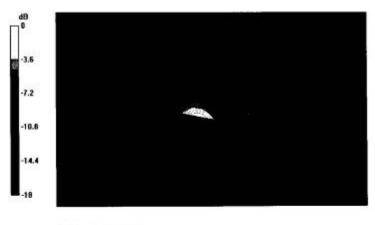
Report No.: RZA1105-0803SAR01R3

DASY5 Validation Report for Head TSL

Date/Time: 15.06.2010 10:40:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

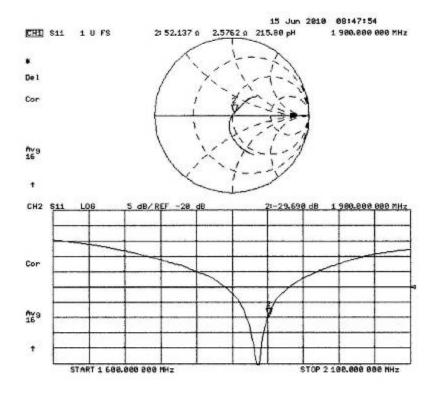

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ε_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.7 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/g Maximum value of SAR (measured) = 12.6 mW/g


Certificate No: D1900V2-5d018_Jun10

Page 6 of 9

Page 192 of 217

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d018_Jun10

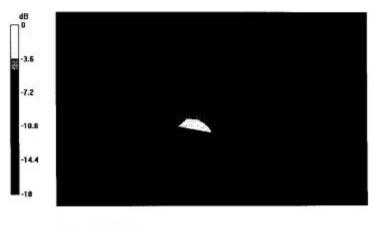
Report No.: RZA1105-0803SAR01R3

DASY5 Validation Report for Body

Date/Time: 15.06.2010 14:14:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018

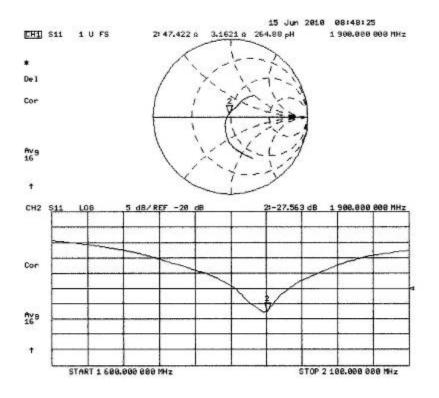

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.52 mW/g Maximum value of SAR (measured) = 12.8 mW/g



Page 194 of 217

Impedance Measurement Plot for Body TSL

Report No.: RZA1105-0803SAR01R3

ANNEX H: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C C Z RIBRATO

s

С

s

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: D2450V2-712_Feb10

Object	D2450V2 - SN: 7	12	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	February 19, 201	0	
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
a superior and a building a sour (
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 6047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 6047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D2450V2-712_Feb10

Page 1 of 9

Page 196 of 217

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-712_Feb10

Report No.: RZA1105-0803SAR01R3

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.5 mW /g ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	condition 250 mW input power	6.24 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		6.24 mW / g 25.0 mW / g

Report No.: RZA1105-0803SAR01R3

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.1 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 mW / g
SAR measured SAR normalized	250 mW input power normalized to 1W	5.97 mW / g 23.9 mW / g

Report No.: RZA1105-0803SAR01R3

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 1.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 5.2 jΩ	
Return Loss	- 25.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

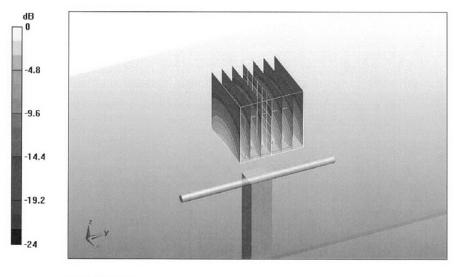
Report No.: RZA1105-0803SAR01R3

DASY5 Validation Report for Head TSL

Date/Time: 17.02.2010 13:12:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.77 mho/m; ϵ_r = 38.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

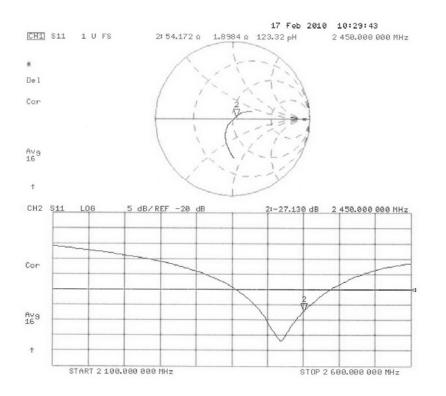
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.032 dBPeak SAR (extrapolated) = 27.2 W/kgSAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.24 mW/gMaximum value of SAR (measured) = 17.1 mW/g

0 dB = 17.1 mW/g


Certificate No: D2450V2-712_Feb10

Page 6 of 9

Page 201 of 217

Impedance Measurement Plot for Head TSL

Page 7 of 9

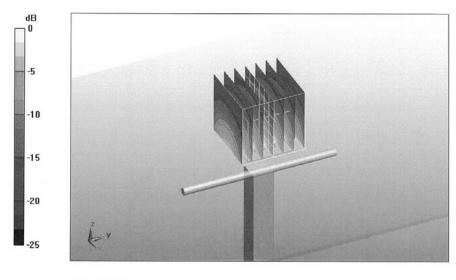
eport No.: RZA1105-0803SAR01R3

DASY5 Validation Report for Body

Date/Time: 19.02.2010 13:05:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; σ = 2.01 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

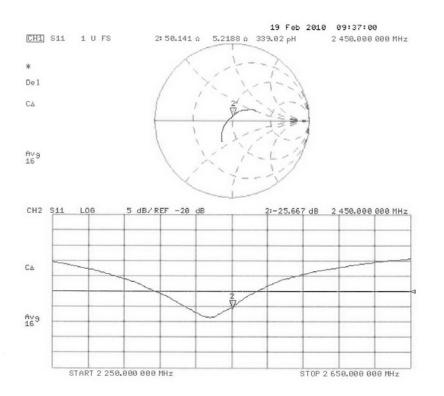
DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.5 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 5.97 mW/g Maximum value of SAR (measured) = 17 mW/g

0 dB = 17 mW/g


Certificate No: D2450V2-712_Feb10

Page 8 of 9

Page 203 of 217

Impedance Measurement Plot for Body TSL

Page 9 of 9

Report No.: RZA1105-0803SAR01R3

72

Page 204 of 217

ANNEX I: DAE4 Calibration Certificate

Engineering AG aughausstrasse 43, 8004 Zuric	Y Of h, Switzerland	RECINICA	S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Accredita			ditation No.: SCS 108
he Swiss Accreditation Service Iultilateral Agreement for the re	지금 그 가슴을 잡고 집에 많은 것을 만하는 것을 했다.		
lient TA - SH (Aude			icate No: DAE4-871_Nov10
CALIBRATION	A CONTRACTOR OF THE OWNER		
Object	DAE4 - SD 000 D	04 BJ - SN: 871	
Calibration procedure(s)	QA CAL-06.v22		
entering in contrast of all		lure for the data acquisitio	n electronics (DAE)
:			
Calibration date:	November 18, 201	10	
		nal standards, which realize the phy bability are given on the following p	
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&)	rtainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following p facility: environment temperature (2	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards	rtainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following p facility: environment temperature (2 Cal Date (Certificate No.)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278	bability are given on the following p facility: environment temperature (2 Cal Date (Certificate No.) 28-Sep-10 (No:10376)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Keithley Multimeter Type 2001 Secondary Standards	rtainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following p facility: environment temperature (2 Cal Date (Certificate No.)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce	artainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following p facility: environment temperature (2 Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Keithley Multimeter Type 2001 Secondary Standards	artainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following p facility: environment temperature (2 Cal Date (Certificate No.) 28-Sep-10 (No:10376) Check Date (in house)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	artainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	bability are given on the following p facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check)	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	Artainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	bability are given on the following p facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check) Function	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Andrea Guntii	Abability are given on the following p facility: environment temperature (2 <u>Cal Date (Certificate No.)</u> 28-Sep-10 (No:10376) <u>Check Date (in house)</u> 07-Jun-10 (in house check) Function Technician	ages and are part of the certificate. 12 ± 3)°C and humidity < 70%. Scheduled Calibration Sep-11 Scheduled Check In house check: Jun-11

Certificate No: DAE4-871_Nov10

Page 1 of 5

TA Techno Report No.: RZA1105-0803SAR01R3

TA Technology (Shanghai) Co., Ltd. Test Report

Page 205 of 217

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

CP D ZO

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: RZA1105-0803SAR01R3

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1μV,
 full range =
 -100...+300 mV

 Low Range:
 1LSB =
 61nV,
 full range =
 -1.....+3mV

 DASY measurement parameters: Auto Zero Time:
 3 sec; Measuring time:
 3 sec

Calibration Factors	X	Y	z
High Range	404.757 ± 0.1% (k=2)	404.740 ± 0.1% (k=2)	405.181 ± 0.1% (k=2)
Low Range	3.98219 ± 0.7% (k=2)	3.93489 ± 0.7% (k=2)	3.96831 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 ° ± 1 °
---	--------------

Certificate No: DAE4-871_Nov10

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200001.2	-1.56	-0.00
Channel X + Input	20000.71	0.71	0.00
Channel X - Input	-19997.87	1.63	-0.01
Channel Y + Input	199994.3	1.99	0.00
Channel Y + Input	19998.92	-1.08	-0.01
Channel Y - Input	-20000.26	-0.76	0.00
Channel Z + Input	200009.2	-1.04	-0.00
Channel Z + Input	19998.70	-1.10	-0.01
Channel Z - Input	-20000.16	-0.76	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.1	0.16	0.01
Channel X + Input	199.58	-0.52	-0.26
Channel X - Input	-200.79	-0.89	0.45
Channel Y + Input	1999.9	-0.03	-0.00
Channel Y + Input	199.45	-0.55	-0.27
Channel Y - Input	-200.31	-0.41	0.21
Channel Z + Input	2000.1	0.33	0.02
Channel Z + Input	199.13	-0.77	-0.38
Channel Z - Input	-201.47	-1.37	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	14.25	12.86
	- 200	-12.68	-14.21
Channel Y	200	-10.04	-10.39
	- 200	9.20	9.17
Channel Z	200	-0.85	-1.40
	- 200	-0.34	-0.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.85	0.69
Channel Y	200	2.41	-	2.73
Channel Z	200	2.54	0.73	12

Certificate No: DAE4-871_Nov10

Report No.: RZA1105-0803SAR01R3

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15920	15517
Channel Y	. 16171	16732
Channel Z	15803	16474

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

1

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.03	-2.35	0.86	0.43
Channel Y	-0.50	-1.49	-0.49	0.38
Channel Z	-0.92	-2.21	0.14	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25/A

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

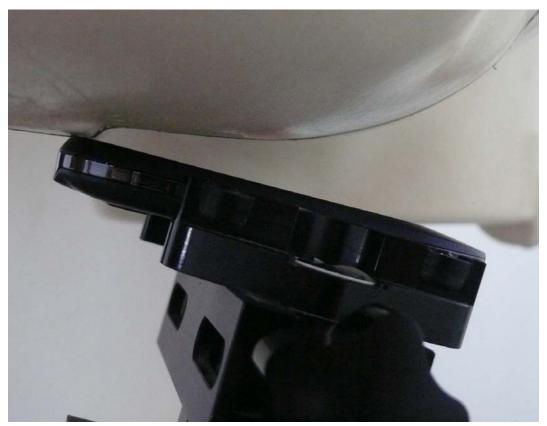
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX J: The EUT Appearances and Test Configuration

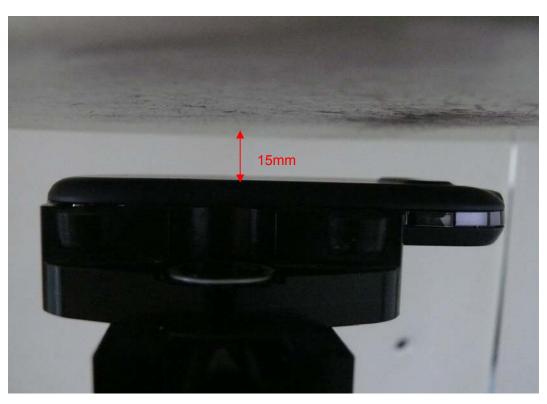
a: EUT

b: Battery Picture 10: Constituents of EUT

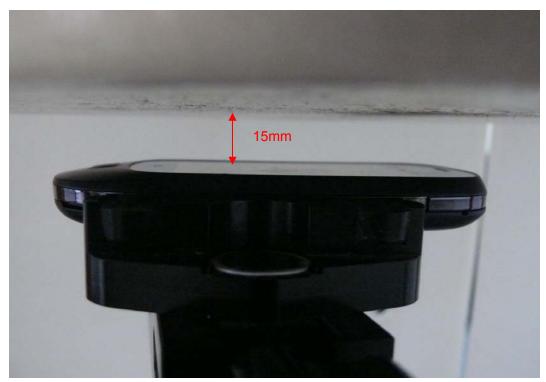
Picture 11: Left Hand Touch Cheek Position



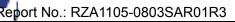
Picture 12: Left Hand Tilt 15 Degree Position

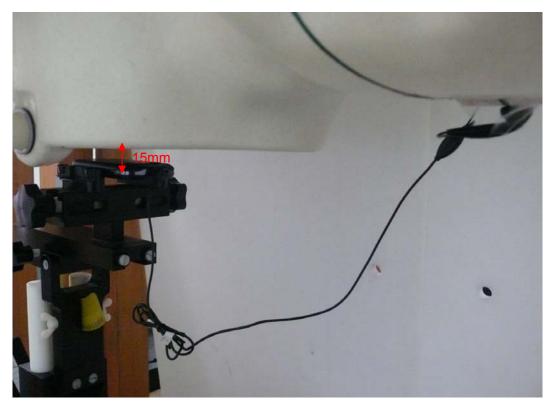


Picture 13: Right Hand Touch Cheek Position

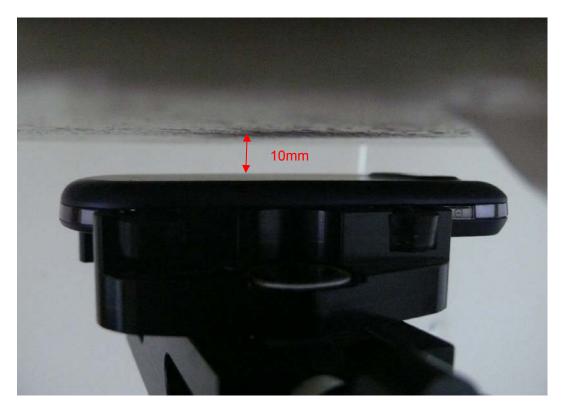


Picture 14: Right Hand Tilt 15 Degree Position

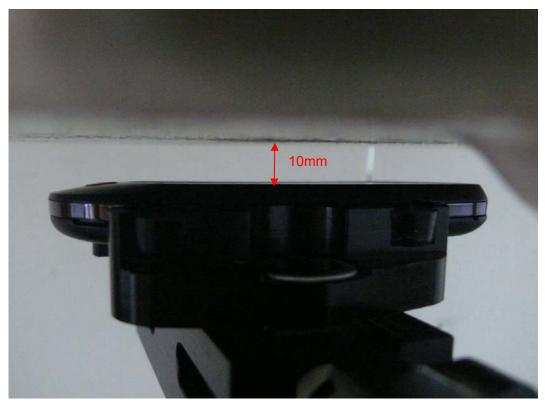

TA Technology (Shanghai) Co., Ltd. Test Report Report No.: RZA1105-0803SAR01R3



Picture 15: Body, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm



Picture 16: Body, The EUT display towards phantom, the distance from handset to the bottom of the Phantom is 15mm



Picture 17: Body with earphone, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm

Picture 18: Body, the EUT display towards ground, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RZA1105-0803SAR01R3

Picture 19: Body, the EUT display towards phantom, the distance from handset to the bottom of the Phantom is 10mm

Picture 20: Left edge, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RZA1105-0803SAR01R3

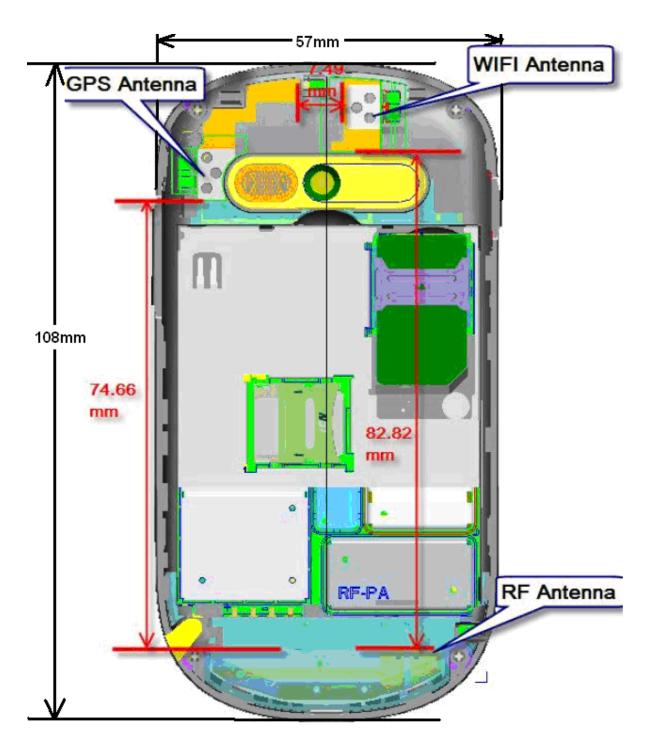
Page 215 of 217

Picture 21: Right edge, the distance from handset to the bottom of the Phantom is 10mm

Picture 22: Top edge, the distance from handset to the bottom of the Phantom is 10mm

Report No.: RZA1105-0803SAR01R3

1



Picture 23: Bottom edge, the distance from handset to the bottom of the Phantom is 10mm

ANNEX K: Schematic Diagram of Antenna

