No.2011SAR00046 Page 1 of 112

No. 2011SAR00046

For

TCT Mobile Limited

GSM/GPRS Dual bands mobile phone

B11C US

one touch 665A

With

Hardware Version: PIO

Software Version: V721

FCCID: RAD155

Issued Date: 2011-05-11

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

1 TEST LA	BORATORY	.3	
	IG LOCATION		
	IG ENVIRONMENT		
	CT DATA		
	NFORMATION		
	CANT INFORMATION		
	ANT INFORMATION		
3 EQUIPM	ENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	.5	
	• EUT		
	NAL IDENTIFICATION OF EUT USED DURING THE TEST		
3.3 INTERN	NAL IDENTIFICATION OF AE USED DURING THE TEST	. 5	
4 CHARAC	TERISTICS OF THE TEST	.5	
	CABLE LIMIT REGULATIONS		
	CABLE MEASUREMENT STANDARDS		
5 OPERAT	IONAL CONDITIONS DURING TEST	.6	
	IATIC TEST CONFIGURATION		
	Ieasurement Set-up E-field Probe System		
	D PROBE CALIBRATION		
	Test Equipment		
-	alent Tissues		
	TED OUTPUT POWER MEASUREMENT		
	ARY JCTED POWER		
	SULTS1		
7 1 Dieleo	CTRIC PERFORMANCE	12	
7.2 System	M VALIDATION	13	
	ATION OF MULTI-BATTERIES		
	ary of Measurement Results		
	USION		
8 MEASUR	REMENT UNCERTAINTY1	9	
9 MAIN TE	ST INSTRUMENTS2	20	
ANNEX A	MEASUREMENT PROCESS	21	
ANNEX B	TEST LAYOUT2	22	
ANNEX C	GRAPH RESULTS	28	
ANNEX D	SYSTEM VALIDATION RESULTS	32	
ANNEX E	ANNEX E PROBE CALIBRATION CERTIFICATE86		
ANNEX F	DIPOLE CALIBRATION CERTIFICATE)5	

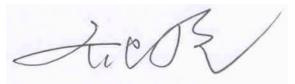
1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω


Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	May 3, 2011
Testing End Date:	May 4, 2011

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

ζ,

2.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address (Dest	5F, E building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P. R. China
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description:	GSM/GPRS Dual bands mobile phone
Model Name:	B11C US
Marketing Name:	one touch 665A
Frequency Band:	GSM 850 / PCS 1900
GPRS Multislot Class:	12

3.2 Internal Identification of EUT used during the test

EUT1 012584000	001858 PIC) V	721

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB22D0000C1	1	BYD
AE2	Battery	CAB22B0000C1	1	BYD
AE3	Battery	CAB22B0010C1	/	BYD
AE4	Headset	CCB3160A10C0	1	Juwei
AE5	Headset	CCB3160A10C2	1	shunda

*AE ID: is used to identify the test sample in the lab internally.

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

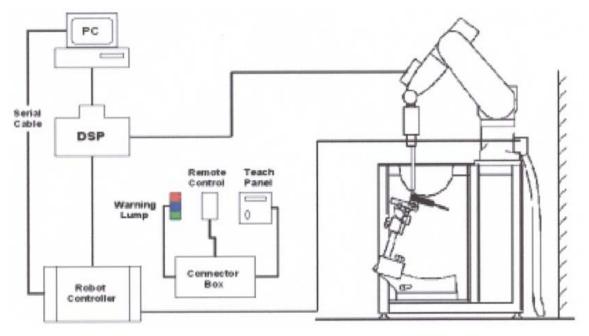
KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas.

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.


5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for

measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

No.2011SAR00046 Page 8 of 112

ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core	
	Interleaved sensors	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL 1810	
	Additional CF for other liquids and frequencies upon request	1
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4	4 GHz)
Directivity	 ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis) 	
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 3.9 mm (Body: 12 mm)	
	Distance from probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz	
	Dosimetry in strong gradient fields	
	Compliance tests of mobile phones	Diate

Picture 3: ES3DV3 E-field

Picture4:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

No.2011SAR00046 Page 9 of 112

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

The second secon

Picture 5: Device Holder

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0. l mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AvailableSpecial

Picture 6: Generic Twin Phantom

5.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the nead rissue Equivalent Matter		
MIXTURE %	FREQUENCY 850MHz	
Water	41.45	
Sugar	56.0	
Salt	1.45	
Preventol	0.1	
Cellulose	1.0	
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ=0.90	
MIXTURE %	FREQUENCY 1900MHz	
Water	55.242	
Glycol monobutyl	44.452	
Salt	0.306	
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40	

Table 1. Composition of the Head Tissue Equivalent Matter

Table 2. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz
Water	52.5
Sugar	45.0
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97
MIXTURE %	FREQUENCY 1900MHz
Water	69.91
Glycol monobutyl	29.96
Salt	0.13
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52

5.7 System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L **Repeatability:** ±0.02 mm **No. of Axis:** 6

Data Acquisition Electronic (DAE) System

<u>Cell Controller</u> Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 <u>Data Converter</u>

Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

6 CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured output power should be greater and within 5% than EMI measurement.

6.2 Conducted Power

6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels.

6.2.2 Measurement result

The conducted power for GSM 850/1900 is as following:

GSM	Conducted Power (dBm)					
850MHZ	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)			
	32.28	32.20	32.21			
GSM		Conducted Power (dBm)				
1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)			
	30.27	30.34	30.35			

The conducted power for GPRS 850/1900 is as following:

Measured Power (dBm)		calculation	Avera	ged Power	(dBm)	
251	190	128		251	190	128
32.25	32.20	32.20	-9.03dB	23.22	23.17	23.17
31.74	31.71	31.66	-6.02dB	25.72	25.69	25.64
30.88	30.83	30.91	-4.26dB	26.62	26.57	26.65
29.96	29.94	30.07	-3.01dB	26.95	26.93	27.06
Measured Power (dBm)		calculation	Avera	ged Power	(dBm)	
810	661	512		810	661	512
30.28	30.34	30.33	-9.03dB	21.25	21.31	21.30
29.36	29.29	28.84	-6.02dB	23.34	23.27	22.82
28.68	28.21	27.57	-4.26dB	24.42	23.95	23.31
27.50	27.27	26.81	-3.01dB	24.49	24.26	23.80
	251 32.25 31.74 30.88 29.96 Measu 810 30.28 29.36 28.68	251 190 32.25 32.20 31.74 31.71 30.88 30.83 29.96 29.94 Measured Power 810 661 30.28 30.34 29.36 29.29 28.68 28.21	251 190 128 32.25 32.20 32.20 31.74 31.71 31.66 30.88 30.83 30.91 29.96 29.94 30.07 Measured Power (dBm) 810 661 512 30.28 30.34 30.33 29.36 29.29 28.84 28.68 28.21 27.57 27.57 28.68 28.21 27.57	251 190 128 32.25 32.20 32.20 -9.03dB 31.74 31.71 31.66 -6.02dB 30.88 30.83 30.91 -4.26dB 29.96 29.94 30.07 -3.01dB Measured Power (dBm) calculation 810 661 512 30.28 30.34 30.33 -9.03dB 29.36 29.29 28.84 -6.02dB 28.68 28.21 27.57 -4.26dB	251 190 128 251 32.25 32.20 32.20 -9.03dB 23.22 31.74 31.71 31.66 -6.02dB 25.72 30.88 30.83 30.91 -4.26dB 26.62 29.96 29.94 30.07 -3.01dB 26.95 Measured Power (dBm) calculation Average 810 661 512 810 30.28 30.34 30.33 -9.03dB 21.25 29.36 29.29 28.84 -6.02dB 23.34 28.68 28.21 27.57 -4.26dB 24.42	251190128251190 32.25 32.20 32.20 $-9.03dB$ 23.22 23.17 31.74 31.71 31.66 $-6.02dB$ 25.72 25.69 30.88 30.83 30.91 $-4.26dB$ 26.62 26.57 29.96 29.94 30.07 $-3.01dB$ 26.95 26.93 Measured Power (dBm)calculationAveraged Power (dBm) 810 661 512 810 661 30.28 30.34 30.33 $-9.03dB$ 21.25 21.31 29.36 29.29 28.84 $-6.02dB$ 23.34 23.27 28.68 28.21 27.57 $-4.26dB$ 24.42 23.95

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4 Txslots for GSM850 and PCS1900.

6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 9 to Table 16 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 TEST RESULTS

7.1 Dielectric Performance

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 37%. Liquid temperature during the test: 22.5°C

Measurement Date : 85	50 MHz May 3 2011	1900 MHz May 4, 2011
ivicasulement Date . 00	10 1011 12 101 ay 3, 2011	1900 IVII IZ IVIAY 4, ZUTT

Medsurement Date : 000 Minz Mdy 0; 2011 1000 Minz Mdy 4; 2011						
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Torgot value	835 MHz	41.5	0.90			
Target value	1900 MHz	40.0	1.40			
Measurement value	835 MHz	40.3	0.89			
(Average of 10 tests)	1900 MHz	39.1	1.40			

Table 4: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 37%.						
Liquid temperature during the test: 22.5°C						
Measurement Date : 850 MHz May 3, 2011 1900 MHz May 4, 2011						
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835 MHz	55.2	0.97			
l'arget value	1900 MHz	53.3	1.52			
Measurement value	835 MHz	56.3	0.96			
(Average of 10 tests)	1900 MHz	52.0	1.50			

7.2 System Validation

Table 5: System Validation of Head

Measurement is made at temperature 23.0 °C and relative humidity 37%.

Liquid temperature during the test: 22.5°C

Measurement Date : 850 MHz May 3, 2011 1900 MHz May 4, 2011

measaremen							
	Dipole	Frequ	Frequency		tivity ε	Conductivity σ (S/m)	
	calibration	835	MHz	41	.6	0.92	
Liquid	Target value	1900	MHz	39	9.6	1.4	10
parameters	Actural	835	MHz	40).3	0.8	39
	Measurement value	1900	MHz	39.1		1.40	
	Frequency	Target (W/			ed value ′kg)	Devia	ation
Verification	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
results		Average	Average	Average	Average	Average	Average
	835 MHz	6.12	9.41	5.92	9.60	-3.27%	2.02%
	1900 MHz	20.1	39.4	19.76	38.48	-1.69%	-2.34%

Note: The forward power is 250mW. Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

Table 6: System Validation of Body

Measurement is made at temperature 23.0 °C and relative humidity 37%.									
Liquid temper	Liquid temperature during the test: 22.5°C								
Measurement	Measurement Date : 850 MHz May 3, 2011 1900 MHz May 4, 2011								
	Dipole	Frequ	iency	Permit	tivity ε	Conductiv	ity σ (S/m)		
	calibration	835	MHz	54	.5	0.9	97		
Liquid	Target value	1900	MHz	52	2.5	1.5	51		
parameters	parameters Actural		835 MHz		56.3		0.96		
	Measurement value	1900 MHz		52.0		1.50			
	F	Target (W/		Measure (W/		Devia	ation		
Verification	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
results		Average	Average	Average	Average	Average	Average		
	835 MHz	6.24	9.57	6.32	9.96	1.28%	4.08%		
	1900 MHz	20.9	41.4	21.04	41.6	0.67%	0.48%		

Note: The forward power is 250mW. Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

7.3 Evaluation of Multi-Batteries

Table 7: Pretest SAR Values (GSM 850 MHz Band)

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	
Test Case	Measurement Result (W/kg		
	10 g Average	1 g Average	
Left hand, Touch cheek, Top frequency (CAB22D0000C1)	0.450	0.754	
Left hand, Touch cheek, Top frequency (CAB22B0000C1)	0.441	0.740	
Left hand, Touch cheek, Top frequency (CAB22B0010C1)	0.435	0.787	

Note: According to the values in the above table, the battery, CAB22B0010C1, is the normal battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 8: Pretest SAR Values (GSM 850 MHz Band-Body)

Limit of SAR (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/Rg)	2.0	1.6	
Test Case	Measurement Result (W/		
	10 g Average	1 g Average	
Body open, Towards Ground, Top frequency (CAB22D0000C1)	0.610	0.848	
Body open, Towards Ground, Top frequency (CAB22B0000C1)	0.591	0.824	
Body open, Towards Ground, Top frequency (CAB22B0010C1)	0.626	0.871	

Note: According to the values in the above table, the battery, CAB22B0010C1, is the normal battery. We'll perform the body measurement with this battery and retest on highest value point with others.

7.4 Summary of Measurement Results

Table 9: SAR Values (850MHz-Head) - with battery CAB22B0010C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Devrer
	2.0	1.6	Power Drift
Test Case	Measurement	Result (W/kg)	(dB)
	10 g Average	1 g Average	(ub)
Left hand, Touch cheek, Top frequency (See Fig.1)	0.435	0.787	-0.18
Left hand, Touch cheek, Mid frequency (See Fig.2)	0.412	0.727	-0.131
Left hand, Touch cheek, Bottom frequency (See Fig.3)	0.412	0.727	-0.103
Left hand, Tilt 15 Degree, Top frequency (See Fig.4)	0.061	0.081	-0.147
Left hand, Tilt 15 Degree, Mid frequency (See Fig.5)	0.065	0.086	0.049
Left hand, Tilt 15 Degree, Bottom frequency (See Fig.6)	0.060	0.078	-0.096
Right hand, Touch cheek, Top frequency (See Fig.7)	0.364	0.522	0.195
Right hand, Touch cheek, Mid frequency (See Fig.8)	0.434	0.615	0.129

Right hand, Touch cheek, Bottom frequency (See Fig.9)	0.412	0.579	0.159
Right hand, Tilt 15 Degree, Top frequency (See Fig.10)	0.081	0.109	-0.00924
Right hand, Tilt 15 Degree, Mid frequency (See Fig.11)	0.083	0.112	0.00799
Right hand, Tilt 15 Degree, Bottom frequency (See Fig.12)	0.077	0.102	-0.047

Table 10: SAR Values (1900MHz-Head) - with battery CAB22B0010C1

Limit of SAR (M/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	Power
Test Case	Measurement Result		Drift
	(W/k	(g)	(dB)
	10 g Average	1 g Average	
Left hand, Touch cheek, Top frequency (See Fig.13)	0.104	0.155	0.111
Left hand, Touch cheek, Mid frequency (See Fig.14)	0.096	0.144	0.123
Left hand, Touch cheek, Bottom frequency (See Fig.15)	0.076	0.116	-0.156
Left hand, Tilt 15 Degree, Top frequency (See Fig.16)	0.015	0.024	0.179
Left hand, Tilt 15 Degree, Mid frequency (See Fig.17)	0.019	0.029	0.178
Left hand, Tilt 15 Degree, Bottom frequency (See Fig.18)	0.019	0.029	0.163
Right hand, Touch cheek, Top frequency (See Fig.19)	0.181	0.304	0.121
Right hand, Touch cheek, Mid frequency (See Fig.20)	0.191	0.318	0.197
Right hand, Touch cheek, Bottom frequency (See Fig.21)	0.159	0.264	0.198
Right hand, Tilt 15 Degree, Top frequency (See Fig.22)	0.020	0.031	0.091
Right hand, Tilt 15 Degree, Mid frequency (See Fig.23)	0.021	0.031	-0.110
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.24)	0.018	0.028	0.100

Table 11: SAR Values (850MHz-Head) - with battery CAB22B0000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Dewer
	2.0	1.6	Power Drift
Test Case	Case Measurement Result (W/kg		
	10 g Average	1 g Average	(dB)
Left hand, Touch cheek, Top frequency (See Fig.25)	0.441	0.740	0.15

Table 12: SAR Values (850MHz-Head) - with battery CAB22D0000C1

Limit of SAR (W/kg)	10 g Average	1 g Average	Bower	
	2.0	1.6	Power Drift	
Test Case	Measurement	(dB)		
	10 g Average	1 g Average	(ab)	
Left hand, Touch cheek, Top frequency (See Fig.26)	0.450	0.754	-0.160	

Table 13. SAN Values (SSUMITZ-BODy) - With battery CAB22B0010C	Table 13: SAR values (850MHZ-Body) - with battery CAB22B0010C1								
	10 g	1g							
Limit of SAR (W/kg)	Average	Average							
	2.0	1.6	Power						
Test Case	Measu Result	Drift (dB)							
	10 g Average	1 g Average							
Body open, Towards Ground, Top frequency with GPRS (See Fig.27)	0.626	0.871	-0.081						
Body open, Towards Ground, Mid frequency with GPRS (See Fig.28)	0.567	0.786	-0.083						
Body open, Towards Ground, Bottom frequency with GPRS (See Fig.29)	0.521	0.719	-0.058						
Body close, Towards Ground, Top frequency with GPRS (See Fig.30)	0.515	0.721	0.071						
Body close, Towards Ground, Mid frequency with GPRS (See Fig.31)	0.540	0.756	0.056						
Body close, Towards Ground, Bottom frequency with GPRS (See Fig.32)	0.539	0.750	-0.028						
Body close, Towards Phantom, Top frequency with GPRS (See Fig.33)	0.345	0.477	-0.009						
Body close, Towards Phantom, Mid frequency with GPRS (See Fig.34	0.368	0.509	-0.038						
Body close, Towards Phantom, Bottom frequency with GPRS (See Fig.35)	0.349	0.481	-0.125						
Body open, Towards Ground, Top frequency with Headset_ CCB3160A10C0 (See Fig.36)	0.330	0.463	0.109						
Body open, Towards Ground, Top frequency with Headset_ CCB3160A10C2 (See Fig.37)	0.314	0.439	0.038						

Table 13: SAR Values (850MHz-Body) - with battery CAB22B0010C1

Table 14: SAR Values (1900MHz-Body) - with battery CAB22B0010C1

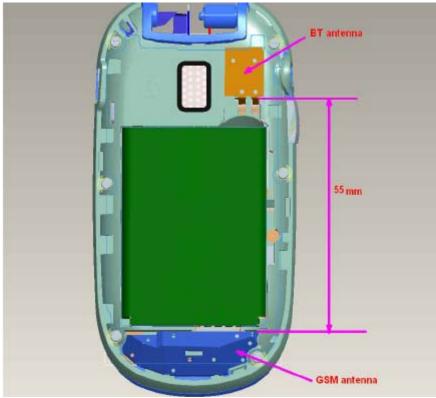
Limit of SAR (W/kg)	10 g 1g Average Average 2.0 1.6		Power
Test Case	Measurement Result (W/kg)		Drift (dB)
		1 g Average	
Body open, Towards Ground, Top frequency with GPRS (See Fig.38)	0.254	0.426	-0.154
Body open, Towards Ground, Mid frequency with GPRS (See Fig.39)	0.214	0.358	0.024
Body open, Towards Ground, Bottom frequency with GPRS (See Fig.40)	0.177	0.295	0.114
Body close, Towards Ground, Top frequency with GPRS (See Fig.41)	0.299	0.521	-0.005
Body close, Towards Ground, Mid frequency with GPRS (See Fig.42)	0.259	0.451	0.009
Body close, Towards Ground, Bottom frequency with GPRS (See Fig.43)	0.171	0.294	0.156
Body close, Towards Phantom, Top frequency with GPRS (See Fig.44)	0.229	0.365	0.049
Body close, Towards Phantom, Mid frequency with GPRS (See Fig.45)	0.196	0.314	0.022

Body close, Towards Phantom, Bottom frequency with GPRS (See Fig.46)						0.174	0.279	0.160		
Body open, Towards Ground, Top frequency with Headset_ CCB3160A10C0 (See Fig.47)						0.100	0.168	0.184		
Body CCB3	open, 160A10C	Towards 2 (See Fig	Ground, .48)	Тор	frequency	with	Headset_	0.093	0.157	-0.046

Note: because the headset can not work for folding phone, the body SAR with headset is performed in the condition of phone unfolded.

Table 15: SAR Values (850MHz-Body) - with battery CAB22B0000C1

Limit of SAR (W/kg)		1g Average	
		2.0 1.6	
Test Case	Measurement Result (W/kg)		Drift (dB)
	10 g Average	1 g Average	
Body open, Towards Ground, Top frequency with GPRS (See Fig.49)	0.591	0.824	0.002


Table 16: SAR Values (850MHz-Body) - with battery CAB22D0000C1

Limit of SAR (W/kg)		1g Average	
	2.0	1.6	Power
Test Case		rement (W/kg)	Drift (dB)
	10 g Average	1 g Average	
Body open, Towards Ground, Top frequency with GPRS (See Fig.50)	0.610	0.848	-0.112

7.5 Summary of Measurement Results (Bluetooth function)

The distance between BT antenna and GSM antenna is >5cm. The location of the antennas inside mobile phone is shown below:

The output power of BT antenna is as following:

· · ·				
Channel	Ch 0 (2402 MHz)	Ch 39 (2441 MHz)	Ch 78 (2480 MHz)	
Peak Conducted	6.82	6.14	6.87	
Output Power(dBm)	0.02	0.14	0.07	

According to the output power measurement result and the distance between the two antennas, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR are not required for BT transmitter, because the output power of BT transmitter is $\leq 2P_{Ref}$ and its antenna is >5cm from other antenna

Note: Power thresholds (P_{Ref}) is derived from multiples of $0.5 \times 60/f_{(GHz)}$, that is 12mW (10.79dBm) for BT frequency.

7.6 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

The maximum SAR values are obtained at the case of **GSM 850 Body open, Towards Ground, Top frequency with GPRS (Table 13)**, and the value are: **0.626(10g)**, **0.871(1g)**.

8 Measurement Uncertainty

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
100.	Enter Description	rype	value	Distribution	DIV.	1g	10g	Unc.	Unc.	of
			vulue	Distribution		15	105	(1g)	(10g)	freedom
Mea	surement system							(18)	(108)	needoni
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	x
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	x
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	x
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	x
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	x
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	x
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	x
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	x
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	x
Test	sample related						•	•	•	
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	x
Phar	ntom and set-up		I							I
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	x
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	x
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
C	Combined standard uncertainty	<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.25	9.12	257

No.2011SAR00046 Page 20 of 112

Expanded uncertainty			18.5	18.2	
(confidence interval of	$u_e = 2u_c$				
95 %)					

9 MAIN TEST INSTRUMENTS

Table 17: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 4,2010	One year	
02	Power meter	NRVD	102083	September 11, 2010		
03	Power sensor	NRV-Z5	100542	September 11, 2010	One year	
04	Signal Generator	E4438C	MY49070393	November 13, 2010	One Year	
05	Amplifier	VTL5400	0505	No Calibration Requested		
06	BTS	8960	MY48365192	November 18, 2010	One year	
07	E-field Probe	SPEAG ES3DV3	3149	September 25, 2010	One year	
08	DAE	SPEAG DAE4	771	November 21, 2010	One year	
09	Dipole Validation Kit	SPEAG D835V2	443	February 26, 2010	Two years	
10	Dipole Validation Kit	SPEAG D1900V2	541	February 26, 2010	Two years	

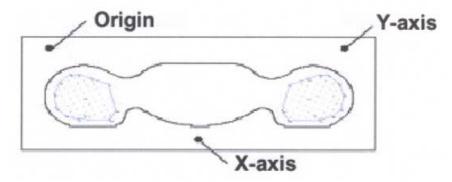
END OF REPORT BODY

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.


Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

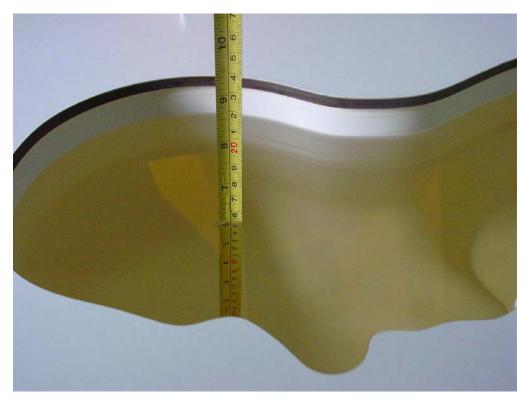
a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

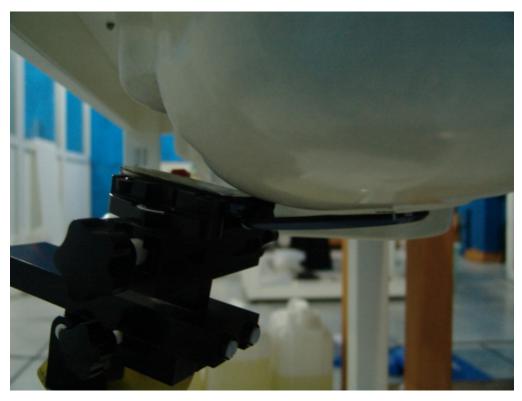
Picture A: SAR Measurement Points in Area Scan



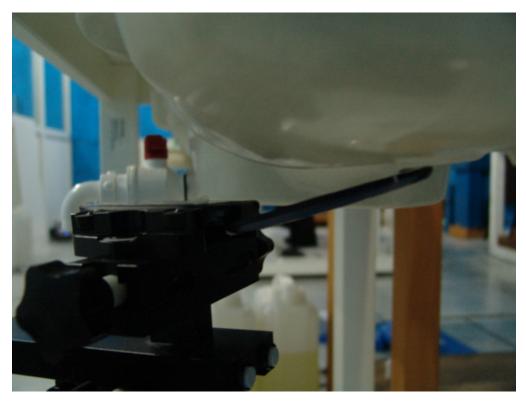
No.2011SAR00046 Page 22 of 112

ANNEX B TEST LAYOUT

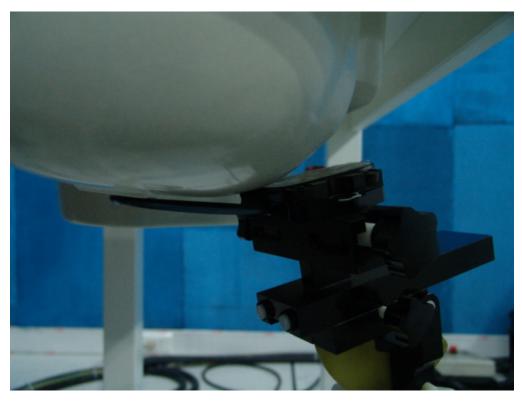
Picture B1: Specific Absorption Rate Test Layout



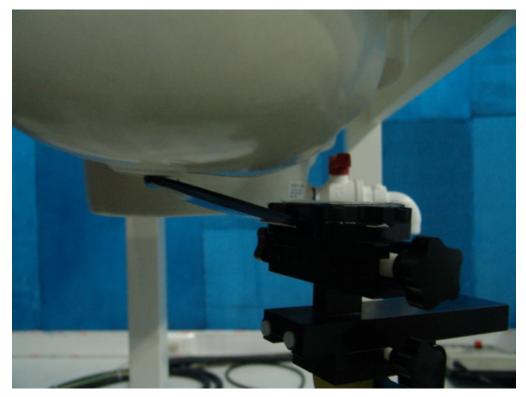
Picture B2: Liquid depth in the Flat Phantom (850 MHz)



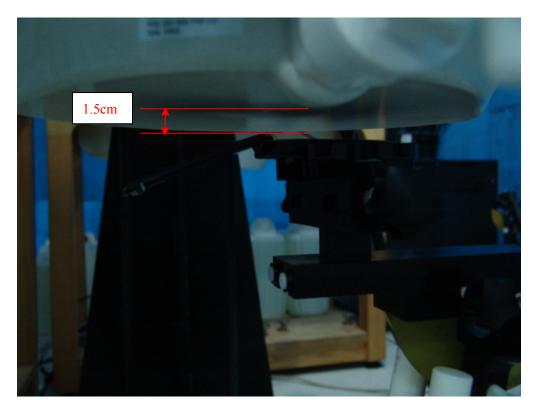
Picture B3 Liquid depth in the Flat Phantom (1900MHz)



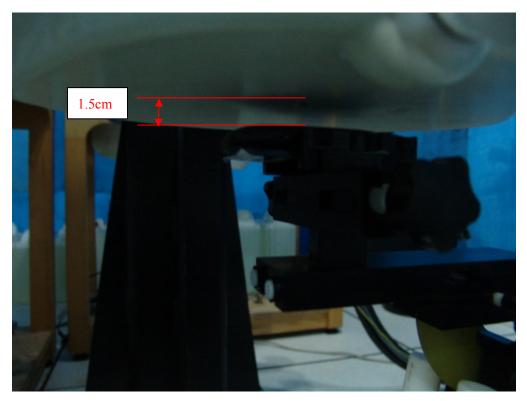
Picture B4: Left Hand Touch Cheek Position



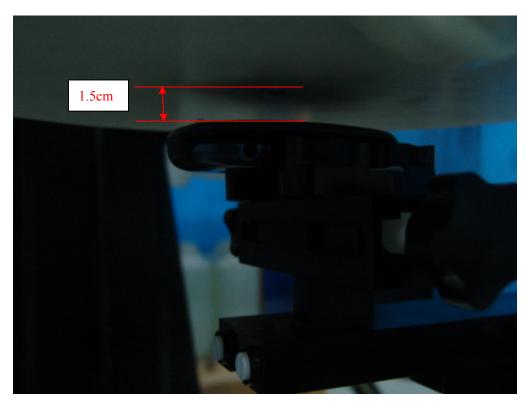
Picture B5: Left Hand Tilt 15° Position



Picture B6: Right Hand Touch Cheek Position



Picture B7: Right Hand Tilt 15° Position

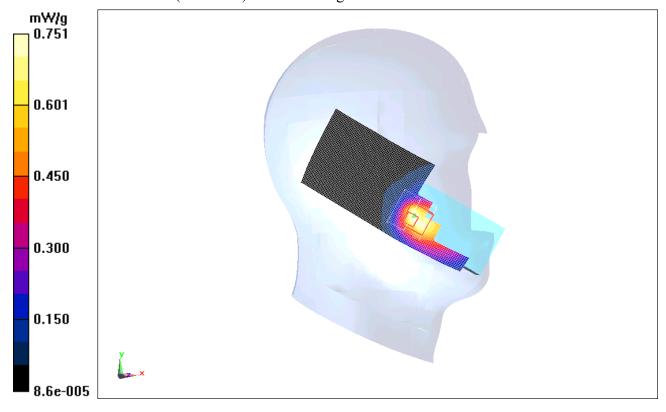


Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm) - open

Picture B9: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm) - close

Picture B10: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm) - close

Picture B11: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm) - open


ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2011-5-3 8:09:13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.736 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.02 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 0.787 mW/g; SAR(10 g) = 0.435 mW/g Maximum value of SAR (measured) = 0.751 mW/g

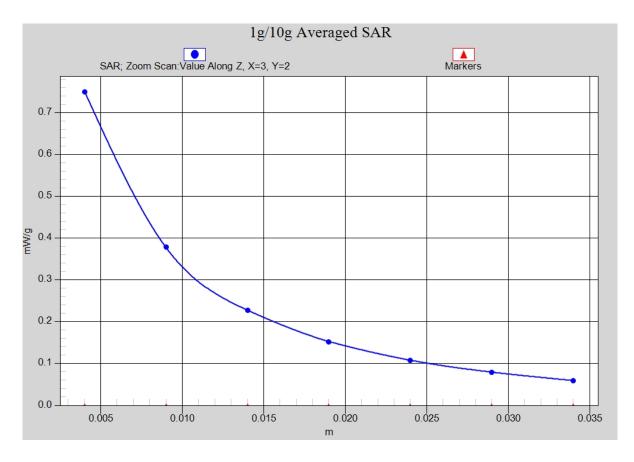
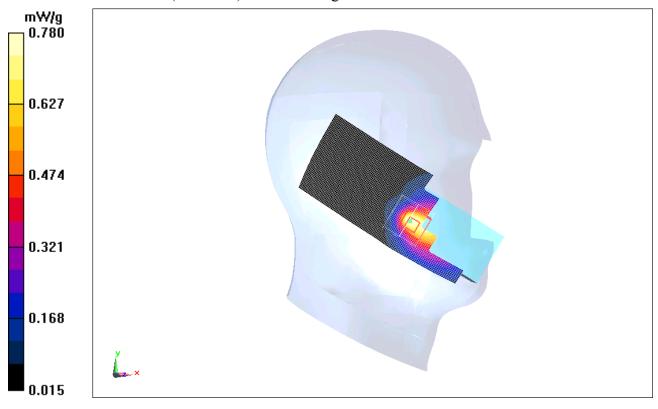


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

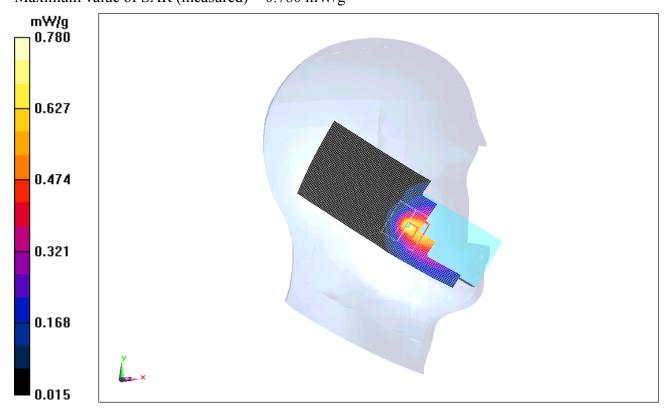

850 Left Cheek Middle

Date/Time: 2011-5-3 8:23:30 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.818 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.1 V/m; Power Drift = -0.131 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.412 mW/g Maximum value of SAR (measured) = 0.780 mW/g


850 Left Cheek Low

Date/Time: 2011-5-3 8:37:52 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.886$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.733 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.1 V/m; Power Drift = -0.103 dB Peak SAR (extrapolated) = 1.58 W/kg **SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.412 mW/g Maximum value of SAR (measured) = 0.780 mW/g**

850 Left Tilt High

Date/Time: 2011-5-3 8:52:19 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.084 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.46 V/m; Power Drift = -0.147 dB Peak SAR (extrapolated) = 0.107 W/kg SAR(1 g) = 0.081 mW/g; SAR(10 g) = 0.061 mW/g

Maximum value of SAR (measured) = 0.086 mW/g

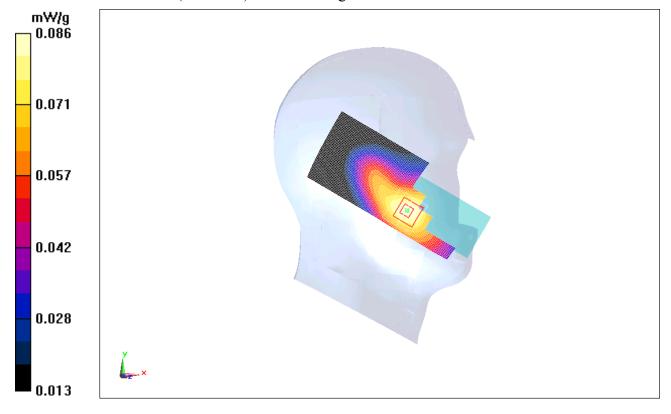
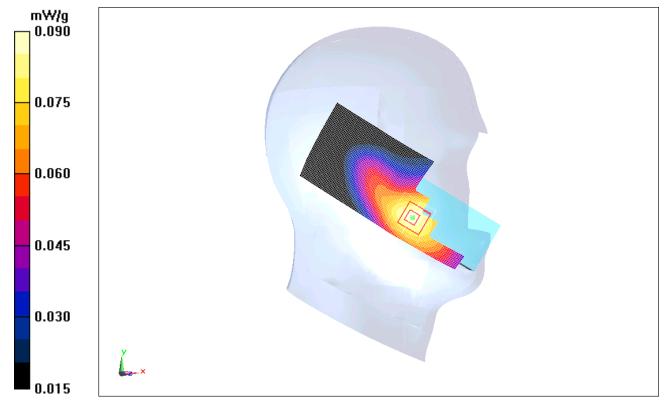


Fig.4 850 MHz CH251

850 Left Tilt Middle

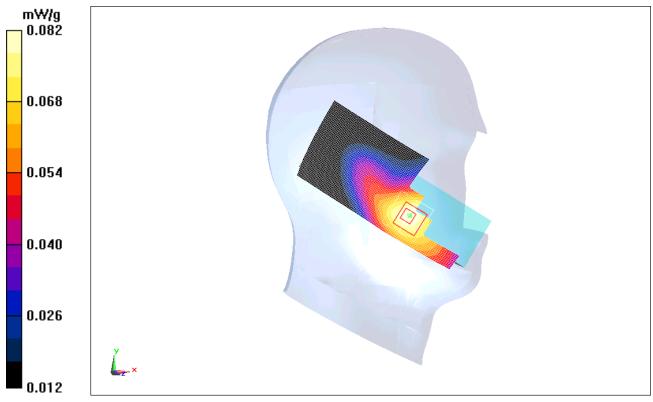

Date/Time: 2011-5-3 9:06:36 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.088 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.23 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.086 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.090 mW/g



850 Left Tilt Low

Date/Time: 2011-5-3 9:20:55 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.886$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.081 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.9 V/m; Power Drift = -0.096 dBPeak SAR (extrapolated) = 0.100 W/kgSAR(1 g) = 0.078 mW/g; SAR(10 g) = 0.060 mW/gMaximum value of SAR (measured) = 0.082 mW/g

850 Right Cheek High

Date/Time: 2011-5-3 9:35:29 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.583 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.21 V/m; Power Drift = 0.195 dB Peak SAR (extrapolated) = 0.852 W/kg SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.364 mW/g Maximum value of SAR (measured) = 0.552 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.21 V/m; Power Drift = 0.195 dB Peak SAR (extrapolated) = 0.663 W/kg SAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.326Maximum value of SAR (measured) = 0.529 mW/g

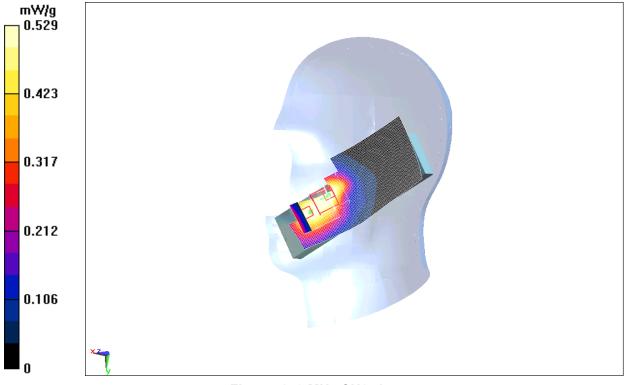
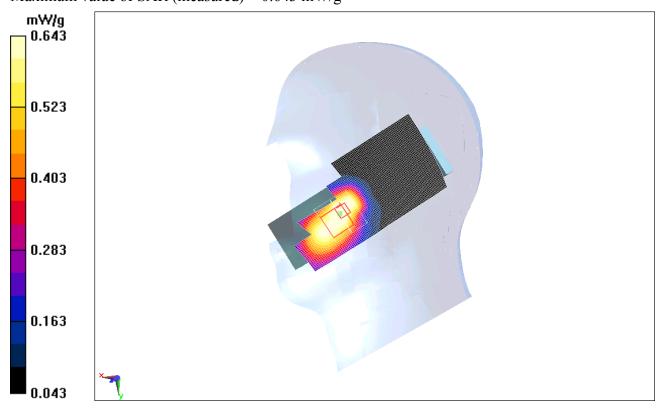
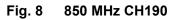


Fig. 7 850 MHz CH251

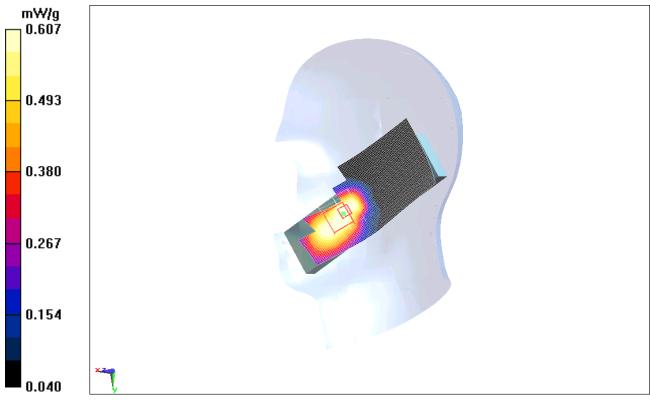

850 Right Cheek Middle


Date/Time: 2011-5-3 9:49:47 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.667 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.81 V/m; Power Drift = 0.129 dB Peak SAR (extrapolated) = 0.965 W/kg SAR(1 g) = 0.615 mW/g; SAR(10 g) = 0.434 mW/g Maximum value of SAR (measured) = 0.643 mW/g



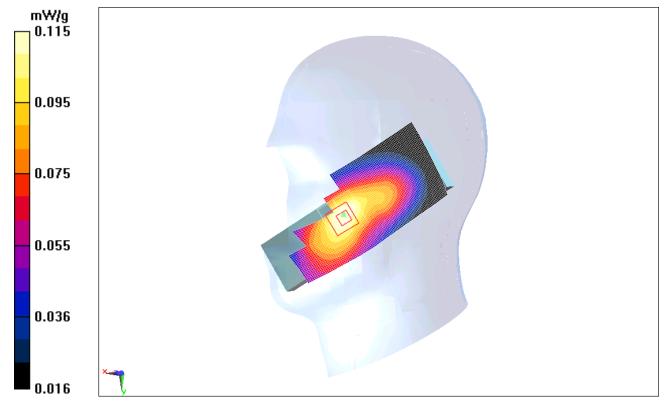

850 Right Cheek Low

Date/Time: 2011-5-3 10:04:05 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.886$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.629 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.7 V/m; Power Drift = 0.159 dBPeak SAR (extrapolated) = 0.902 W/kgSAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.412 mW/gMaximum value of SAR (measured) = 0.607 mW/g

850 Right Tilt High

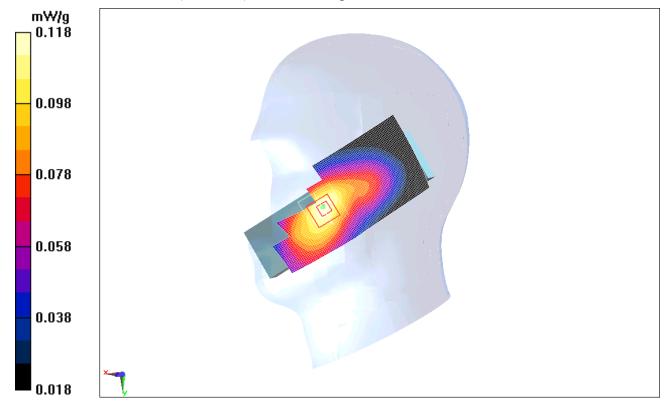

Date/Time: 2011-5-3 10:18:33 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.116 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.19 V/m; Power Drift = -0.00924 dB Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.081 mW/g

Maximum value of SAR (measured) = 0.115 mW/g

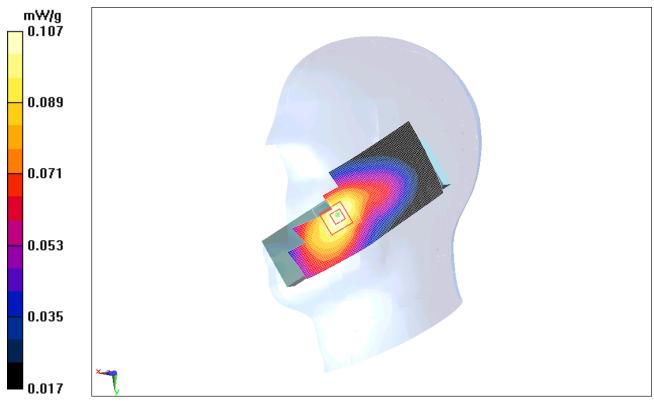

850 Right Tilt Middle

Date/Time: 2011-5-3 10:32:50 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.898$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.117 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.92 V/m; Power Drift = 0.00799 dB Peak SAR (extrapolated) = 0.147 W/kg SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.083 mW/g

Maximum value of SAR (measured) = 0.118 mW/g



850 Right Tilt Low

Date/Time: 2011-5-3 10:47:11 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.886$ mho/m; $\epsilon r = 40.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.107 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.45 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 0.131 W/kg SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.077 mW/g Maximum value of SAR (measured) = 0.107 mW/g

1900 Left Cheek High

Date/Time: 2011-5-4 8:09:22 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.192 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.801 V/m; Power Drift = 0.111 dB Peak SAR (extrapolated) = 0.232 W/kg SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.104 mW/g

Maximum value of SAR (measured) = 0.163 mW/g

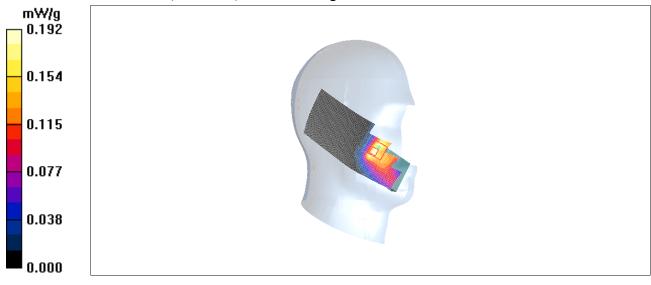


Fig. 13 1900 MHz CH810

1900 Left Cheek Middle

Date/Time: 2011-5-4 8:23:46 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 39.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.178 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.40 V/m; Power Drift = 0.123 dB Peak SAR (extrapolated) = 0.235 W/kg SAR(1 g) = 0.144 mW/g; SAR(10 g) = 0.096 mW/g Maximum value of SAR (measured) = 0.154 mW/g

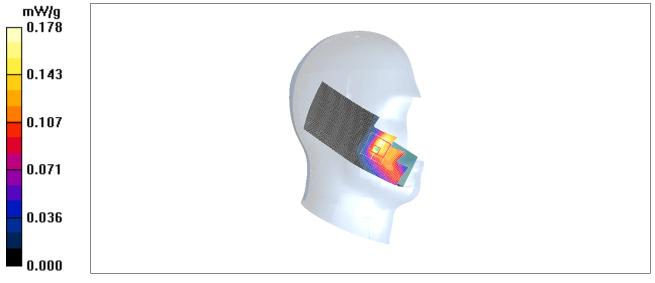


Fig. 14 1900 MHz CH661

1900 Left Cheek Low

Date/Time: 2011-5-4 8:38:03 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.142 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.12 V/m; Power Drift = -0.156 dB Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.076 mW/g

Maximum value of SAR (measured) = 0.126 mW/g

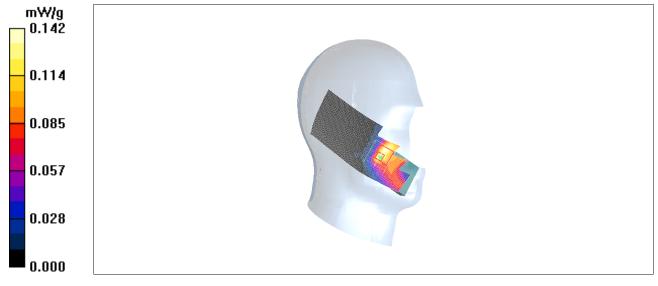


Fig. 15 1900 MHz CH512

1900 Left Tilt High

Date/Time: 2011-5-4 8:52:45 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.026 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.80 V/m; Power Drift = 0.179 dB Peak SAR (extrapolated) = 0.034 W/kg SAR(1 g) = 0.024 mW/g; SAR(10 g) = 0.015 mW/g Maximum value of SAR (measured) = 0.025 mW/g

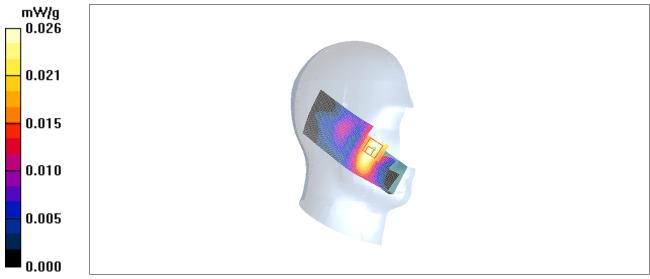


Fig.16 1900 MHz CH810

1900 Left Tilt Middle

Date/Time: 2011-5-4 9:07:04 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 39.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.032 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.01 V/m; Power Drift = 0.178 dB Peak SAR (extrapolated) = 0.043 W/kg SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.031 mW/g

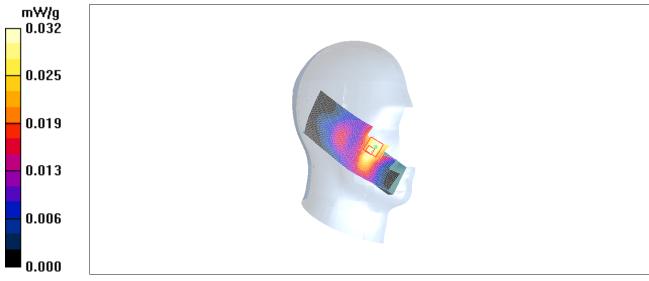


Fig. 17 1900 MHz CH661

1900 Left Tilt Low

Date/Time: 2011-5-4 9:21:20 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.031 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.69 V/m; Power Drift = 0.163 dB Peak SAR (extrapolated) = 0.042 W/kg

SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.019 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

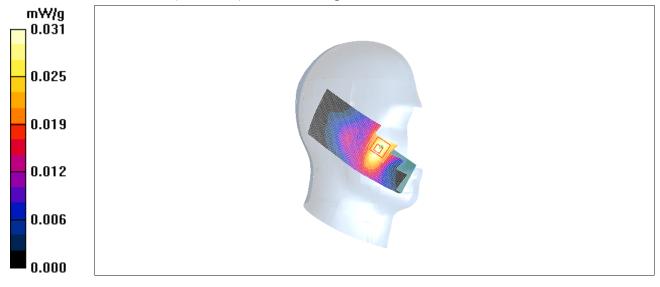


Fig. 18 1900 MHz CH512

1900 Right Cheek High

Date/Time: 2011-5-4 9:36:01 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.352 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.66 V/m; Power Drift = 0.121 dBPeak SAR (extrapolated) = 0.478 W/kgSAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.181 mW/gMaximum value of SAR (measured) = 0.331 mW/g

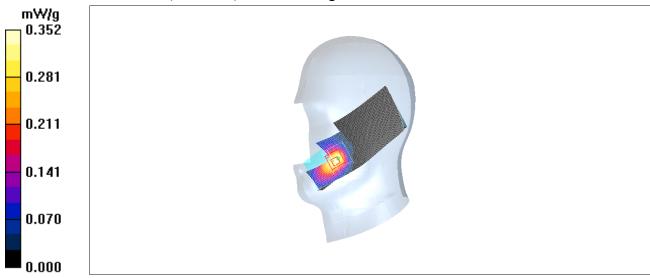


Fig. 19 1900 MHz CH810

1900 Right Cheek Middle

Date/Time: 2011-5-4 9:50:18 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 39.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.361 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.97 V/m; Power Drift = 0.197 dB Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.191 mW/g

Maximum value of SAR (measured) = 0.346 mW/g

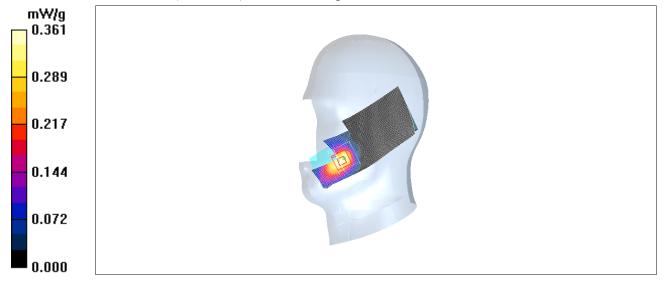


Fig. 20 1900 MHz CH661

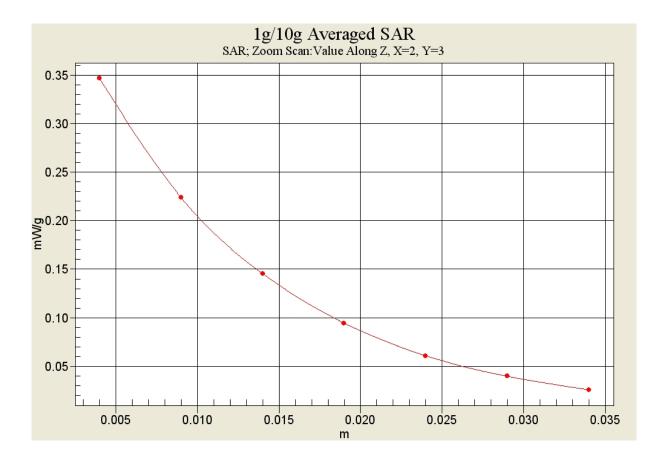


Fig. 20-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Right Cheek Low

Date/Time: 2011-5-4 10:04:38 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.292 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.93 V/m; Power Drift = 0.198 dB Peak SAR (extrapolated) = 0.406 W/kg

SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.289 mW/g

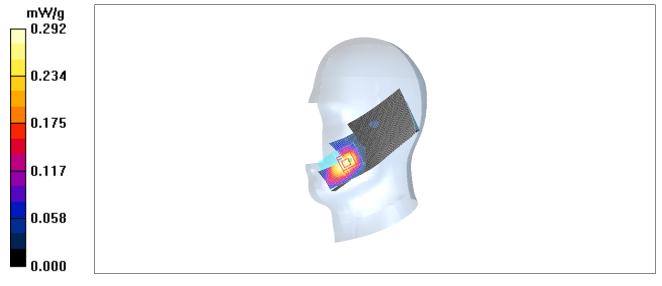


Fig. 21 1900 MHz CH512

1900 Right Tilt High

Date/Time: 2011-5-4 10:19:07 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 39.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.033 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.46 V/m; Power Drift = 0.091 dB Peak SAR (extrapolated) = 0.045 W/kg SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.032 mW/g

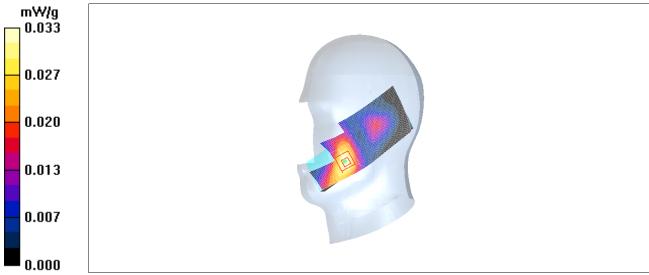


Fig. 22 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 2011-5-4 10:33:25 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 39.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.033 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.70 V/m; Power Drift = -0.110 dB Peak SAR (extrapolated) = 0.047 W/kg SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.021 mW/g Maximum value of SAR (measured) = 0.033 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.70 V/m; Power Drift = -0.110 dB Peak SAR (extrapolated) = 0.035 W/kg SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.014 mW/g

Maximum value of SAR (measured) = 0.024 mW/g

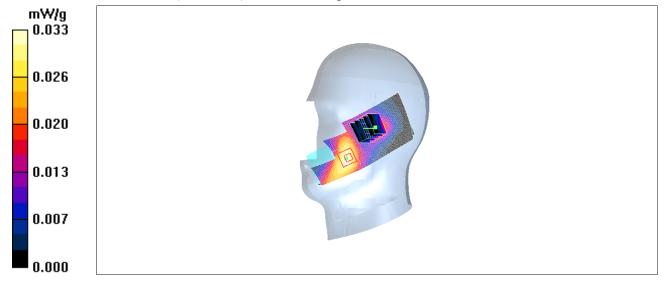


Fig.23 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 2011-5-4 10:47:48 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.030 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.14 V/m; Power Drift = 0.100 dB Peak SAR (extrapolated) = 0.041 W/kg SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.018 mW/g Maximum value of SAR (measured) = 0.030 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.14 V/m; Power Drift = 0.100 dB Peak SAR (extrapolated) = 0.029 W/kg SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.012 mW/g

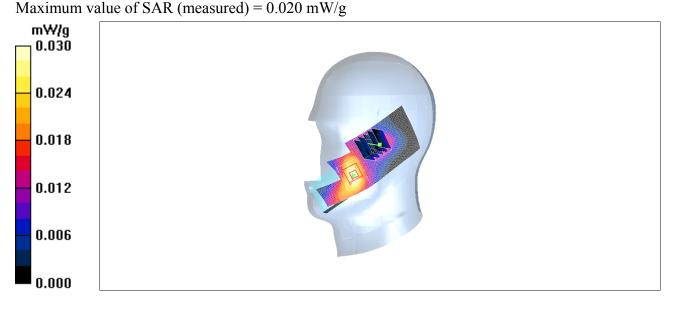


Fig.24 1900 MHz CH512

850 Left Cheek High with battery CAB22B0000C1

Date/Time: 2011-5-3 11:04:26 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.788 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.81 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.740 mW/g; SAR(10 g) = 0.441 mW/g

Maximum value of SAR (measured) = 0.796 mW/g

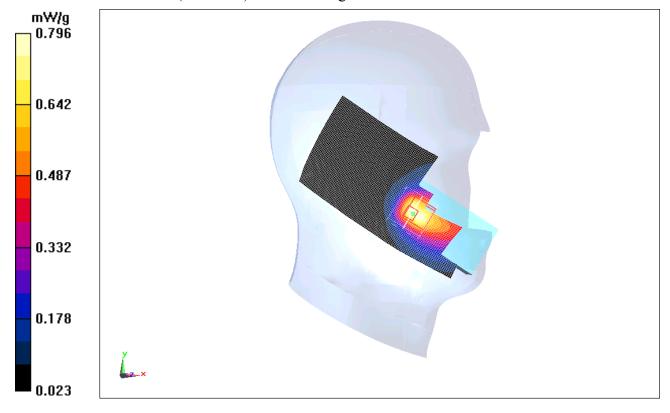


Fig. 25 850 MHz CH251

850 Left Cheek High with battery CAB22D0000C1

Date/Time: 2011-5-3 11:21:13 Electronics: DAE4 Sn771 Medium: Head 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.91$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.721 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.21 V/m; Power Drift = -0.160 dB Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.754 mW/g; SAR(10 g) = 0.450 mW/g

Maximum value of SAR (measured) = 0.836 mW/g

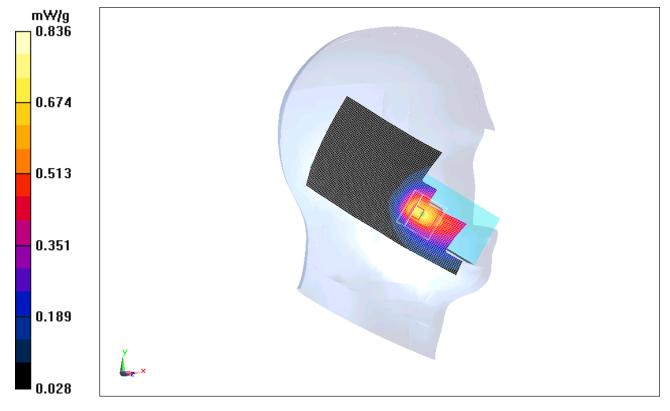


Fig. 26 850 MHz CH251

850 Body Open Towards Ground High with GPRS

Date/Time: 2011-5-3 13:39:16 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.932 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.4 V/m; Power Drift = -0.081 dB Peak SAR (extrapolated) = 1.15 W/kg **SAR(1 g) = 0.871 mW/g; SAR(10 g) = 0.626 mW/g Maximum value of SAR (measured) = 0.922 mW/g**

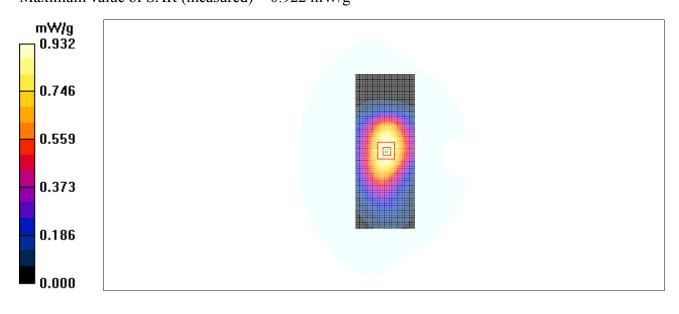


Fig. 27 850 MHz CH251

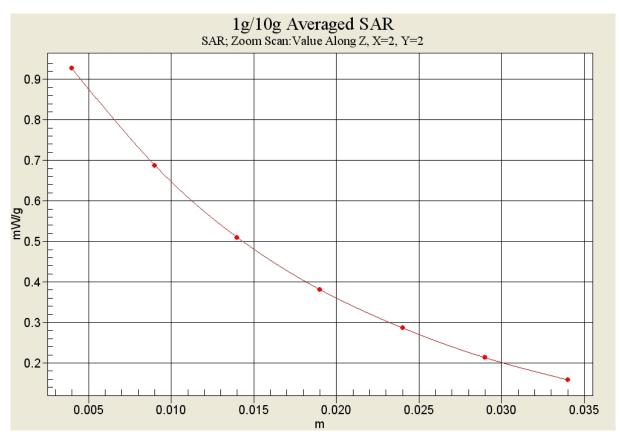


Fig. 27-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Open Towards Ground Middle with GPRS

Date/Time: 2011-5-3 13:54:40 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 56.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.839 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 23.9 V/m; Power Drift = -0.083 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.567 mW/g Maximum value of SAR (measured) = 0.829 mW/g

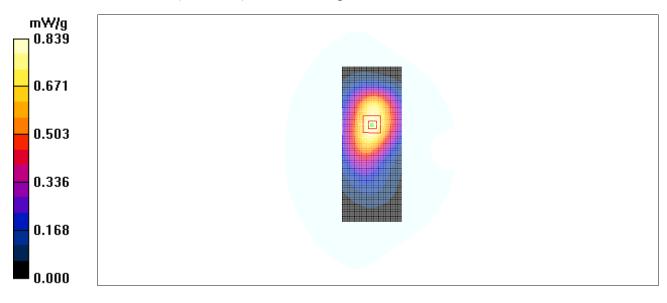


Fig. 28 850 MHz CH190

850 Body Open Towards Ground Low with GPRS

Date/Time: 2011-5-3 14:09:58 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.953$ mho/m; $\epsilon r = 56.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.765 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.1 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 0.945 W/kg SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.521 mW/g

Maximum value of SAR (measured) = 0.760 mW/g

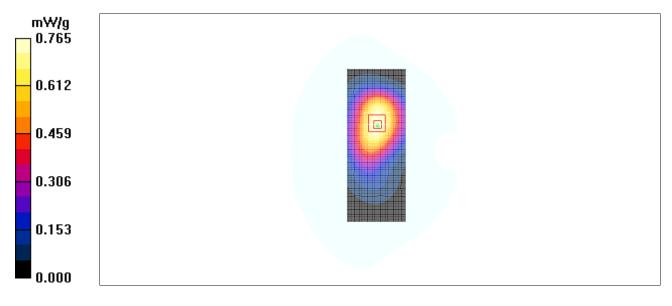


Fig. 29 850 MHz CH128

850 Body Towards Close Ground High with GPRS

Date/Time: 2011-5-3 14:25:27 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.807 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.3 V/m; Power Drift = 0.071 dB Peak SAR (extrapolated) = 0.966 W/kg SAR(1 g) = 0.721 mW/g; SAR(10 g) = 0.515 mW/g Maximum value of SAR (measured) = 0.761 mW/g

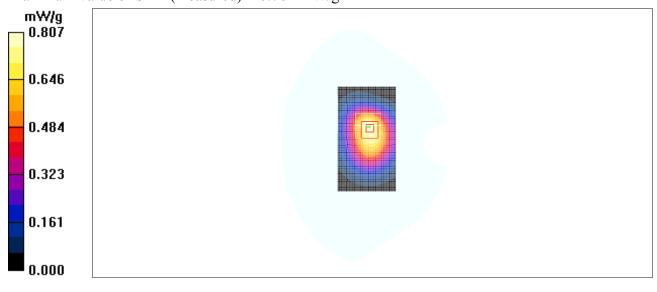


Fig. 30 850 MHz CH251

850 Body Close Towards Ground Middle with GPRS

Date/Time: 2011-5-3 14:40:43 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 56.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.839 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 26.0 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.992 W/kg SAR(1 g) = 0.756 mW/g; SAR(10 g) = 0.540 mW/g Maximum value of SAR (measured) = 0.795 mW/g

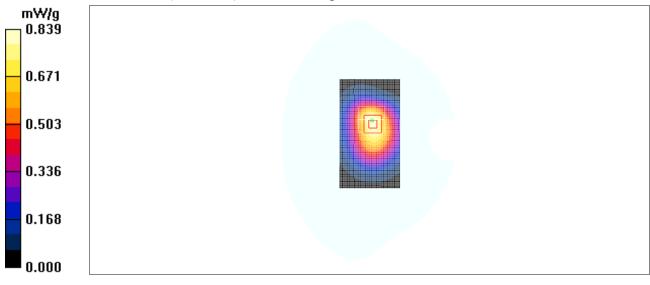


Fig. 31 850 MHz CH190

850 Body Close Towards Ground Low with GPRS

Date/Time: 2011-5-3 14:56:02 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.953$ mho/m; $\epsilon r = 56.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.833 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 26.0 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.985 W/kg

SAR(1 g) = 0.750 mW/g; SAR(10 g) = 0.539 mW/g

Maximum value of SAR (measured) = 0.788 mW/g

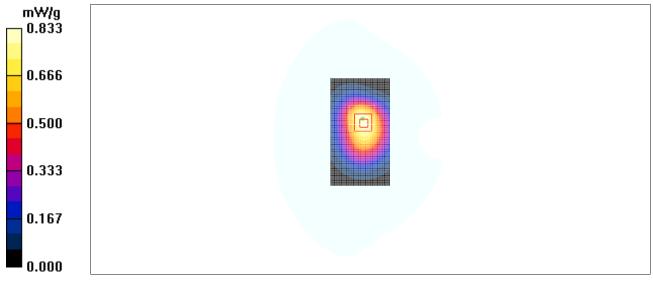


Fig. 32 850 MHz CH128

850 Body Close Towards Phantom High with GPRS

Date/Time: 2011-5-3 15:11:55 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.508 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 0.616 W/kg

SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.345 mW/g

Maximum value of SAR (measured) = 0.502 mW/g

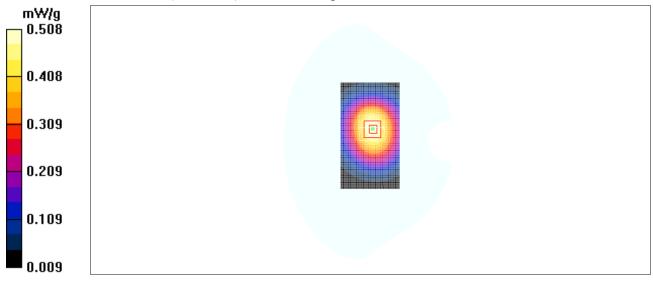


Fig. 33 850 MHz CH251

850 Body Close Towards Phantom Middle with GPRS

Date/Time: 2011-5-3 15:27:18 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 56.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.537 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 21.6 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.661 W/kg SAR(1 g) = 0.509 mW/g; SAR(10 g) = 0.368 mW/gMaximum value of SAR (measured) = 0.538 mW/g

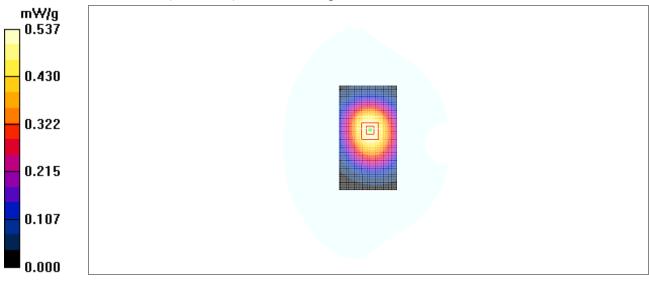


Fig. 34 850 MHz CH190

850 Body Close Towards Phantom Low with GPRS

Date/Time: 2011-5-3 15:42:41 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used: f = 825 MHz; $\sigma = 0.953$ mho/m; $\epsilon r = 56.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.520 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.4 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.626 W/kg

SAR(1 g) = 0.481 mW/g; SAR(10 g) = 0.349 mW/g

Maximum value of SAR (measured) = 0.505 mW/g

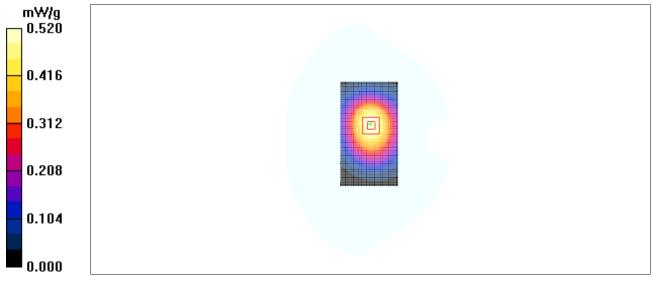


Fig. 35 850 MHz CH128

850 Body Open Towards Ground High with Headset_CCB3160A10C0

Date/Time: 2011-5-3 15:59:48 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.490 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 0.614 W/kg SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.330 mW/g Maximum value of SAR (measured) = 0.492 mW/g

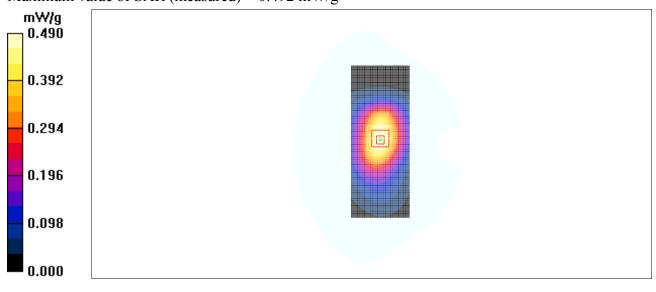


Fig. 36 850 MHz CH251

850 Body Open Towards Ground High with Headset_CCB3160A10C2

Date/Time: 2011-5-3 16:16:38 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.466 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.9 V/m; Power Drift = 0.038 dBPeak SAR (extrapolated) = 0.581 W/kgSAR(1 g) = 0.439 mW/g; SAR(10 g) = 0.314 mW/gMaximum value of SAR (measured) = 0.464 mW/g

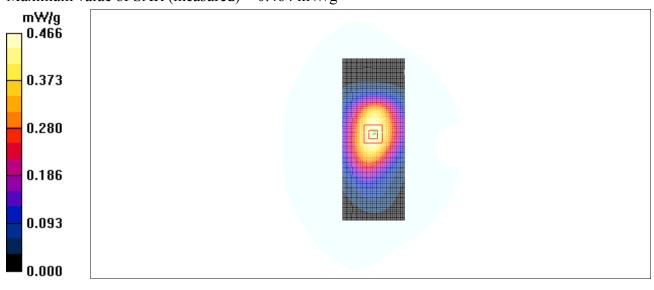


Fig. 37 850 MHz CH251

1900 Body Open Towards Ground High with GPRS

Date/Time: 2011-5-4 13:37:19 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.456 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.10 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 0.667 W/kg SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 0.445 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.10 V/m; Power Drift = -0.154 dB Peak SAR (extrapolated) = 0.711 W/kg SAR(1 g) = 0.426 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.460 mW/g

Fig. 38 1900 MHz CH810

1900 Body Open Towards Ground Middle with GPRS

Date/Time: 2011-5-4 13:52:40 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.390 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.13 V/m; Power Drift = 0.024 dB Peak SAR (extrapolated) = 0.572 W/kg SAR(1 g) = 0.358 mW/g; SAR(10 g) = 0.214 mW/g Maximum value of SAR (measured) = 0.388 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.13 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.338 mW/g; SAR(10 g) = 0.201 mW/g Maximum value of SAR (measured) = 0.364 mW/g

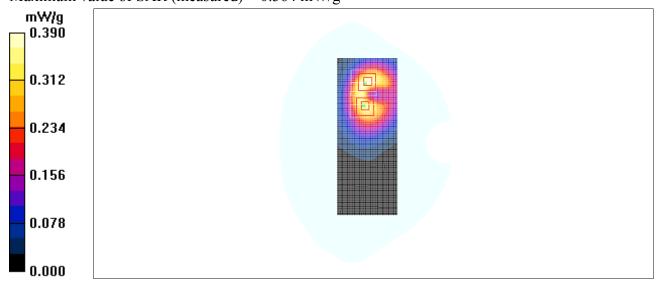


Fig. 39 1900 MHz CH661

1900 Body Open Towards Ground Low with GPRS

Date/Time: 2011-5-4 14:08:04 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.319 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.35 V/m; Power Drift = 0.114 dB Peak SAR (extrapolated) = 0.463 W/kg SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.177 mW/g Maximum value of SAR (measured) = 0.321 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.35 V/m; Power Drift = 0.114 dB

Peak SAR (extrapolated) = 0.431 W/kg SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.290 mW/g

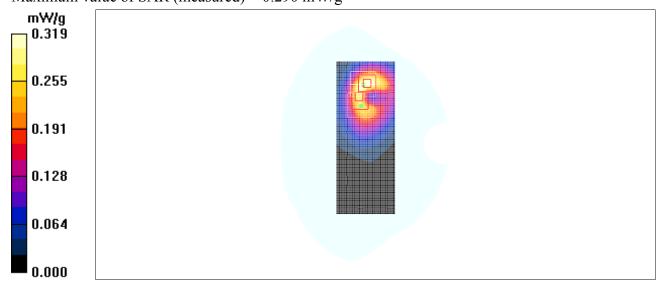


Fig. 40 1900 MHz CH512

1900 Body Close Towards Ground High with GPRS

Date/Time: 2011-5-4 14:23:58 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.554 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.4 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 0.855 W/kg SAR(1 g) = 0.521 mW/g; SAR(10 g) = 0.299 mW/g

Maximum value of SAR (measured) = 0.567 mW/g

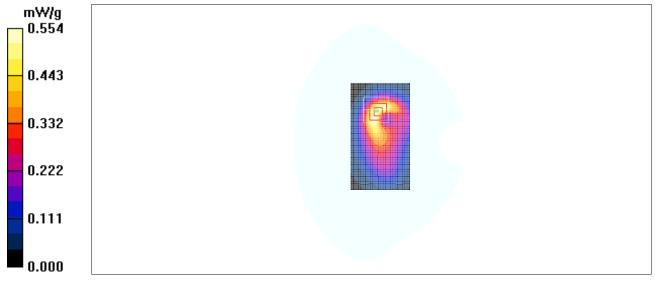


Fig. 41 1900 MHz CH810

1900 Body Close Towards Ground Middle with GPRS

Date/Time: 2011-5-4 14:39:20 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.481 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.3 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 0.735 W/kg SAR(1 g) = 0.451 mW/g; SAR(10 g) = 0.259 mW/g

Maximum value of SAR (measured) = 0.493 mW/g

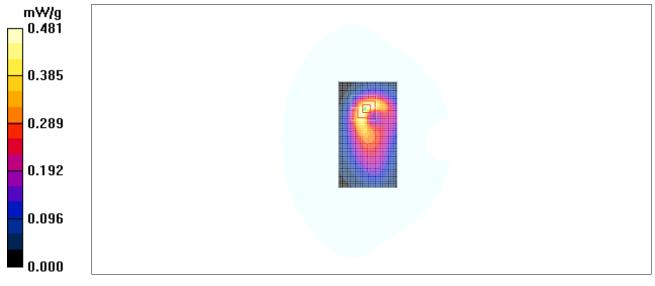


Fig. 42 1900 MHz CH661

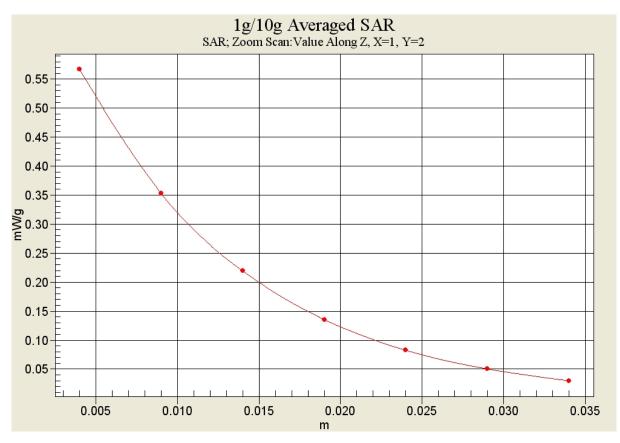


Fig. 42-1 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Close Towards Ground Low with GPRS

Date/Time: 2011-5-4 14:54:41 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.328 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.4 V/m; Power Drift = 0.156 dB Peak SAR (extrapolated) = 0.482 W/kg SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.171 mW/g Maximum value of SAR (measured) = 0.317 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = 0.156 dB Peak SAR (extrapolated) = 0.402 W/kg SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.262 mW/g

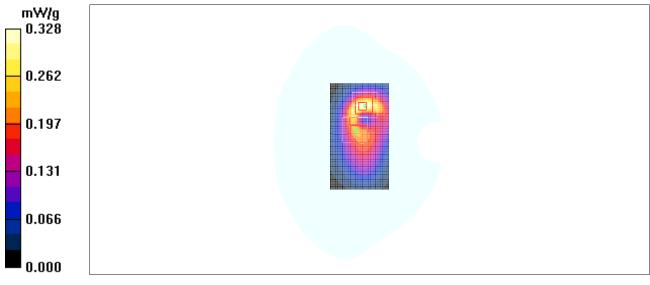


Fig. 43 1900 MHz CH512

1900 Body Close Towards Phantom High with GPRS

Date/Time: 2011-5-4 15:10:09 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.392 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.3 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 0.573 W/kg SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.229 mW/g Maximum value of SAR (measured) = 0.389 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 14.3 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 0.422 W/kg

SAR(1 g) = 0.254 mW/g; SAR(10 g) = 0.152 mW/g;

Maximum value of SAR (measured) = 0.269 mW/g

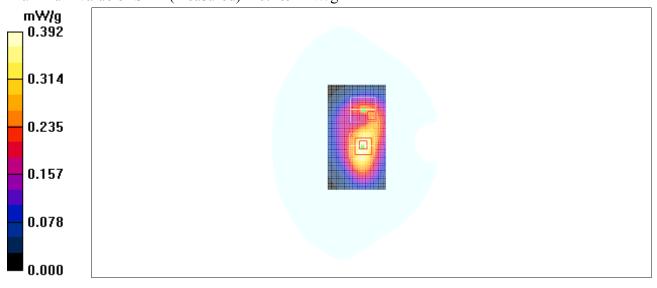


Fig. 44 1900 MHz CH810

1900 Body Close Towards Phantom Middle with GPRS

Date/Time: 2011-5-4 15:25:30 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.335 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.5 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 0.499 W/kg SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.196 mW/g Maximum value of SAR (measured) = 0.335 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 0.376 W/kg

SAR(1 g) = 0.228 mW/g; SAR(10 g) = 0.138 mW/gMaximum value of SAR (measured) = 0.240 mW/g

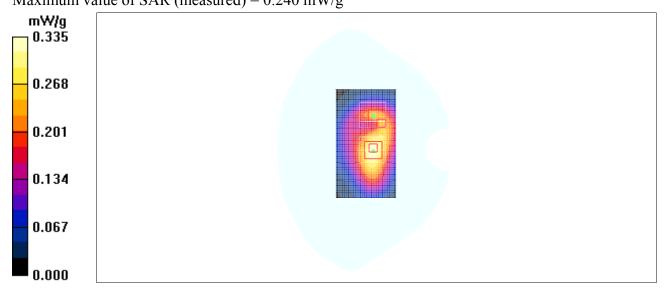


Fig. 45 1900 MHz CH661

1900 Body Close Towards Phantom Low with GPRS

Date/Time: 2011-5-4 15:40:55 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.289 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = 0.160 dB Peak SAR (extrapolated) = 0.439 W/kg SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.174 mW/g

Maximum value of SAR (measured) = 0.300 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = 0.160 dBPeak SAR (extrapolated) = 0.334 W/kgSAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.124 mW/g

Maximum value of SAR (measured) = 0.218 mW/g

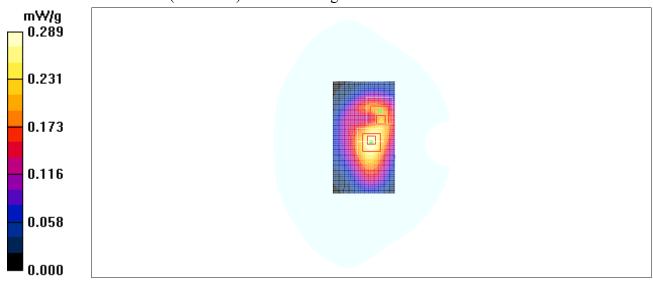
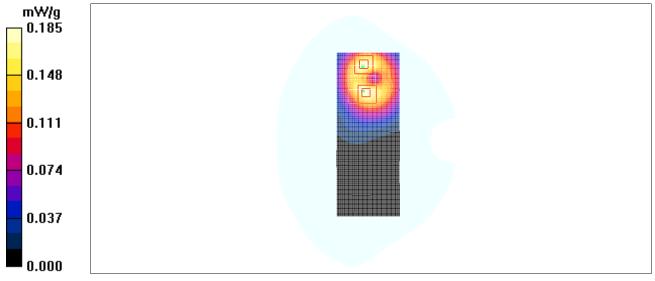


Fig. 46 1900 MHz CH512

1900 Body Open Towards Ground High with Headset_CCB3160A10C0

Date/Time: 2011-5-4 15:57:49 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)


Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.185 mW/g

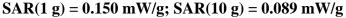
Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.19 V/m; Power Drift = 0.184 dB Peak SAR (extrapolated) = 0.265 W/kg SAR(1 g) = 0.165 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.181 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.19 V/m; Power Drift = 0.184 dB Peak SAR (extrapolated) = 0.280 W/kg SAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.100 mW/g

Maximum value of SAR (measured) = 0.180 mW/g

1900 Body Open Towards Ground High with Headset_CCB3160A10C2


Date/Time: 2011-5-4 16:14:45 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 52.0$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.169 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.29 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 0.263 W/kg SAR(1 g) = 0.157 mW/g; SAR(10 g) = 0.093 mW/g Maximum value of SAR (measured) = 0.165 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.29 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 0.240 W/kg

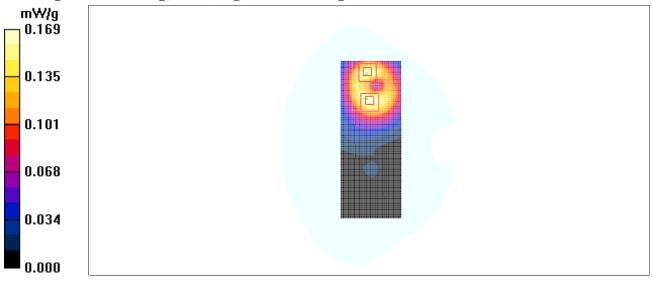


Fig. 48 1900 MHz CH810

850 Body Open Towards Ground High with GPRS with battery CAB22B0000C1

Date/Time: 2011-5-3 16:33:50 Electronics: DAE4 Sn771 Medium: Body 850 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 56.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.876 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.0 V/m; Power Drift = 0.002 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.824 mW/g; SAR(10 g) = 0.591 mW/g Maximum value of SAR (measured) = 0.877 mW/g

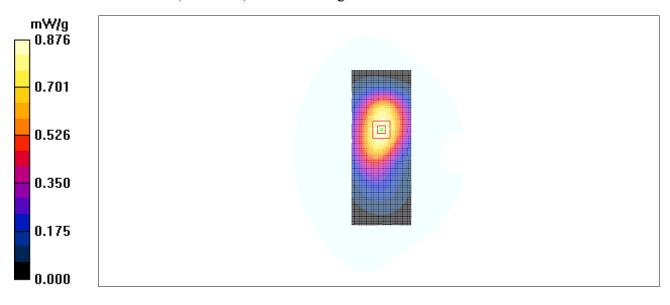


Fig. 49 850 MHz CH251