (dBm)      | calculation | Avera    | ged Power            | (dBm) |
| EGPRS           | 251         | 190                  | 128        |             | 251      | 190                  | 128   |
| 1 Txslot        | 31.86       | 31.82                | 31.79      | -9.03dB     | 22.83    | 22.79                | 22.76 |
| 2 Txslots       | 29.95       | 29.94                | 29.94      | -6.02dB     | 23.93    | 23.92                | 23.92 |
| 3Txslots        | 28.29       | 28.28                | 28.26      | -4.26dB     | 24.03    | 24.02                | 24.00 |
| 4 Txslots       | 27.08       | 27.06                | 27.06      | -3.01dB     | 24.07    | 24.05                | 24.05 |
| PCS1900         | Measu       | Measured Power (dBm) |            | calculation | Avera    | ged Power            | (dBm) |
| GPRS            | 810         | 661                  | 512        |             | 810      | 661                  | 512   |
| 1 Txslot        | 29.21       | 29.35                | 29.88      | -9.03dB     | 20.18    | 20.32                | 20.85 |
| 2 Txslots       | 26.52       | 26.53                | 27.06      | -6.02dB     | 20.50    | 20.51                | 21.04 |
| 3Txslots        | 25.09       | 25.09                | 25.60      | -4.26dB     | 20.83    | 20.83                | 21.34 |
| 4 Txslots       | 23.49       | 23.47                | 24.01      | -3.01dB     | 20.48    | 20.46                | 21.00 |
| PCS1900         | Measu       | ired Power           | (dBm)      | calculation | Avera    | ged Power            | (dBm) |
| EGPRS           | 810         | 661                  | 512        |             | 810      | 661                  | 512   |
| 1 Txslot        | 28.69       | 28.72                | 29.24      | -9.03dB     | 19.66    | 19.69                | 20.21 |
| 2 Txslots       | 26.56       | 26.57                | 27.10      | -6.02dB     | 20.54    | 20.55                | 21.08 |
| 3Txslots        | 25.13       | 25.12                | 25.63      | -4.26dB     | 20.87    | 20.86                | 21.37 |
| 4 Txslots       | 23.50       | 23.47                | 24.01      | -3.01dB     | 20.49    | 20.46                | 21.00 |

#### Table 4: The conducted power for GPRS 850/1900 and EGPRS 850/1900

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

# According to the conducted power as above, the body measurements are performed with 4 Txslots for GSM850 and 3 Txslots for GSM1900.

#### 6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 11 to Table 18 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.



# 7 TEST RESULTS

# 7.1 Dielectric Performance

## Table 5: Dielectric Performance of Head Tissue Simulating Liquid

| Measurement is made at temperature 23.0 °C and relative humidity 38%.               |          |      |      |  |  |  |
|-------------------------------------------------------------------------------------|----------|------|------|--|--|--|
| Liquid temperature during the test: 22.5°C                                          |          |      |      |  |  |  |
| Measurement Date : 850 MHz Mar 27, 2011 1900 MHz Mar 28, 2011 2450 MHz Mar 26, 2011 |          |      |      |  |  |  |
| / Frequency Permittivity ε Conductivity σ (S/m)                                     |          |      |      |  |  |  |
|                                                                                     | 835 MHz  | 41.5 | 0.90 |  |  |  |
| Target value                                                                        | 1900 MHz | 40.0 | 1.40 |  |  |  |
|                                                                                     | 2450 MHz | 39.2 | 1.80 |  |  |  |
| Magaziramantiyaliya                                                                 | 835 MHz  | 41.6 | 0.91 |  |  |  |
| Measurement value<br>(Average of 10 tests)                                          | 1900 MHz | 40.4 | 1.41 |  |  |  |
| (Average of 10 lesis)                                                               | 2450 MHz | 39.5 | 1.82 |  |  |  |

## Table 6: Dielectric Performance of Body Tissue Simulating Liquid

| Measurement is made at temperature 23.0 °C and relative humidity 38%.               |          |      |      |  |  |  |
|-------------------------------------------------------------------------------------|----------|------|------|--|--|--|
| Liquid temperature during the test: 22.5°C                                          |          |      |      |  |  |  |
| Measurement Date : 850 MHz Mar 27, 2011 1900 MHz Mar 28, 2011 2450 MHz Mar 26, 2011 |          |      |      |  |  |  |
| / Frequency Permittivity ε Conductivity σ (S/m)                                     |          |      |      |  |  |  |
|                                                                                     | 835 MHz  | 55.2 | 0.97 |  |  |  |
| Target value                                                                        | 1900 MHz | 53.3 | 1.52 |  |  |  |
|                                                                                     | 2450 MHz | 52.7 | 1.95 |  |  |  |
| Measurement value                                                                   | 835 MHz  | 54.7 | 0.95 |  |  |  |
| (Average of 10 tests)                                                               | 1900 MHz | 52.9 | 1.53 |  |  |  |
| (Average of To tests)                                                               | 2450 MHz | 52.5 | 1.97 |  |  |  |

# 7.2 System Validation

#### Table 7: System Validation of Head

| Measurement is made at temperature 23.0 °C and relative humidity 38%. |                                                                                     |          |      |      |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|------|------|--|--|--|
| Liquid temper                                                         | Liquid temperature during the test: 22.5°C                                          |          |      |      |  |  |  |
| Measurement                                                           | Measurement Date : 850 MHz Mar 27, 2011 1900 MHz Mar 28, 2011 2450 MHz Mar 26, 2011 |          |      |      |  |  |  |
|                                                                       | Dipole Frequency Permittivity ε Conductivity $σ$ (S                                 |          |      |      |  |  |  |
|                                                                       | calibration                                                                         | 835 MHz  | 41.6 | 0.92 |  |  |  |
| Liquid                                                                | Target value                                                                        | 1900 MHz | 39.6 | 1.40 |  |  |  |
| parameters                                                            | Ū                                                                                   | 2450 MHz | 39.0 | 1.74 |  |  |  |
|                                                                       | Actural                                                                             | 835 MHz  | 41.6 | 0.91 |  |  |  |
|                                                                       | Measurement                                                                         | 1900 MHz | 40.4 | 1.41 |  |  |  |
|                                                                       | value                                                                               | 2450 MHz | 39.5 | 1.82 |  |  |  |



|              | Frequency | Target value<br>(W/kg) |                | Measured value<br>(W/kg) |                | Deviation       |                |
|--------------|-----------|------------------------|----------------|--------------------------|----------------|-----------------|----------------|
| Verification | Frequency | 10 g<br>Average        | 1 g<br>Average | 10 g<br>Average          | 1 g<br>Average | 10 g<br>Average | 1 g<br>Average |
| results      | 835 MHz   | 6.12                   | 9.41           | 6.08                     | 9.52           | -0.65%          | 1.17%          |
|              | 1900 MHz  | 20.1                   | 39.4           | 19.64                    | 39.36          | -2.29%          | -0.10%         |
|              | 2450 MHz  | 24.6                   | 52.4           | 23.6                     | 51.2           | -4.07%          | -2.29%         |

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

#### Table 8: System Validation of Body

Measurement is made at temperature 23.0 °C and relative humidity 38%.

Liquid temperature during the test: 22.5°C

| Measurement Date : 850 MHz <u>Mar 27, 2011</u> 1900 MHz <u>Mar 28, 2011</u> 2450 MHz <u>Mar 26, 2011</u> |                       |          |          |         |          |                             |         |  |
|----------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|---------|----------|-----------------------------|---------|--|
|                                                                                                          | Dinala                | Frequ    | iency    | Permit  | tivity ε | Conductivity $\sigma$ (S/m) |         |  |
|                                                                                                          | Dipole<br>calibration | 835      | MHz      | 54      | .5       | 0.9                         | 97      |  |
| Liquid                                                                                                   | Target value          | 1900     | MHz      | 52      | 2.5      | 1.{                         | 51      |  |
| parameters —                                                                                             | Target value          | 2450     | MHz      | 52      | 2.5      | 1.9                         | 95      |  |
|                                                                                                          | Actural               | 835 MHz  |          | 54.7    |          | 0.95                        |         |  |
|                                                                                                          | Measurement           | 1900 MHz |          | 52.9    |          | 1.53                        |         |  |
|                                                                                                          | value                 |          | 2450 MHz |         | 52.5     |                             | 1.97    |  |
|                                                                                                          |                       | Target   | value    | Measure | ed value | Devia                       | ation   |  |
|                                                                                                          | Frequency             | (W/      | kg)      | (W/     | kg)      |                             | -       |  |
| Verification                                                                                             | riequency             | 10 g     | 1 g      | 10 g    | 1 g      | 10 g                        | 1 g     |  |
| results                                                                                                  |                       | Average  | Average  | Average | Average  | Average                     | Average |  |
| results                                                                                                  | 835 MHz               | 6.24     | 9.57     | 6.32    | 10       | 1.28%                       | 4.49%   |  |
|                                                                                                          | 1900 MHz              | 20.9     | 41.4     | 21.2    | 41.2     | 1.44%                       | -0.48%  |  |
|                                                                                                          | 2450 MHz              | 23.9     | 51.6     | 23.6    | 51.6     | -1.26%                      | 0.00%   |  |

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

#### 7.3 Evaluation of Multi-Batteries

#### Table 9: Pretest SAR Values (GSM 850 MHz Band)

| Limit of SAR (W/kg)                                  | 10 g Average          | 1 g Average |  |
|------------------------------------------------------|-----------------------|-------------|--|
|                                                      | 2.0                   | 1.6         |  |
| Test Case                                            | Measurement Result (W |             |  |
|                                                      | 10 g Average          | 1 g Average |  |
| Left hand, Touch cheek, Top frequency (CAB31L0000C1) | 0.634                 | 0.859       |  |
| Left hand, Touch cheek, Top frequency (CAB31L0000C2) | 0.601                 | 0.825       |  |

Note: According to the values in the above table, the battery, CAB31L0000C1, is the normal battery. We'll perform the head measurement with this battery and retest on highest value point with others.



#### Table 10: Pretest SAR Values (GSM 850 MHz Band-Body)

| Limit of SAR (W/kg)                                | 10 g Average          | 1 g Average |  |
|----------------------------------------------------|-----------------------|-------------|--|
|                                                    | 2.0                   | 1.6         |  |
| Test Case                                          | Measurement Result (W |             |  |
|                                                    | 10 g Average          | 1 g Average |  |
| Body, Towards Ground, Top frequency (CAB31L0000C1) | 0.664                 | 0.920       |  |
| Body, Towards Ground, Top frequency (CAB31L0000C2) | 0.642                 | 0.889       |  |

Note: According to the values in the above table, the battery, CAB31L0000C1, is the normal battery. We'll perform the body measurement with this battery and retest on highest value point with others.

## 7.4 Summary of Measurement Results

#### Table 11: SAR Values (850MHz-Head) - with battery CAB31L0000C1

| Limit of SAR (W/kg)                                       | 10 g<br>Average | 1 g<br>Average |          |
|-----------------------------------------------------------|-----------------|----------------|----------|
|                                                           | 2.0             | 1.6            | Power    |
| Test Case                                                 | Measurem        | ent Result     | Drift    |
|                                                           | (W/             | ′kg)           | (dB)     |
|                                                           | 10 g            | 1 g            |          |
|                                                           | Average         | Average        |          |
| Left hand, Touch cheek, Top frequency (See Fig.1)         | 0.634           | 0.859          | -0.159   |
| Left hand, Touch cheek, Mid frequency (See Fig.2)         | 0.611           | 0.826          | -0.00853 |
| Left hand, Touch cheek, Bottom frequency (See Fig.3)      | 0.556           | 0.745          | -0.064   |
| Left hand, Tilt 15 Degree, Top frequency (See Fig.4)      | 0.278           | 0.366          | -0.065   |
| Left hand, Tilt 15 Degree, Mid frequency (See Fig.5)      | 0.285           | 0.373          | -0.063   |
| Left hand, Tilt 15 Degree, Bottom frequency (See Fig.6)   | 0.289           | 0.378          | -0.051   |
| Right hand, Touch cheek, Top frequency (See Fig.7)        | 0.602           | 0.826          | -0.062   |
| Right hand, Touch cheek, Mid frequency (See Fig.8)        | 0.577           | 0.786          | -0.052   |
| Right hand, Touch cheek, Bottom frequency (See Fig.9)     | 0.537           | 0.725          | -0.055   |
| Right hand, Tilt 15 Degree, Top frequency (See Fig.10)    | 0.306           | 0.401          | 0.00204  |
| Right hand, Tilt 15 Degree, Mid frequency (See Fig.11)    | 0.298           | 0.390          | -0.069   |
| Right hand, Tilt 15 Degree, Bottom frequency (See Fig.12) | 0.273           | 0.357          | -0.021   |

Table 12: SAR Values (1900MHz-Head) - with battery CAB31L0000C1

| Limit of SAR (W/kg)                                | 10 g<br>Average    | 1 g<br>Average |        |
|----------------------------------------------------|--------------------|----------------|--------|
|                                                    | 2.0                | 1.6            | Power  |
| Test Case                                          | Measurement Result |                | Drift  |
|                                                    | (W/kg)             |                | (dB)   |
|                                                    | 10 g               | 1 g            |        |
|                                                    | Average            | Average        |        |
| Left hand, Touch cheek, Top frequency (See Fig.13) | 0.323              | 0.548          | -0.118 |



# No.2011SAR00027 Page 16 of 135

| 0.287 | 0.485                                                                         | -0.003                                                                                     |
|-------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 0.281 | 0.474                                                                         | 0.027                                                                                      |
| 0.127 | 0.211                                                                         | 0.031                                                                                      |
| 0.117 | 0.197                                                                         | 0.018                                                                                      |
| 0.121 | 0.202                                                                         | 0.015                                                                                      |
| 0.352 | 0.576                                                                         | -0.008                                                                                     |
| 0.338 | 0.556                                                                         | -0.057                                                                                     |
| 0.346 | 0.567                                                                         | -0.010                                                                                     |
| 0.141 | 0.251                                                                         | -0.021                                                                                     |
| 0.132 | 0.233                                                                         | -0.004                                                                                     |
| 0.132 | 0.229                                                                         | 0.093                                                                                      |
|       | 0.281<br>0.127<br>0.117<br>0.121<br>0.352<br>0.338<br>0.346<br>0.141<br>0.132 | 0.2810.4740.1270.2110.1170.1970.1210.2020.3520.5760.3380.5560.3460.5670.1410.2510.1320.233 |

## Table 13: SAR Values (850MHz-Head) - with battery CAB31L0000C2

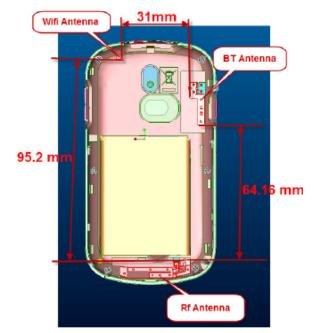
| Limit of SAR (W/kg)                                | 10 g<br>Average | 1 g<br>Average     |        |  |
|----------------------------------------------------|-----------------|--------------------|--------|--|
|                                                    | 2.0             | 1.6                | Power  |  |
| Test Case                                          | Measurem        | Measurement Result |        |  |
|                                                    | (W)             | (W/kg)             |        |  |
|                                                    | 10 g            | 1 g                |        |  |
|                                                    | Average         | Average            |        |  |
| Left hand, Touch cheek, Top frequency (See Fig.25) | 0.601           | 0.825              | -0.125 |  |

# Table 14: SAR Values (850MHz-Body) - with battery CAB31L0000C1

| Limit of SAR (W/kg)                                                            |                 | 1g<br>Average  |        |
|--------------------------------------------------------------------------------|-----------------|----------------|--------|
|                                                                                | 2.0             | 1.6            | Power  |
| Test Case                                                                      | Measu<br>Result | Drift<br>(dB)  |        |
|                                                                                | 10 g<br>Average | 1 g<br>Average |        |
| Body, Towards Ground, Top frequency with GPRS (See Fig.26)                     | 0.664           | 0.920          | -0.022 |
| Body, Towards Ground, Mid frequency with GPRS (See Fig.27)                     | 0.664           | 0.916          | 0.000  |
| Body, Towards Ground, Bottom frequency with GPRS (See Fig.28)                  | 0.665           | 0.918          | 0.028  |
| Body, Towards Phantom, Top frequency with GPRS (See Fig.29)                    |                 | 0.791          | -0.177 |
| Body, Towards Phantom, Mid frequency with GPRS (See Fig.30)                    | 0.581           | 0.786          | -0.013 |
| Body, Towards Phantom, Bottom frequency with GPRS (See Fig.31)                 | 0.576           | 0.774          | 0.064  |
| Body, Towards Ground, Top frequency with EGPRS (See Fig.32)                    | 0.647           | 0.892          | -0.116 |
| Body, Towards Ground, Top frequency with Headset_<br>CCB3160A10C0 (See Fig.33) | 0.384           | 0.533          | -0.024 |
| Body, Towards Ground, Top frequency with Headset_<br>CCB3160A10C3 (See Fig.34) | 0.461           | 0.641          | -0.008 |



| Limit of SAR (W/kg)                                                            | 10 g<br>Average | 1g<br>Average    |               |
|--------------------------------------------------------------------------------|-----------------|------------------|---------------|
|                                                                                | 2.0             | 1.6              | Power         |
| Test Case                                                                      |                 | rement<br>(W/kg) | Drift<br>(dB) |
|                                                                                | 10 g<br>Average | 1 g<br>Average   |               |
| Body, Towards Ground, Top frequency with GPRS (See Fig.35)                     | 0.254           | 0.417            | 0.074         |
| Body, Towards Ground, Mid frequency with GPRS (See Fig.36)                     |                 | 0.380            | 0.029         |
| Body, Towards Ground, Bottom frequency with GPRS (See Fig.37)                  |                 | 0.341            | 0.148         |
| Body, Towards Phantom, Top frequency with GPRS (See Fig.38)                    |                 | 0.361            | -0.107        |
| Body, Towards Phantom, Mid frequency with GPRS (See Fig.39)                    | 0.190           | 0.315            | 0.080         |
| Body, Towards Phantom, Bottom frequency with GPRS (See Fig.40)                 |                 | 0.293            | 0.042         |
| Body, Towards Ground, Top frequency with EGPRS (See Fig.41)                    | 0.247           | 0.404            | 0.055         |
| Body, Towards Ground, Top frequency with Headset_<br>CCB3160A10C0 (See Fig.42) | 0.179           | 0.296            | -0.133        |
| Body, Towards Ground, Top frequency with Headset_<br>CCB3160A10C3 (See Fig.43) | 0.180           | 0.298            | 0.009         |
| Table 16: SAR Values (850MHz-Body) - with battery CAB31L0000                   | C2              |                  |               |
|                                                                                | 10 a            | 1α               |               |


#### Table 15: SAR Values (1900MHz-Body) - with battery CAB31L0000C1

| Limit of SAR (W/kg)                                        | 10 g<br>Average | 1g<br>Average                |        |
|------------------------------------------------------------|-----------------|------------------------------|--------|
|                                                            | 2.0             | 1.6                          | Power  |
| Test Case                                                  |                 | Measurement<br>Result (W/kg) |        |
|                                                            | 10 g<br>Average | 1 g<br>Average               |        |
| Body, Towards Ground, Top frequency with GPRS (See Fig.44) | 0.642           | 0.889                        | -0.019 |



# 7.5 Summary of Measurement Results (Bluetooth and WiFi function)

The distance between BT antenna and RF antenna is >5cm. The location of the antennas inside mobile phone is shown below:



The output power of BT antenna is as following:

| Channel                             | Ch 0     | Ch 39    | Ch 78    |
|-------------------------------------|----------|----------|----------|
|                                     | 2402 MHz | 2441 Mhz | 2480 MHz |
| Peak Conducted<br>Output Power(dBm) | 7.87     | 7.11     | 7.48     |

The output power of BT transmitter is  $\leq 2P_{Ref}$  and its antenna is >5cm from the RF antenna. So we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR are not required for BT transmitter.

**Note:** Power thresholds ( $P_{Ref}$ ) is derived from multiples of  $0.5 \times 60/f_{(GHz)}$ , that is 12mW (10.79dBm) for BT/WiFi frequency.

The average conducted power for WiFi is as following:

802.11b (dBm)

| Channel\data<br>rate | 1Mbps | 2Mbps | 5.5Mbps | 11Mbps |
|----------------------|-------|-------|---------|--------|
| 1                    | 16.61 | 16.48 | 16.41   | 16.35  |
| 6                    | 16.52 | 16.50 | 16.52   | 16.51  |
| 11                   | 16.86 | 16.85 | 16.83   | 16.85  |

802.11g~(dBm)

| Channel\data | 6Mbps | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps |
|--------------|-------|-------|--------|--------|--------|--------|--------|--------|
| rate         |       |       |        |        |        |        |        |        |
| 1            | 13.56 | 13.55 | 13.51  | 13.52  | 13.46  | 13.43  | 13.46  | 13.48  |
| 6            | 13.99 | 13.97 | 13.99  | 13.98  | 13.95  | 13.96  | 13.96  | 13.96  |
| 11           | 14.22 | 14.21 | 14.21  | 14.22  | 14.18  | 14.19  | 14.17  | 14.17  |



The peak conducted power for WiFi is as following:

802.11b (dBm)

| Channel\data<br>rate | 1Mbps | 2Mbps | 5.5Mbps | 11Mbps |
|----------------------|-------|-------|---------|--------|
| 1                    | 20.27 | 20.38 | 21.55   | 23.02  |
| 6                    | 1     | 1     | 1       | 23.43  |
| 11                   | /     | /     | /       | 23.59  |

802.11g (dBm)

| Channel\data | 6Mbps | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps |
|--------------|-------|-------|--------|--------|--------|--------|--------|--------|
| rate         |       |       |        |        |        |        |        |        |
| 1            | 22.27 | 22.23 | 21.92  | 21.88  | 22.31  | 22.32  | 22.39  | 22.40  |
| 6            | /     | /     | /      | /      | /      | /      | /      | 22.87  |
| 11           | 1     | /     | /      | /      | /      | /      | /      | 23.06  |

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of GSM and WiFi.

SAR is not required for 802.11g channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 11".

| Table 17: SAR Values | (WIFI 802.b - Head) |
|----------------------|---------------------|
|----------------------|---------------------|

| Limit of SAR (W/kg)                                       | <b>10 g</b><br>Average<br>2.0 | <b>1 g</b><br>Average<br>1.6 | Power         |
|-----------------------------------------------------------|-------------------------------|------------------------------|---------------|
| Test Case                                                 |                               | ent Result<br>kg)            | Drift<br>(dB) |
|                                                           | 10 g<br>Average               | 1 g<br>Average               |               |
| Left hand, Touch cheek, 1Mbps,channel 11 (See Fig.45)     | 0.252                         | 0.523                        | 0.123         |
| Left hand, Tilt 15 Degree, 1Mbps, channel 11 (See Fig.46) | 0.209                         | 0.390                        | -0.043        |
| Right hand, Touch cheek, 1Mbps, channel 11 (See Fig.47)   | 0.324                         | 0.616                        | -0.145        |
| Right hand, Tilt 15 Degree, 1Mbps,channel 11 (See Fig.48) | 0.273                         | 0.541                        | -0.086        |

Table 18: SAR Values (WIFI 802.b - Body)

| Limit of SAR (W/kg)                           | 10 g Average | 1 g Average | Dowor          |
|-----------------------------------------------|--------------|-------------|----------------|
|                                               | 2.0          | 1.6         | Power<br>Drift |
| Test Case                                     | Measurement  | (dB)        |                |
|                                               | 10 g Average | 1 g Average | (UD)           |
| Toward Ground, 1Mbps, channel 11 (See Fig.49) | 0.051        | 0.089       | -0.113         |
| Toward Phantom, 1Mbps,channel 11(See Fig.50)  | 0.057        | 0.105       | -0.075         |



|      | Maximum SAR value for Head | Maximum SAR value for Body |  |  |  |  |  |
|------|----------------------------|----------------------------|--|--|--|--|--|
| GSM  | 0.859                      | 0.920                      |  |  |  |  |  |
| WiFi | 0.616                      | 0.105                      |  |  |  |  |  |
| Sum  | 1.485                      | 1.025                      |  |  |  |  |  |

#### Table 19: The sum of SAR values for GSM and WiFi

According to the above tables, the sum of SAR values for GSM and WiFi < 1.6W/kg. So simultaneous transmission SAR are not required for WiFi transmitter.

## 7.6 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

The maximum SAR values are obtained at the case of **GSM 850 MHz Band, Body,** Towards Ground, Top frequency with GPRS (Table 26), and the value are: 0.920(1g).

| No.  | Error Description                                     | Туре | Uncertainty | Probably     | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |
|------|-------------------------------------------------------|------|-------------|--------------|------------|------|------|------|-------|----------|
|      |                                                       |      | value       | Distribution |            | 1g   | 10g  | Unc. | Unc.  | of       |
|      |                                                       |      |             |              |            |      |      | (1g) | (10g) | freedom  |
| Mea  | Measurement system                                    |      |             |              |            |      |      |      |       |          |
| 1    | Probe calibration                                     | В    | 5.5         | Ν            | 1          | 1    | 1    | 5.5  | 5.5   | $\infty$ |
| 2    | Isotropy                                              | В    | 4.7         | R            | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | $\infty$ |
| 3    | Boundary effect                                       | В    | 1.0         | R            | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | $\infty$ |
| 4    | Linearity                                             | В    | 4.7         | R            | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | $\infty$ |
| 5    | Detection limit                                       | В    | 1.0         | Ν            | 1          | 1    | 1    | 0.6  | 0.6   | $\infty$ |
| 6    | Readout electronics                                   | В    | 0.3         | R            | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | $\infty$ |
| 7    | Response time                                         | В    | 0.8         | R            | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | $\infty$ |
| 8    | Integration time                                      | В    | 2.6         | R            | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | $\infty$ |
| 9    | RF ambient conditions-noise                           | В    | 0           | R            | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ×        |
| 10   | RF ambient conditions-reflection                      | В    | 0           | R            | $\sqrt{3}$ | 1    | 1    | 0    | 0     | x        |
| 11   | Probe positioned mech. restrictions                   | В    | 0.4         | R            | $\sqrt{3}$ | 1    | 1    | 0.2  | 0.2   | x        |
| 12   | Probe positioning<br>with respect to<br>phantom shell | В    | 2.9         | R            | $\sqrt{3}$ | 1    | 1    | 1.7  | 1.7   | ×        |
| 13   | Post-processing                                       | В    | 1.0         | R            | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | $\infty$ |
| Test | Test sample related                                   |      |             |              |            |      |      |      |       |          |

# 8 Measurement Uncertainty



# No.2011SAR00027 Page 21 of 135

| 14                               | Test sample positioning                                  | А                         | 3.3                                    | N | 1          | 1    | 1    | 3.3  | 3.3  | 71       |
|----------------------------------|----------------------------------------------------------|---------------------------|----------------------------------------|---|------------|------|------|------|------|----------|
| 15                               | Device holder<br>uncertainty                             | А                         | 3.4                                    | N | 1          | 1    | 1    | 3.4  | 3.4  | 5        |
| 16                               | Drift of output<br>power                                 | В                         | 5.0                                    | R | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9  | $\infty$ |
| Pha                              | ntom and set-up                                          |                           |                                        |   |            | •    | •    | •    | •    |          |
| 17                               | Phantom uncertainty                                      | В                         | 4.0                                    | R | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | x        |
| 18                               | Liquid conductivity<br>(target)                          | В                         | 5.0                                    | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | $\infty$ |
| 19                               | Liquid conductivity (meas.)                              | А                         | 2.06                                   | N | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43       |
| 20                               | Liquid permittivity<br>(target)                          | В                         | 5.0                                    | R | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | $\infty$ |
| 21                               | Liquid permittivity<br>(meas.)                           | А                         | 1.6                                    | N | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521      |
| Combined standard<br>uncertainty |                                                          | <i>u</i> ' <sub>c</sub> = | $= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |   |            |      |      | 9.25 | 9.12 | 257      |
| (cont                            | Expanded uncertainty<br>(confidence interval of<br>95 %) |                           | $u_e = 2u_c$                           |   |            |      |      | 18.5 | 18.2 |          |

# **9 MAIN TEST INSTRUMENTS**

#### Table 20: List of Main Instruments

| No. | Name                  | Туре          | Serial Number | Calibration Date         | Valid Period |  |
|-----|-----------------------|---------------|---------------|--------------------------|--------------|--|
| 01  | Network analyzer      | HP 8753E      | US38433212    | August 4,2010            | One year     |  |
| 02  | Power meter           | NRVD          | 102083        | September 11, 2010       | One year     |  |
| 03  | Power sensor          | NRV-Z5        | 100542        | September 11, 2010       |              |  |
| 04  | Signal Generator      | E4433C        | MY49070393    | November 13, 2010        | One Year     |  |
| 05  | Amplifier             | VTL5400       | 0505          | No Calibration Requested |              |  |
| 06  | BTS                   | 8960          | MY48365192    | November 18, 2010        | One year     |  |
| 07  | E-field Probe         | SPEAG ES3DV3  | 3149          | September 25, 2010       | One year     |  |
| 08  | E-field Probe         | SPEAG EX3DV4  | 3617          | July 9, 2010             | One year     |  |
| 09  | DAE                   | SPEAG DAE4    | 771           | November 21, 2010        | One year     |  |
| 10  | Dipole Validation Kit | SPEAG D835V2  | 443           | February 26, 2010        | Two years    |  |
| 11  | Dipole Validation Kit | SPEAG D1900V2 | 541           | February 26, 2010        | Two years    |  |
| 12  | Dipole Validation Kit | SPEAG D2450V2 | 853           | September 27, 2010       | Two years    |  |

\*\*\*END OF REPORT BODY\*\*\*

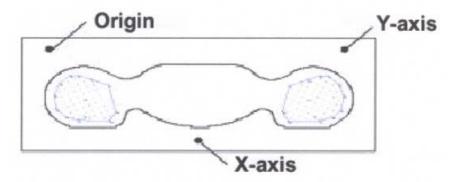


# ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.


Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in  $x \sim y$  and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.



Picture A: SAR Measurement Points in Area Scan




No.2011SAR00027 Page 23 of 135

# ANNEX B TEST LAYOUT



Picture B1: Specific Absorption Rate Test Layout

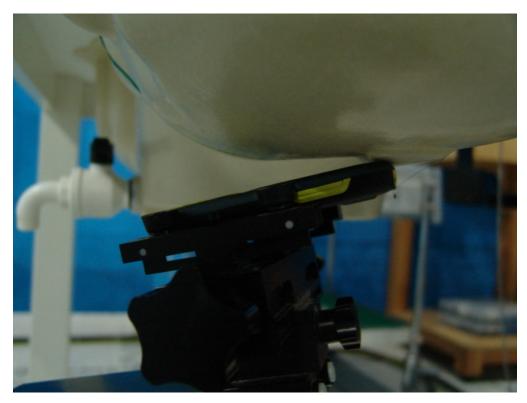


Picture B2: Liquid depth in the Flat Phantom (850 MHz)





Picture B3 Liquid depth in the Flat Phantom (1900MHz)

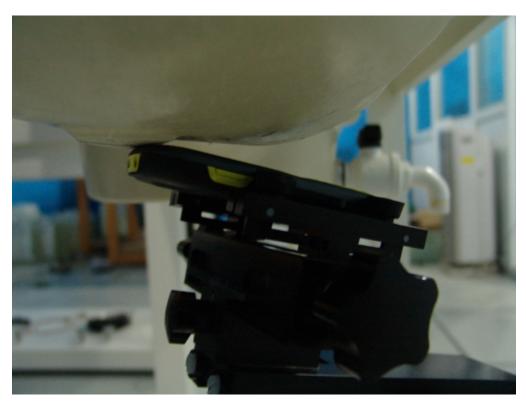



Picture B4 Liquid depth in the Flat Phantom (2450MHz)



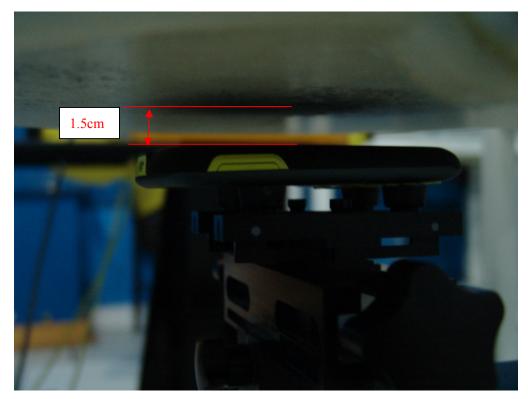


Picture B5: Left Hand Touch Cheek Position




Picture B6: Left Hand Tilt 15° Position



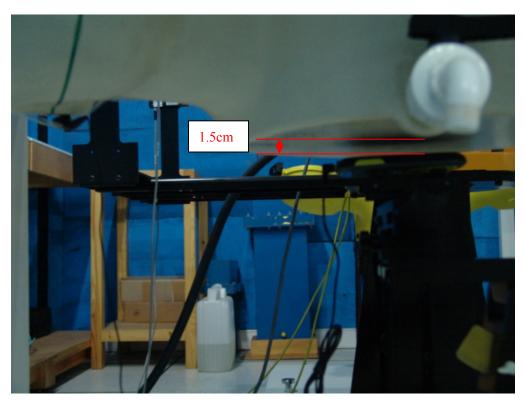



Picture B7: Right Hand Touch Cheek Position



Picture B8: Right Hand Tilt 15° Position






Picture B9: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)



Picture B10: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm)





Picture B11: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)



# ANNEX C GRAPH RESULTS

# 850 Left Cheek High

Date/Time: 2011-3-27 8:10:25 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.93$  mho/m;  $\epsilon r = 41.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.910 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.3 V/m; Power Drift = -0.159 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.859 mW/g; SAR(10 g) = 0.634 mW/gMaximum value of SAR (measured) = 0.906 mW/g



Fig. 1 850MHz CH251



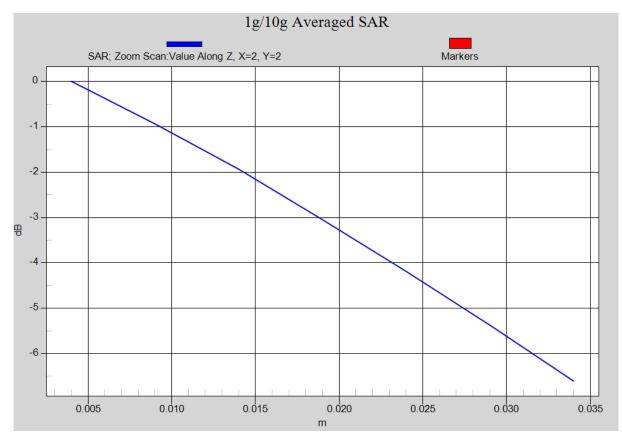



Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)



# 850 Left Cheek Middle

Date/Time: 2011-3-27 8:24:37 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.918$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Cheek Middle Red/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.880 mW/g

**Cheek Middle Red/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.2 V/m; Power Drift = -0.00853 dB

Peak SAR (extrapolated) = 1.02 W/kgSAR(1 g) = 0.826 mW/g; SAR(10 g) = 0.611 mW/g

Maximum value of SAR (measured) = 0.872 mW/g

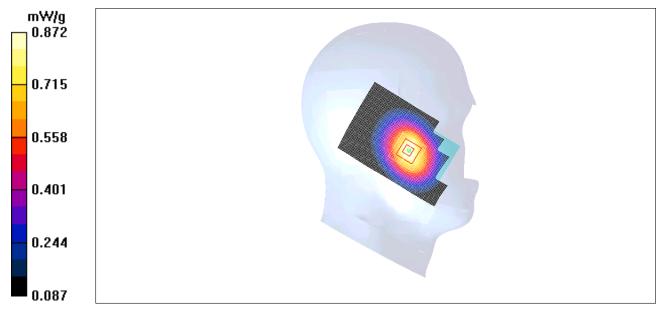



Fig. 2 850 MHz CH190



# 850 Left Cheek Low

Date/Time: 2011-3-27 8:38:55 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.906$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.803 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.1 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 0.916 W/kg SAR(1 g) = 0.745 mW/g; SAR(10 g) = 0.556 mW/gMaximum value of SAR (measured) = 0.781 mW/g

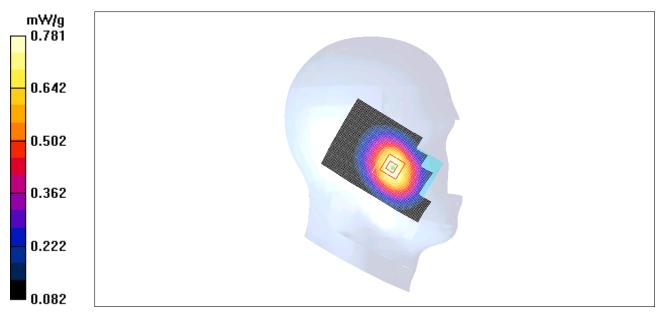



Fig. 3 850 MHz CH128



# 850 Left Tilt High

Date/Time: 2011-3-27 8:53:29 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.93$  mho/m;  $\epsilon r = 41.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt High/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.383 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13 V/m; Power Drift = -0.065 dB Peak SAR (extrapolated) = 0.452 W/kg SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.278 mW/g

Maximum value of SAR (measured) = 0.386 mW/g

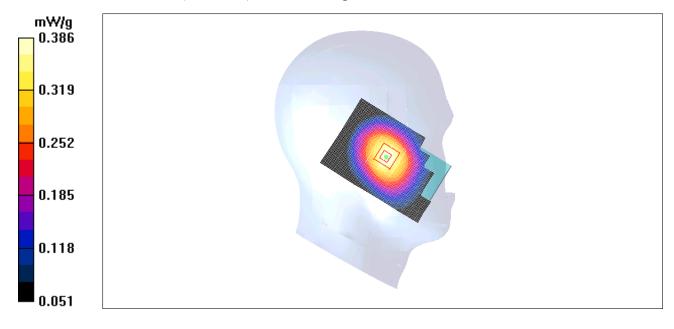



Fig.4 850 MHz CH251



# 850 Left Tilt Middle

Date/Time: 2011-3-27 9:07:44 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.918$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt Middle/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.394 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 0.458 W/kg SAR(1 g) = 0.373 mW/g; SAR(10 g) = 0.285 mW/g

Maximum value of SAR (measured) = 0.392 mW/g

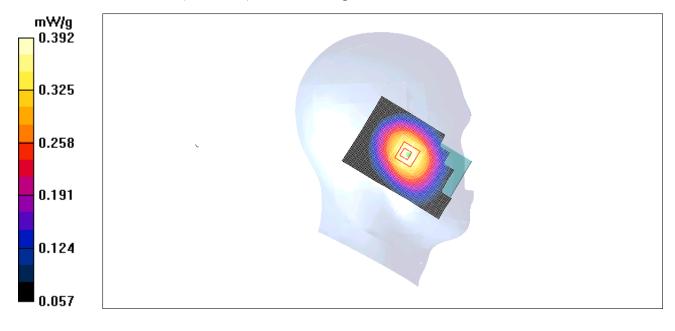



Fig.5 850 MHz CH190



# 850 Left Tilt Low

Date/Time: 2011-3-27 9:21:59 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.906$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt Low/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.400 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.7 V/m; Power Drift = -0.051 dB Peak SAR (extrapolated) = 0.468 W/kg SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.289 mW/gMaximum value of SAR (measured) = 0.398 mW/g

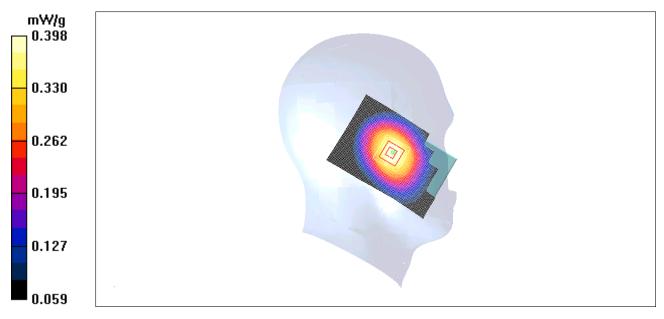



Fig. 6 850 MHz CH128



# 850 Right Cheek High

Date/Time: 2011-3-27 9:37:31 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.93$  mho/m;  $\epsilon r = 41.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.887 mW/g

**0Cheek High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.63 V/m; Power Drift = -0.062 dB Peak SAR (extrapolated) = 1.05 W/kg **SAR(1 g) = 0.826 mW/g; SAR(10 g) = 0.602 mW/g** 

Maximum value of SAR (measured) = 0.870 mW/g

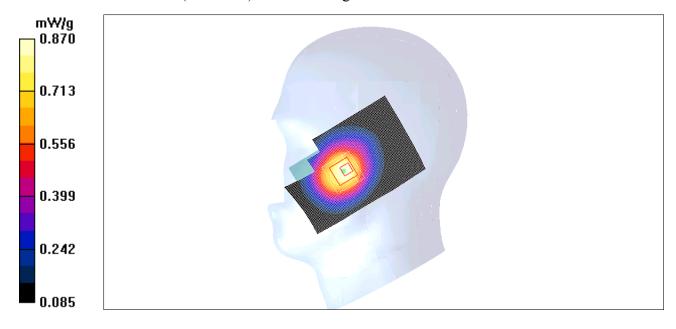



Fig. 7 850 MHz CH251



# 850 Right Cheek Middle

Date/Time: 2011-3-27 9:51:49 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.918$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.837 mW/g

**Cheek Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.4 V/m; Power Drift = -0.052 dBPeak SAR (extrapolated) = 1.01 W/kgSAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.577 mW/gMaximum value of SAR (measured) = 0.826 mW/g

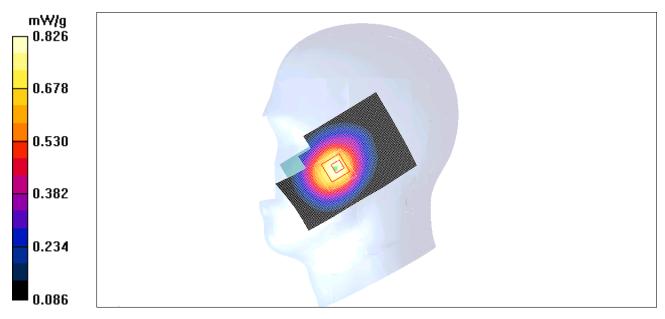



Fig. 8 850 MHz CH190



## 850 Right Cheek Low

Date/Time: 2011-3-27 10:06:08 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.906$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (61x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.784 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.32 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 0.923 W/kg SAR(1 g) = 0.725 mW/g; SAR(10 g) = 0.537 mW/g Maximum value of SAR (measured) = 0.750 mW/g

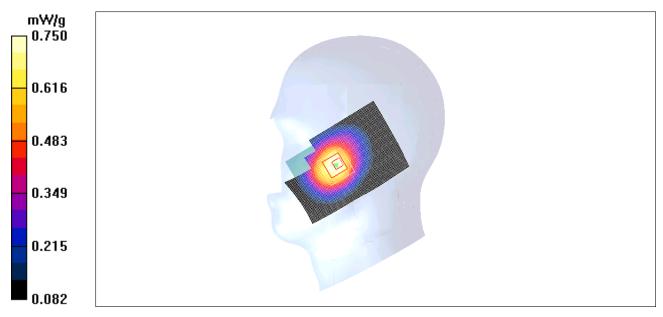



Fig. 9 850 MHz CH128



# 850 Right Tilt High

Date/Time: 2011-3-27 10:20:43 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.93$  mho/m;  $\epsilon r = 41.5$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt High/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.427 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = 0.00204 dBPeak SAR (extrapolated) = 0.496 W/kgSAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.306 mW/g

Maximum value of SAR (measured) = 0.416 mW/g

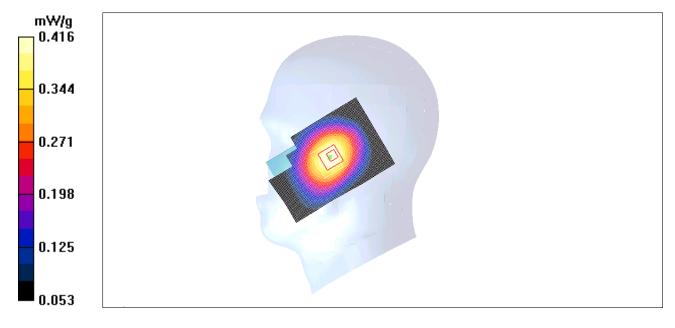



Fig.10 850 MHz CH251



# 850 Right Tilt Middle

Date/Time: 2011-3-27 10:34:56 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.918$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt Middle/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.409 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 0.483 W/kg SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.298 mW/g

Maximum value of SAR (measured) = 0.404 mW/g

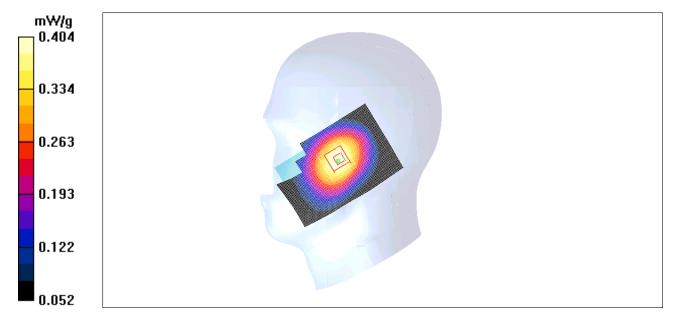



Fig.11 850 MHz CH190



#### 850 Right Tilt Low

Date/Time: 2011-3-27 10:49:18 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.906$  mho/m;  $\epsilon r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Tilt Low/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.374 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.4 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 0.440 W/kg SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.273 mW/gMaximum value of SAR (measured) = 0.371 mW/g

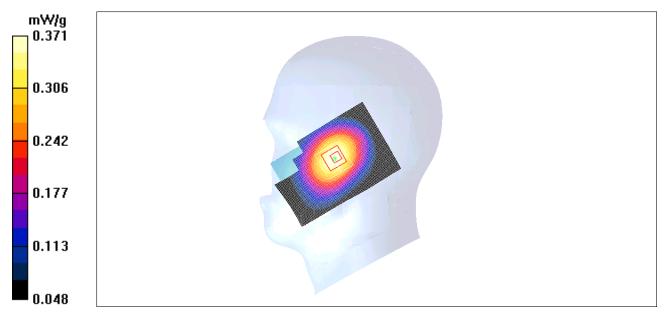



Fig. 12 850 MHz CH128



# 1900 Left Cheek High

Date/Time: 2011-3-28 8:11:46 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Cheek High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.595 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.58 V/m; Power Drift = -0.118 dB Peak SAR (extrapolated) = 0.849 W/kg SAR(1 g) = 0.548 mW/g; SAR(10 g) = 0.323 mW/g Maximum value of SAR (measured) = 0.594 mW/g

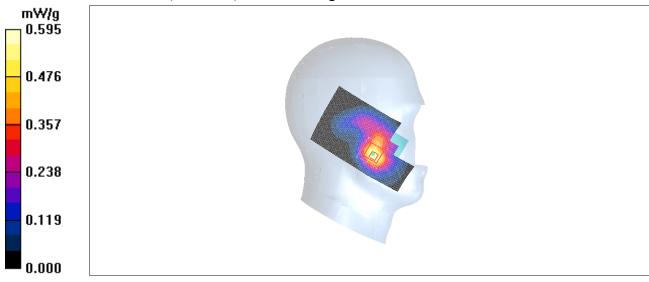



Fig. 13 1900 MHz CH810



# 1900 Left Cheek Middle

Date/Time: 2011-3-28 8:26:04 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.40$  mho/m;  $\epsilon r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Cheek Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.520 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.78 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.756 W/kg SAR(1 g) = 0.485 mW/g; SAR(10 g) = 0.287 mW/g Maximum value of SAR (measured) = 0.534 mW/g

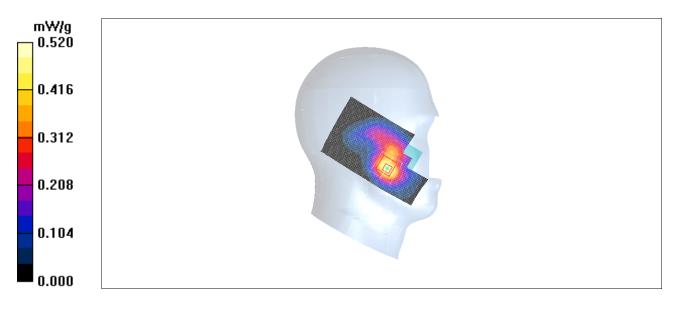



Fig. 14 1900 MHz CH661



#### 1900 Left Cheek Low

Date/Time: 2011-3-28 8:40:25 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37$  mho/m;  $\epsilon r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Cheek Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.505 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.73 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.730 W/kg SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.281 mW/g Maximum value of SAR (measured) = 0.520 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.73 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 0.636 W/kg SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.232 mW/g

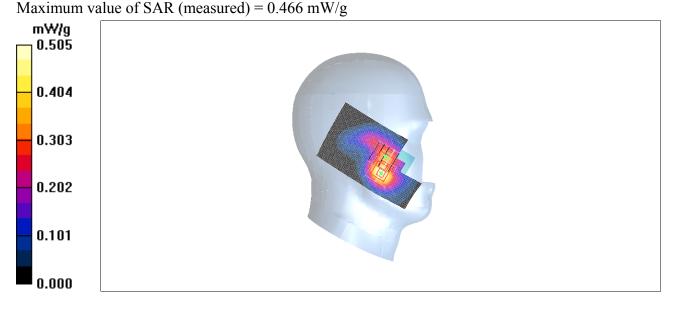



Fig. 15 1900 MHz CH512



#### 1900 Left Tilt High

Date/Time: 2011-3-28 8:54:50 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.247 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 0.339 W/kg SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.127 mW/g Maximum value of SAR (measured) = 0.230 mW/g

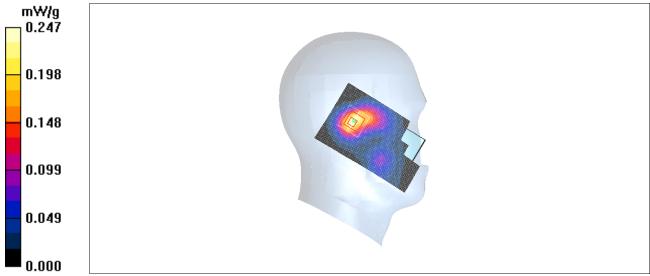



Fig.16 1900 MHz CH810



# 1900 Left Tilt Middle

Date/Time: 2011-3-28 9:09:13 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.40$  mho/m;  $\epsilon r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.228 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.9 V/m; Power Drift = 0.018 dB Peak SAR (extrapolated) = 0.319 W/kg SAR(1 g) = 0.197 mW/g; SAR(10 g) = 0.117 mW/g Maximum value of SAR (measured) = 0.215 mW/g

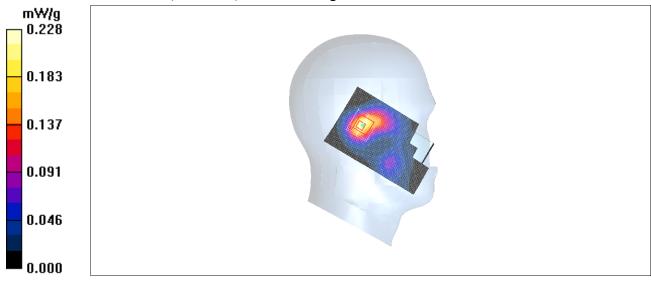



Fig. 17 1900 MHz CH661



#### 1900 Left Tilt Low

Date/Time: 2011-3-28 9:23:30 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37$  mho/m;  $\epsilon r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.237 mW/g

**Tilt Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.3 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.121 mW/g

Maximum value of SAR (measured) = 0.219 mW/g

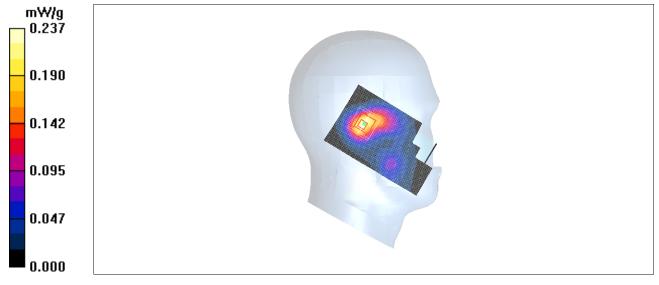



Fig. 18 1900 MHz CH512



# 1900 Right Cheek High

Date/Time: 2011-3-28 9:39:28 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.635 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.78 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 0.845 W/kg SAR(1 g) = 0.576 mW/g; SAR(10 g) = 0.352 mW/g Maximum value of SAR (measured) = 0.625 mW/g

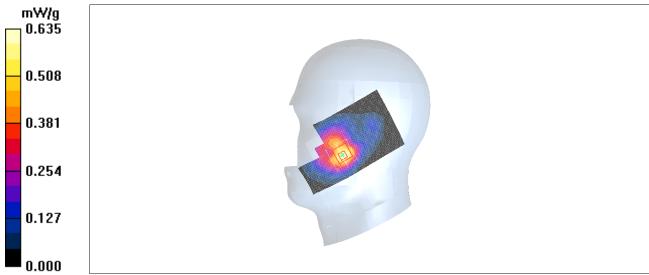



Fig. 19 1900 MHz CH810



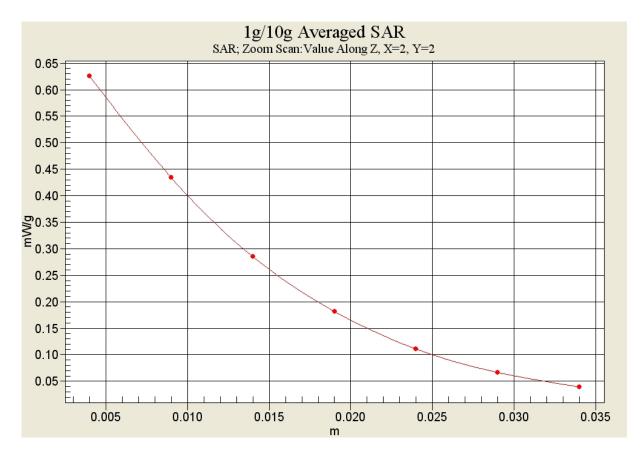



Fig. 19-1 Z-Scan at power reference point (1900 MHz CH810)



# 1900 Right Cheek Middle

Date/Time: 2011-3-28 9:53:44 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.40$  mho/m;  $\epsilon r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.606 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.30 V/m; Power Drift = -0.057 dB Peak SAR (extrapolated) = 0.828 W/kg SAR(1 g) = 0.556 mW/g; SAR(10 g) = 0.338 mW/g

Maximum value of SAR (measured) = 0.607 mW/g

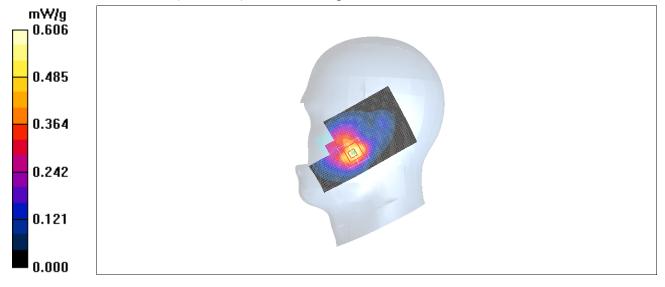



Fig. 20 1900 MHz CH661



# 1900 Right Cheek Low

Date/Time: 2011-3-28 10:08:02 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37$  mho/m;  $\epsilon r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Cheek Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.624 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.10 V/m; Power Drift = -0.010 dB Peak SAR (extrapolated) = 0.835 W/kg

SAR(1 g) = 0.567 mW/g; SAR(10 g) = 0.346 mW/g

Maximum value of SAR (measured) = 0.615 mW/g

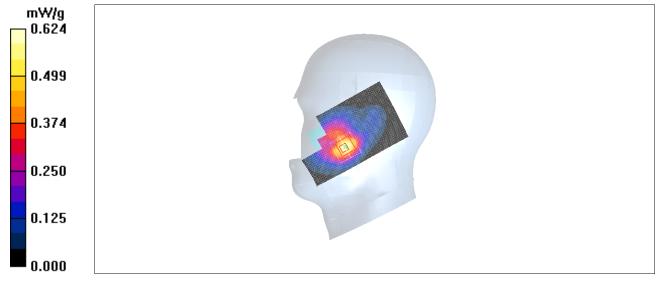



Fig. 21 1900 MHz CH512



# 1900 Right Tilt High

Date/Time: 2011-3-28 10:22:47 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.42$  mho/m;  $\epsilon r = 40.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.289 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.1 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 0.415 W/kg SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.141 mW/g Maximum value of SAR (measured) = 0.275 mW/g

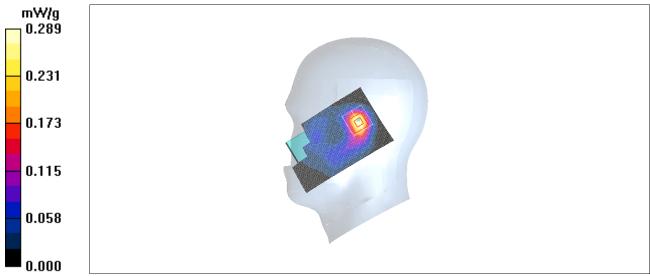



Fig. 22 1900 MHz CH810



# 1900 Right Tilt Middle

Date/Time: 2011-3-28 10:37:05 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.40$  mho/m;  $\epsilon r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.257 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.7 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 0.381 W/kg SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.132 mW/g Maximum value of SAR (measured) = 0.251 mW/g

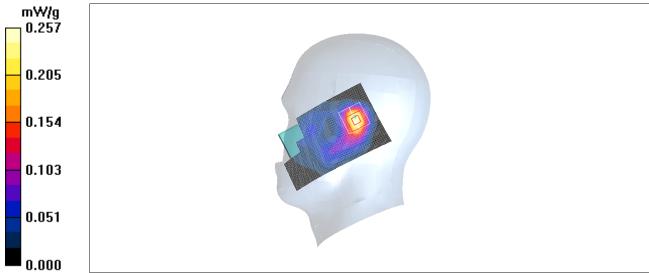



Fig.23 1900 MHz CH661



#### **1900 Right Tilt Low**

Date/Time: 2011-3-28 10:51:23 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.37$  mho/m;  $\epsilon r = 40.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**Tilt Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.255 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 13.5 V/m; Power Drift = 0.093 dB Peak SAR (extrapolated) = 0.369 W/kg SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.248 mW/g

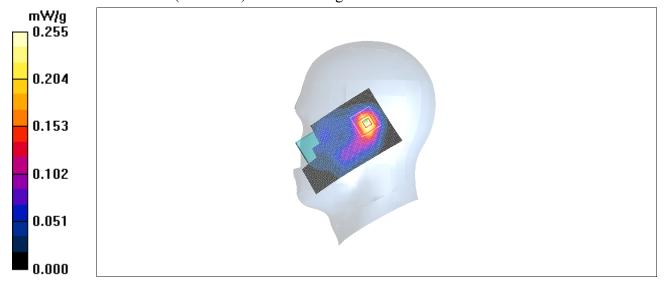



Fig.24 1900 MHz CH512



## 850 Left Cheek High with battery CAB31L0000C2

Date/Time: 2011-3-27 11:06:24 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.93$  mho/m;  $\epsilon r = 41.5$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

**Cheek High White/Area Scan (61x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.894 mW/g

**Cheek High White/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.36 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.825 mW/g; SAR(10 g) = 0.601 mW/g Maximum value of SAR (measured) = 0.869 mW/g

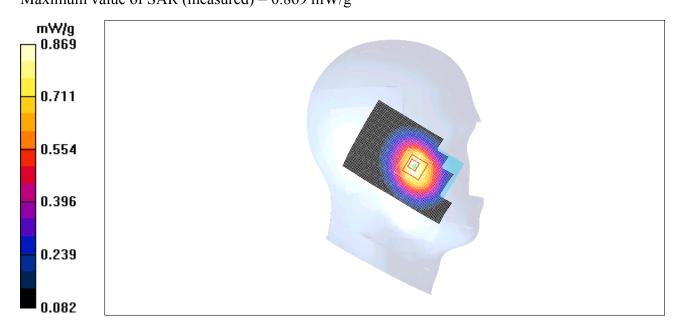



Fig. 25 850MHz CH251



# 850 Body Towards Ground High with GPRS

Date/Time: 2011-3-27 13:42:09 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.968 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.9 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.920 mW/g; SAR(10 g) = 0.664 mW/g Maximum value of SAR (measured) = 0.971 mW/g

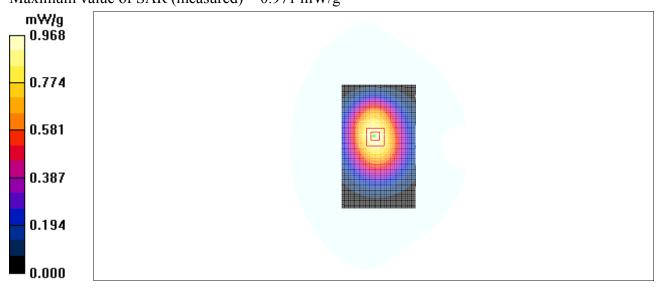



Fig. 26 850 MHz CH251



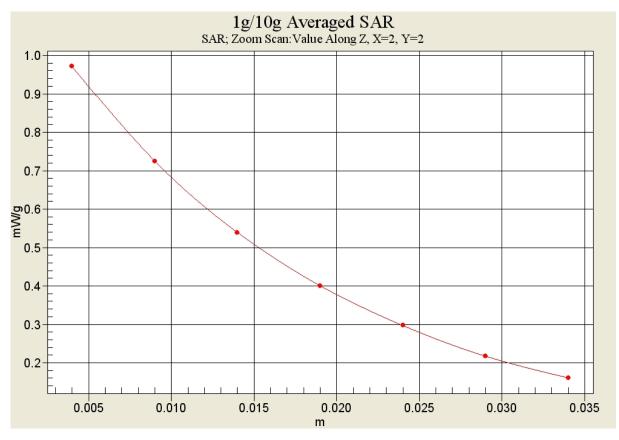



Fig. 26-1 Z-Scan at power reference point (850 MHz CH251)



### 850 Body Towards Ground Middle with GPRS

Date/Time: 2011-3-27 13:57:30 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.94$  mho/m;  $\epsilon r = 54.8$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.970 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 30.0 V/m; Power Drift = 0.000 dBPeak SAR (extrapolated) = 1.18 W/kgSAR(1 g) = 0.916 mW/g; SAR(10 g) = 0.664 mW/gMaximum value of SAR (measured) = 0.975 mW/g

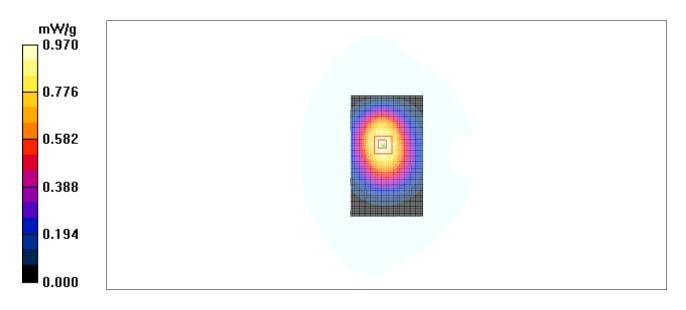



Fig. 27 850 MHz CH190



# 850 Body Towards Ground Low with GPRS

Date/Time: 2011-3-27 14:12:52 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.923$  mho/m;  $\epsilon r = 54.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.971 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 29.8 V/m; Power Drift = 0.028 dB Peak SAR (extrapolated) = 1.20 W/kgSAR(1 g) = 0.918 mW/g; SAR(10 g) = 0.665 mW/g

Maximum value of SAR (measured) = 0.973 mW/g

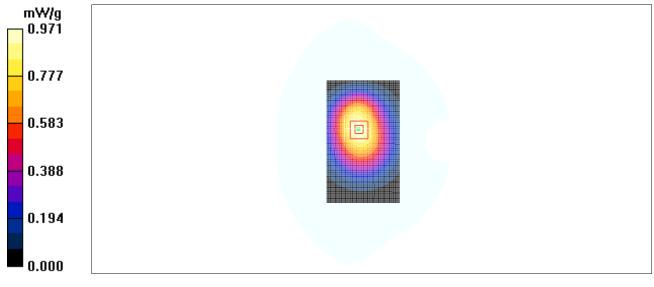



Fig. 28 850 MHz CH128



# 850 Body Towards Phantom High with GPRS

Date/Time: 2011-3-27 14:28:34 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Phantom High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.842 mW/g

**Toward Phantom High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.9 V/m; Power Drift = -0.177 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.791 mW/g; SAR(10 g) = 0.585 mW/g

Maximum value of SAR (measured) = 0.829 mW/g

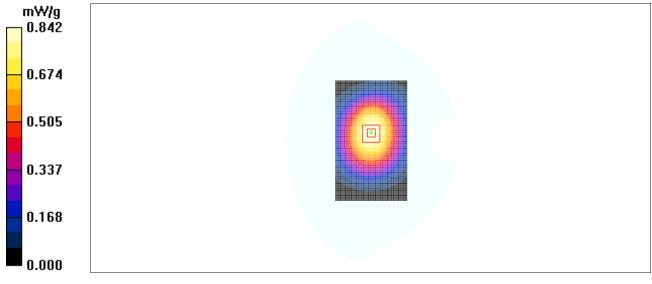



Fig. 29 850 MHz CH251



#### **850 Body Towards Phantom Middle with GPRS**

Date/Time: 2011-3-27 14:43:53 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.94$  mho/m;  $\epsilon r = 54.8$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Phantom Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.826 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 28.6 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 1.00 W/kgSAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.581 mW/g Maximum value of SAR (measured) = 0.833 mW/g

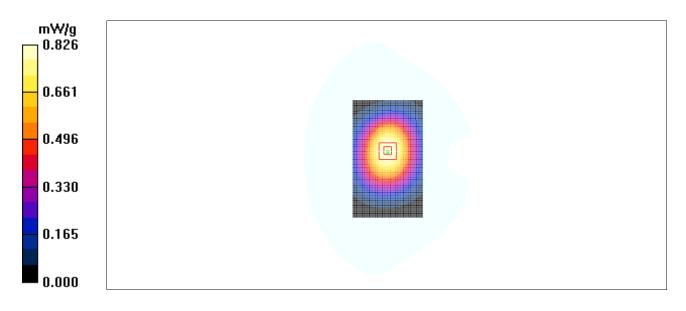



Fig. 30 850 MHz CH190



# 850 Body Towards Phantom Low with GPRS

Date/Time: 2011-3-27 14:59:22 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz;  $\sigma = 0.923$  mho/m;  $\epsilon r = 54.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Phantom Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.821 mW/g

**Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.3 V/m; Power Drift = 0.064 dB Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.774 mW/g; SAR(10 g) = 0.576 mW/g

Maximum value of SAR (measured) = 0.818 mW/g

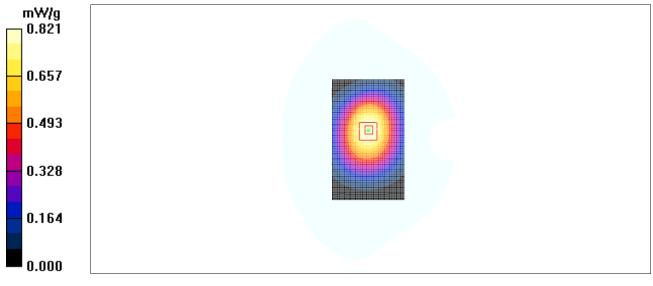



Fig. 31 850 MHz CH128



# 850 Body Towards Ground High with EGPRS

Date/Time: 2011-3-27 15:16:03 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.959 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.8 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.647 mW/g Maximum value of SAR (measured) = 0.936 mW/g

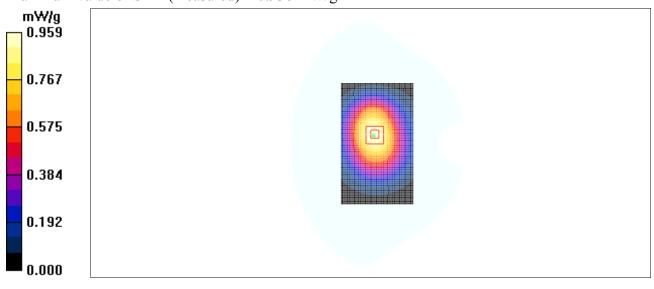



Fig. 32 850 MHz CH190



# 850 Body Towards Ground High with Headset\_CCB3160A10C0

Date/Time: 2011-3-27 15:32:41 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.568 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.9 V/m; Power Drift = -0.024 dBPeak SAR (extrapolated) = 0.707 W/kgSAR(1 g) = 0.533 mW/g; SAR(10 g) = 0.384 mW/gMaximum value of SAR (measured) = 0.568 mW/g

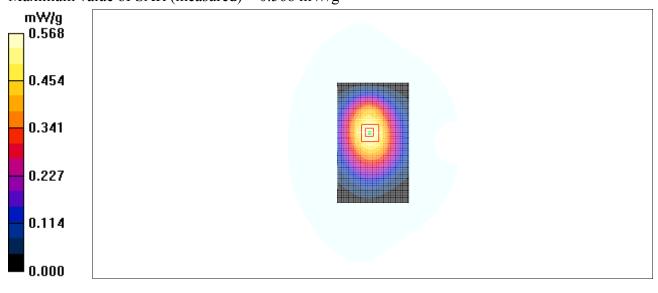



Fig. 33 850 MHz CH190



# 850 Body Towards Ground High with Headset\_CCB3160A10C3

Date/Time: 2011-3-27 15:48:35 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.678 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.2 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 0.844 W/kg SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.461 mW/g Maximum value of SAR (measured) = 0.680 mW/g

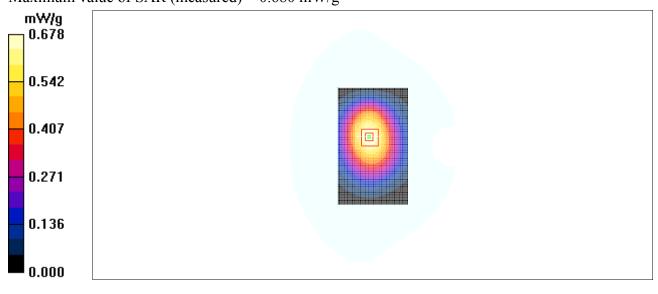



Fig. 34 850 MHz CH190



# 1900 Body Towards Ground High with GPRS

Date/Time: 2011-3-28 13:48:01 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.54$  mho/m;  $\epsilon r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.461 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.34 V/m; Power Drift = 0.074 dB Peak SAR (extrapolated) = 0.681 W/kg SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.449 mW/g

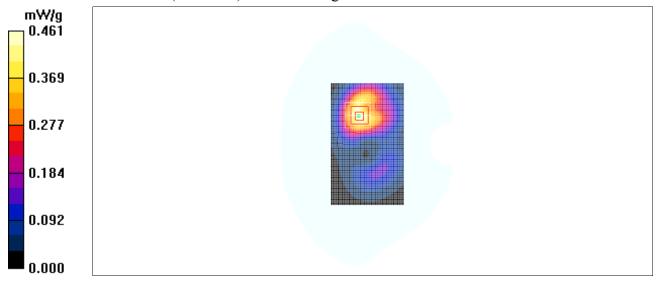



Fig. 35 1900 MHz CH810



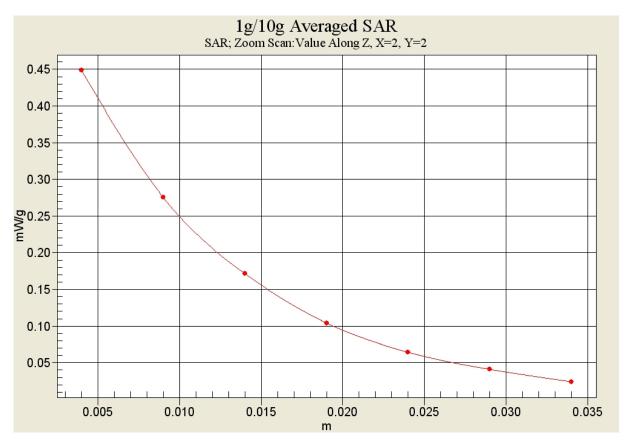



Fig. 35-1 Z-Scan at power reference point (1900 MHz CH810)



# 1900 Body Towards Ground Middle with GPRS

Date/Time: 2011-3-28 14:03:22 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.51$  mho/m;  $\epsilon r = 53.0$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.422 mW/g

**Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.66 V/m; Power Drift = 0.029 dBPeak SAR (extrapolated) = 0.620 W/kgSAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.411 mW/g

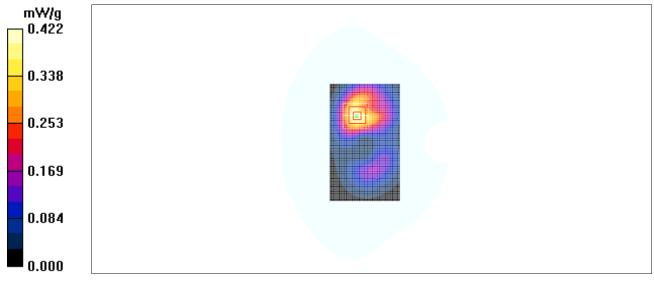



Fig. 36 1900 MHz CH661



# **1900 Body Towards Ground Low with GPRS**

Date/Time: 2011-3-28 14:18:43 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.49$  mho/m;  $\epsilon r = 53.0$ ;  $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.370 mW/g

**Toward Ground Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.91 V/m; Power Drift = 0.148 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.207 mW/g Maximum value of SAR (measured) = 0.367 mW/g

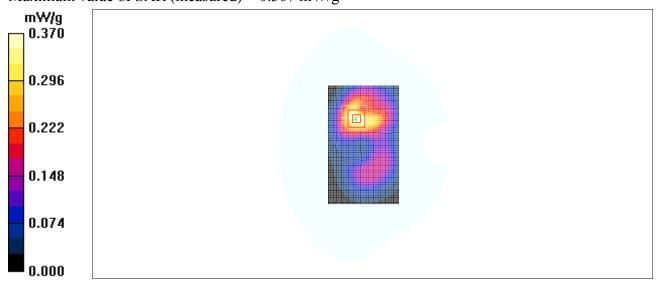



Fig. 37 1900 MHz CH512



# **1900 Body Towards Phantom High with GPRS**

Date/Time: 2011-3-28 14:34:57 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.54$  mho/m;  $\epsilon r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Phantom High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.399 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.90 V/m; Power Drift = -0.107 dB Peak SAR (extrapolated) = 0.599 W/kg SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.219 mW/g Maximum value of SAR (measured) = 0.386 mW/g

**Toward Phantom High/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.90 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 0.576 W/kg

**SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.210 mW/g** Maximum value of SAR (measured) = 0.369 mW/g

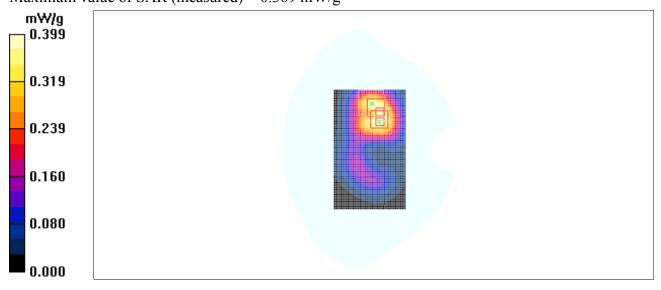



Fig. 38 1900 MHz CH810



## 1900 Body Towards Phantom Middle with GPRS

Date/Time: 2011-3-28 14:50:25 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz;  $\sigma = 1.51$  mho/m;  $\epsilon r = 53.0$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Phantom Middle/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.345 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.44 V/m; Power Drift = 0.080 dB Peak SAR (extrapolated) = 0.531 W/kg SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.190 mW/g Maximum value of SAR (measured) = 0.340 mW/g

**Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.44 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 0.517 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.179 mW/gMaximum value of SAR (measured) = 0.332 mW/g



Fig. 39 1900 MHz CH661



# **1900 Body Towards Phantom Low with GPRS**

Date/Time: 2011-3-28 15:05:48 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.49$  mho/m;  $\epsilon r = 53.0$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Phantom Low/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.317 mW/g

**Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.90 V/m; Power Drift = 0.042 dBPeak SAR (extrapolated) = 0.490 W/kgSAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.177 mW/gMaximum value of SAR (measured) = 0.313 mW/g

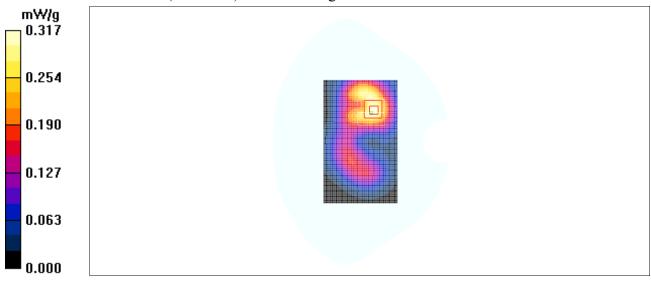



Fig. 40 1900 MHz CH512



### **1900 Body Towards Ground High with EGPRS**

Date/Time: 2011-3-28 15:22:52 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.54$  mho/m;  $\epsilon r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.450 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.36 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.404 mW/g; SAR(10 g) = 0.247 mW/g

Maximum value of SAR (measured) = 0.433 mW/g

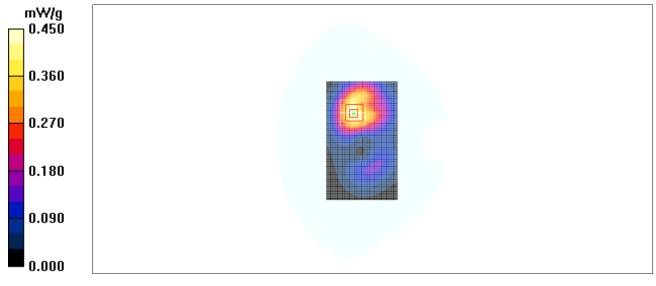



Fig. 41 1900 MHz CH810



#### 1900 Body Towards Ground High with Headset\_CCB3160A10C0

Date/Time: 2011-3-28 15:39:04 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.54$  mho/m;  $\epsilon r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.328 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.41 V/m; Power Drift = -0.133 dB Peak SAR (extrapolated) = 0.489 W/kg

SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.179 mW/g

Maximum value of SAR (measured) = 0.318 mW/g

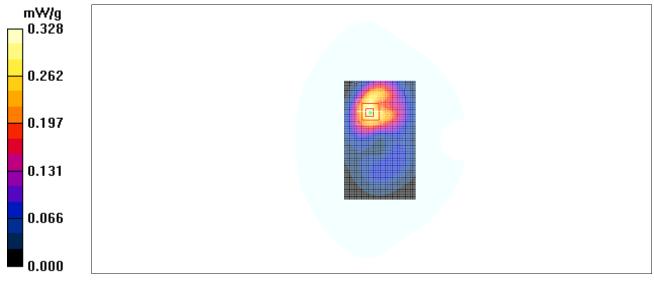



Fig. 42 1900 MHz CH810



#### 1900 Body Towards Ground High with Headset\_CCB3160A10C3

Date/Time: 2011-3-28 15:55:36 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz;  $\sigma = 1.54$  mho/m;  $\epsilon r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.327 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.43 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 0.489 W/kg SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.180 mW/g Maximum value of SAB (measured) = 0.222 mW/g

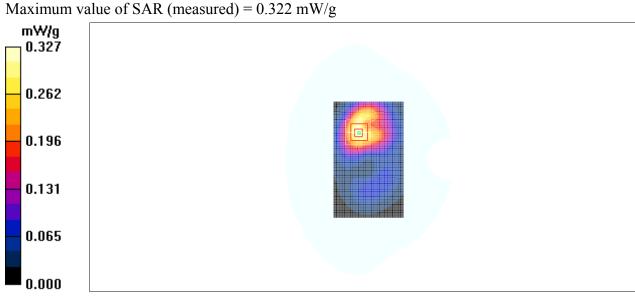



Fig. 43 1900 MHz CH810



#### 850 Body Towards Ground High with GPRS with battery CAB31L0000C2

Date/Time: 2011-3-27 16:05:58 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.95$  mho/m;  $\epsilon r = 54.7$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.939 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.7 V/m; Power Drift = -0.019 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.889 mW/g; SAR(10 g) = 0.642 mW/g Maximum value of SAR (measured) = 0.942 mW/g

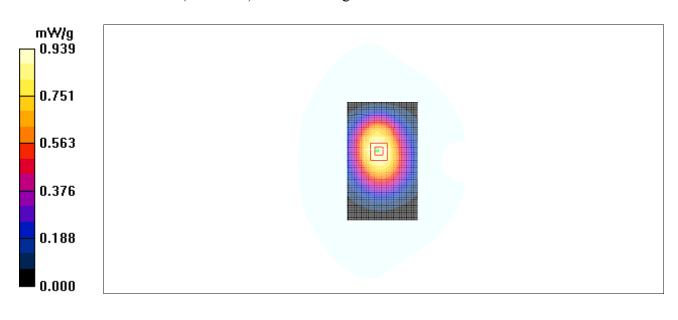
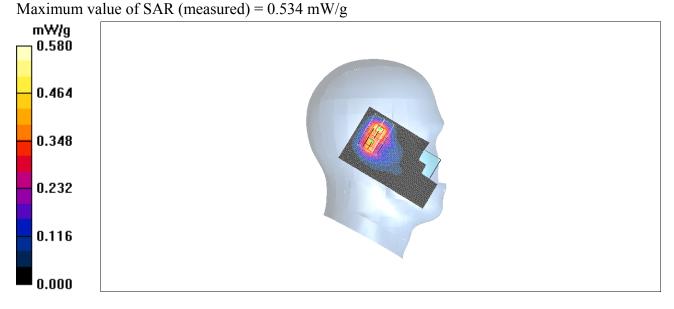



Fig. 44 850 MHz CH251




#### WiFi 802.11b 1Mbps Left Cheek Channel 11

Date/Time: 2011-3-26 10:03:24 Electronics: DAE4 Sn771 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.84$  mho/m;  $\epsilon r = 39.5$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(7.19, 7.19, 7.19)

**Cheek High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.580 mW/g

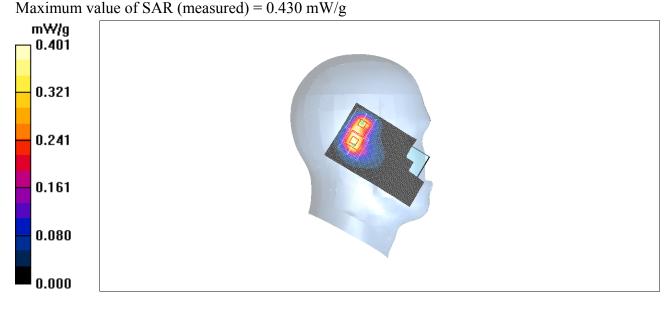
Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.0 V/m; Power Drift = 0.123 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.523 mW/g; SAR(10 g) = 0.252 mW/g Maximum value of SAR (measured) = 0.610 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.0 V/m; Power Drift = 0.123 dB Peak SAR (extrapolated) = 0.998 W/kg SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.237 mW/g








#### WiFi 802.11b 1Mbps Left Tilt Channel 11

Date/Time: 2011-3-26 10:17:58 Electronics: DAE4 Sn771 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.84$  mho/m;  $\epsilon r = 39.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(7.19, 7.19, 7.19)

**Tilt High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.401 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.2 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 0.704 W/kg SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.209 mW/g Maximum value of SAR (measured) = 0.417 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.2 V/m; Power Drift = -0.043 dB Peak SAR (extrapolated) = 0.851 W/kg SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.168 mW/g







#### WiFi 802.11b 1Mbps Right Cheek Channel 11

Date/Time: 2011-3-26 10:34:21 Electronics: DAE4 Sn771 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.84$  mho/m;  $\epsilon r = 39.5$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(7.19, 7.19, 7.19)

**Cheek High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.753 mW/g

**Cheek High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.7 V/m; Power Drift = -0.145 dB Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.616 mW/g; SAR(10 g) = 0.324 mW/g

Maximum value of SAR (measured) = 0.653 mW/g

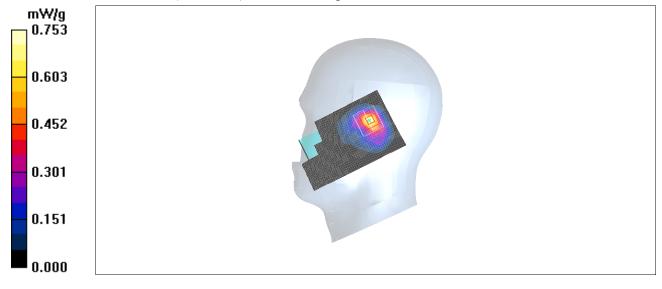



Fig.47 802.11b 1Mbps CH11



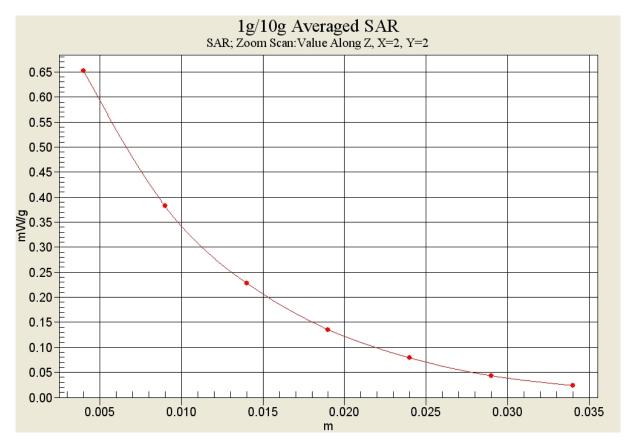



Fig. 47-1 Z-Scan at power reference point (2462 MHz CH11)



### WiFi 802.11b 1Mbps Right Tilt Channel 11

Date/Time: 2011-3-26 10:49:55 Electronics: DAE4 Sn771 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.84$  mho/m;  $\epsilon r = 39.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(7.19, 7.19, 7.19)

**Tilt High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.605 mW/g

**Tilt High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.0 V/m; Power Drift = -0.086 dB Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.541 mW/g; SAR(10 g) = 0.273 mW/g

Maximum value of SAR (measured) = 0.582 mW/g

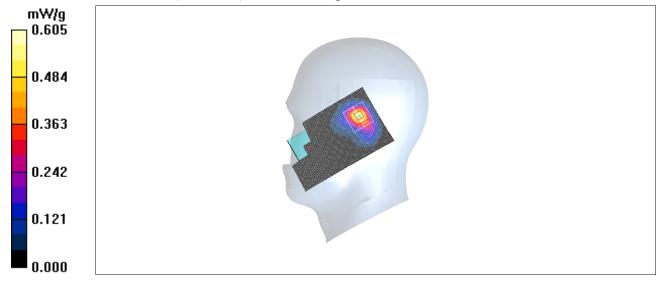



Fig.48 802.11b 1Mbps CH11



#### WiFi 802.11b 1Mbps Toward Ground Channel 11

Date/Time: 2011-3-26 15:29:14 Electronics: DAE4 Sn771 Medium: Body 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.99$  mho/m;  $\epsilon r = 52.4$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(6.88, 6.88, 6.88)

**Toward Phantom High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.105 mW/g

**Toward Phantom High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.02 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.051 mW/g

Maximum value of SAR (measured) = 0.096 mW/g

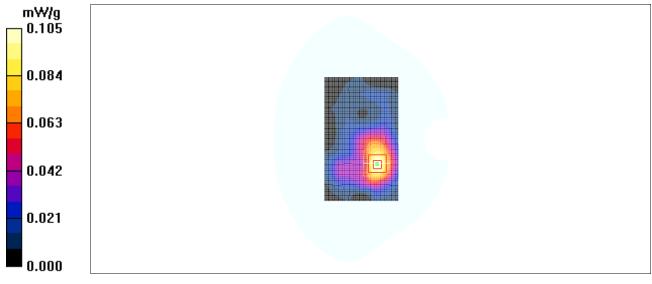



Fig.49 802.11b 1Mbps CH11



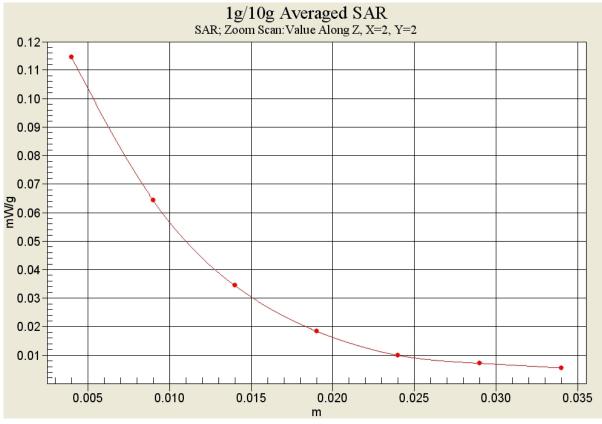



Fig. 49-1 Z-Scan at power reference point (2462 MHz CH11)



#### WiFi 802.11b 1Mbps Toward Phantom Channel 11

Date/Time: 2011-3-26 15:45:50 Electronics: DAE4 Sn771 Medium: Body 2450 MHz Medium parameters used (interpolated): f = 2462 MHz;  $\sigma = 1.99$  mho/m;  $\epsilon r = 52.4$ ;  $\rho = 1000$ kg/m<sup>3</sup> Ambient Temperature: 23.0 °C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(6.88, 6.88, 6.88)

**Toward Ground High/Area Scan (61x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.114 mW/g

**Toward Ground High/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.85 V/m; Power Drift = -0.075 dB Peak SAR (extrapolated) = 0.189 W/kg SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.057 mW/g Maximum value of SAR (measured) = 0.114 mW/g

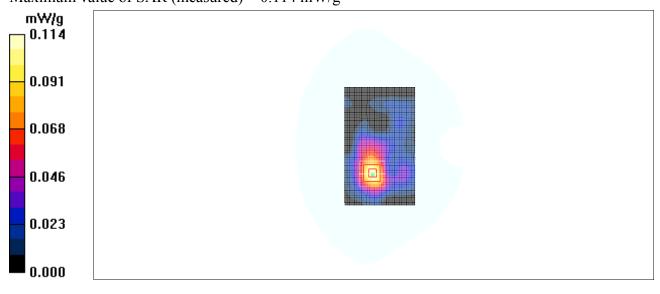
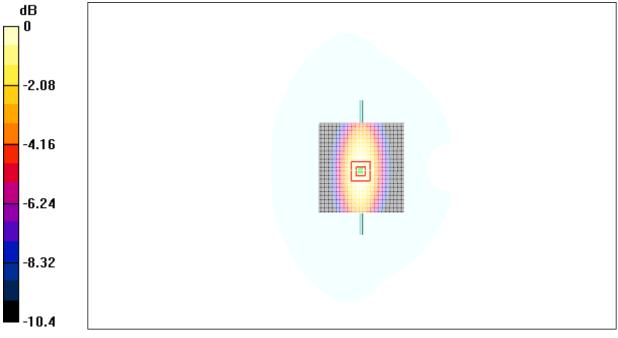
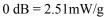



Fig.50 802.11b 1Mbps CH11




# ANNEX D SYSTEM VALIDATION RESULTS


### 835MHz

Date/Time: 2011-3-27 7:28:13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 835 MHz;  $\sigma = 0.91$  mho/m;  $\epsilon_r = 41.6$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

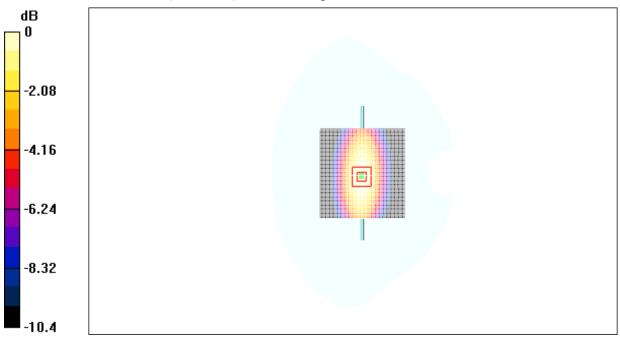
System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.59 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.8 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.51 mW/g










Date/Time: 2011-3-27 13:17:22 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 835 MHz;  $\sigma = 0.95$  mho/m;  $\varepsilon_r = 54.7$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

**System Validation /Area Scan (101x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.68 mW/g

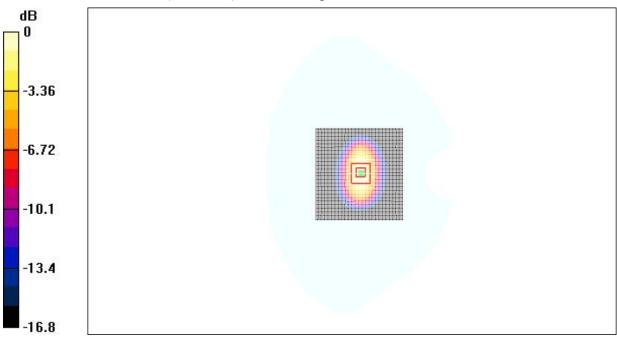
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.8 V/m; Power Drift = 0.086 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.56 mW/g



0 dB = 2.56 mW/g

Fig.52 validation 835MHz 250mW




Date/Time: 2011-3-28 7:30:17 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 40.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

**System Validation/Area Scan (101x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.5 mW/g

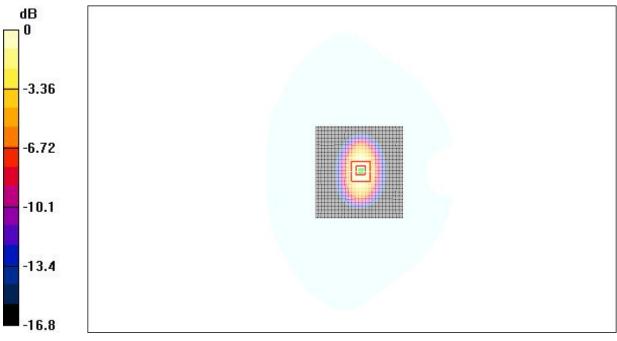
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 14.6 W/kg SAR(1 g) = 9.84 mW/g; SAR(10 g) = 4.91 mW/g Maximum value of SAR (measured) = 10.4 mW/g



0 dB = 10.4 mW/g

Fig.53 validation 1900MHz 250mW




Date/Time: 2011-3-28 13:20:31 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma = 1.53$  mho/m;  $\epsilon_r = 52.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

**System Validation/Area Scan (101x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.4 mW/g

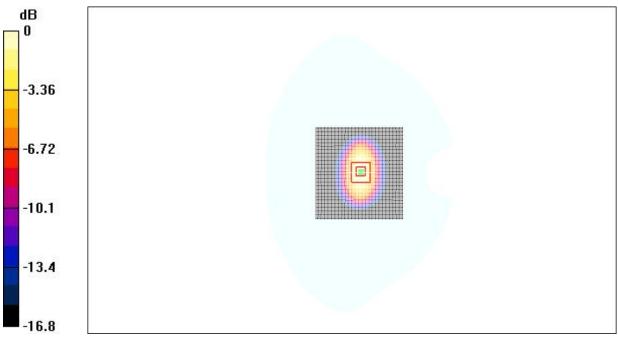
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.6 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.30 mW/g Maximum value of SAR (measured) = 10.7 mW/g



0 dB = 10.7 mW/g

Fig.54 validation 1900MHz 250mW




Date/Time: 2011-3-26 7:32:41 Electronics: DAE4 Sn771 Medium: Head 2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.82$  mho/m;  $\epsilon_r = 39.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(7.19, 7.19, 7.19)

**System Validation/Area Scan (101x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 13.9 mW/g

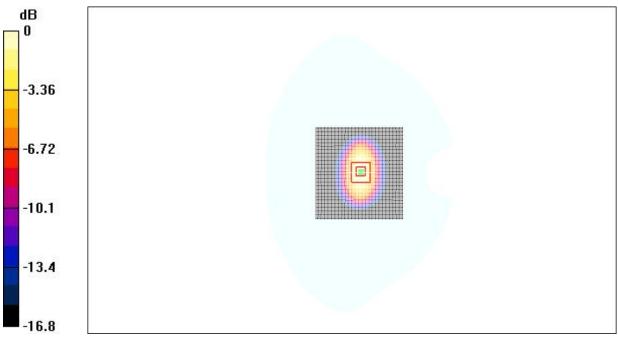
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.2 V/m; Power Drift = 0.085 dBPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.9 mW/gMaximum value of SAR (measured) = 14.1 mW/g



0 dB = 14.1 mW/g

Fig.55 validation 2450MHz 250mW




Date/Time: 2011-3-26 13:20:07 Electronics: DAE4 Sn771 Medium: Body 2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.97$  mho/m;  $\epsilon_r = 52.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature:23.0oC Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3617 ConvF(6.88, 6.88, 6.88)

**System Validation/Area Scan (101x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.8 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.1 V/m; Power Drift = 0.069 dBPeak SAR (extrapolated) = 24.3 W/kgSAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.9 mW/gMaximum value of SAR (measured) = 14.5 mW/g



0 dB = 14.5 mW/g

Fig.56 validation 2450MHz 250mW