

TEST REPORT

REPORT NUMBER: I11GW4774-HAC-RF

ON

Type of Equipment: Type of Designation: Manufacturer: yippee 3G_A one touch 901A TCT Mobile Limited

ACCORDING TO

FCC Part 20.19: COMMERCIAL MOBILE RADIO SERVICES - Hearing aid-compatible mobile handsets, 10–1–09 Edition

ANSI C63.19-2007 American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids, RF section

China Telecommunication Technology Labs.

Month date, year Mar. 09, 2011 Signature

He Guili **Director**

FCC ID: Report Date: RAD161 2011-03-09

Test Firm Name: Registration Number: China Telecommunication Technology Labs 840587

Statement

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported tests were carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 20.19. The sample tested was found to comply with the requirements defined in the applied rules.

REPORT NO.: I11GW4774-HAC-RF

Table of Contents

1.1 Notes	4
1.2 TESTERS	5
1.3 TESTING LABORATORY INFORMATION	6
1.4 DETAILS OF APPLICANT OR MANUFACTURER	7
2 Test Item8	
2.1 GENERAL INFORMATION	
2.2 OUTLINE OF EUT	
2.3 MODIFICATIONS INCORPORATED IN EUT	
2.4 EQUIPMENT CONFIGURATION	
2.5 Other Information	
2.6 EUT PHOTOGRAPHS	9
3 Test Configurations10	
3.1 HAC MEASUREMENT SYSTEM	0
3.2 HAC MEASUREMENT SYSTEM SPECIFICATIONS	
3.3 Test Equipments List 13	
3.4 TEST CONDITION	4
3.5 EUT Setup 14	
3.6 EUT POWER	7
4 Test Results	
4.1 APPLICABLE CATEGORY REGULATIONS 19	
4.2 GENERAL CONCLUSIONS	9
5 System Validations 20	
5.1 VALIDATION PROCEDURE	
5.2 VALIDATION RESULTS	
5.2 VALIDATION RESULTS	0
5.2 VALIDATION RESULTS 20 6 Probe Modulation Factor Measurements 21 6.1 PMF TEST PROCEDURES 21	0
5.2 VALIDATION RESULTS 20 6 Probe Modulation Factor Measurements 21 6.1 PMF Test PROCEDURES 22 6.2 PMF Test Results 22	0
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES216.2 PMF TEST RESULTS227 RF Emission Measurements24	0 1 2
5.2 VALIDATION RESULTS 20 6 Probe Modulation Factor Measurements 21 6.1 PMF Test PROCEDURES 22 6.2 PMF Test Results 22	0 1 2
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES216.2 PMF TEST RESULTS227 RF Emission Measurements24	0 1 2 4
5.2 VALIDATION RESULTS 20 6 Probe Modulation Factor Measurements 21 6.1 PMF TEST PROCEDURES 22 6.2 PMF TEST RESULTS 22 7 RF Emission Measurements 24 7.1 TEST PROCEDURES 24	0 1 2 4 5
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES226.2 PMF TEST RESULTS227 RF Emission Measurements247.1 TEST PROCEDURES247.2 RF EMISSION MEASUREMENT DATA25	0 1 2 4 5
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES226.2 PMF TEST RESULTS227 RF Emission Measurements247.1 TEST PROCEDURES247.2 RF EMISSION MEASUREMENT DATA257.3 MEASUREMENT UNCERTAINTY25ANNEX A Photographs28ANNEX B Validation Graphical Results29	0 1 2 4 5
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES226.2 PMF TEST RESULTS227 RF Emission Measurements247.1 TEST PROCEDURES247.2 RF EMISSION MEASUREMENT DATA257.3 MEASUREMENT UNCERTAINTY25ANNEX A Photographs28	0 1 2 4 5
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES226.2 PMF TEST RESULTS227 RF Emission Measurements247.1 TEST PROCEDURES247.2 RF EMISSION MEASUREMENT DATA257.3 MEASUREMENT UNCERTAINTY25ANNEX A Photographs28ANNEX B Validation Graphical Results29	0 1 2 4 5
5.2 VALIDATION RESULTS206 Probe Modulation Factor Measurements216.1 PMF TEST PROCEDURES226.2 PMF TEST RESULTS227 RF Emission Measurements247.1 TEST PROCEDURES247.2 RF EMISSION MEASUREMENT DATA257.3 MEASUREMENT UNCERTAINTY25ANNEX A Photographs28ANNEX B Validation Graphical Results29Annex C PMF Measurements Graphical Results37	0 1 2 4 5

1. General Information

1.1 Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with the requirements of FCC CFR 47 Part 20.19.

The test results of this test report relate exclusively to the item(s) tested as specified in section 2.

The following deviations from, additions to, or exclusions from the test specifications have been made. See Annex F.

China Telecommunication Technology Labs.(CTTL) authorizes the applicant or manufacturer (see section 1.4) to reproduce this report provided, and the test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTTL Mr. He Guili.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. CTTL accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

REPORT NO.: I11GW4774-HAC-RF

1.2 Testers

Name:

Li Guoqing

Position:

Engineer

Department:

Signature:

李国庆

Department of EMC test

Editor of this test report:

Name:		

Position: Engineer

Department:

Department of EMC test 2011-03-09

Li Guoqing

Date:

Signature:

李国庆

Technical responsibility for testing:

Name: Zou Dongyi Position: Manager Department: Department of EMC test Date: 2011-03-09 Signature:

REPORT NO.: I11GW4774-HAC-RF

1.3 Testing Laboratory information

1.3.1	Location
T.O.T	Location

China Telecommunication Technology Labs.			
No. 11, Yue Tan Nan Jie, Xi Cheng District,			
BEIJING			
P. R. CHINA, 100045			
+86 10 68094053			
+86 10 68011404			
emc@chinattl.com			

1.3.2 Details of accreditation status

Accredited by:	China National Accreditation Service for Conformity
	Assessment (CNAS)
Registration number:	CNAS Registration No. CNAS L0570
Standard:	ISO/IEC 17025:2005

1.3.3 Test location, where different from section 1.3.1

Name:

Address:

REPORT NO.: I11GW4774-HAC-RF

FCC Part 20.19 (10–1–09 Edition), ANSI C63.19-2007 Equipment: One tounch 901A

1.4 Details of applicant or manufacturer

1.4.1 Applicant	
Name:	TCT Mobile Limited
Address	5F, E building, No. 232, Liang Jing Road ZhangJiang
	High-Tech Park, Pudong Area Shanghai, P.R. China.
Country:	China
Telephone:	+86-21-61460890
Fax:	+86-21-61460602
Contact:	Gong Zhizhou
Telephone:	+86-21-61460890
Email	zhizhou.gong@jrdcom.com

1.4.2 Manufacturer (if different from applicant in section 1.4.1)

Name:

Address:

1.4.3 Manufactory (if different from applicant in section 1.4.1)

Name:

Address:

REPORT NO.: I11GW4774-HAC-RF

2 Test Item

2.1 General Information

Manufacturer:	TCT Mobile Limited
Model Name:	one touch 901A
Product Name	yippee 3G_A
Serial Number:	012596000000839
Production Status:	Product
Receipt date of test item:	2011-03-02

2.2 Outline of EUT

EUT is a GSM/GPRS/EDGE/WCDMA mobile phone, supporting 850 Band/1900 Band/FDD Band V and FDD Band II.

2.3 Modifications Incorporated in EUT

The EUT has not been modified from what is described by the brand name and unique type identification stated above.

2.4 Equipment Configuration

Item	Generic Description	Manufacturer	Туре	Serial No.	Remarks
А	A handset ALCATEL		900A-2AALMX0	012596000	
	nanuset	ALCATEL	-W	000839	
В	adapter	Tenpao	S003KU05000	CBA3120A	
	adapter	Teripao	40	G0C2	
С	battery	BYD	Li-Lon	CAB31L00	
	Dattely	טוט	LI-LOII	00C1	
D	Earphono	Shunda	STEREO	CCB3160A	
D	Earphone Shunda		Headset	10C2	
Е	E Data Cable Juwei		Micro usb cable	CDA31220	
L	Data Cable	Data Cable Juwei		01C1	

Equipment configuration list:

2.5 Other Information

Version of hardware and software:

HW Version: PIO

SW Version: sw524

Adaptor information:

Input: 100-240VAC 150mA

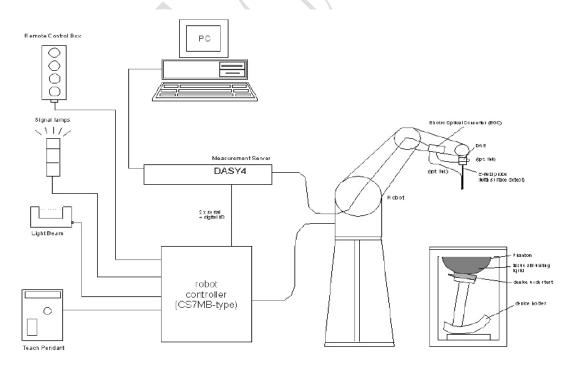
Output: 5.0V 400mA

Battery information: 1000mAh Nominal Voltage: 3.7V

REPORT NO.: I11GW4774-HAC-RF

2.6 EUT Photographs

Back view


REPORT NO.: I11GW4774-HAC-RF

3 Test Configurations

3.1 HAC Measurement System

All measurements were performed using the automated near-field scanning system, DASY5, from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision industrial robot which positions the probes with a positional repeatability of better than 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system containing the power supply, robot controller, teach pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Intel ® Core [™] 2 Duo CPU E6750 @ 2.66 GHzwith Windows XP SP3 system and HAC Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc., which is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical signal to digital electric signal of the DAE and transfers data to the PC plug-in card.

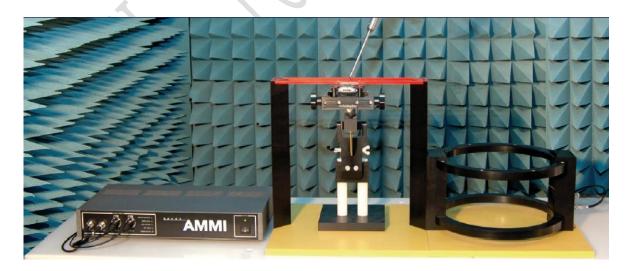
Demonstration of measurement system setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is

REPORT NO.: I11GW4774-HAC-RF

accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built-in VME-bus computer.

3.2 HAC Measurement System Specifications


Item Description			
Test Arch			
function:	enables easy and well defined positioning of		
	the phone and calibration dipoles as well as		
	simple teaching of the robot		
dimensions:	370 mm x 370 mm x 375 mm		
Device Holder			
function:	supports accurate positioning of any phone		
effect on near-field:	<+/- 0.5dB		
Broadband Calibration Dipoles			
CD835 / CD1880 / CD 2450 including			
holder and transportation box			
frequency bands:	800 - 960 / 1710 - 2000 / 2250 - 2650 MHz		
return loss:	>15 / >18 / >18 dB over frequency band		
calibrated at:	835 / 1880 / 2450 MHz (return loss >20 dB)		
Audio Magnetic Field Probe AM1D			
frequency range:	0.1 - 20 kHz (RF sensitivity <-100 dB, fully		
	RF shielded)		
sensitivity:	<-50 dB A/m @ 1 kHz		
pre-amplifier:	40 dB, symmetric		
dimensions:	tip diameter / length: 6 / 290 mm, sensor		
	according to ANSI-PC63.19		
Audio Magnetic Measurement			
Instrument (AMMI)			
sampling rate:	48 kHz / 24 bit		
dynamic range:	85 dB		
test signal generation:	user selectable and predefined (via PC)		
calibration:	auto-calibration / full system calibration		
	using AMCC with monitor output		
dimensions:	482 x 65 x 270 mm		
Helmholtz Calibration Coil (AMCC)			
Dimensions:	370 x 370 x 196 mm, according to		
	ANSI-PC63.19		
	•		

Address: 11 YUE TAN NAN JIE, BEIJING, P.R.C,100045 Tel:+86 10 68094053 FAX:+86 10 68011404 Web:http://www.chinattl.com

REPORT	NO.:	I11GW4774-HAC-RF

Item	Description	
HAC Extension Software for DASY5		
precise teaching:	easy teaching with adaptive distance	
	verification	
measurement area:	flexible selection of measurement area,	
	predefined according to ANSI-PC63.19	
RF evaluation:	automatic exclusion of high-level areas	
ABM evaluation:	spectral processing, filtering, weighting and	
	evaluation according to ANSI-PC63.19	
report:	documentation ready for compliance report	
Isotropic H-Field Probe H3D		
frequency band:	200 - 3000 MHz (free space)	
dynamic range:	10 mA/m to 2 A/m at 1 GHz	
linearity:	± 0.2 dB (100 MHz to 3 GHz)	
directivity:	± 0.25 dB (spherical isotropy error)	
dimensions:	tip diameter / length: 6 / 330 mm	
Isotropic E-Field Probe ER3D	NVN	
frequency:	100 - 6000 MHz	
dynamic range:	2 V/m to > 1000 V/m	
linearity:	± 0.2 dB (100 MHz to 6 GHz)	
directivity:	\pm 0.2 dB in air (rotation around probe axis),	
	\pm 0.4 dB in air (rotation normal to probe	
	axis)	
dimensions:	tip diameter / length: 8 / 330 mm	

REPORT NO.: I11GW4774-HAC-RF

3.3 Test Equipments List

ITEM	TYPE	S/N	CALIBRATION DATE	DUE DATE
E-field probe	ER3DV6	2435	2010-05-20	2011-05-19
H-field	H3DV6	6268	2010-05-21	2011-05-20
DAE	DAE4	549	2010-05-20	2011-05-19
Dipole	CD835V3	1090	2010-05-17	2011-05-16
Dipole	CD1880V3	1089	2010-05-17	2011-05-16
Power Meter	E4417A	GB41050460	2010-05-25	2012-05-20
Radio			X	
Communication	CMU200	1100000802	2010-06-01	2011-05-31
Analyzer				
Signal	SMP04	100064	2010-05-24	2011-05-23
Generator	3111-04	100004	2010-03-24	2011-05-25
Power Sensor	E9327A	US40440198	2010-07-13	2011-07-12
Power Sensor	E9327A	US40440326	2010-07-26	2011-07-25
Power Amplifier	150W1000	150W1000	NA	NA
Frequency			~	
Spectrum	E7405A	US41160321	2010-08-23	2011-08-22
Analyzer			P	
Attenuator	20dB	836471/003	NA	NA
Attenuator	20dB	836471/004	NA	NA
Attenuator	2	BL1250	NA	NA
Attenuator	2	BK774	NA	NA
Dual directional	4242-20	04200	NA	NA
coupler Probe kit	85070E	3G-S-00139	NA	NA
Network Analyzer	8753ES	MY40002093	2010-05-26	2011-05-25

3.4 Test Condition

SpecificationsANSI C63.19-2007Date of Testsfrom 2011-03-02 to 2011-03-07Operation ModeTX at the highest output peak power levelMethod of measurement:ANSI C63.19-2007

Data	Ambient Temperature	Ambient
Date:	(°C)	Humidity (%)
	20~~25	30~~70
2011-03-02	21.2	35.2
2011-03-03	20.7	38.5
2011-03-04	20.2	40.1
2011-03-07	20.5	36.6

3.5 EUT Setup

3.5.1 RF Emission Reference Plane

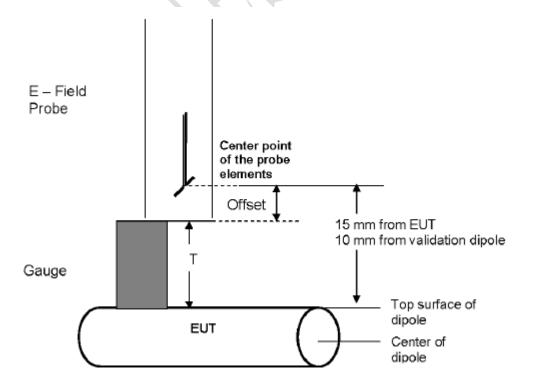
Following figures illustrate the references and reference plane that shall be used in the EUT emissions measurement.

- The grid is 50.0 mm by 50.0 mm area that is divided into nine evenly sized blocks or sub-grids.

- The grid is centered on the audio frequency output transducer of the EUT (speaker or T-Coil).

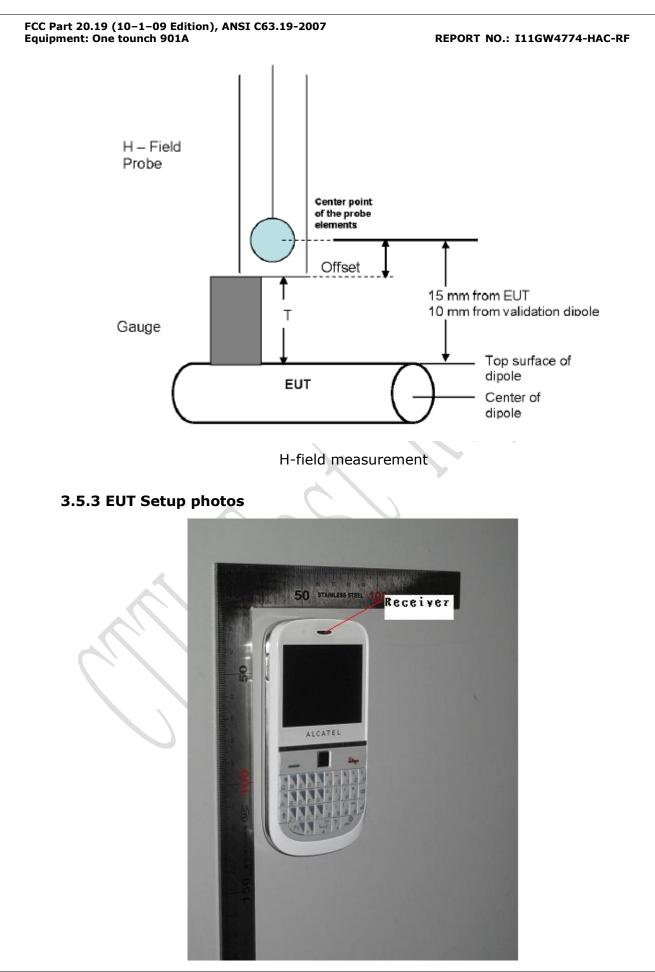
- The grid is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear.

- The measurement plane is parallel to, and 10.0 mm in front of, the reference plane.



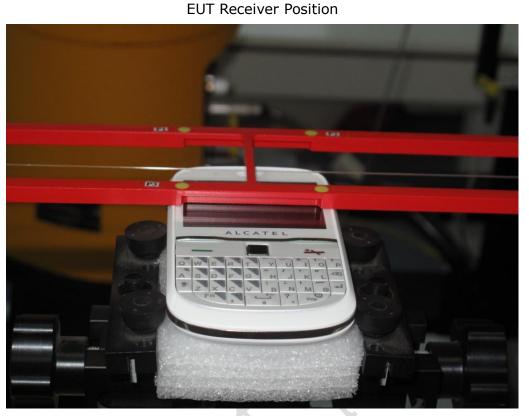
RF Emission Reference Plane

3.5.2 Measurement Distance to Probe

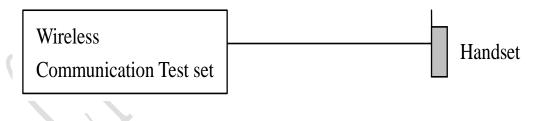

The following figures show the RF emission measurement distances between the EUT or dipoles and probes.

E-field measurement

Address: 11 YUE TAN NAN JIE, BEIJING, P.R.C,100045 Tel:+86 10 68094053 FAX:+86 10 68011404 Web:http://www.chinattl.com



Address: 11 YUE TAN NAN JIE, BEIJING, P.R.C,100045 Tel:+86 10 68094053 FAX:+86 10 68011404 Web:http://www.chinattl.com


REPORT NO.: I11GW4774-HAC-RF

EUT Setup

3.6 EUT Power

The output power measurement test setup is demonstrated as following figure.

Demonstration of Conducted power measurement

REPORT NO.: I11GW4774-HAC-RF

The power control level settings and measurement value are as following table.

conducted rower medsarement			
System and Channel	PCL	Power (dBm)	
GSM850 Ch128	5	32.41	
GSM850 Ch190	5	32.40	
GSM850 Ch251	5	32.43	
PCS1900 Ch512	0	29.89	
PCS1900 Ch661	0	29.80	
PCS1900 Ch810	0	29.88	
FDD Band V Ch4132		22.02	
FDD Band V Ch4175		22.01	
FDD Band V Ch4233		22.67	
FDD Band II Ch9262		22.43	Y
FDD Band II Ch9400		22.50	
FDD Band II Ch9538		22.38	

Conducted Power Measurement

4 Test Results

4.1 Applicable Category Regulations

AWF	Limits for E-Field Emissions	Limits for H-Field Emissions
(dB)	(V/m) > 960MHz	(A/m) > 960MHz
0	199.5 - 354.8	0.6 - 1.07
-5	149.6 - 266.1	0.45 - 0.8
0	112.2 - 199.5	0.34 - 0.6
-5	84.1 - 149.6	0.25 - 0.45
0	63.1 - 112.2	0.19 - 0.34
-5	47.3 - 84.1	0.14 - 0.25
0	<63.1	<0.19
-5	<47.3	<0.14
AWF	Limits for E-Field Emissions	Limits for H-Field Emissions
AWF (dB)	Limits for E-Field Emissions (V/m) < 960MHz	Limits for H-Field Emissions (A/m) < 960 MHz
(dB)	(V/m) < 960MHz	(A/m) < 960 MHz
(dB) 0	(V/m) < 960MHz 631 - 1122	(A/m) < 960 MHz 1.91 - 3.39
(dB) 0 -5	(V/m) < 960MHz 631 - 1122 473.2 - 841.4	(A/m) < 960 MHz 1.91 - 3.39 1.43 - 2.54
(dB) 0 -5 0	(V/m) < 960MHz 631 - 1122 473.2 - 841.4 354.8 - 631	(A/m) < 960 MHz 1.91 - 3.39 1.43 - 2.54 1.07 - 1.91
(dB) 0 -5 0 -5	(V/m) < 960MHz 631 - 1122 473.2 - 841.4 354.8 - 631 266.1 - 473.2	(A/m) < 960 MHz 1.91 - 3.39 1.43 - 2.54 1.07 - 1.91 0.8 - 1.43
(dB) 0 -5 0 -5 0	(V/m) < 960MHz 631 - 1122 473.2 - 841.4 354.8 - 631 266.1 - 473.2 199.5 - 354.8	(A/m) < 960 MHz 1.91 - 3.39 1.43 - 2.54 1.07 - 1.91 0.8 - 1.43 0.6 - 1.07
	(dB) 0 -5 0 -5 0 -5 0 -5	(dB) $(V/m) > 960MHz$ 0199.5 - 354.8-5149.6 - 266.10112.2 - 199.5-584.1 - 149.6063.1 - 112.2-547.3 - 84.10<63.1

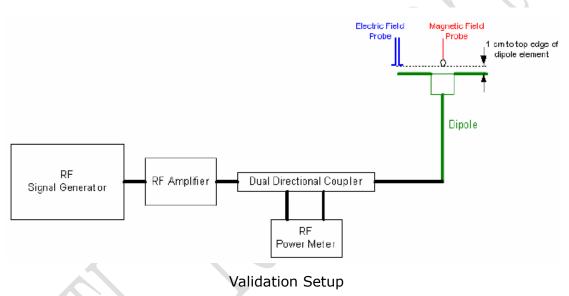
4.2 General Conclusions

The EUT complies with the category M3.

Note:

All measurements are traceable to national standards.

5 System Validations


5.1 Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 D.5 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical and magnetic output. Position the E-field and H-field probes so that:

- The probes and their cables are parallel to the coaxial feed of the dipole antenna

- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions

- The center point of the probe element(s) are 10 mm from the closest surface of the dipole elements.

5.2 Validation Results

E-field Validation					
Item	Reference value	Tolerance limit	Output power at antenna	Measured value	Error [%]
CW835MHz	169.9 V/m	±10%	100mW	163.0 V/m	-4.1
CW1880MHz	🔪 141.4 V/m	±10%	100mW	136.4 V/m	-3.5
H-field Validation					
Item	Reference value	Tolerance limit	Output power at antenna	Measured value	Error [%]
CW835MHz	0.456 A/m	±10%	100mW	0.413 A/m	-9.5
CW1880MHz	0.465A/m	±10%	100mW	0.428 A/m	-7.9

FCC Part 20.19 (10-1-09 Edition), ANSI C63.19-2007

Equipment: One tounch 901A

REPORT NO.: I11GW4774-HAC-RF

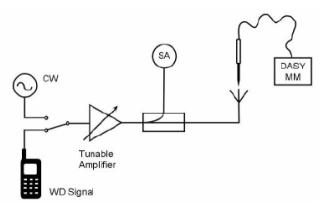
6 Probe Modulation Factor Measurements

The Probe Modulation Factor (PMF) is defined as the ratio of the field readings for a CW and a modulated signal with the equivalent Field Envelope Peak as defined in ANSI C63.19 (Chapter C.3.1).Calibration shall be made of the modulation response of the probe and its instrumentation chain. This Calibration shall be performed with the field probe, attached to the instrumentation that is to be used with it during the measurement. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. The field level of the test signals shall be more than 10dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated field shall be applied to the readings taken of modulated fields of the specified type.

6.1 PMF Test Procedures

1. Fix the field probe in a set location relative to a field generating device, such as the reference dipole antenna, as illustrated in following figure.

2. Illuminate the probe using the wireless device connected to the reference dipole with a test signal at the intended measurement frequency, Ensure there is sufficient field coupling between the probe and the antenna so the resulting reading is greater than 10 dB above the probe system noise floor but within the systems operating range.


 Record the amplitude applied to the antenna during transmission and the field strength measured by the E-field probe located near the tip of the dipole antenna
 Replace the wireless device with an RF signal generator producing an

unmodulated CW signal and set to the wireless device operating frequency.

5. Set the amplitude of the unmodulated signal to equal that recorded from the wireless device.

6. Record the reading of the probe measurement system of the unmodulated signal.7. The ratio, in linear units, of the probe reading in Step 6) to the reading in Step 3) is the E-field modulation factor. PMFE = ECW/Emod (PMFH = HCW/Hmod)

8. Repeat the previous steps using the H-field probe, except locate the probe at the center of the dipole.

PMF Test Setup

6.2 PMF Test Results

6.2.1 E-field probe

6.2.1.1 Frequency 835MHz (GSM)

signal	Output power at antenna	E-field Value
CW	20dBm	193.10 V/m
80%AM	20dBm	118.70 V/m
GMSK	20dBm	67.10 V/m
PMF=2.88		

6.2.1.2 Frequency 1880MHz (GSM)

signal	Output power at antenna	E-field Value
CW	20dBm	68.00 V/m
80%AM	20dBm	43.60 V/m
GMSK	20dBm	23.39 V/m
PMF=2.91		

6.2.1.3 Frequency 835MHz (WCDMA)

signal	Output power at antenna	E-field Value
CW	20dBm	76.50 V/m
80%AM	20dBm	49.23 V/m
WCDMA	20dBm	76.12 V/m
4	PMF=1.00	

6.2.1.4 Frequency 1880MHz (WCDMA)

signal	Output power at antenna	E-field Value
CW	20dBm	67.60 V/m
80%AM	20dBm	43.19 V/m
WCDMA	20dBm	66.32 V/m
	PMF=1.02	

6.2.2 H-field Probe

6.2.2.1 Frequency 835MHz (GSM)

signal	Output power at antenna	H-field Value
CW	20dBm	0.4681 A/m
80%AM	20dBm	0.3062 A/m
GMSK	20dBm	0.1712 A/m
PMF=2.73		

REPORT NO.: I11GW4774-HAC-RF

6.2.2.2 Frequency 1880MHZ (GSM)		
signal	Output power at antenna	H-field Value
CW	20dBm	0.2164 A/m
80%AM	20dBm	0.1430 A/m
GMSK	20dBm	0.0829 A/m
PMF=2.61		

6.2.2.2 Frequency 1880MHz (GSM)

6.2.2.3 Frequency 835MHz (WCDMA)

signal	Output power at antenna	H-field Value
CW	20dBm	0.2061 A/m
80%AM	20dBm	0.1317 A/m
GMSK	20dBm	0.2026 A/m
PMF=1.02		

6.2.2.4 Frequency 1880MHz (WCDMA)

signal	Output power at antenna	H-field Value	
CW	20dBm	0.2112 A/m	
80%AM	20dBm	0.1383 A/m	
GMSK	20dBm	0.2369 A/m	
PMF=0.89			

7 RF Emission Measurements

7.1 Test Procedures

The evaluation was performed with the following procedure:

1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.

2) Position the WD in its intended test position. The gauge block can simplify this positioning. Note that a separate E-field and H-field gauge block will be needed if the center of the probe sensor elements are at different distances from the tip of the probe.

3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.

4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.

5) Record the reading.

6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.

7) Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum field strength readings. Thus the six areas to be used to determine the WD's highest emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E-field and H-field measurements for the WD output being measured. Stated another way, the center sub-grid and three others must be common to both the E-field and H-field measurements.

8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)

9) Convert the maximum field strength reading identified in Step 8) to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation factor and the calibration.
10) Repeat step 1) to 10) for both E-field and H-field measurements.

11) Compare this reading to the categories in ANSI C63.19 Clause 7 and record the resulting category. The lowest category number listed in 7.2, Table 7.4, or Table 7.5 obtained in Step 10) for either E- or H-field determines the M category for the audio coupling mode assessment. Record the WD category rating.

REPORT NO.: I11GW4774-HAC-RF

7.2 RF Emission Measurement Data

7.2.1 E-field Measurement

GSM 850 band:

Channel and frequency	AWF Measured Value (V/m)		Power Drift (dB)	Category
Low: 128/824.2MHz	-5	223.9	-0.003	M3
Mid: 190/836.6MHz	-5	216.7	0.047	M3
High: 251/848.8MHz	-5	219.1	0.069	M3

PCS 1900 band:

Channel and frequency	AWF	AWF Measured Value (V/m)		Category
Low: 512/1850.2MHz	-5	73.9	0.013	M3
Mid: 661/1880.0MHz	-5	69.5	0.001	M3
High: 810/1909.9MHz	-5	66.3	-0.025	M3

FDD BandV band:

Channel and frequency	AWF	Measured Value (V/m)	Power Drift (dB)	Category
Low: 4132/826.4MHz	-5	77.5	-0.149	M4
Mid: 4175/835.0MHz	-5	72.7	-0.030	M4
High: 4233/846.6MHz	-5	81.2	-0.051	M4

FDD BandII band:

Channel and frequency	AWF	AWF Measured Value (V/m)		Category
Low: 9262/1852.4MHz	-5	33.0	-0.051	M4
Mid: 9400/1880.0MHz	-5	36.9	-0.426	M4
High: 9538/1907.6MHz	-5	31.3	0.014	M4

7.2.2 H-field Measurement

GSM 850 band:

Channel and frequency	AWF	Measured Value (A/m)	Power Drift (dB)	Category
Low: 128/824.2MHz	-5	0.324	-0.060	M4
Mid: 190/836.6MHz	-5	0.323	0.046	M4
High: 251/848.8MHz	-5	0.304	-0.007	M4

REPORT NO.: I11GW4774-HAC-RF

PCS 1900 band:

Channel and frequency	AWF Measured Value (V/m)		Power Drift (dB)	Category
Low: 512/1850.2MHz	-5	0.177	0.063	M3
Mid: 661/1880.0MHz	-5	0.173	-0.039	M3
High: 810/1909.9MHz	-5	0.162	0.058	M3

FDD BandV band:

Channel and frequency	AWF	AWF Measured Value (A/m)		Category
Low: 4132/826.4MHz	-5	0.115	-0.006	M4
Mid: 4175/835.0MHz	-5	0.115	0.017	M4
High: 4233/846.6MHz	-5	0.116	-0.012	M4

FDD BandII band:

Channel and frequency	AWF	Measured Value (V/m)	Power Drift (dB)	Category
Low: 9262/1852.4MHz	-5	0.074	0.004	M4
Mid: 9400/1880.0MHz	-5	0.085	-0.020	M4
High: 9538/1907.6MHz	-5	0.074	-0.019	M4

REPORT NO.: I11GW4774-HAC-RF

7.3 Measurement uncertainty

Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc.	Std.Unc.
	value,	Dist.		Е	Н	E	Н
	±%					±%	±%
Measurement System							
Probe Calibration	5.1	Ν	1	1	1	5.1	5.1
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Sensor Displacement	16.5	R	$\sqrt{3}$	1	0.145	9.5	1.4
Test Arch	7.2	R	$\sqrt{3}$	1	0	4.1	0.0
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Scaling to Peak Envelope Power	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
System Detection Limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Readout Electronics	0.3	Ν	1	1	1	0.3	0.3
Response Time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5
RF Ambient Conditions	3.0	R	$\sqrt{3}$	1	1	6.9	6.9
RF Reflections	12.0	R	$\sqrt{3}$	1	1	0.9	0.9
Probe Positioner	1.2	R	$\sqrt{3}$	1	0.67	0.7	0.5
Probe Positioning	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8
Extrapolation. And Interpolation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Test Sample Related							
Device Positioning Vertical	4.7	R	$\sqrt{3}$	1	0.67	2.7	1.8
Device Positioning Lateral	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Device Holder and Phantom	2.4	R	$\sqrt{3}$	1	1	1.4	1.4
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
Phantom and Setup Related							
Phantom Thickness	2.4	R	$\sqrt{3}$	1	0.67	1.4	0.9
Combined Std Uncertainty						±15.2%	±10.8%
Expanded Std Uncertainty on Powe	er					±30.4%	±21.6%
Expanded Std Uncertainty on F	ield					±15.2%	±10.8%

REPORT NO.: I11GW4774-HAC-RF

ANNEX A Photographs

Picture 1 test layout

ANNEX B Validation Graphical Results B.1 E-field at 835MHz

Test Laboratory: CTTL

HAC_RF_E_Vali835MHz

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: --

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

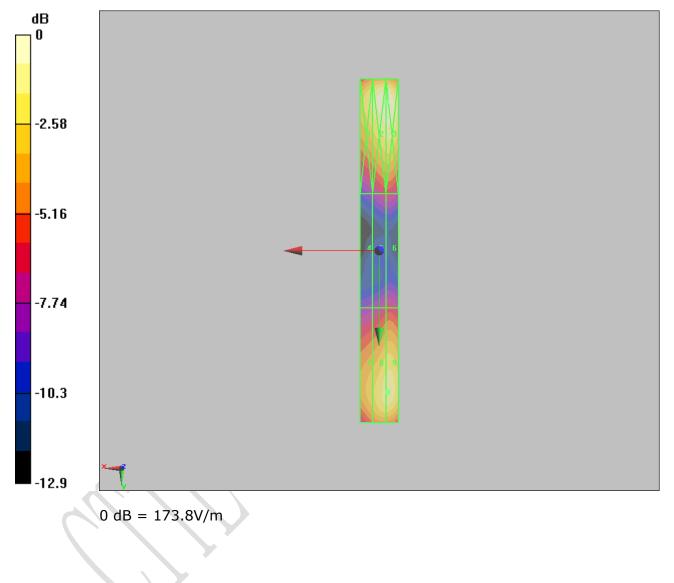
- Probe: ER3DV6 SN2435; ConvF(1, 1, 1); Calibrated: 2010-5-20
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn549; Calibrated: 2010-5-20
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement

grid: dx=5mm, dy=5mm Maximum value of peak Total field = 153.1 V/m Probe Modulation Factor = 1 Device Reference Point: 0, 0, -6.3 mm Reference Value = 100.9 V/m; Power Drift = -0.034 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Grid 1	Grid 2	Grid 3		
151.3 M4	173.7 M4	173.8 M4		
Grid 4	Grid 5	Grid 6		
69.2 M4	81.7 M4	82.5 M4		
Grid 7	Grid 8	Grid 9		
127.3 M4	151.6 M4	153.1 M4		

Peak E-field in V/m



REPORT NO.: I11GW4774-HAC-RF

FCC Part 20.19 (10-1-09 Edition), ANSI C63.19-2007 Equipment: One tounch 901A

Cursor:

Total = 173.8 V/m E Category: M4 Location: -4, -78, 4.7 mm

B.2 E-field at 1880MHz

Test Laboratory: CTTL

HAC_RF_E_Vali1880MHz

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: --

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

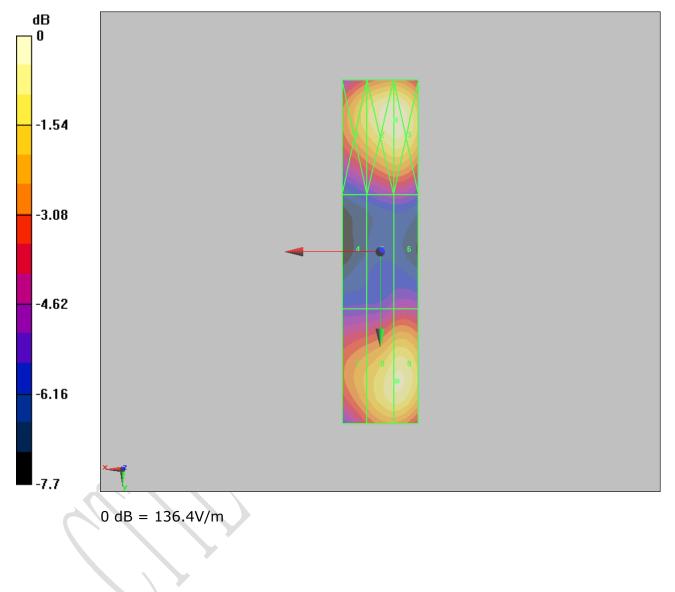
- Probe: ER3DV6 SN2435; ConvF(1, 1, 1); Calibrated: 2010-5-20
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn549; Calibrated: 2010-5-20 •
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; •
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1): Measurement

grid: dx=5mm, dy=5mm Maximum value of peak Total field = 130.8 V/m Probe Modulation Factor = 1 Device Reference Point: 0, 0, -6.3 mm Reference Value = 128.9 V/m; Power Drift = -0.012 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Grid 1	Grid 2	Grid 3	
120.0 M2	136.4 M2	136.4 M2	
Grid 4	Grid 5	Grid 6	
73.3 M3	80.4 M3	82.3 M3	
Grid 7	Grid 8	Grid 9	
110.2 M3	129.7 M2	130.8 M2	

Peak E-field in V/m



REPORT NO.: I11GW4774-HAC-RF

FCC Part 20.19 (10-1-09 Edition), ANSI C63.19-2007 Equipment: One tounch 901A

Cursor:

Total = 136.4 V/m E Category: M2 Location: -4, -34.5, 4.7 mm

B.3 H-field at 835MHz

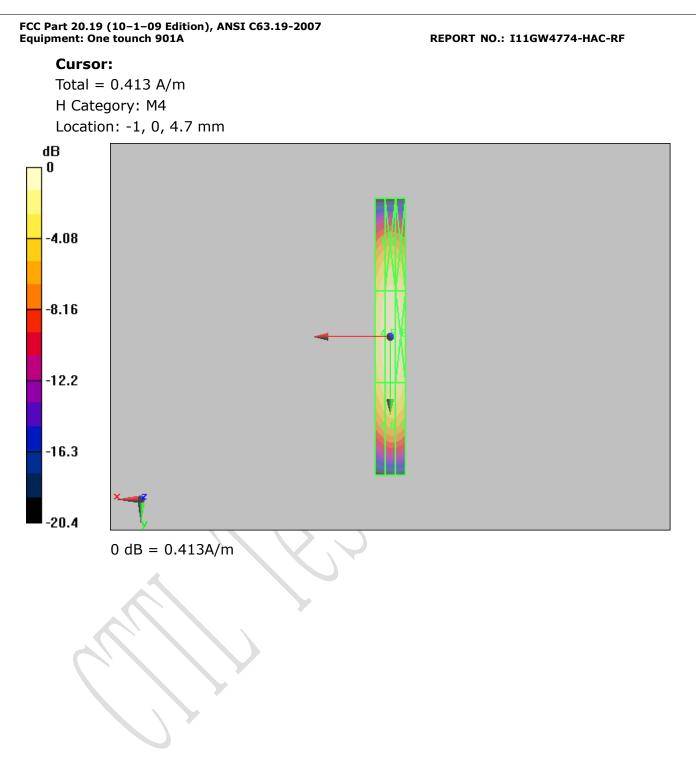
Test Laboratory: CTTL

HAC_RF_H_Vali835MHz

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: --

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:


- Probe: H3DV6 SN6268; ; Calibrated: 2010-5-21
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn549; Calibrated: 2010-5-20 •
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; •
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm 2/Hearing Aid Compatibility Test (41x361x1): Measurement

grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.413 A/m Probe Modulation Factor = 1 Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.436 A/m; Power Drift = 0.011 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m				
Grid 1	Grid 2	Grid 3		
0.345 M4	0.366 M4	0.356 M4		
Grid 4	Grid 5	Grid 6		
0.387 M4	0.413 M4	0.403 M4		
Grid 7	Grid 8	Grid 9		
0.338 M4	0.363 M4	0.356 M4		

B.4 H-field at 1880MHz

Test Laboratory: CTTL

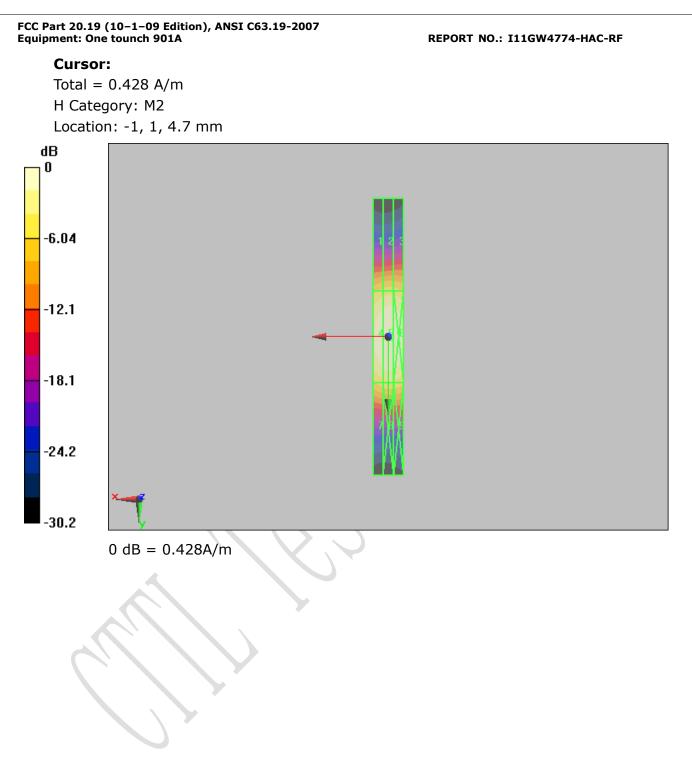
HAC_RF_H_Vali1880MHz

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: --

Communication System: CW; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: H3DV6 SN6268; ; Calibrated: 2010-5-21
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn549; Calibrated: 2010-5-20
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87


H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement

grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.428 A/m Probe Modulation Factor = 1 Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.450 A/m; Power Drift = -0.024 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.231 M3	0.243 M3	0.239 МЗ
Grid 4	Grid 5	Grid 6
0.404 M2	0.428 M2	0.419 M2
Grid 7	Grid 8	Grid 9
0.245 M3	0.262 M3	0.258 M3

Annex C PMF Measurements Graphical Results

C.1 E-field CW at 835 MHz(GSM)

Test Laboratory: CTTL

HAC_RF_E_PMF_835MHz_CW_20dBm

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: --

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: ER3DV6 SN2435; ConvF(1, 1, 1); Calibrated: 2010-5-20
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn549; Calibrated: 2010-5-20
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1): Measurement

grid: dx=5mm, dy=5mm Maximum value of peak Total field = 168.4 V/m Probe Modulation Factor = 1 Device Reference Point: 0, 0, -6.3 mm Reference Value = 108.7 V/m; Power Drift = 0.011 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field	in V/m
--------------	--------

Grid 1	Grid 2	Grid 3
164.1 M4	192.0 M4	193.1 M4
Grid 4	Grid 5	Grid 6
75.7 M4	90.1 M4	90.8 M4
Grid 7	Grid 8	Grid 9

Address: 11 YUE TAN NAN JIE, BEIJING, P.R.C,100045 Tel:+86 10 68094053 FAX:+86 10 68011404 Web:http://www.chinattl.com