

No. 2009SAR00076

For

TCT Mobile Limited

GSM/GPRS 850/1900 Dual-band mobile phone

OT-Easy Talk A

OT-508A

With

Hardware Version: PIO01

Software Version: V321

FCCID: RAD125

Issued Date: 2009-11-23

No. DAT-P-114/01-01

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62303288-2105, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

TABLE OF CONTENT

1 TEST LABORA	NTORY	3
1.1 TESTING LOCA	ATION	3
	RONMENT	
	1	
	MATION	
	FORMATION	
	ER INFORMATION	
	NDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
	NTIFICATION OF EUT USED DURING THE TEST	
	NTIFICATION OF EQ 1 USED DURING THE TESTNTIFICATION OF AE USED DURING THE TEST	
	STICS OF THE TEST	
	JMIT REGULATIONS	
	MEASUREMENT STANDARDS	
	_ CONDITIONS DURING TEST	
	EST CONFIGURATION	
	EMENT SET-UP.	
	D PROBE SYSTEM	
	E CALIBRATION	
	EQUIPMENT	
	DER FOR TRANSMITTERS	
	ΓISSUES	
	IFICATIONS	
	STEM SPECIFICATIONS	
	OUTPUT POWER MEASUREMENT	
	OWER	
8 TEST RESULTS	S	12
8.1 DIELECTRIC P	ERFORMANCE	12
	DATION	
	MEASUREMENT RESULTS (GSM 850)	
	MEASUREMENT RESULTS (1900MHz)	
	MEASUREMENT RESULTS (BLUETOOTH FUNCTION)	
	NT UNCERTAINTY	
10 MAIN TEST IN	NSTRUMENTS	18
ANNEX A MEAS	SUREMENT PROCESS	19
ANNEX B TEST	Γ LAYOUT	20
	PH RESULTS	
ANNEX D SYST	TEM VALIDATION RESULTS	66
ANNEX E PRO	BE CALIBRATION CERTIFICATE	68
	N E CALIDDATION CERTIFICATE	77

1 Test Laboratory

1.1 Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuan beilu, Haidian District, Beijing,P.R.China

Postal Code: 100191

Telephone: +86-10-62303288 Fax: +86-10-62304793

1.2 Testing Environment

Temperature: $18^{\circ}\text{C}\sim25^{\circ}\text{C}$, Relative humidity: $30\%\sim70\%$ Ground system resistance: $<0.5~\Omega$

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader: Sun Qian
Test Engineer: Lin Xiaojun

Testing Start Date: November 18, 2009
Testing End Date: November 19 2009

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Sun Qian

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name: TCT Mobile Limited

Address /Post: 4/F, South Building,No.2966, Jinke Road, Zhangjiang High-Tech

Park, Pudong, Shanghai, 201203, P.R. China

City: Shanghai

Postal Code: /

Country: China

Telephone: 010-021-61460853 Fax: 010-021-61460602

2.2 Manufacturer Information

Company Name: TCT Mobile Limited

4/F, South Building, No. 2966, Jinke Road, Zhangjiang High-Tech

Park, Pudong, Shanghai, 201203, P.R. China

City: Shanghai

Postal Code:

Country: China

Telephone: 010-021-61460853 Fax: 010-021-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description: GSM/GPRS 850/1900 Dual-band mobile phone

Model Name: OT-Easy Talk A

OT-508A Marketing Name:

Test Frequency Band: GSM 850/GSM 1900

GPRS Class: 10

3.2 Internal Identification of EUT used during the test

EUT ID* SN or IMEI **HW Version** SW Version EUT1 012077000005136 V321

PIO01

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Travel Adapter	CBA30Y0AG0C1	\	BYD
AE2	Battery	CAB3010010C1	B260860D66A	BYD
AE3	Stereo	CCA30B4000C0	\	Shunda/Juwei
	headset	CCA30B4000C0	į	

^{*}AE ID: is used to identify the test sample in the lab internally.

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

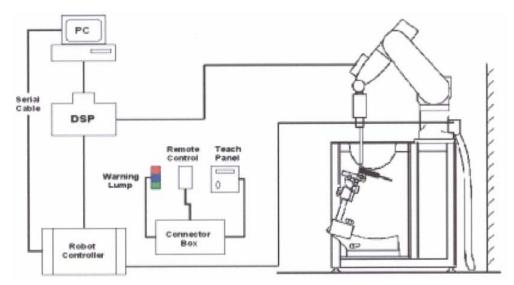
IEC 62209-2 (Draft): Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR)in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the Body.

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.


The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than $\pm 0.02mm$. Special E-field and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length $\pm 300mm$) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 1: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic

solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies

upon request

Picture 2: ES3DV3 E-field Probe

Frequency 10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Picture3:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

Picture 4: Device Holder

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the

robot.

Shell Thickness 2±0. I mm
Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W)

Available Special

5.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000

Picture 5: Generic Twin Phantom

MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the Head Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz		
Water	41.45		
Sugar	56.0		
Salt	1.45		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ =0.90		
MIXTURE %	FREQUENCY 1900MHz		
Water	55.242		
Glycol monobutyl	44.452		
Salt	0.306		
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40		

Table 2. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz			
Water	52.5			
Sugar	45.0			
Salt	1.4			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97			
MIXTURE %	FREQUENCY 1900MHz			
Water	69.91			
Glycol monobutyl	29.96			
Salt	0.13			
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52			

5.7 System Specifications

5.7.1 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium III Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

6 LABORATOR ENVIRONMENT

Table 3.The Ambient Conditions during EMF Test

Temperature	Min. = 15°C,, Max. = 30°C,		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ambient noise is checked and found very low and in compliance with requirement of standards.			
Reflection of surroundi objects is minimized and in compliance with requirement of standards.			

7 CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

7.2 Conducted Power

7.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels for each test bands both before and after SAR test.

7.2.2 Measurement result

Table 4: Conducted Power Measurement Results

	Co	onducted Power (dBm)		
GSM 850MHz	Channel 128	Channel 190	Channel 251	
GSIVI OSUIVITZ	(824.2MHz)	(836.6MHz)	(848.8MHz)	
	32.21	31.94	32.01	
	Co	onducted Power (dBm)		
COM SEGMUE CODO	Channel 128	Channel 190	Channel 251	
GSM 850MHz GPRS	(824.2MHz)	(836.6MHz)	(848.8MHz)	
	32.11	31.84	31.88	
	Conducted Power (dBm)			
CCM 4000MUZ	Channel 512	Channel 661	Channel 810	
GSM 1900MHZ	(1850.2MHz)	(1880MHz)	(1909.8MHz)	
	29.33	28.75	29.29	
	Conducted Power (dBm)			
GSM 1900MHZ GPRS	Channel 512	Channel 661	Channel 810	
GSIVI ISUUIVINZ GPRS	(1850.2MHz)	(1880MHz)	(1909.8MHz)	
	29.53	28.96	29.43	

7.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 8 to Table 11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8 TEST RESULTS

8.1 Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz Nov.19, 2009 1900 MHz Nov 18, 2009

/	Frequency	Permittivity ε	Conductivity σ (S/m)	
Target value	850 MHz	41.5	0.90	
l'arget value	1900 MHz	40.0	1.40	
Measurement value	850 MHz	40.6	0.93	
(Average of 10 tests)	1900 MHz	39.5	1.42	

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz Nov. 19, 2009 1900 MHz Nov. 18, 2009

1	Frequency	Permittivity ε	Conductivity σ (S/m)	
Target value	850 MHz	55.2	0.97	
rarget value	1900 MHz	53.3	1.52	
Measurement value	850 MHz	54.7	1.00	
(Average of 10 tests)	1900 MHz	52.0	1.53	

8.2 System Validation

Table 7: System Validation

Measurement is made at temperature 23.3 °C, relative humidity 49%, input power 250 mW.

Liquid temperature during the test: 22.5°C

Measurement Date: 850 MHz Nov. 19, 2009 1900 MHz Nov. 18, 2009

	Dipole	Frequ	iency	Permittivity ε		Conductivity σ (S/m)	
	calibration	835 MHz		39.9		0.88	
Liquid	Target value	1900	MHz	38.	.9	1.3	8
parameters	Actural	835	MHz	40	.7	0.9	1
	Measurement value	1900	MHz	39	.5	1.4	2
	Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation	
Verification		10 g	1 g	10 g	1 g	10 g	1 g
results		Average	Average	Average	Average	Average	Average
	835 MHz	1.60	2.48	1.62	2.50	1.25%	0.81%
	1900 MHz	5.09	9.73	5.27	9.91	3.54%	1.9%

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

8.3 Summary of Measurement Results (GSM 850)

Table 8: SAR Values (GSM 850 MHz-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
	2.0	1.6	Drift
	Measurement I	(dB)	
Test Case	10 g	1 g	(ub)
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.1)	0.730	1.04	-0.066
Left hand, Touch cheek, Mid frequency(See Fig.2)	0.752	1.07	-0.023
Left hand, Touch cheek, Bottom frequency(See Fig.3)	0.694	0.986	-0.0155
Left hand, Tilt 15 Degree, Top frequency(See Fig.4)	0.295	0.407	-0.042
Left hand, Tilt 15 Degree, Mid frequency(See Fig.5)	0.307	0.421	-0.131
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.6)	0.282	0.384	-0.134
Right hand, Touch cheek, Top frequency(See Fig.7)	0.755	1.1	-0.071
Right hand, Touch cheek, Mid frequency(See Fig.8)	0.777	1.13	0.028
Right hand, Touch cheek, Bottom frequency(See Fig.9)	0.716	1.04	-0.038
Right hand, Tilt 15 Degree, Top frequency(See Fig.10)	0.330	0.461	0.051
Right hand, Tilt 15 Degree, Mid frequency(See Fig.11)	0.334	0.463	-0.008
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.12)	0.277	0.383	-0.006

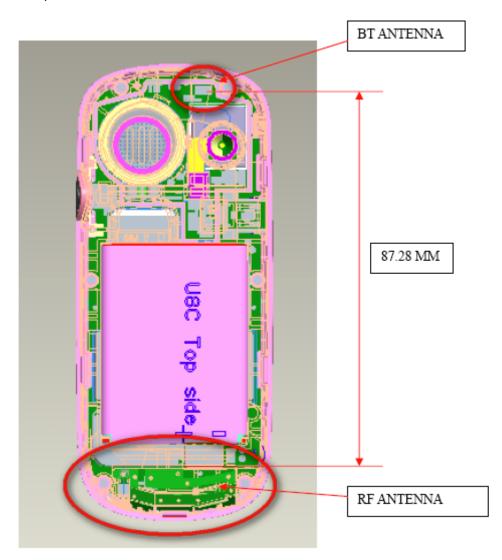
Table 9: SAR Values (GSM 850 MHz-Body)

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average 1.6	Power Drift
	Measurement I	Result (W/kg)	(dB)
Test Case	10 g	1 g	(ab)
	Average	Average	
Body, Towards Ground, Top frequency with GPRS(See Fig.13)	0.604	0.867	-0.055
Body, Towards Ground, Mid frequency with GPRS (See Fig.14)	0.645	0.923	-0.057
Body, Towards Ground, Bottom frequency with GPRS (See Fig.15)	0.739	1.06	-0.006
Body, Towards Phantom, Top frequency with GPRS (See Fig.16)	0.491	0.698	-0.118
Body, Towards Phantom, Mid frequency with GPRS (See Fig.17)	0.523	0.742	-0.029
Body, Towards Phantom, Bottom frequency with GPRS (See Fig.18)	0.593	0.841	0.021
Body, Towards Ground, Bottom frequency With Headset (See Fig.19)	0.580	0.837	-0.007

8.4 Summary of Measurement Results (1900MHz)

Table 10: SAR Values (1900 MHz-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	Power
	2.0	1.6	Drift
	Measurement I	` <u> </u>	(dB)
Test Case	10 g	1 g	, ,
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.20)	0.525	0.892	-0.170
Left hand, Touch cheek, Mid frequency(See Fig.21)	0.529	0.886	-0.052
Left hand, Touch cheek, Bottom frequency(See Fig.22)	0.647	1.08	0.188
Left hand, Tilt 15 Degree, Top frequency(See Fig.23)	0.364	0.614	-0.052
Left hand, Tilt 15 Degree, Mid frequency(See Fig.24)	0.361	0.603	-0.103
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.25)	0.421	0.700	-0.058
Right hand, Touch cheek, Top frequency(See Fig.26)	0.560	0.940	-0.188
Right hand, Touch cheek, Mid frequency(See Fig.27)	0.571	0.956	0.042
Right hand, Touch cheek, Bottom frequency(See Fig.28)	0.650	1.07	-0.001
Right hand, Tilt 15 Degree, Top frequency(See Fig.29)	0.349	0.586	0.003
Right hand, Tilt 15 Degree, Mid frequency(See Fig.30)	0.340	0.565	0.011
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.31)	0.382	0.632	0.018


Table 11: SAR Values (1900 MHz-Body)

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average 1.6	Power Drift	
	Measurement Result (W/kg)			
Test Case	10 g	1 g	(dB)	
	Average	Average		
Body, Towards Ground, Top frequency with GPRS (See Fig.32)	0.672	1.14	-0.026	
Body, Towards Ground, Mid frequency with GPRS (See Fig.33)	0.655	1.11	0.026	
Body, Towards Ground, Bottom frequency with GPRS (See Fig.34)	0.732	1.24	-0.063	
Body, Towards Phantom, Top frequency with GPRS (See Fig.35)	0.392	0.661	0.015	
Body, Towards Phantom, Mid frequency with GPRS (See Fig.36)	0.427	0.681	0.002	
Body, Towards Phantom, Bottom frequency with GPRS (See Fig.37)	0.507	0.805	-0.073	
Body, Towards Ground, Bottom frequency With Headset (See Fig.38)	0.356	0.608	0.039	

8.5 Summary of Measurement Results (Bluetooth function)

The distance between BT antenna and GSM antenna is >5cm. The location of the antennas inside mobile phone is shown below:

The output power of BT antenna is as following:

Channel	Ch 0	Ch 39	Ch 78	
	2402 MHz	2441 Mhz	2480 MHz	
Peak Conducted Output Power(dBm)	-0.77	-0.91	0.27	

According to the output power measurement result and the distance between the two antennas, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR are not required for BT transmitter, because the output power of BT transmitter is ≤2PRef and its antenna is >5cm from other antenna.

8.6 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized

SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

9 Measurement Uncertainty

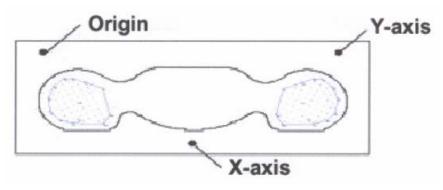
SN		Туре					h =	
	а	.,,,,,	С	d	e = f(d,k)	f	cxf/	k
	Uncertainty Component		Tol. (± %)	Prob . Dist.	Div.	c _i (1 g)	1 g u _i (±%)	Vi
1	System repetivity	Α	0.5	N	1	1	0.5	9
	Measurement System							
2	Probe Calibration	В	5	N	2	1	2.5	∞
3	Axial Isotropy	В	4.7	R	√3	(1-cp) ^{1/}	4.3	∞
4	Hemispherical Isotropy	В	9.4	R	√3	√cp		∞
5	Boundary Effect	В	0.4	R	√3	1	0.23	∞
6	Linearity	В	4.7	R	√3	1	2.7	∞
7	System Detection Limits	В	1.0	R	√3	1	0.6	∞
8	Readout Electronics	В	1.0	N	1	1	1.0	∞
9	RF Ambient Conditions	В	3.0	R	√3	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	√3	1	0.2	∞
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	√3	1	1.7	∞
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	√3	1	2.3	∞
	Test sample Related			•		1	1	
13	Test Sample Positioning	А	4.9	N	1	1	4.9	N- 1
14	Device Holder Uncertainty	А	6.1	N	1	1	6.1	N- 1
15	Output Power Variation - SAR drift measurement	В	5.0	R	√3	1	2.9	∞
	Phantom and Tissue Parameters					•		
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	√3	1	0.6	× ×
17	Liquid Conductivity - deviation from target values	В	5.0	R	√3	0.64	1.7	∞
18	Liquid Conductivity - measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	√3	0.6	1.7	∞

20	Liquid Permittivity - measurement uncertainty	В	5.0	N	1	0.6	1.7	М
	Combined Standard Uncertainty			RSS			11.25	
	Expanded Uncertainty			K=2			22.5	
	(95% CONFIDENCE INTERVAL)			N-2			22.5	

10 MAIN TEST INSTRUMENTS

Table 12: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 29,2009	One year	
02	Power meter	NRVD	101253	September 4, 2009	One year	
03	Power sensor	NRV-Z5	100333	September 4, 2009	One year	
04	Signal Generator	E4433B	US37230472	September 3, 2009	One Year	
05	Amplifier	VTL5400	0505	No Calibration Requested		
06	BTS	CMU 200	113312	August 10, 2009	One year	
07	E-field Probe	SPEAG ES3DV3	3149	September 25, 2009	One year	
08	DAE	SPEAG DAE4	771	November 20, 2008	One year	
09	Dipole Validation Kit	SPEAG D835V2	443	February 18, 2009	Two years	
10	Dipole Validation Kit	SPEAG D1900V2	541	February 19, 2009	Two years	


END OF REPORT BODY

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.
- Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- Step 3: Around this point, a volume of 30 mm \times 30 mm \times 30 mm was assessed by measuring 7 \times 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
- a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

Picture A: SAR Measurement Points in Area Scan

ANNEX B TEST LAYOUT

Picture B1: Specific Absorption Rate Test Layout

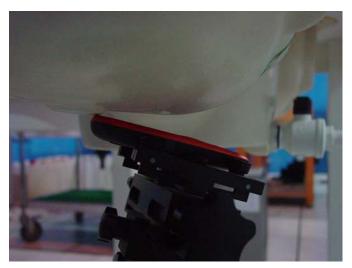
Picture B2: Liquid depth in the Flat Phantom (850 MHz Head)

Picture B3: Liquid depth in the Flat Phantom (1900MHz Head)

Picture B4: Liquid depth in the Flat Phantom (850 MHz Body)

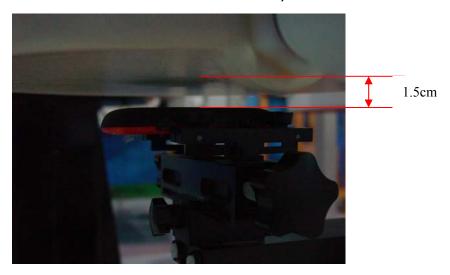
Picture B5: Liquid depth in the Flat Phantom (1900MHz Body)

Picture B6: Left Hand Touch Cheek Position

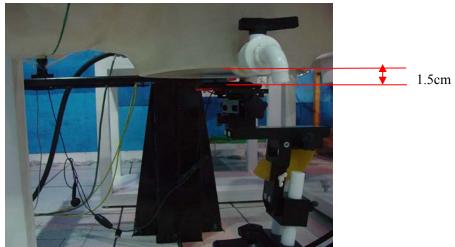


Picture B7: Left Hand Touch Tilt 15⁰ Position

Picture B8: Right Hand Touch Cheek Position



Picture B9: Right Hand Touch Tilt 15⁰ Position



Picture B10: Body-worn Position (towards phantom, the distance from handset to the bottomof the Phantom is 1.5cm)

Picture B11: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B11: Body-worn Position (towards ground with headset, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2009-11-19 8:01:28

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.14 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.84 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.730 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

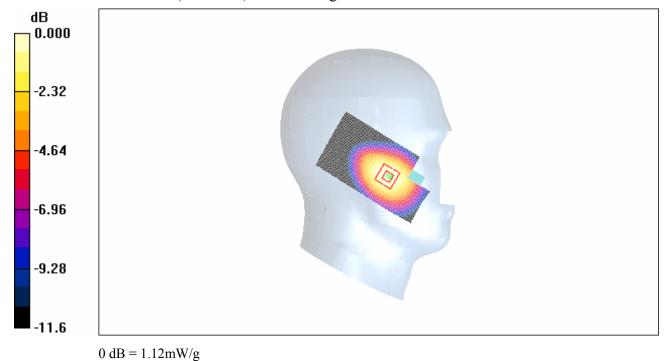


Fig. 1 850MHz CH251

850 Left Cheek Middle

Date/Time: 2009-11-19 8:15:46

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.918$ mho/m; $\varepsilon_r = 40.7$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

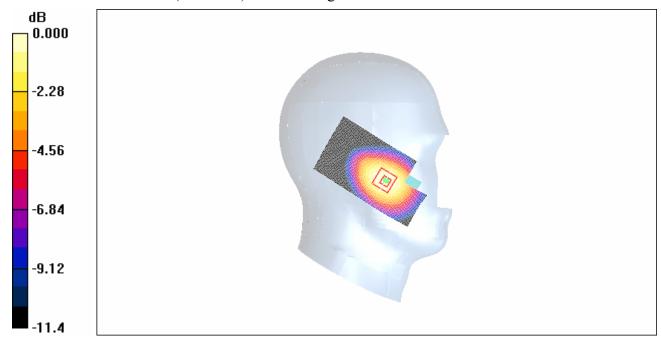
Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.17 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 8.98 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.752 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

Fig. 2 850 MHz CH190

850 Left Cheek Low

Date/Time: 2009-11-19 8:29:31 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.906 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

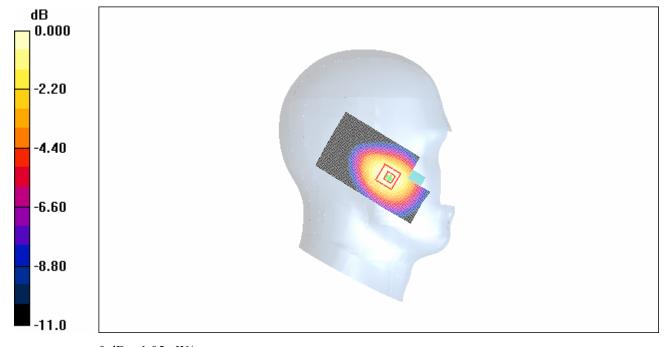
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.08 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.85 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.986 mW/g; SAR(10 g) = 0.694 mW/g

Maximum value of SAR (measured) = 1.05 mW/g

0 dB = 1.05 mW/g

Fig. 3 850 MHz CH128

850 Left Tilt High

Date/Time: 2009-11-19 8:43:30 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000$

kg/m³

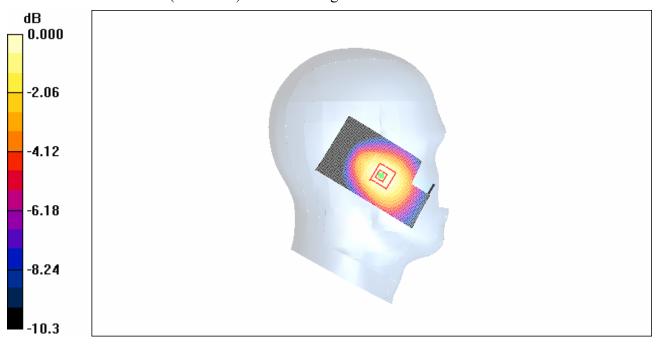
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.435 mW/g


Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.95 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.527 W/kg

SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.295 mW/g

Maximum value of SAR (measured) = 0.432 mW/g

 $0\ dB=0.432mW/g$

Fig. 4 850 MHz CH251

850 Left Tilt Middle

Date/Time: 2009-11-19 8:57:24

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.918$ mho/m; $\varepsilon_r = 40.7$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

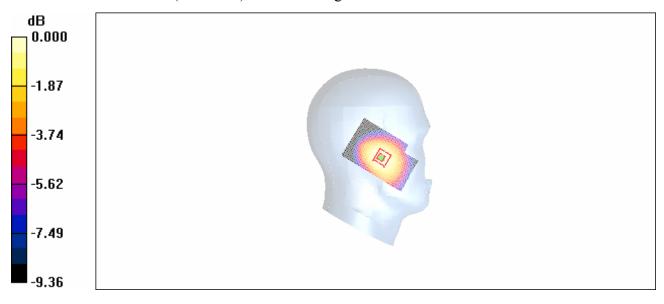
Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.152 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 8.66 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.186 W/kg

SAR(1 g) = 0.145 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.153 mW/g

0 dB = 0.153 mW/g

Fig. 5 850 MHz CH190

850 Left Tilt Low

Date/Time: 2009-11-19 9:11:29 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.906 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

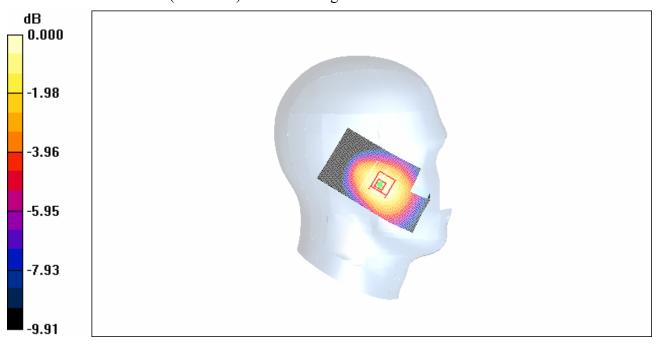
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.413 mW/g


Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.134 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.407 mW/g

0~dB = 0.407 mW/g

Fig. 6 850 MHz CH128

850 Right Cheek High

Date/Time: 2009-11-19 9:26:04

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000$

kg/m³

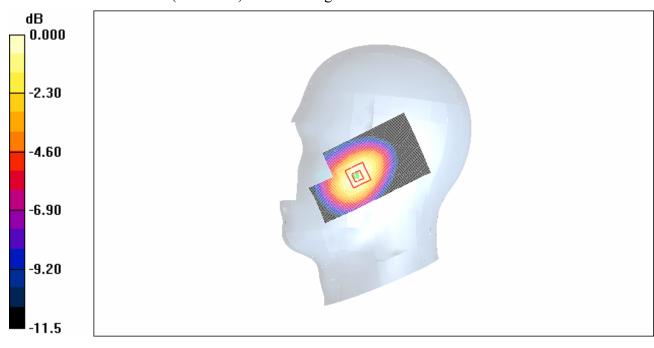
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.18 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.34 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.755 mW/g

Maximum value of SAR (measured) = 1.17 mW/g

0 dB = 1.17 mW/g

Fig. 7 850 MHz CH251

850 Right Cheek Middle

Date/Time: 2009-11-19 9:40:11 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.918$ mho/m; $\varepsilon_r = 40.7$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.22 mW/g

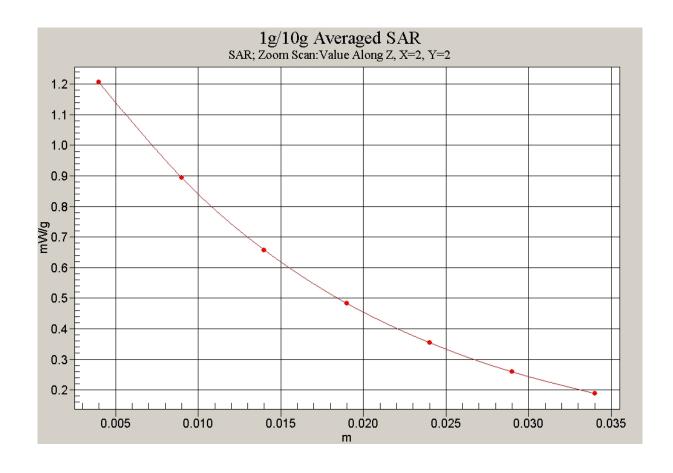
Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.58 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.777 mW/g


Maximum value of SAR (measured) = 1.21 mW/g

0 dB = 1.21 mW/g

Fig. 8 850 MHz CH190

850 Right Cheek Low

Date/Time: 2009-11-19 9:54:25 Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.906 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

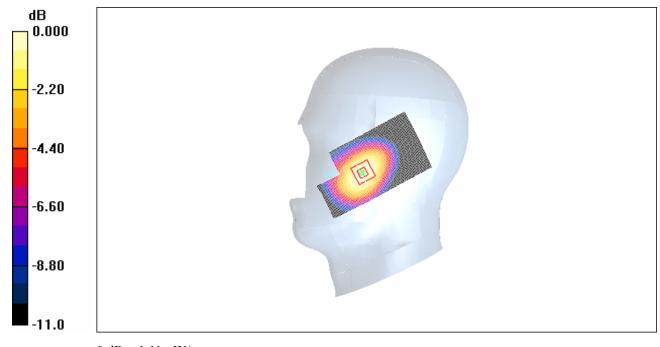
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.13 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.716 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

0 dB = 1.11 mW/g

Fig. 9 850 MHz CH128

850 Right Tilt High

Date/Time: 2009-11-19 10:08:50

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000$

kg/m³

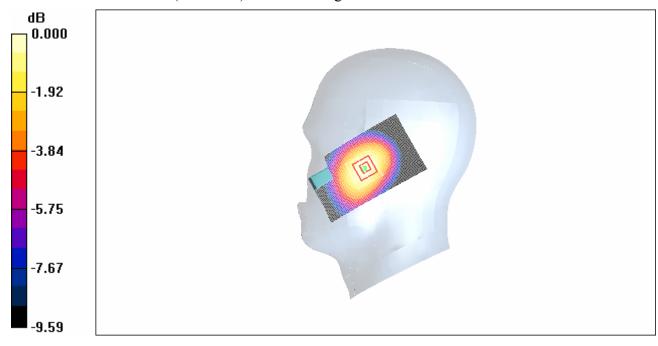
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.491 mW/g


Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.9 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.600 W/kg

SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.330 mW/g

Maximum value of SAR (measured) = 0.485 mW/g

0 dB = 0.485 mW/g

Fig. 10 850 MHz CH251

850 Right Tilt Middle

Date/Time: 2009-11-19 10:22:47

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.918$ mho/m; $\varepsilon_r = 40.7$; $\rho =$

 1000 kg/m^3

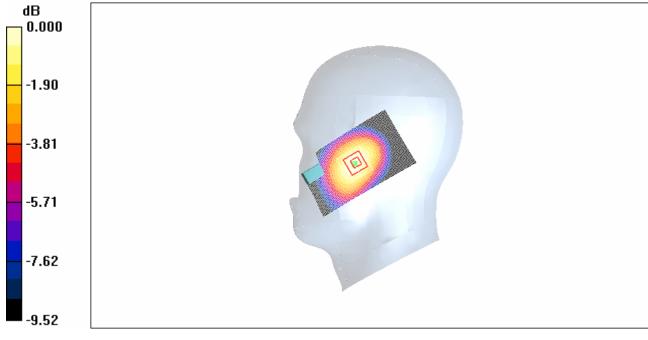
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.492 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.604 W/kg

SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.334 mW/g

Maximum value of SAR (measured) = 0.483 mW/g

0 dB = 0.483 mW/g

Fig. 11 850 MHz CH190

850 Right Tilt Low

Date/Time: 2009-11-19 10:37:03

Electronics: DAE4 Sn771

Medium: Head 850

Medium parameters used: f = 825 MHz; $\sigma = 0.906 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

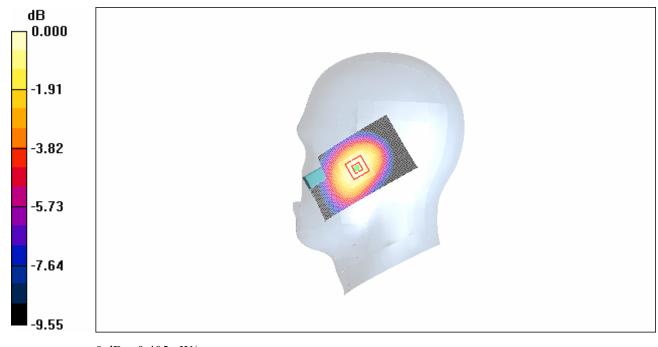
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.408 mW/g


Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.383 mW/g; SAR(10 g) = 0.277 mW/g

Maximum value of SAR (measured) = 0.405 mW/g

0~dB = 0.405 mW/g

Fig. 12 850 MHz CH128

850 Body Towards Ground High with GPRS

Date/Time: 2009-11-19 13:18:36

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.00 \text{ mho/m}$; $\epsilon r = 54.7$; $\rho = 1000 \text{ mho/m}$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

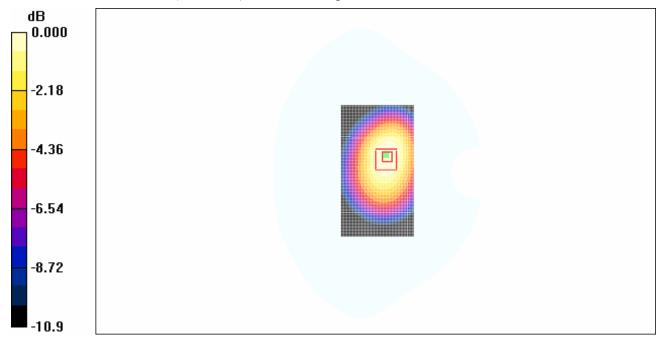
Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.932 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 27.2 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.867 mW/g; SAR(10 g) = 0.604 mW/g

Maximum value of SAR (measured) = 0.888 mW/g

0 dB = 0.888 mW/g

Fig. 13 850 MHz CH251

850 Body Towards Ground Middle with GPRS

Date/Time: 2009-11-19 13:34:12

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$

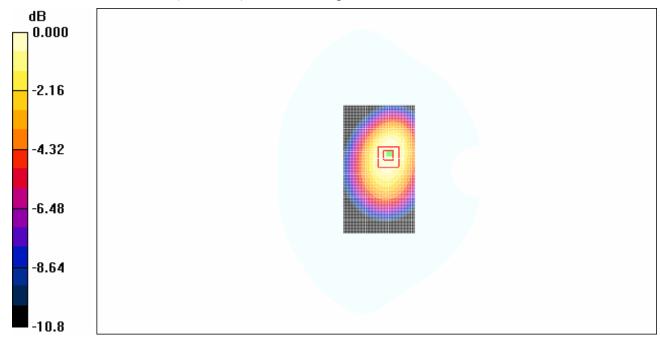
 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.998 mW/g


Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.2 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.645 mW/g

Maximum value of SAR (measured) = 0.953 mW/g

0 dB = 0.953 mW/g

Fig. 14 850 MHz CH190

850 Body Towards Ground Low with GPRS

Date/Time: 2009-11-19 13:50:01

Electronics: DAE4 Sn771

Medium: 850 Body

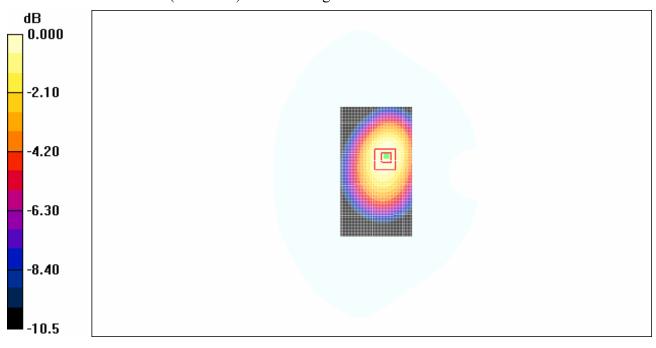
Medium parameters used: f = 825 MHz; $\sigma = 0.973$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

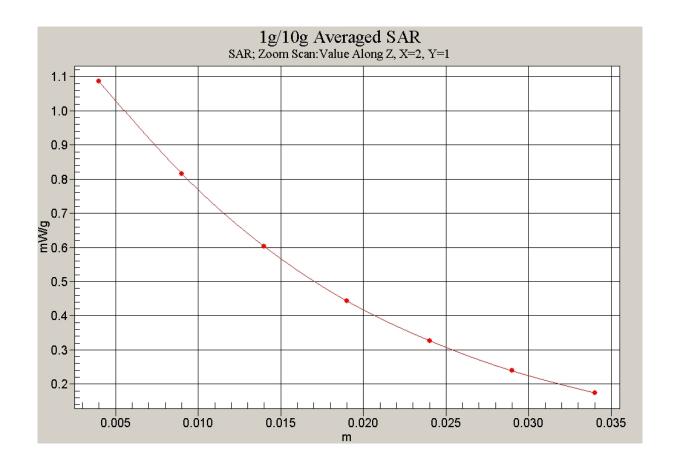
Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.14 mW/g


Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.0 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.739 mW/g


Maximum value of SAR (measured) = 1.09 mW/g

0 dB = 1.09 mW/g

Fig. 15 850 MHz CH128

Z-Scan at power reference point (850 MHz CH128)

850 Body Towards Phantom High with GPRS

Date/Time: 2009-11-19 14:09:27

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.00 \text{ mho/m}$; $\epsilon r = 54.7$; $\rho = 1000 \text{ mho/m}$

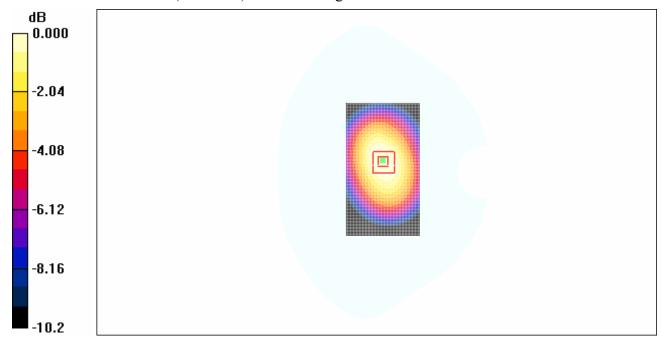
 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.753 mW/g


Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 0.938 W/kg

SAR(1 g) = 0.698 mW/g; SAR(10 g) = 0.491 mW/g

Maximum value of SAR (measured) = 0.720 mW/g

0 dB = 0.720 mW/g

Fig. 16 850 MHz CH251

850 Body Towards Phantom Middle with GPRS

Date/Time: 2009-11-19 14:25:39

Electronics: DAE4 Sn771

Medium: 850 Body

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.8$; $\rho = 1000$

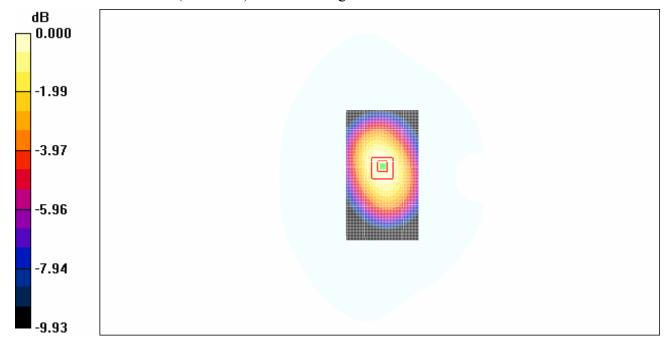
 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.789 mW/g


Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.4 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.988 W/kg

SAR(1 g) = 0.742 mW/g; SAR(10 g) = 0.523 mW/g

Maximum value of SAR (measured) = 0.772 mW/g

0 dB = 0.772 mW/g

Fig. 17 850 MHz CH190

850 Body Towards Phantom Low with GPRS

Date/Time: 2009-11-19 14:41:22

Electronics: DAE4 Sn771

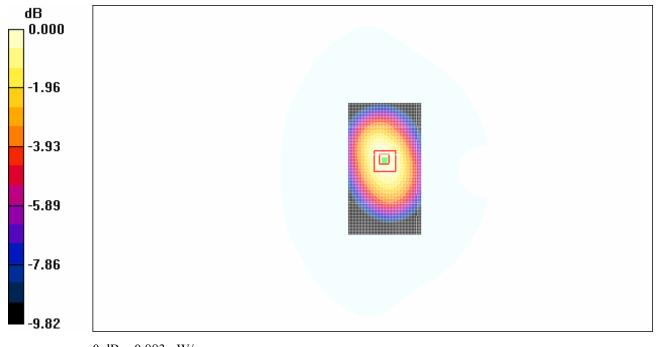
Medium: 850 Body

Medium parameters used: f = 825 MHz; $\sigma = 0.973$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)


Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.892 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.1 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.841 mW/g; SAR(10 g) = 0.593 mW/gMaximum value of SAR (measured) = 0.883 mW/g

 $0\ dB=0.883mW/g$

Fig. 18 850 MHz CH128

850 Body Towards Ground Low with Headset

Date/Time: 2009-11-19 14:58:35

Electronics: DAE4 Sn771

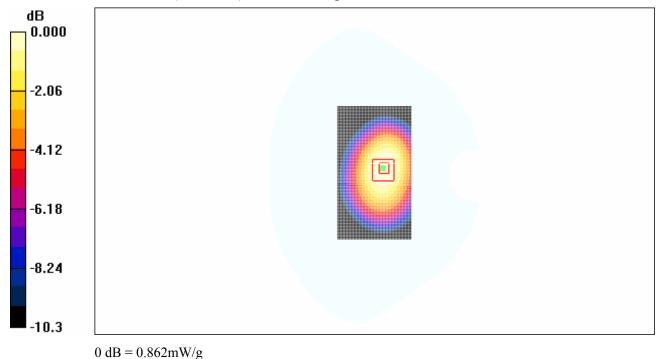
Medium: 850 Body

Medium parameters used: f = 825 MHz; $\sigma = 0.973$ mho/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)


Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.896 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.2 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.837 mW/g; SAR(10 g) = 0.580 mW/gMaximum value of SAR (measured) = 0.862 mW/g

Č

Fig. 19 850 MHz CH128

1900 Left Cheek High

Date/Time: 2009-11-18 8:30:48

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

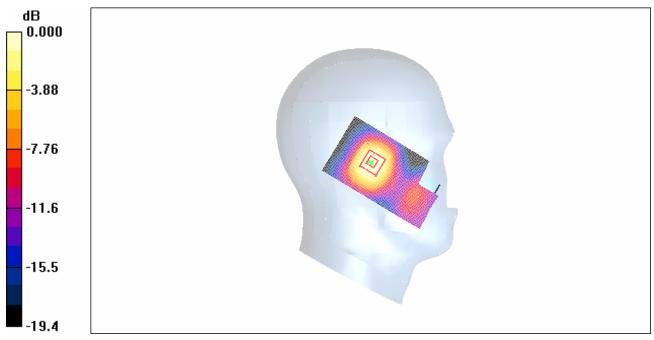
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.07 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.170 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.525 mW/g

Maximum value of SAR (measured) = 0.953 mW/g

0 dB = 0.953 mW/g

Fig. 20 1900 MHz CH810

1900 Left Cheek Middle

Date/Time: 2009-11-18 8:43:24

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

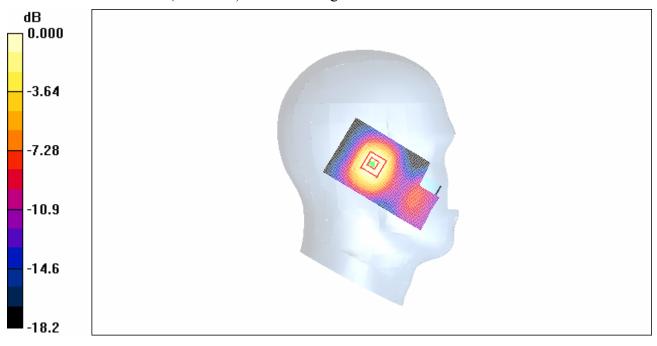
Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 9.83 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.886 mW/g; SAR(10 g) = 0.529 mW/g

Maximum value of SAR (measured) = 0.956 mW/g

0~dB=0.956mW/g

Fig. 21 1900 MHz CH661

1900 Left Cheek Low

Date/Time: 2009-11-18 8:59:26 Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.6$; $\rho =$

 1000 kg/m^3

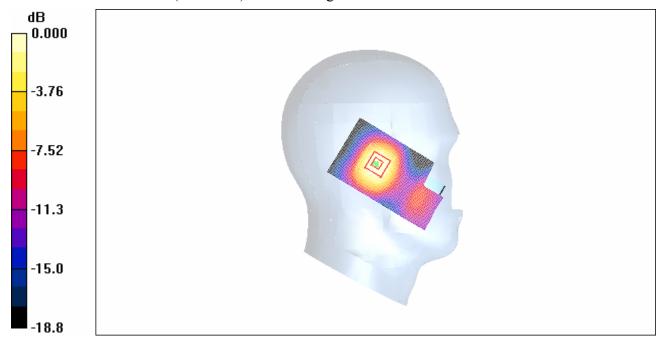
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

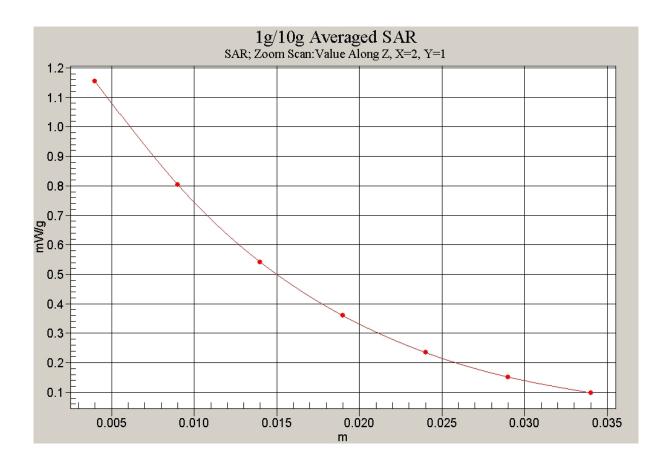
Maximum value of SAR (interpolated) = 1.32 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = 0.188 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.647 mW/g


Maximum value of SAR (measured) = 1.15 mW/g

0 dB = 1.15 mW/g

Fig. 22 1900 MHz CH512

Z-Scan at power reference point (1900 MHz CH512)

1900 Left Tilt High

Date/Time: 2009-11-18 9:44:44

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

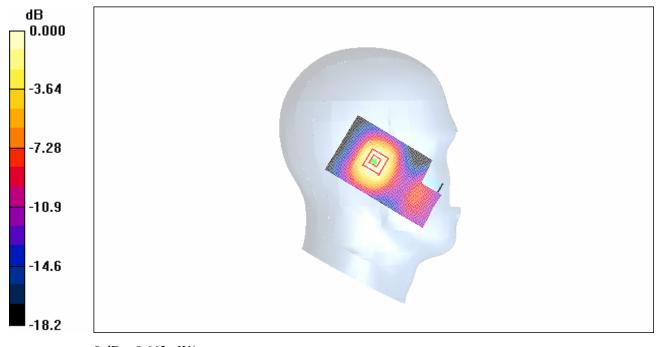
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.758 mW/g


Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 0.940 W/kg

SAR(1 g) = 0.614 mW/g; SAR(10 g) = 0.364 mW/g

Maximum value of SAR (measured) = 0.663 mW/g

0 dB = 0.663 mW/g

Fig.23 1900 MHz CH810

1900 Left Tilt Middle

Date/Time: 2009-11-18 9:31:43 Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

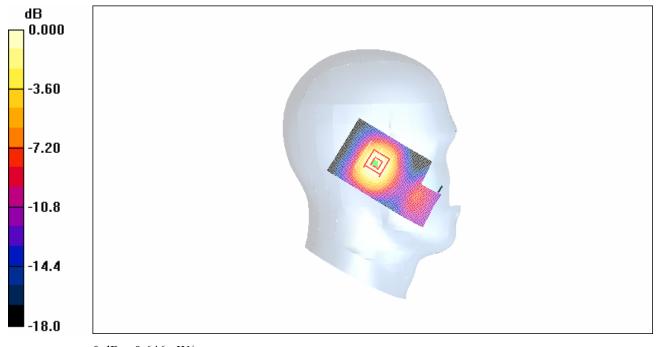
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.734 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.103 dB

Peak SAR (extrapolated) = 0.914 W/kg

SAR(1 g) = 0.603 mW/g; SAR(10 g) = 0.361 mW/g

Maximum value of SAR (measured) = 0.646 mW/g

0~dB = 0.646 mW/g

Fig. 24 1900 MHz CH661

1900 Left Tilt Low

Date/Time: 2009-11-18 9:18:02

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.6$; $\rho =$

 1000 kg/m^3

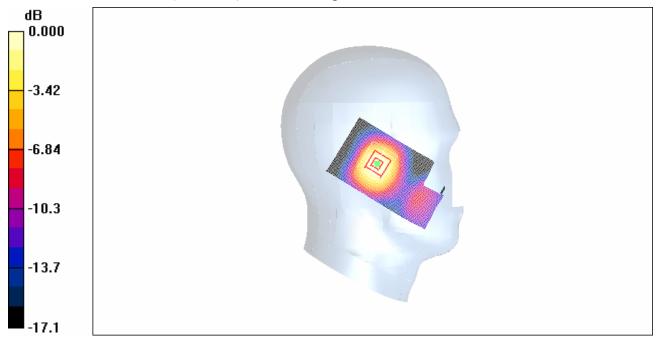
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.844 mW/g


Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.700 mW/g; SAR(10 g) = 0.421 mW/g

Maximum value of SAR (measured) = 0.766 mW/g

0 dB = 0.766 mW/g

Fig. 25 1900 MHz CH512

1900 Right Cheek High

Date/Time: 2009-11-18 13:11:02

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

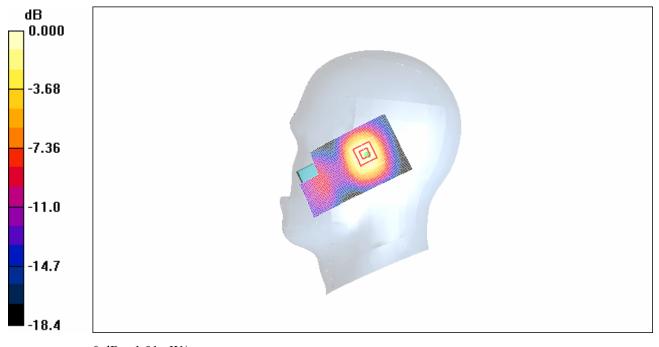
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.20 mW/g


Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.188 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.940 mW/g; SAR(10 g) = 0.560 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

0 dB = 1.01 mW/g

Fig. 26 1900 MHz CH810

1900 Right Cheek Middle

Date/Time: 2009-11-18 13:24:02

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

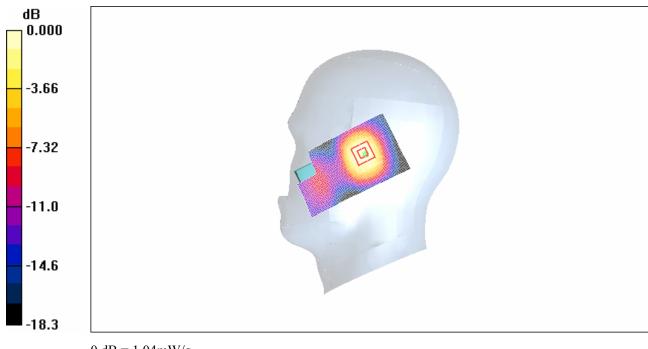
Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.15 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.4 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.571 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

 $0\ dB=1.04mW/g$

Fig. 27 1900 MHz CH661

1900 Right Cheek Low

Date/Time: 2009-11-18 13:37:07

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.6$; $\rho =$

 1000 kg/m^3

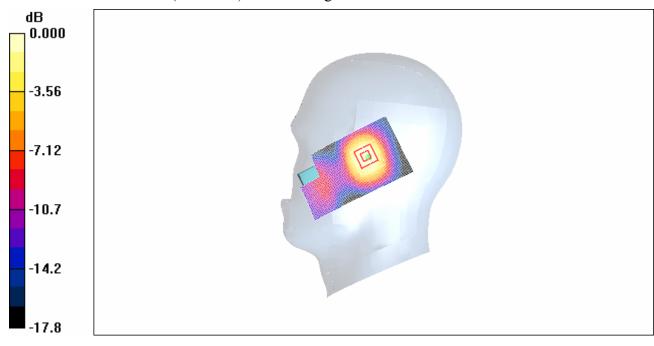
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.28 mW/g


Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.650 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

0 dB = 1.15 mW/g

Fig. 28 1900 MHz CH512

1900 Right Tilt High

Date/Time: 2009-11-18 14:19:02

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1910 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

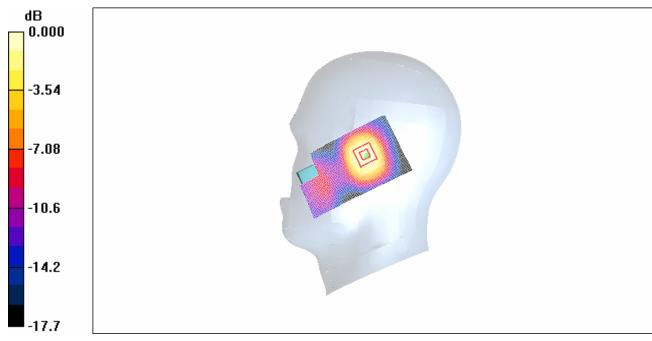
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.710 mW/g


Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.904 W/kg

SAR(1 g) = 0.586 mW/g; SAR(10 g) = 0.349 mW/g

Maximum value of SAR (measured) = 0.621 mW/g

0 dB = 0.621 mW/g

Fig. 29 1900 MHz CH810

1900 Right Tilt Middle

Date/Time: 2009-11-18 14:04:05

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

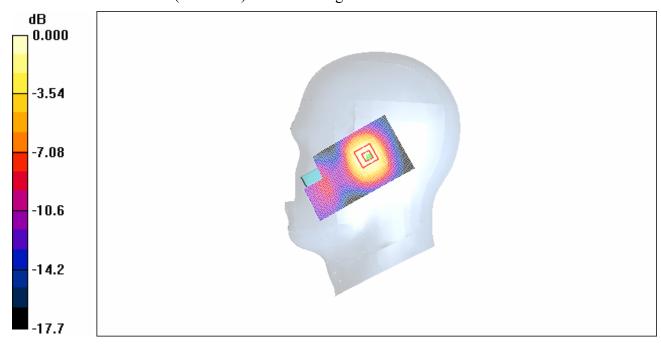
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.683 mW/g


Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.3 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.847 W/kg

SAR(1 g) = 0.565 mW/g; SAR(10 g) = 0.340 mW/g

Maximum value of SAR (measured) = 0.603 mW/g

0~dB = 0.603 mW/g

Fig.30 1900 MHz CH661

1900 Right Tilt Low

Date/Time: 2009-11-18 13:50:47

Electronics: DAE4 Sn771 Medium: Head 1900

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.6$; $\rho =$

 1000 kg/m^3

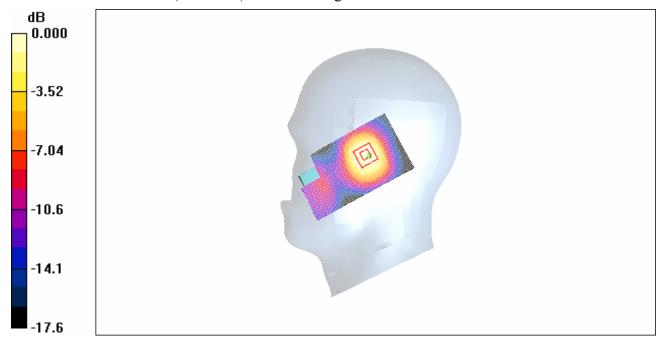
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.750 mW/g


Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.959 W/kg

SAR(1 g) = 0.632 mW/g; SAR(10 g) = 0.382 mW/g

Maximum value of SAR (measured) = 0.668 mW/g

0 dB = 0.668 mW/g

Fig.31 1900 MHz CH512

1900 Body Towards Ground High With GPRS

Date/Time: 2009-11-18 16:23:59

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

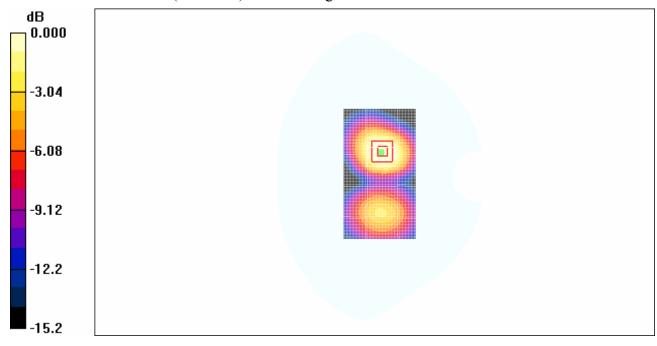
Medium parameters used: f = 1910 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.0$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.30 mW/g


Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.672 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

Fig. 32 1900 MHz CH810

1900 Body Towards Ground Middle With GPRS

Date/Time: 2009-11-18 16:13:28

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

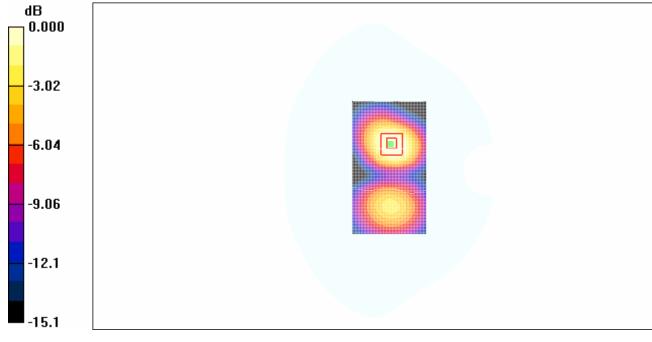
Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.27 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.655 mW/g

Maximum value of SAR (measured) = 1.11 mW/g

0 dB = 1.11 mW/g

Fig. 33 1900 MHz CH661

1900 Body Towards Ground Low With GPRS

Date/Time: 2009-11-18 16:00:16

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.49$ mho/m; $\varepsilon_r = 52.1$; $\rho =$

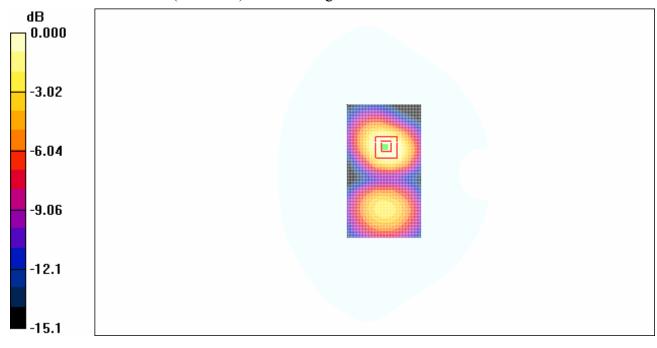
 1000 kg/m^3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.45 mW/g


Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.1 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 1.98 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.732 mW/g


Maximum value of SAR (measured) = 1.27 mW/g

0 dB = 1.27 mW/g

Fig. 34 1900 MHz CH512

Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Phantom High With GPRS

Date/Time: 2009-11-18 15:26:01

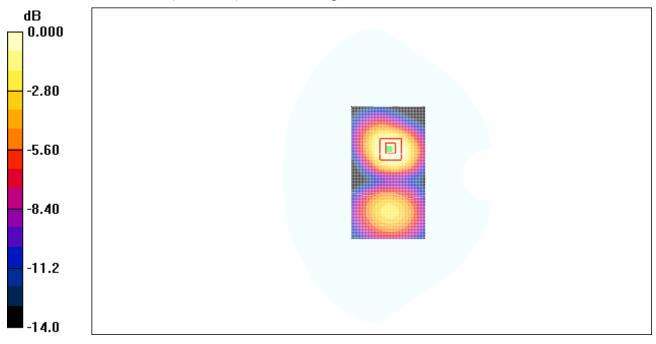
Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.0$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)


Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.766 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.37 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.661 mW/g; SAR(10 g) = 0.392 mW/gMaximum value of SAR (measured) = 0.659 mW/g

0 dB = 0.659 mW/g

Fig. 35 1900 MHz CH810

1900 Body Towards Phantom Middle With GPRS

Date/Time: 2009-11-18 15:36:56

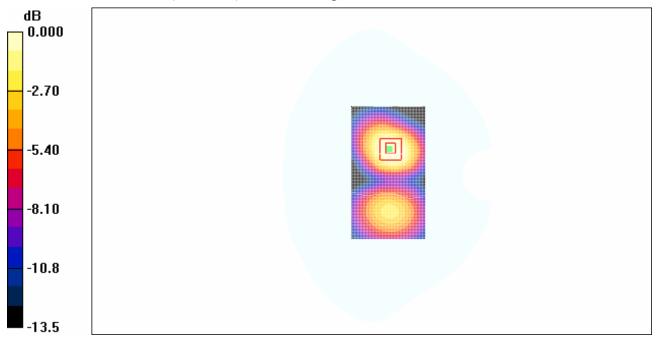
Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)


Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.759 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.06 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.681 mW/g; SAR(10 g) = 0.427 mW/gMaximum value of SAR (measured) = 0.684 mW/g

0~dB=0.684mW/g

Fig. 36 1900 MHz CH661

1900 Body Towards Phantom Low With GPRS

Date/Time: 2009-11-18 15:47:13

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 51.9$; $\rho =$

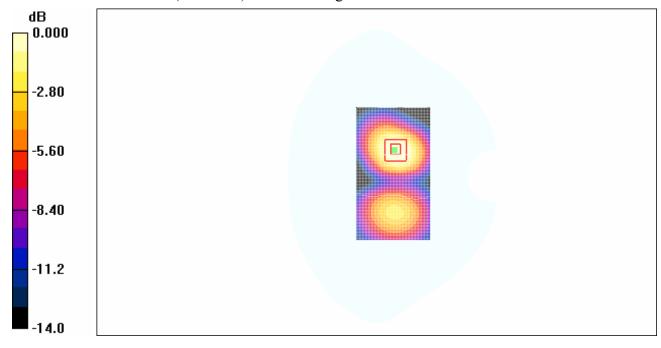
 1000 kg/m^3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.897 mW/g


Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.48 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.805 mW/g; SAR(10 g) = 0.507 mW/g

Maximum value of SAR (measured) = 0.827 mW/g

0 dB = 0.827 mW/g

Fig. 37 1900 MHz CH512

1900 Body Towards Ground Low With Headset

Date/Time: 2009-11-18 17:12:24

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 51.9$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.698 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.96 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.982 W/kg

SAR(1 g) = 0.608 mW/g; SAR(10 g) = 0.356 mW/g

Maximum value of SAR (measured) = 0.619 mW/g

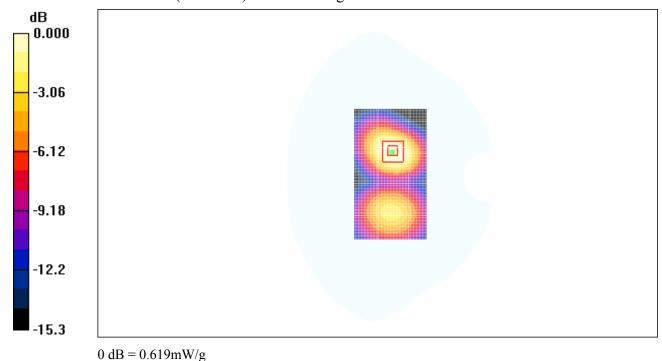


Fig. 38 1900 MHz CH810

ANNEX D SYSTEM VALIDATION RESULTS

835MHz

Date/Time: 2009-11-19 7:27:04

Electronics: DAE4 Sn771

Medium: Head 835

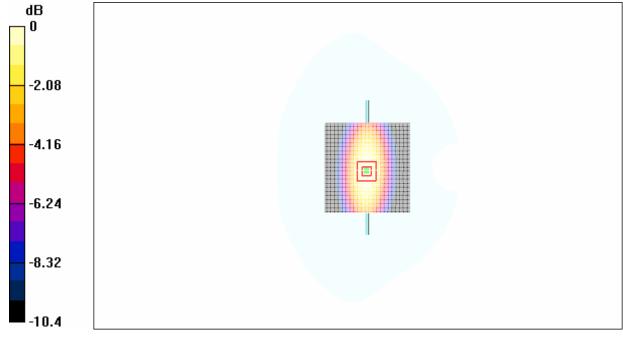
Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

835MHz/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 2.79 mW/g


835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.0 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.64 mW/g

Maximum value of SAR (measured) = 2.75 mW/g

0 dB = 2.75 mW/g

Fig.39 validation 835MHz 250mW

1900MHz

Date/Time: 2009-11-18 7:19:34

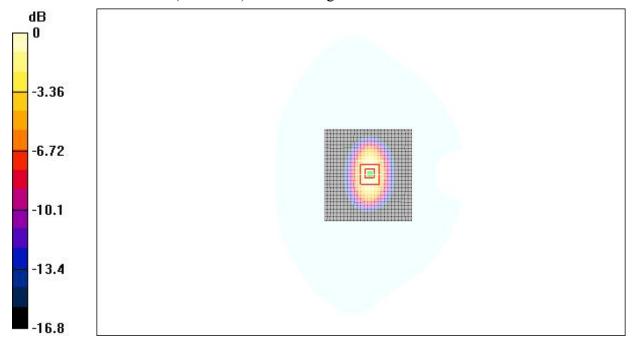
Electronics: DAE4 Sn771 Medium: 1900 Head

Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.6 mW/g


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.4 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 9.85 mW/g; SAR(10 g) = 5.20 mW/g

Maximum value of SAR (measured) = 11.1 mW/g

0 dB = 11.1 mW/g

Fig.40 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client TMC China

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3DV3-3149_Sep09

Object	E	S3DV3-SN: 3149		
Calibration procedure(s)		QA CAL-01.v6		
	C	alibration procedure for dosimetric E-fiel	d probes	
2.00.00.00				
Calibration date:	Se	eptember 25, 2009		
Condition of the calibrated item In		Tolerance		
This calibration certify docume	ents the traceabilit	y to national standards, which realize the physical u	units of measurements(SI)	
		onfidence probability are given on the following page		
		ronment temperature (22±3) ⁰ C and humidity<70%	,	
Calibration Equipment used (M	1&TE critical for c	alibration)		
Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration	
Power meter E4419B	GB41293874	5-May-09 (METAS, NO. 251-00388)	May-10	
Power sensor E4412A	MY41495277	5-May-09 (METAS, NO. 251-00388)	May-10	
Reference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-09 (METAS, NO. 251-00403)	Aug-10	
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-09 (METAS, NO. 251-00389)	May-10	
Reference 30 dB Attenuator	SN:S5129 (30b)	10-Aug-09 (METAS, NO. 251-00404)	Aug-10	
DAE4	SN:617	10-Jun-09 (SPEAG, NO.DAE4-907_Jun09)	Jun-10	
Reference Probe ES3DV2	SN: 3013	12-Jan-09 (SPEAG, NO. ES3-3013_Jan09)	Jan-10	
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration	
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-07)	In house check: Oct-09	
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-07)	In house check: Nov-09	
	Name	Function	Signature	
Calibrated by:	Katja Pokovic	Technical Manager	10 11	
			may a	
		A	111	
Approved by:	Niels Kuster	Quality Manager	- LON	
		,	Issued: September 25, 2009	
		except in full without written approval of the laborate	in industry that and an industry that a contrast	

Certificate No: ES3DV3-3149_Sep09 Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3DV3-3149_ Sep09 Page 2 of 9

ES3DV3 SN: 3149 September 25, 2009

Probe ES3DV3

SN: 3149

Manufactured: June 12, 2007

Calibrated: September 25, 2009

Calibrated for DASY4 System

Certificate No: ES3DV3-3149_ Sep09 Page 3 of 9

ES3DV3 SN: 3149 September 25, 2009

DASY - Parameters of Probe: ES3DV3 SN:3149

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.14±10.1%	$\mu V/(V/m)^2$	DCP X	94mV
NormY	1.23±10.1%	$\mu V/(V/m)^2$	DCP Y	95mV
NormZ	1.29±10.1%	$\mu V/(V/m)^2$	DCP Z	91mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8

Boundary Effect

TSL 900MHz Typical SAR gradient: 5% per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SARbe[%]	Without Correction Algorithm	3.8	1.6
SARbe[%]	With Correction Algorithm	0.8	0.7

TSL 1810MHz Typical SAR gradient: 10% per mm

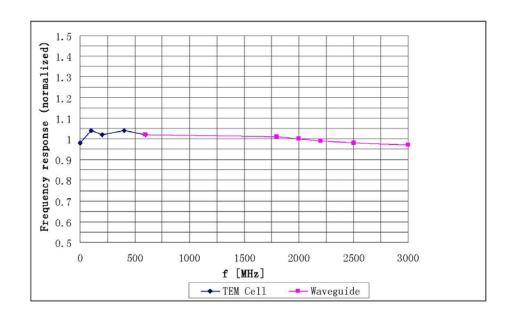
Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SARbe[%]	Without Correction Algorithm	6.8	3.6
SARbe[%]	With Correction Algorithm	0.4	0.2

Sensor Offset

Probe Tip to Sensor Center 2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2,which for a normal distributio Corresponds to a coverage probability of approximately 95%.

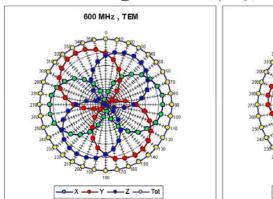
^B Numerical linearization parameter: uncertainty not required.

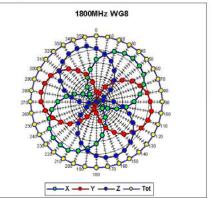

Certificate No: ES3DV3-3149_ Sep09 Page 4 of 9

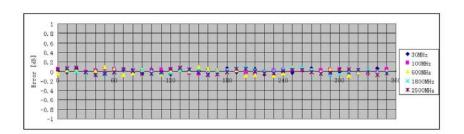
A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

ES3DV3 SN: 3149 September 25, 2009

Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ±5.0% (k=2)

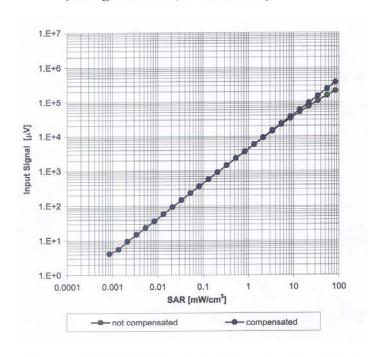

Certificate No: ES3DV3-3149_ Sep09 Page 5 of 9

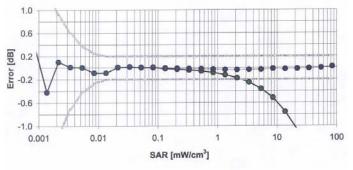


ES3DV3 SN: 3149 September 25, 2009

Receiving Pattern (ϕ), θ =0°

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)


Certificate No: ES3DV3-3149_ Sep09 Page 6 of 9

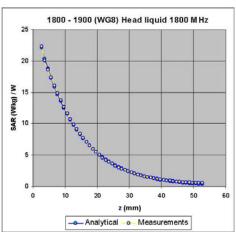


ES3DV3 SN: 3149

September 25, 2009

Dynamic Range f(SAR_{head}) (Waveguide: WG8, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.5\%$ (k=2)


Certificate No: ES3DV3-3149_ Sep09 Page 7 of 9

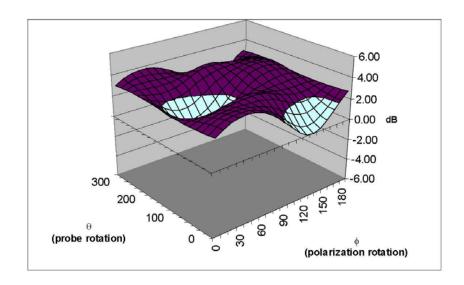
ES3DV3 SN: 3149 September 25, 2009

Conversion Factor Assessment

f[MHz]	Validity[MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
850	±50 /±100	Head	41.5±5%	0.90±5%	0.91	1.13	6.56	±11.0% (k=2)
900	±50 /±100	Head	41.5±5%	0.97±5%	0.83	1.26	6.34	±11.0% (k=2)
1800	±50 /±100	Head	40.0±5%	1.40±5%	0.69	1.47	5.18	±11.0% (k=2)
1900	±50 /±100	Head	40.0±5%	1.40±5%	0.72	1.38	5.03	±11.0% (k=2)
2100	±50 /±100	Head	39.8±5%	1.49±5%	0.66	1.34	4.58	±11.0% (k=2)
850	±50 /±100	Body	55.2±5%	0.97±5%	0.76	1.26	6.22	±11.0% (k=2)
900	±50 /±100	Body	55.0±5%	1.05±5%	0.99	1.06	6.02	±11.0% (k=2)
1800	±50 /±100	Body	53.3±5%	1.52±5%	0.75	1.34	4.97	±11.0% (k=2)
1900	±50 /±100	Body	53.3±5%	1.52±5%	0.62	1.33	4.68	±11.0% (k=2)
2100	±50 /±100	Body	53.5±5%	1.57±5%	0.68	1.34	4.35	±11.0% (k=2)

 $^{^{\}rm c}$ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty $\,$ is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3DV3-3149_ Sep09 Page 8 of 9

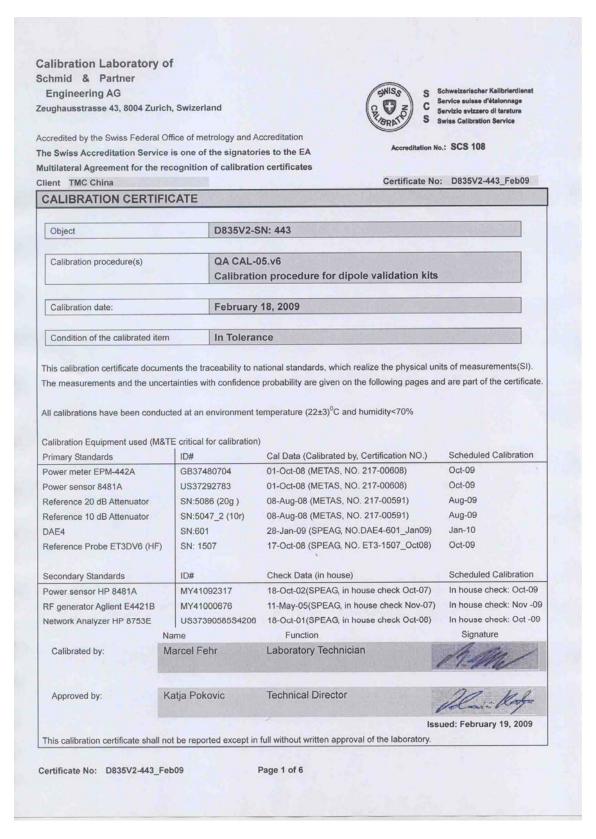


ES3DV3 SN: 3149

September 25, 2009

Deviation from Isotropy

Error (ϕ, θ) , f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ±2.5% (k=2)

Certificate No: ES3DV3-3149_Sep09

ANNEX F DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443 Feb09 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	S BONDESS TO THE
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	_	-

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 mW/g
SAR normalized	normalized to 1W	9.90 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60mW/g
SAR normalized	normalized to 1W	6.40 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb09

Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.402 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	September 3, 2001		

DASY4 Validation Report for Head TSL

Date/Time: 18.02.2009 10:13:45

Test laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

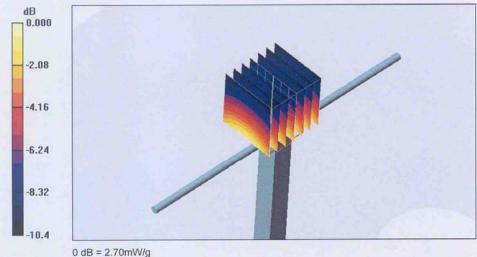
Medium: HSL 835 MHz;

Medium parameters used: f=835 MHz; σ =0.88 mho/m; ϵ_r =39.9; ρ = 1000kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

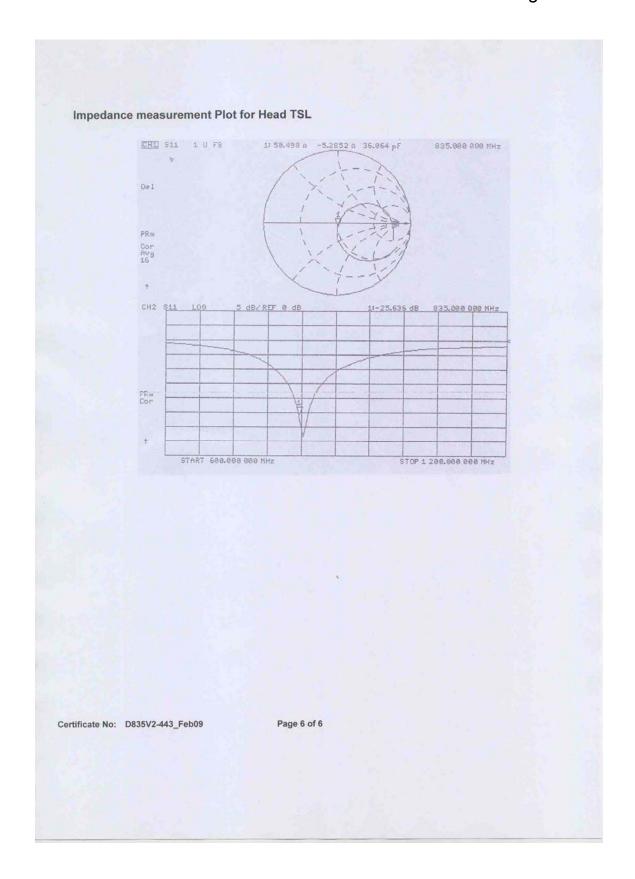
DASY4 Configuration:


- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 17.10.2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.1_2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.6 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 3.72 W/kg


SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.60 mW/g Maximum value of SAR (measured) = 2.70 mW/g

Certificate No: D835V2-443_Feb09

Page 5 of 6

Calibration date:

Primary Standards

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Swizerland

Accredited by the Swiss Federal Office of metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Client TMC China Certificate No: D1900V2-541_Feb09

CALIBRATION CERTIFICATE

Object D1900V2-SN: 541

Calibration procedure(s)

QA CAL-05.v6

Calibration procedure for dipole validation kits

Condition of the calibrated item In Tolerance

February 19, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

Cal Data (Calibrated by, Certification NO.)

All calibrations have been conducted at an environment temperature (22±3)0C and humidity<70%

Calibration Equipment used (M&TE critical for calibration)

ID#

Power meter EPM-442A GB37480704 01-Oct-08 (METAS, NO. 217-00608) Oct-09 Power sensor 8481A US37292783 01-Oct-08 (METAS, NO. 217-00608) Oct-09 Reference 20 dB Attenuator SN:5086 (20g) 08-Aug-08 (METAS, NO. 217-00591) Aug-09 08-Aug-08 (METAS, NO. 217-00591) Reference 10 dB Attenuator SN:5047_2 (10r) Aug-09 28-Jan-09 (SPEAG, NO.DAE4-601_Jan09) SN:601 Jan-10 Reference Probe ET3DV6 (HF) SN: 1507 17-Oct-08 (SPEAG, NO. ET3-1507_Oct08) Oct-09 Scheduled Calibration Check Data (in house) Secondary Standards ID# In house check: Oct-09 Power sensor HP 8481A MY41092317 18-Oct-02(SPEAG, in house check Oct-07) In house check: Nov -09 RF generator Aglient E4421B MY41000676 11-May-05(SPEAG, in house check Nov-07) In house check: Oct -10 US37390585S4206 18-Oct-01(SPEAG, in house check Oct-08) Network Analyzer HP 8753E Signature Function Name

Calibrated by: Marcel Fehr Laboratory Technician

Approved by: Katja Pokovic Technical Director

Issued: February 20, 2009

Scheduled Calibration

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D1900V2-541_Feb09

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541 Feb09

Page 2 of 6

Measurement Conditions

DASV system configuration, as far as not given on page 1

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	The County of th
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.73 mW /g
SAR normalized	normalized to 1W	38.9 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.09 mW /g
SAR normalized	normalized to 1W	20.4 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.2 mW/g ± 16.5 % (k=2)

Certificate No: D1900V2-541_Feb09

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.4 Ω - 8.9 μΩ	
Return Loss	- 26.4 dB	

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 4 , 2001

Certificate No: D1900V2-541_Feb09

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 19.02.2009 09:37:10

Test laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; serial: D1900V2-SN: 541

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

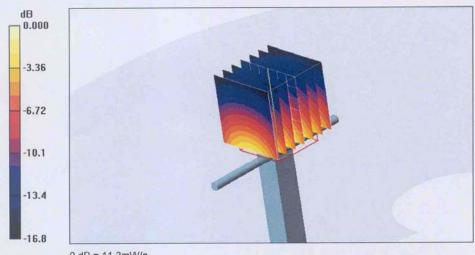
Medium: HSL 1900 MHz;

Medium parameters used: f=1900 MHz; σ =1.38 mho/m; ϵ_r =38.9; ρ = 1000kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

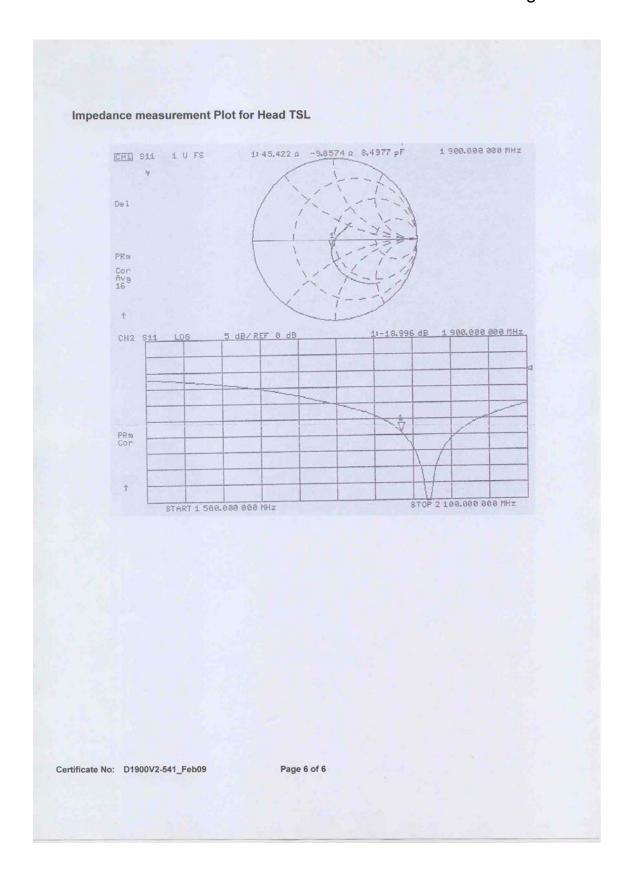

- Probe: ET3DV6-SN1507(HF); ConvF(5.03, 5.03, 5.03); Calibrated: 17.10.2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.1_2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.059 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.09 mW/g Maximum value of SAR (measured) = 11.3 mW/g



0 dB = 11.3 mW/g

Certificate No: D1900V2-541_Feb09

Page 5 of 6

