No. 2008SAR00047 Page 1 of 109

No. 2008SAR00047

For

TCT Mobile Suzhou Limited

GSM/GPRS 850/1900 mobile phone

OT-S321A

With

Hardware Version: PIO5

Software Version: v16F

FCCID: RAD087

Issued Date: 2008-08-15

No. DAT-P-114/01-01 Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Information Industry

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100083.

Tel:+86(0)10-62303288-2105, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

No. 2008SAR00047 Page 2 of 109

TABLE OF CONTENT

1 TEST LABORATORY	3
1.1 Testing Location	3
1.2 Testing Environment	
1.3 Project Data 1.4 Signature	
2 CLIENT INFORMATION	
2.1 Applicant Information	
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
3.1 About EUT 3.2 Internal Identification of EUT used during the test	
3.3 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
4 OPERATIONAL CONDITIONS DURING TEST	
4.1 Schematic Test Configuration	
4.2 SAR MEASUREMENT SET-UP	
4.3 DASY4 E-FIELD PROBE SYSTEM	
4.4 E-FIELD PROBE CALIBRATION	
4.5 Other Test Equipment	
4.7 System Specifications	
5 CHARACTERISTICS OF THE TEST	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	11
6 LABORATORY ENVIRONMENT	11
7 CONDUCTED OUTPUT POWER MEASUREMENT	11
7.1 Summary	11
7.2 Conducted Power	11
8 TEST RESULTS	12
8.1 DIELECTRIC PERFORMANCE	12
8.2 System Validation	
8.3 SUMMARY OF MEASUREMENT RESULTS (850MHz) 8.4 SUMMARY OF MEASUREMENT RESULTS (1900MHz)	
8.5 CONCLUSION	
9 MEASUREMENT UNCERTAINTY	15
10 MAIN TEST INSTRUMENTS	16
ANNEX A MEASUREMENT PROCESS	17
ANNEX B TEST LAYOUT	18
ANNEX C GRAPH RESULTS	
ANNEX D SYSTEM VALIDATION RESULTS	87
ANNEX E PROBE CALIBRATION CERTIFICATE	89
ANNEX F DIPOLE CALIBRATION CERTIFICATE	98

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MII
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100083
Telephone:	+86-10-62303288
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Sun Qian
Test Engineer:	Lin Hao
Testing Start Date:	August 4, 2008
Testing End Date:	August 5, 2008

1.4 Signature

Lin Hao (Prepared this test report)

Sun Qian (Reviewed this test report)

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Suzhou Limited
Address /Post:	4/F, South Building, No.2966, Jinke Road, Zhangjiang High-Tech Park,
Address / Fost.	Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460885
Fax:	+86-21-61460602
Telephone:	+86-21-61460885

2.2 Manufacturer Information

Company Name:	TCT Mobile Suzhou Limited
Address /Dest	4/F, South Building, No. 2966, Jinke Road, Zhangjiang High-Tech Park,
Address /Post:	Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460885
Fax:	+86-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

EUT Description Model name GSM Frequency Band FCC ID GRPS Class: GSM/GPRS 850/1900 mobile phone OT-S321A GSM/GPRS 850/1900 RAD087 10

Picture 1: Constituents of the sample

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	011584000005363	PIO5	v16F

*EUT ID: is used to identify the test sample in the lab internally.

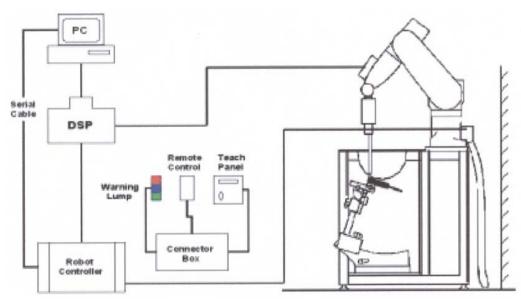
3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Travel Adapter	T5002684AGAA	١	Tenpao
AE2	Battery	CAB3010010C1	١	BYD
AE3	Headset	CCA3010001E0	١	Shunda
AE4	Headset	CCA30B4000C0	١	Shunda

*AE ID: is used to identify the test sample in the lab internally

4 OPERATIONAL CONDITIONS DURING TEST

4.1 Schematic Test Configuration


During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

4.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

	P	
Construction	Symmetrical design with triangular core	
	Interleaved sensors	12
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	151
	solvents, e.g., DGBE)	
Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL 1810	114
	Additional CF for other liquids and frequencies	
	upon request	
		Picture 3: ES3DV3 E-field Probe
Frequency	10 MHz to 4 GHz; Linearity: \pm 0.2 dB (30 MHz to 4 GH	łz)
Directivity	\pm 0.2 dB in HSL (rotation around probe axis)	

No. 2008SAR00047 Page 8 of 109

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones

Picture4:ES3DV3 E-field probe

4.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

Picture 5: Device Holder

4.5 Other Test Equipment

4.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

4.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0. l mm
Filling Volume	Approx. 20 liters
Dimensions	810 x l000 x 500 mm (H x L x W)
Available	Special

4.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000

Picture 6: Generic Twin Phantom

MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 4 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

FREQUENCY 850MHz	
41.45	
56.0	
1.45	
0.1	
1.0	
f=850MHz ε=41.5 σ=0.90	
FREQUENCY 1900MHz	
55.242	
44.452	
0.306	
f=1900MHz ε=40.0 σ=1.40	

FREQUENCY 850MHz							
52.5							
45.0							
1.4							
0.1							
1.0							
f=850MHz ε=55.2 σ=0.97							
FREQUENCY 1900MHz							
69.91							
29.96							
0.13							
f=1900MHz ε=53.3 σ=1.52							

Table 2. Composition of the Body Tissue Equivalent Matter

4.7 System Specifications

4.7.1 Robotic System Specifications

Specifications

 Positioner:
 Stäubli Unimation Corp. Robot Model: RX90L

 Repeatability:
 ±0.02 mm

 No. of Axis:
 6

 Data Acquisition Electronic (DAE) System

 Cell Controller

Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

5 CHARACTERISTICS OF THE TEST

5.1 Applicable Limit Regulations

EN 50360–2006: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 LABORATORY ENVIRONMENT

Table 3: The Ambient Conditions during EMF Test

	0
Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found w	very low and in compliance with requirement of standards. Reflection of surround

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surround objects is minimized and in compliance with requirement of standards.

7 CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

7.2 Conducted Power

7.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high

channels.

7.2.2 Measurement result

Table 4: Conducted Power Measurement Results

850MHZ	Conducted Power (dBm)					
	Channel 251(848.8MHz)	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 1				
Before SAR Test	31.72	31.96	32.15			
After SAR Test	31.71	31.94	32.13			
1900MHZ		Conducted Power (dBm)				
	Channel 810	Channel 810 Channel 661				
	(1909.8MHz)	(1880MHz)	(1850.2MHz)			
Before SAR Test	29.27	29.43	29.20			
After SAR Test	29.26	29.41	29.19			

7.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 8 to Table 13 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8 TEST RESULTS

8.1 Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.								
Liquid temperature during the test: 22.5°C								
/ Frequency Permittivity ϵ Conductivity σ (S/m)								
Torget volue	850 MHz	41.5	0.90					
Target value	1900 MHz	40.0	1.40					
Measurement value850 MHz42.10.92								
(Average of 10 tests)	1900 MHz	40.9	1.38					

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.								
Liquid temperature during the test: 22.5°C								
/ Frequency Permittivity ε Conductivity σ (S/m)								
Terretueles	850 MHz	55.2	0.97					
Target value	1900 MHz	53.3	1.52					
Measurement value	850 MHz	53.7	1.01					
(Average of 10 tests)	1.49							

8.2 System Validation

Table 7: System Validation

Measurement	Measurement is made at temperature 23.3 °C, relative humidity 49%, input power 250 mW.								
Liquid temperature during the test: 22.5°C									
Frequency Permittivity ε Conductivity									
Liquid paran	neters	835	835 MHz		5	0.91			
		1900) MHz	40.9		1.38			
	Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation			
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
Verification		Average	Average	Average	Average	Average	Average		
results	835 MHz	1.60	2.48	1.62	2.50	1.25%	0.81%		
	1900 MHz	5.09	9.73	5.27	9.91	3.3%	1.9%		

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

8.3 Summary of Measurement Results (850MHz)

Table 8: SAR Values (850MHz-Head)

Limit of SAR (W/kg)	10 g	1 g	
	Average	Average	
	2.0	1.6	Power
Test Case	Measureme	ent Result	Drift
	(W/ł	(g)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.1)	0.382	0.527	0.080
Left hand, Touch cheek, Mid frequency(See Fig.3)	0.492	0.701	0.017
Left hand, Touch cheek, Bottom frequency(See Fig.5)	0.516	0.725	-0.029
Left hand, Tilt 15 Degree, Top frequency(See Fig.7)	0.127	0.179	-0.088
Left hand, Tilt 15 Degree, Mid frequency(See Fig.9)	0.163	0.236	-0.106
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.11)	0.167	0.240	-0.090
Right hand, Touch cheek, Top frequency(See Fig.13)	0.532	0.789	-0.068
Right hand, Touch cheek, Mid frequency(See Fig.15)	0.686	1.02	0.100
Right hand, Touch cheek, Bottom frequency(See Fig.17)	0.717	1.09	0.123
Right hand, Tilt 15 Degree, Top frequency(See Fig.19)	0.177	0.267	0.003
Right hand, Tilt 15 Degree, Mid frequency(See Fig.21)	0.221	0.329	0.104
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.23)	0.243	0.365	0.107

	10 g Average	1g Average	
Limit of SAR (W/kg)	2.0	1.6	Power
	Measurement F	Result (W/kg)	Drift (dB)
Test Case	10 g Average	1 g Average	(42)
Body, Towards Ground, Top frequency with GPRS(See Fig.25)	0.501	0.725	-0.129
Body, Towards Ground, Mid frequency with GPRS (See Fig.27)	0.767	1.11	-0.100
Body, Towards Ground, Bottom frequency with GPRS (See Fig.29)	0.806	1.17	0.031
Body, Towards Ground, Bottom frequency with Headset (See Fig.31)	0.436	0.628	0.019

Table 9: SAR Values (850MHz-Body)

8.4 Summary of Measurement Results (1900MHz)

Table 10: SAR Values (1900MHz-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	
Test Case	Measurement I	Result (W/kg)	Power
	10 g Average	1 g Average	Drift (dB)
Left hand, Touch cheek, Top frequency(See Fig.33)	0.519	0.986	0.200
Left hand, Touch cheek, Mid frequency(See Fig.35)	0.588	1.1	0.066
Left hand, Touch cheek, Bottom frequency(See Fig.37)	0.596	1.18	-0.069
Left hand, Tilt 15 Degree, Top frequency(See Fig.39)	0.165	0.309	-0.089
Left hand, Tilt 15 Degree, Mid frequency(See Fig.41)	0.187	0.350	-0.048
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.43)	0.191	0.355	-0.093
Right hand, Touch cheek, Top frequency(See Fig.45)	0.421	0.693	-0.200
Right hand, Touch cheek, Mid frequency(See Fig.47)	0.477	0.785	0.083
Right hand, Touch cheek, Bottom frequency(See Fig.49)	0.483	0.796	-0.041
Right hand, Tilt 15 Degree, Top frequency(See Fig.51)	0.134	0.220	0.014
Right hand, Tilt 15 Degree, Mid frequency(See Fig.53)	0.152	0.249	-0.102
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.55)	0.155	0.254	0.199

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average 1.6	Power
Test Cose		nent Result /kg)	Drift (dB)
Test Case	10 g Average	1 g Average	
Body, Towards Ground, Top frequency with GPRS(See Fig.57)	0.484	0.906	-0.144
Body, Towards Ground, Mid frequency with GPRS (See Fig.59)	0.623	1.15	-0.065
Body, Towards Ground, Bottom frequency with GPRS (See Fig.61)	0.705	1.29	-0.053
Body, Towards Ground, Top frequency with Headset (See Fig.63)	0.377	0.692	0.015

Table 11: SAR Values (1900MHz-Body)

8.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

9 Measurement Uncertainty

SN	a	Туре	с	d	e = f(d,k)	f	h = c x f / e	k
	Uncertainty Component		Tol. (± %)	Prob Dist.	Div.	c _i (1 g)	1 g u _i (±%)	Vi
1	System repetivity	А	0.5	Ν	1	1	0.5	9
	Measurement System							
2	Probe Calibration	В	5	Ν	2	1	2.5	∞
3	Axial Isotropy	В	4.7	R	√3	(1-cp) ^{1/} 2	4.3	8
4	Hemispherical Isotropy	В	9.4	R	√3	$\sqrt{c_p}$		∞
5	Boundary Effect	В	0.4	R	√3	1	0.23	∞
6	Linearity	В	4.7	R	√3	1	2.7	∞
7	System Detection Limits	В	1.0	R	√3	1	0.6	8
8	Readout Electronics	В	1.0	Ν	1	1	1.0	∞
9	RF Ambient Conditions	В	3.0	R	√3	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	√3	1	0.2	∞
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	√3	1	1.7	œ

No. 2008SAR00047 Page 16 of 109

1		1	1	1	1	1	1	
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	√3	1	2.3	×
	Test sample Related	1	1		I		1	
13	Test Sample Positioning	А	4.9	N	1	1	4.9	N- 1
14	Device Holder Uncertainty	А	6.1	N	1	1	6.1	N- 1
15	Output Power Variation - SAR drift measurement	В	5.0	R	√3	1	2.9	×
	Phantom and Tissue Parameters							
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	√3	1	0.6	8
17	Liquid Conductivity - deviation from target values	В	5.0	R	√3	0.64	1.7	×
18	Liquid Conductivity - measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	√3	0.6	1.7	×
20	Liquid Permittivity - measurement uncertainty	В	5.0	N	1	0.6	1.7	м
	Combined Standard Uncertainty			RSS			11.25	
	Expanded Uncertainty (95% CONFIDENCE INTERVAL)			K=2			22.5	

10 MAIN TEST INSTRUMENTS

Table 12: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	HP 8753E	US38433212	August 31,2007	One year
02	Power meter	NRVD	101253	June 20, 2008	One year
03	Power sensor	NRV-Z5	100333		
04	Power sensor	NRV-Z6	100011	September 3, 2007	One year
05	Signal Generator	E4433B	US37230472	September 5, 2007	One Year
06	Amplifier	VTL5400	0505	No Calibration Requested	
07	BTS	CMU 200	105948	August 16, 2007	One year
08	E-field Probe	SPEAG ES3DV3	3142	September 7, 2007	One year
09	DAE	SPEAG DAE4	777	September 7, 2007	One year
10	Dipole Validation Kit	SPEAG D835V2	443	February 19, 2007	Two years
11	Dipole Validation Kit	SPEAG D1900V2	541	February 20, 2007	Two years

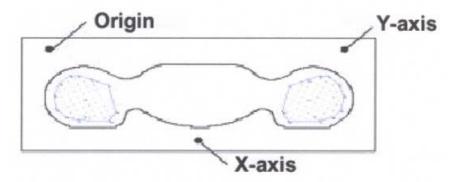
END OF REPORT BODY

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

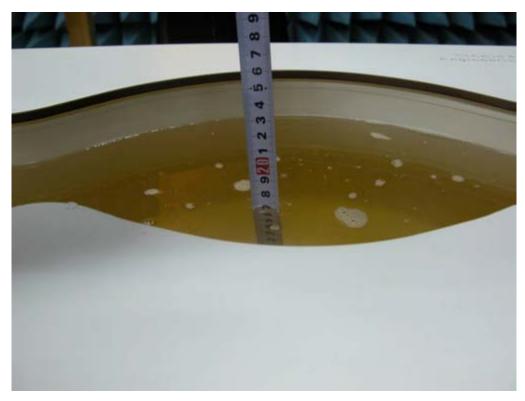

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

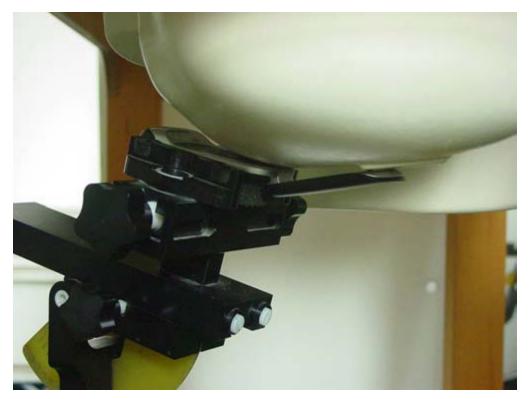
Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.


Picture A: SAR Measurement Points in Area Scan

No. 2008SAR00047 Page 18 of 109

ANNEX B TEST LAYOUT

Picture B1: Specific Absorption Rate Test Layout



Picture B2: Liquid depth in the Flat Phantom (850 MHz)

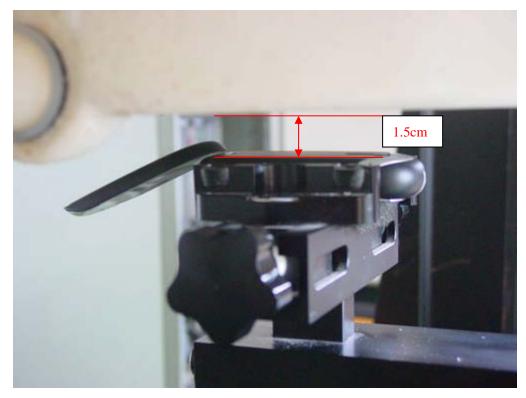
Picture B3 Liquid depth in the Flat Phantom (1900MHz)

No. 2008SAR00047 Page 20 of 109

Picture B4: Left Hand Touch Cheek Position

Picture B5: Left Hand Tilt 15° Position

No. 2008SAR00047 Page 21 of 109



Picture B6: Right Hand Touch Cheek Position

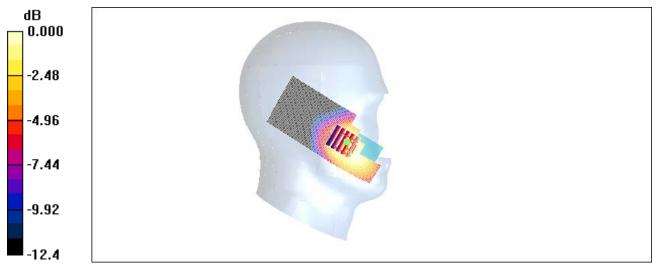
Picture B7: Right Hand Tilt 15° Position

No. 2008SAR00047 Page 22 of 109

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B9: Body-worn Position with Headset (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C GRAPH RESULTS


850 Left Cheek High

Date/Time: 2008-8-5 17:06:09 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.915 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.562 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.85 V/m; Power Drift = 0.080 dB Peak SAR (extrapolated) = 0.672 W/kg SAR(1 g) = 0.527 mW/g; SAR(10 g) = 0.382 mW/g Maximum value of SAR (measured) = 0.560 mW/g

0 dB = 0.560 mW/g

Fig. 1 850MHz CH251

No. 2008SAR00047 Page 24 of 109

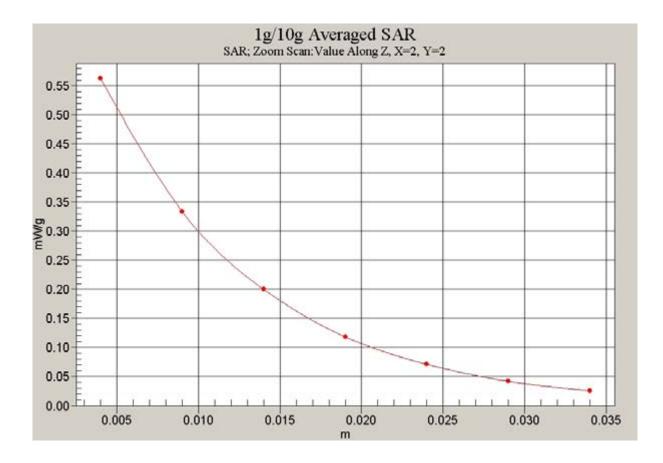
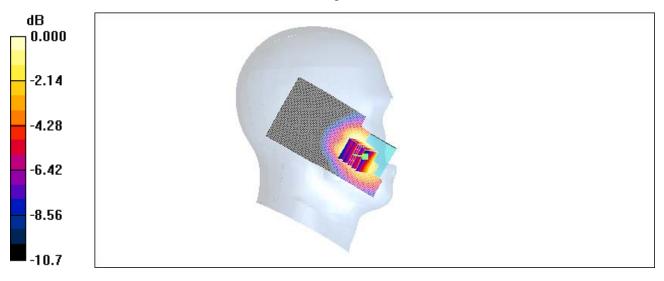


Fig. 2 Z-Scan at power reference point (850 MHz CH251)


850 Left Cheek Middle

Date/Time: 2008-8-5 17:23:41 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.905$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Middle/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.759 mW/g

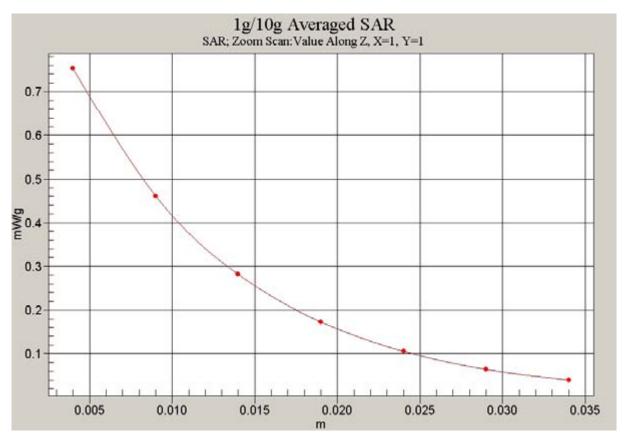
Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

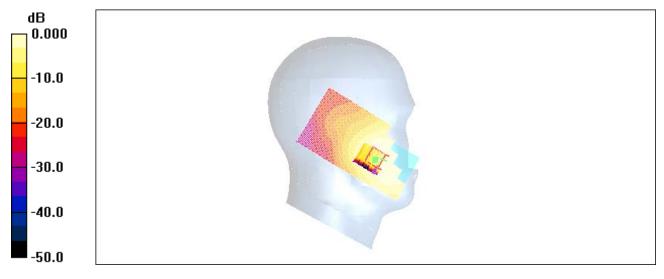
Reference Value = 27.22V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 0.898 W/kg SAR(1 g) = 0.701 mW/g; SAR(10 g) = 0.492 mW/g Maximum value of SAR (measured) = 0.752 mW/g

 $0 \ dB = 0.752 mW/g$

Fig. 3 850 MHz CH190

No. 2008SAR00047 Page 26 of 109




Fig. 4 Z-Scan at power reference point (850 MHz CH190)

850 Left Cheek Low

Date/Time: 2008-8-5 17:53:13 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.894$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Low/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.784 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.49V/m; Power Drift = -0.029 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.725 mW/g; SAR(10 g) = 0.516 mW/g Maximum value of SAR (measured) = 0.786 mW/g

 $0 \ dB = 0.786 mW/g$

Fig. 5 850 MHz CH128

No. 2008SAR00047 Page 28 of 109

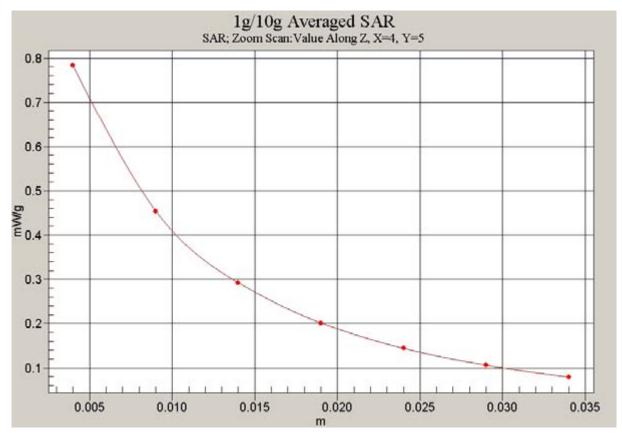
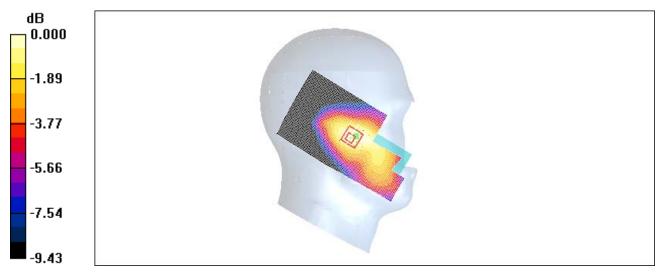


Fig. 6 Z-Scan at power reference point (850 MHz CH190)


850 Left Tilt High

Date/Time: 2008-8-5 16:00:30 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.915$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.218 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.21V/m; Power Drift = -0.088dB Peak SAR (extrapolated) = 0.265 W/kg SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.127 mW/g Maximum value of SAR (measured) = 0.198 mW/g

0 dB = 0.198 mW/g

Fig.7 850 MHz CH251

No. 2008SAR00047 Page 30 of 109

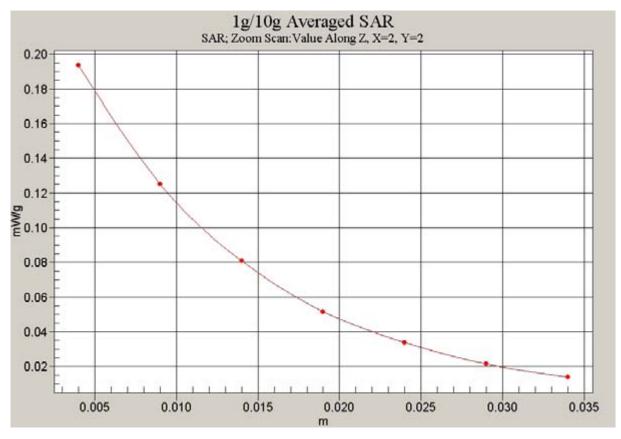
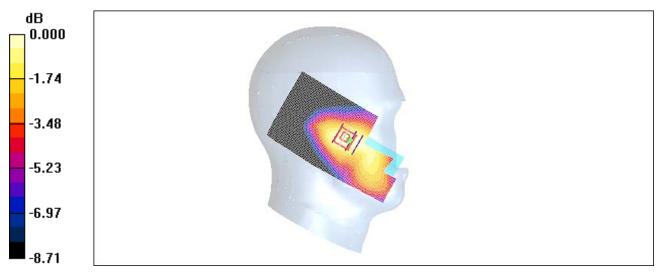


Fig. 8 Z-Scan at power reference point (850 MHz CH251)


850 Left Tilt Middle

Date/Time: 2008-8-5 16:18:06 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.915$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.263 mW/g

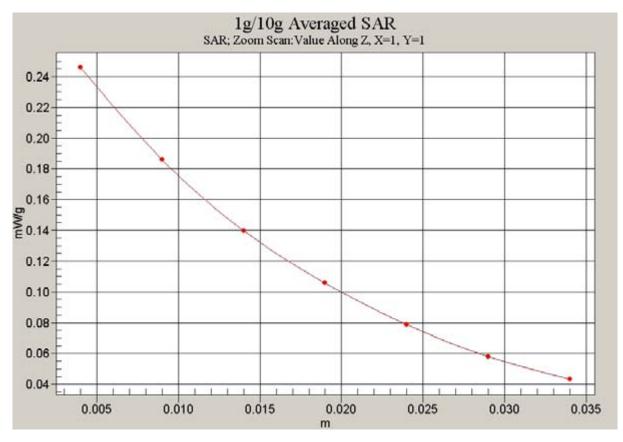
Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

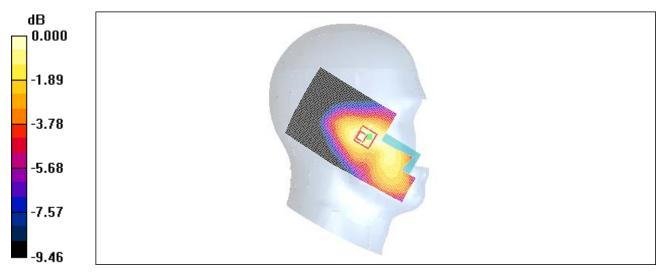
Reference Value = 19.09V/m; Power Drift = -0.106 dB Peak SAR (extrapolated) = 0.304 W/kg **SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.163 mW/g Maximum value of SAR (measured) = 0.249 mW/g**

0 dB = 0.249 mW/g

Fig.9 850 MHz CH190

No. 2008SAR00047 Page 32 of 109




Fig. 10 Z-Scan at power reference point (850 MHz CH190)

850 Left Tilt Low

Date/Time: 2008-8-5 16:29:14 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.894$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.268 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 19.84 V/m; Power Drift = -0.090 dB Peak SAR (extrapolated) = 0.313 W/kg SAR(1 g) = 0.240 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.266 mW/g

0 dB = 0.266 mW/g

Fig. 11 850 MHz CH128

No. 2008SAR00047 Page 34 of 109

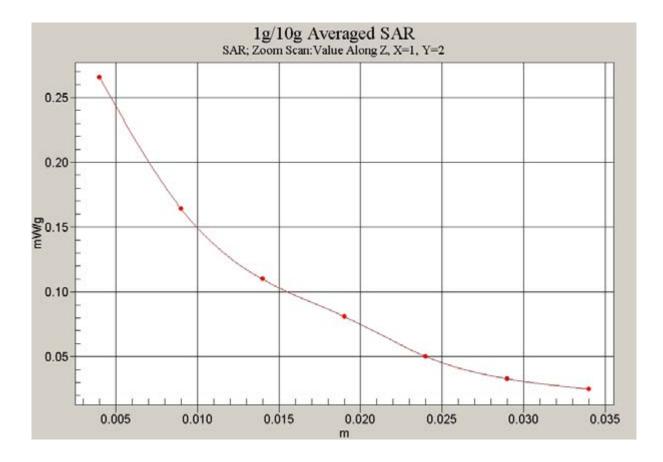
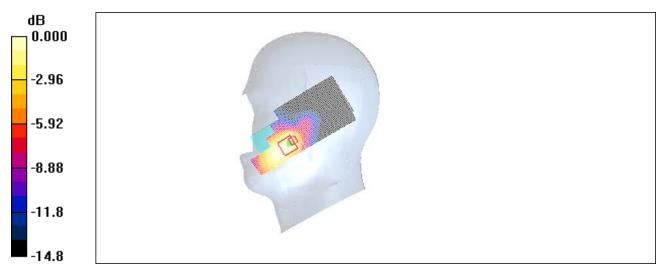


Fig. 12 Z-Scan at power reference point (850 MHz CH128)


850 Right Cheek High

Date/Time: 2008-8-5 13:26:56 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.915$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.846 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.67 V/m; Power Drift = -0.068 dBPeak SAR (extrapolated) = 1.27 W/kg**SAR(1 g) = 0.789 \text{ mW/g}; SAR(10 g) = 0.532 \text{ mW/g}** Maximum value of SAR (measured) = 0.820 mW/g

 $0 \ dB = 0.820 mW/g$

Fig. 13 850 MHz CH251

No. 2008SAR00047 Page 36 of 109

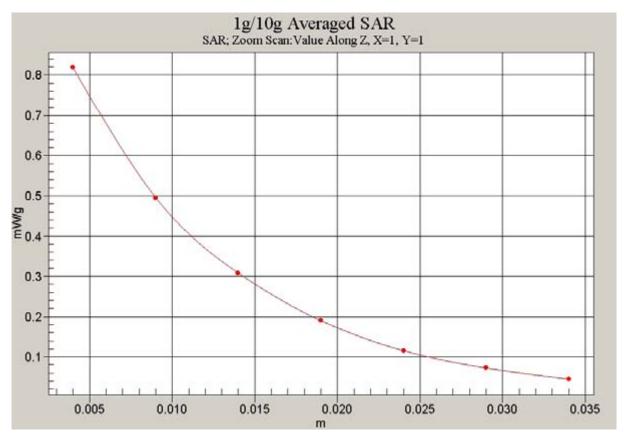
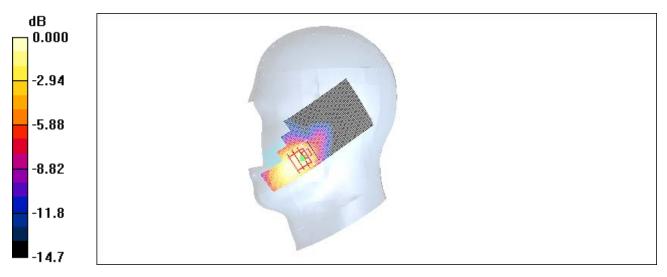


Fig. 14 Z-Scan at power reference point (850 MHz CH251)


850 Right Cheek Middle

Date/Time: 2008-8-5 13:59:15 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.905$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

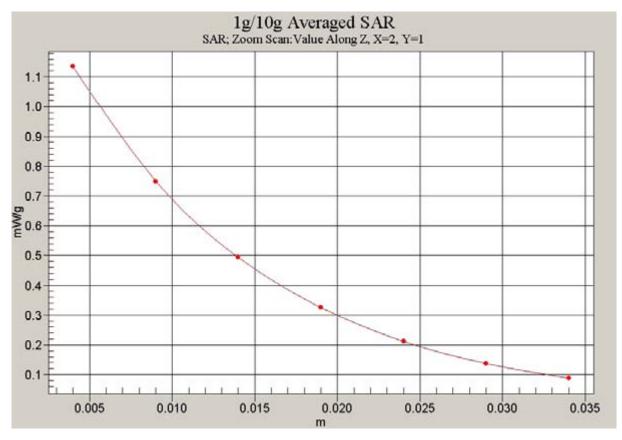
Cheek Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.28 mW/g

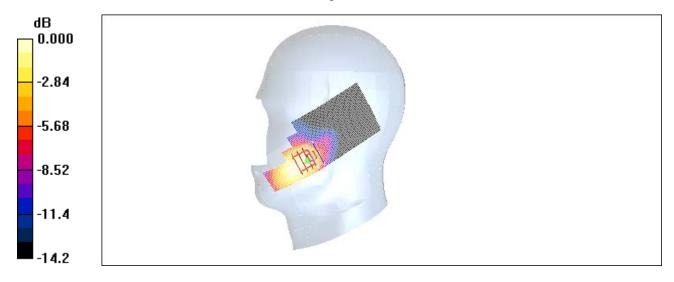
Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.90 V/m; Power Drift = 0.100 dBPeak SAR (extrapolated) = 1.46 W/kg**SAR(1 g) = 1.02 \text{ mW/g}; SAR(10 g) = 0.686 \text{ mW/g}** Maximum value of SAR (measured) = 1.13 mW/g

0 dB = 1.13 mW/g

No. 2008SAR00047 Page 38 of 109




Fig. 16 Z-Scan at power reference point (850 MHz CH190)

850 Right Cheek Low

Date/Time: 2008-8-5 14:15:50 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.894$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.36 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 31.65 V/m; Power Drift = 0.123 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.717 mW/g Maximum value of SAR (measured) = 1.17mW/g

 $0 \; dB = 1.17 mW/g$

Fig. 17 850 MHz CH128

No. 2008SAR00047 Page 40 of 109

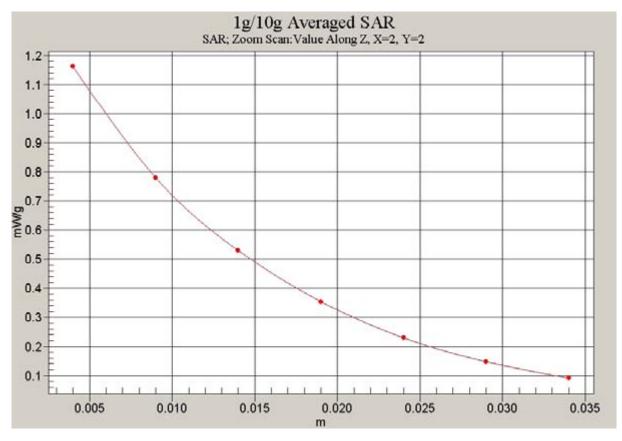
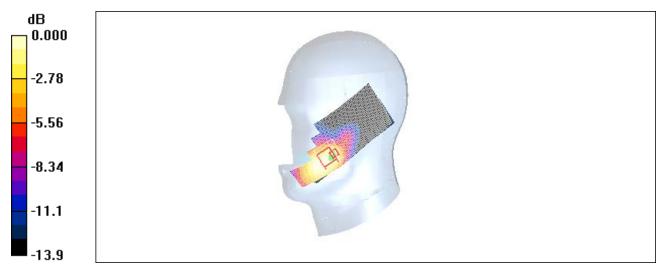


Fig. 18 Z-Scan at power reference point (850 MHz CH128)


850 Right Tilt High

Date/Time: 2008-8-5 14:58:56 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.915$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.337 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.01 V/m; Power Drift = 0.003 dBPeak SAR (extrapolated) = 0.456 W/kgSAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.177 mW/gMaximum value of SAR (measured) = 0.339 mW/g

 $0 \ dB = 0.339 mW/g$

No. 2008SAR00047 Page 42 of 109

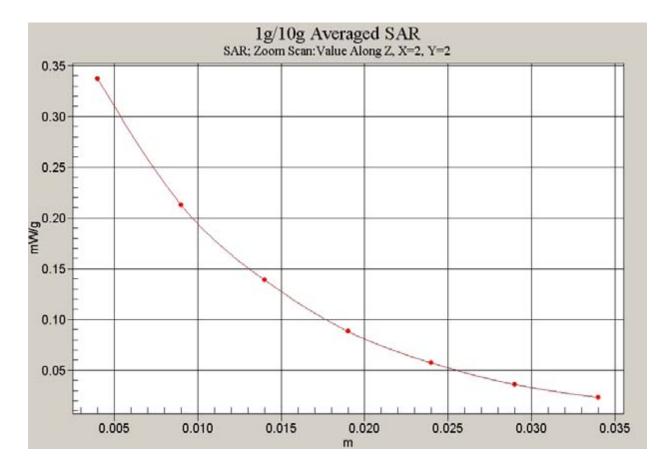
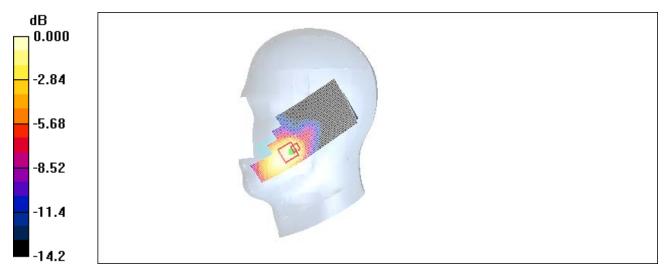


Fig. 20 Z-Scan at power reference point (850 MHz CH251)


850 Right Tilt Middle

Date/Time: 2008-8-5 14:42:28 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.891$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.411 mW/g

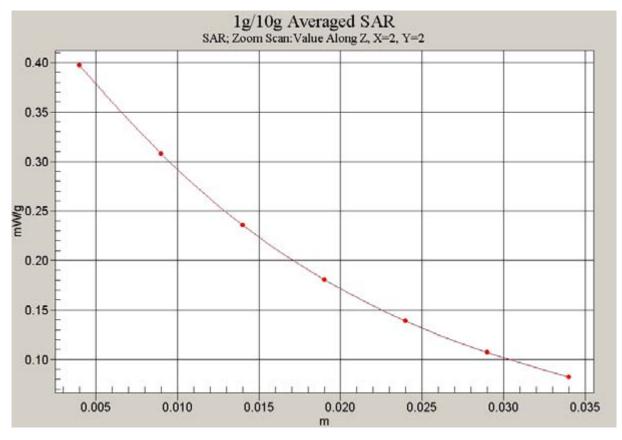
Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

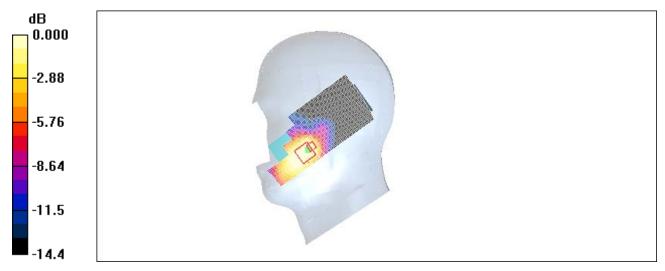
Reference Value = 21.15 V/m; Power Drift = 0.104 dB Peak SAR (extrapolated) = 0.495 W/kg SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.221 mW/g Maximum value of SAR (measured) = 0.400 mW/g

 $0 \ dB = 0.400 mW/g$

Fig.21 850 MHz CH190

No. 2008SAR00047 Page 44 of 109




Fig. 22 Z-Scan at power reference point (850 MHz CH190)

850 Right Tilt Low

Date/Time: 2008-8-5 14:28:42 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.894$ mho/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.426 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.87 V/m; Power Drift = 0.107 dB Peak SAR (extrapolated) = 0.601 W/kg SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.243 mW/gMaximum value of SAR (measured) = 0.413 mW/g

 $0 \ dB = 0.413 mW/g$

Fig. 23 850 MHz CH128

No. 2008SAR00047 Page 46 of 109

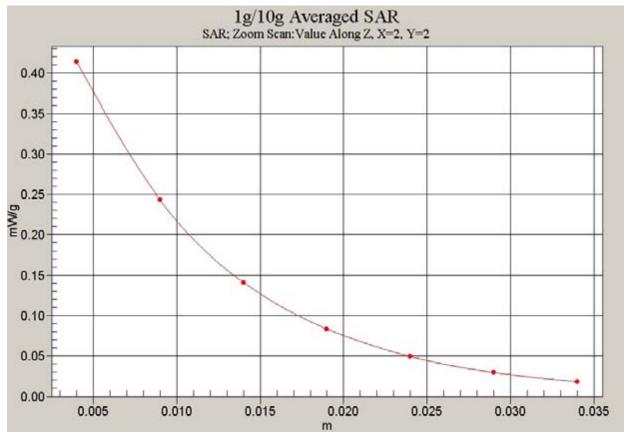
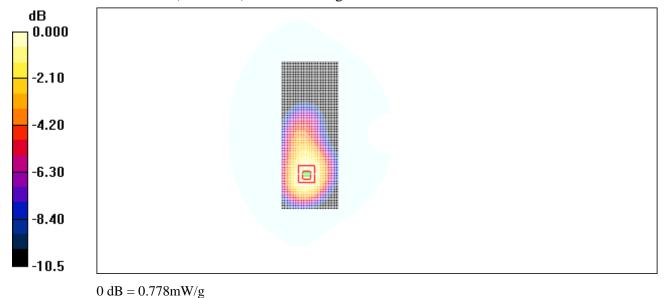


Fig. 24 Z-Scan at power reference point (850 MHz CH128)


850 Body Towards Ground High with GPRS

Date/Time: 2008-8-5 8:22:11 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.785 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.1 V/m; Power Drift = -0.129 dB Peak SAR (extrapolated) = 0.943 W/kg SAR(1 g) = 0.725 mW/g; SAR(10 g) = 0.501 mW/g Maximum value of SAR (measured) = 0.778 mW/g

No. 2008SAR00047 Page 48 of 109

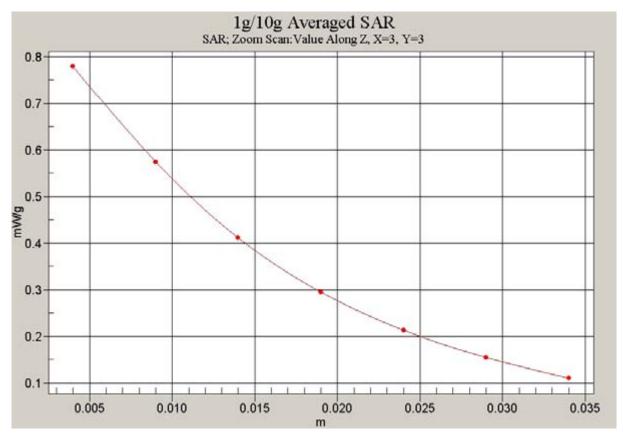
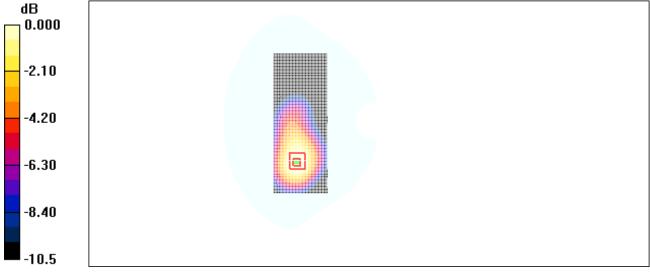
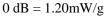


Fig. 26 Z-Scan at power reference point (850 MHz CH251)


850 Body Towards Ground Middle with GPRS


Date/Time: 2008-8-5 8:40:53 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.01 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.24 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.75 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.767 mW/g Maximum value of SAR (measured) = 1.20 mW/g

Fig. 27 850 MHz CH190

No. 2008SAR00047 Page 50 of 109

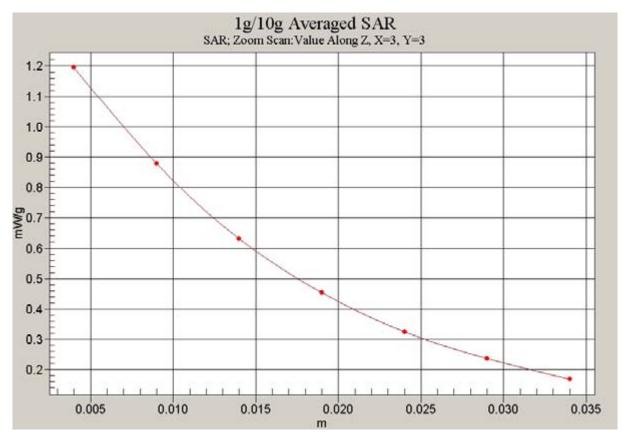


Fig. 28 Z-Scan at power reference point (850 MHz CH190)

850 Body Towards Ground Low with GPRS

Date/Time: 2008-8-5 8:56:24 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used: f = 825 MHz; $\sigma = 0.993$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.29 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.82 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.806 mW/g Maximum value of SAR (measured) = 1.25 mW/g

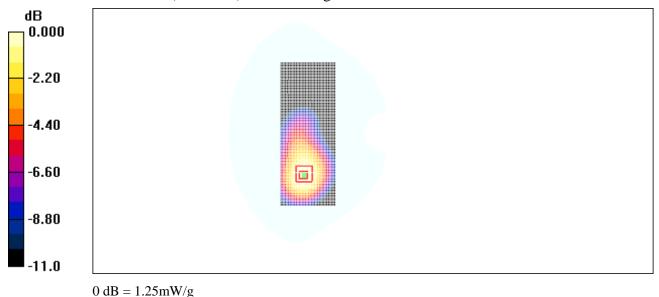


Fig. 29 850 MHz CH128

No. 2008SAR00047 Page 52 of 109

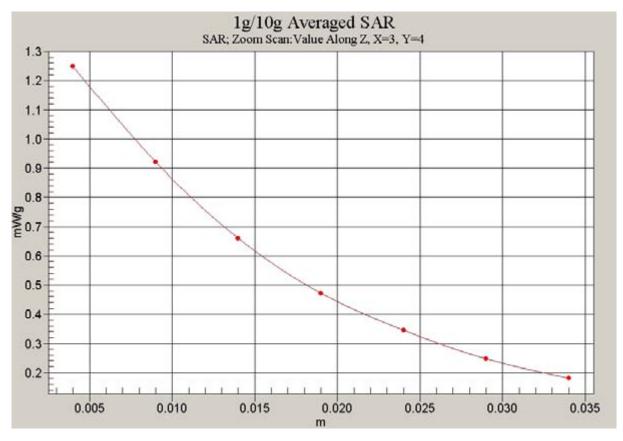
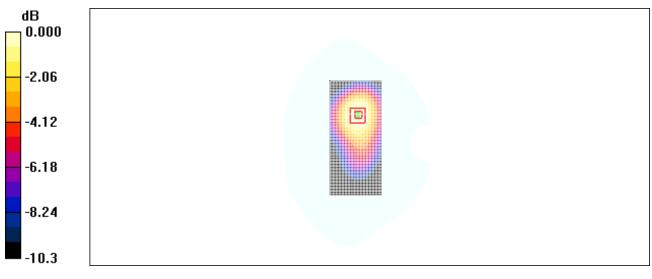


Fig. 30 Z-Scan at power reference point (850 MHz CH128)

850 Body Towards Ground Low with Headset


Date/Time: 2008-8-5 9:11:24 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used: f = 825 MHz; $\sigma = 0.993$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Low With Earphone/Area Scan (51x111x1): Measurement grid:

dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.657 mW/g

Toward Ground Low With Earphone/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.8 V/m; Power Drift = 0.019 dB Peak SAR (extrapolated) = 0.812 W/kg SAR(1 g) = 0.628 mW/g; SAR(10 g) = 0.436 mW/g Maximum value of SAR (measured) = 0.639 mW/g

0 dB = 0.639 mW/g

Fig. 31 850 MHz CH128

No. 2008SAR00047 Page 54 of 109

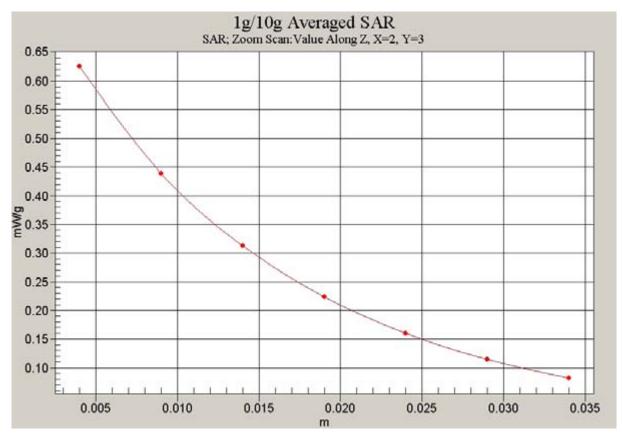
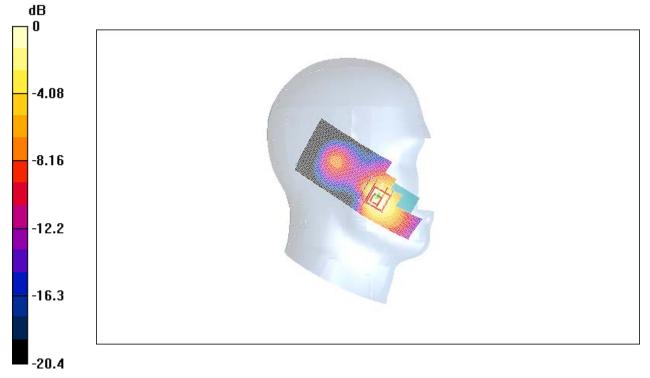


Fig. 32 Z-Scan at power reference point (850 MHz CH128)


1900 Left Cheek High

Date/Time: 2008-8-4 9:13:21 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.022 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 28.15V/m; Power Drift = 0.200 dB
Peak SAR (extrapolated) = 1.305 W/kg
SAR(1 g) = 0.986 mW/g; SAR(10 g) = 0.519 mW/g
Maximum value of SAR (measured) = 1.013 mW/g


```
0 \text{ dB} = 1.013 \text{mW/g}
```

No. 2008SAR00047 Page 56 of 109

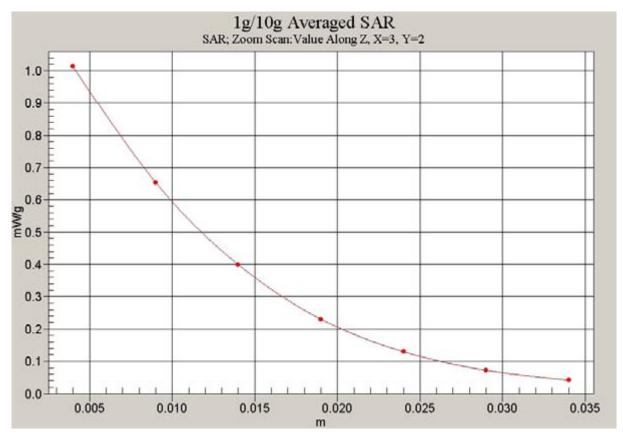
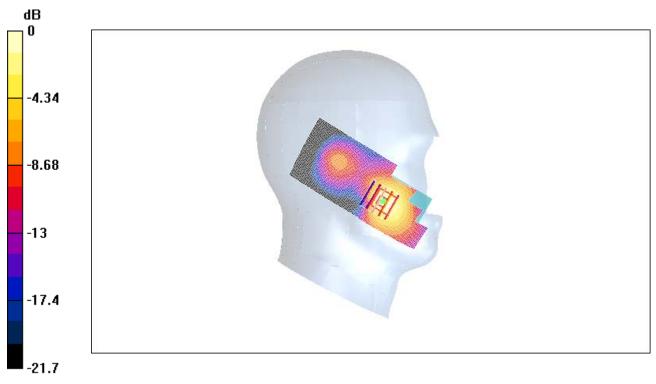


Fig. 34 Z-Scan at power reference point (1900 MHz CH810)


1900 Left Cheek Middle

Date/Time: 2008-8-4 9:25:17 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.210 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 31.72V/m; Power Drift = 0.066 dB
Peak SAR (extrapolated) = 1.495 W/kg
SAR(1 g) = 1.1mW/g; SAR(10 g) = 0.588 mW/g
Maximum value of SAR (measured) = 1.145 mW/g

0 dB = 1.145 mW/g

No. 2008SAR00047 Page 58 of 109

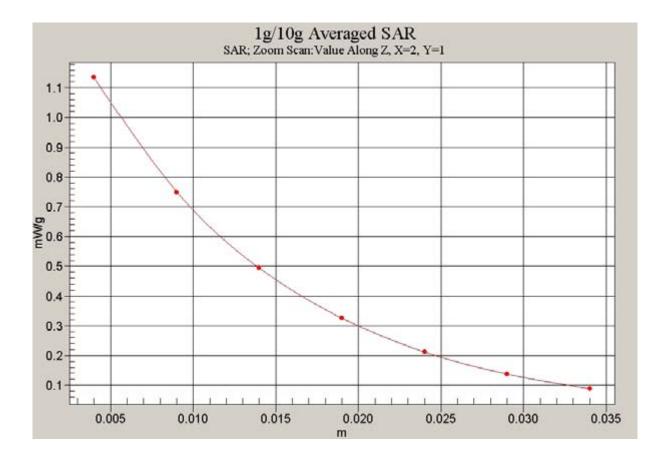
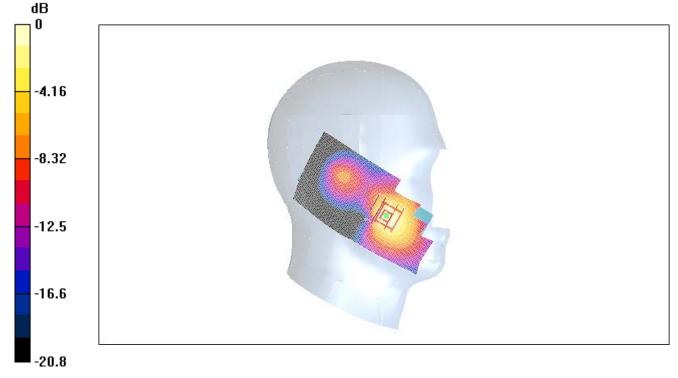
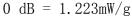


Fig. 36 Z-Scan at power reference point (1900 MHz CH661)


1900 Left Cheek Low


Date/Time: 2008-8-4 9:38:54 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.308 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 33.56V/m; Power Drift = -0.069 dB
Peak SAR (extrapolated) = 1.551 W/kg
SAR(1 g) = 1.18mW/g; SAR(10 g) = 0.596 mW/g
Maximum value of SAR (measured) = 1.223 mW/g

No. 2008SAR00047 Page 60 of 109

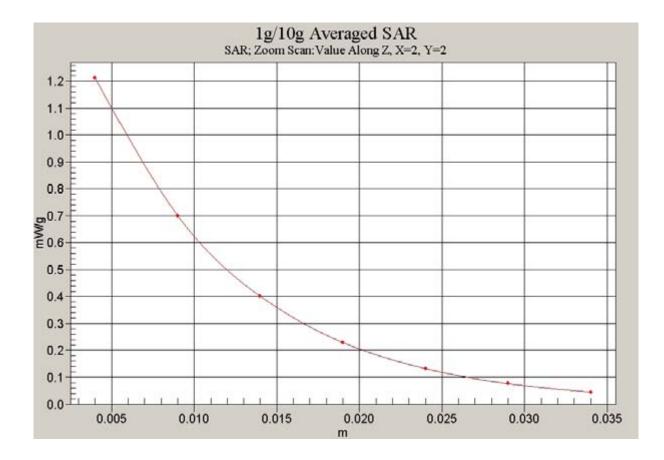
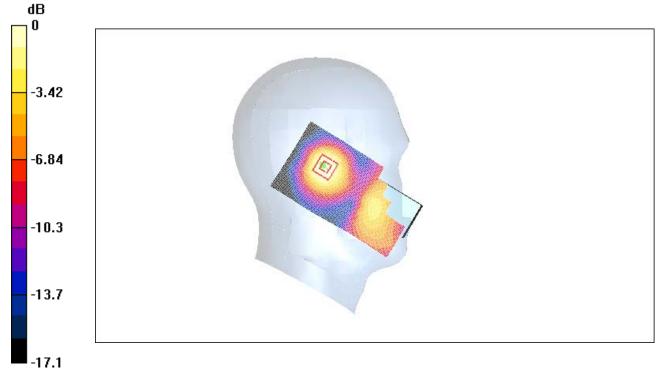


Fig. 38 Z-Scan at power reference point (1900 MHz CH512)


1900 Left Tilt High

Date/Time: 2008-8-4 9:50:13 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.405 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 8.92V/m; Power Drift = -0.089 dB
Peak SAR (extrapolated) = 0.720 W/kg
SAR(1 g) = 0.309 mW/g; SAR(10 g) = 0.165 mW/g
Maximum value of SAR (measured) = 0.387 mW/g

 $^{0 \}text{ dB} = 0.387 \text{mW/g}$

No. 2008SAR00047 Page 62 of 109

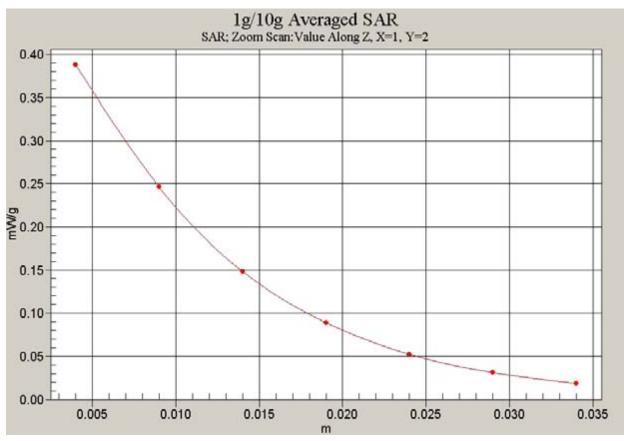
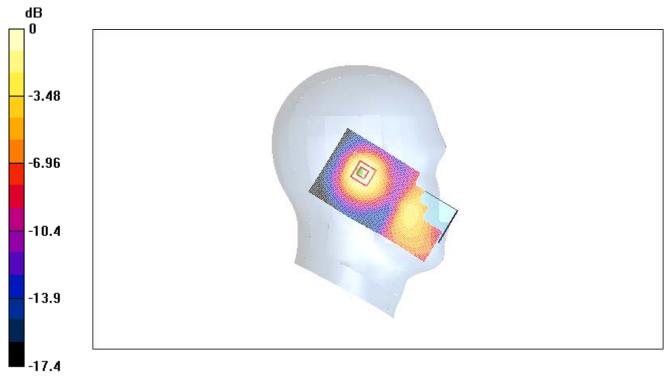


Fig. 40 Z-Scan at power reference point (1900 MHz CH810)


1900 Left Tilt Middle

Date/Time: 2008-8-4 10:04:24 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Middle/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.458 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 10.03V/m; Power Drift = -0.048 dB
Peak SAR (extrapolated) = 0.632 W/kg
SAR(1 g) = 0.350 mW/g; SAR(10 g) = 0.187 mW/g
Maximum value of SAR (measured) = 0.412 mW/g

0 dB = 0.412 mW/g

No. 2008SAR00047 Page 64 of 109

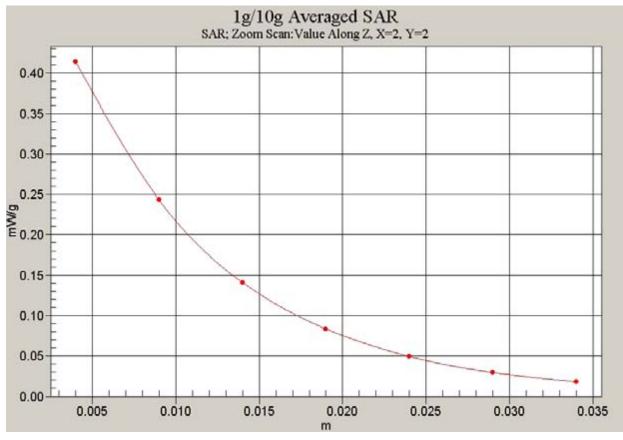


Fig. 42 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Tilt Low

Date/Time: 2008-8-4 10:19:18 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (61x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.441 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.22V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 0.637 W/kg SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.394 mW/g

 $0 \, dB = 0.394 \, mW/g$

No. 2008SAR00047 Page 66 of 109

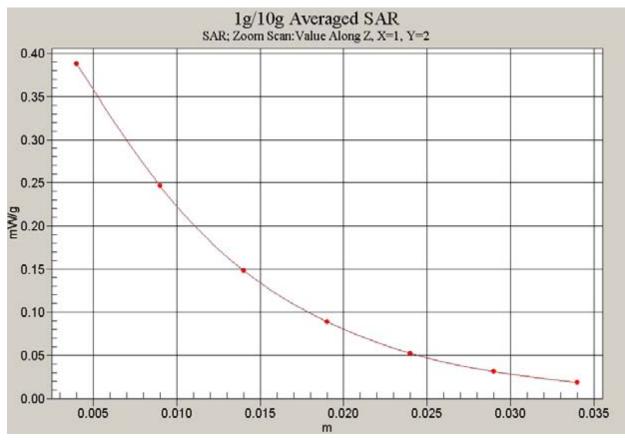
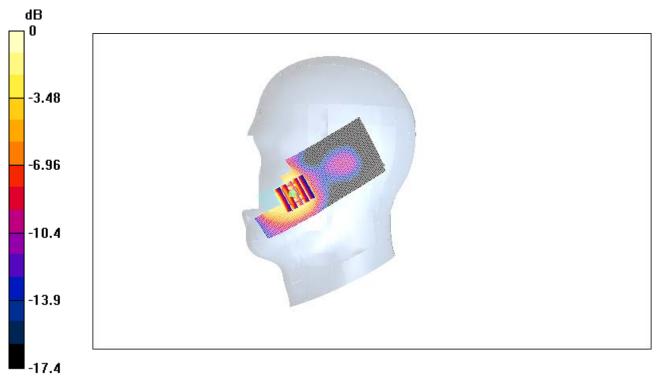


Fig. 44 Z-Scan at power reference point (1900 MHz CH512)


1900 Right Cheek High

Date/Time: 2008-8-4 10:33:32 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; σ = 1.39 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.754 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 19.88 V/m; Power Drift = -0.200 dB
Peak SAR (extrapolated) = 0.875 W/kg
SAR(1 g) = 0.693 mW/g; SAR(10 g) = 0.421 mW/g
Maximum value of SAR (measured) = 0.718 mW/g

0 dB = 0.718 mW/g

No. 2008SAR00047 Page 68 of 109

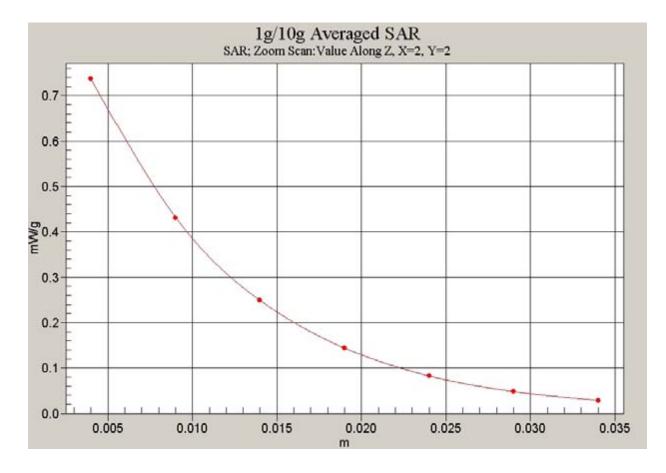
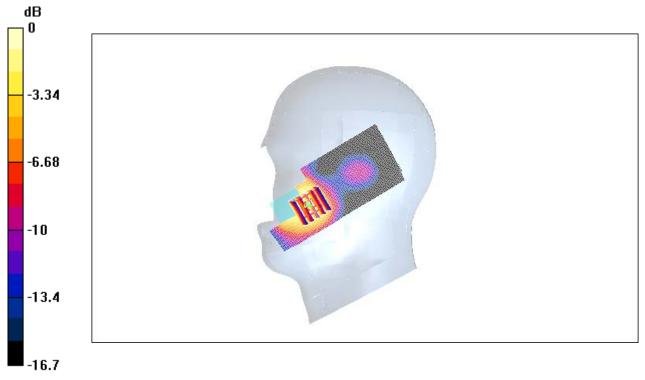


Fig. 46 Z-Scan at power reference point (1900 MHz CH810)


1900 Right Cheek Middle

Date/Time: 2008-8-4 10:47:09 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.874 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 22.51V/m; Power Drift = 0.083 dB Peak SAR (extrapolated) = 1.121 W/kg SAR(1 g) = 0.785 mW/g; SAR(10 g) = 0.477 mW/g Maximum value of SAR (measured) = 0.828 mW/g

0 dB = 0.828 mW/g

No. 2008SAR00047 Page 70 of 109

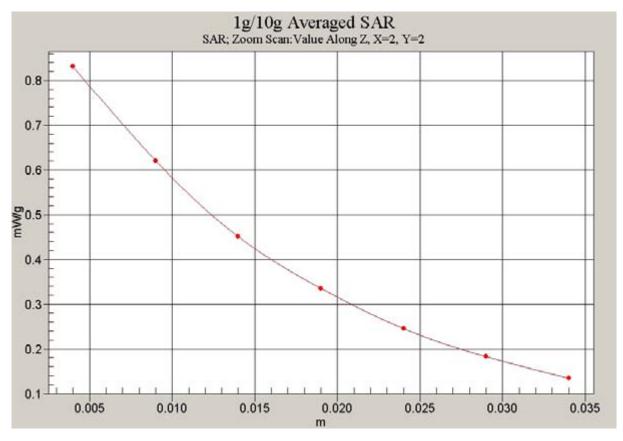
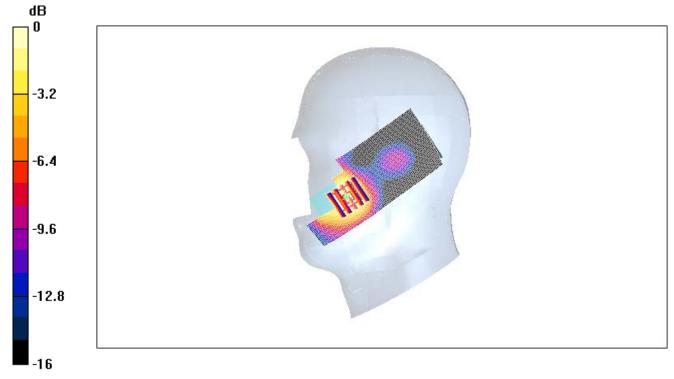


Fig. 48 Z-Scan at power reference point (1900 MHz CH661)


1900 Right Cheek Low

Date/Time: 2008-8-4 11:01:21 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.861 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 22.89V/m; Power Drift = -0.041 dB
Peak SAR (extrapolated) = 1.170 W/kg
SAR(1 g) = 0.796 mW/g; SAR(10 g) = 0.483 mW/g
Maximum value of SAR (measured) = 0.829 mW/g

 $0 \, dB = 0.829 \, \text{mW/g}$

Fig. 49 1900 MHz CH512

No. 2008SAR00047 Page 72 of 109

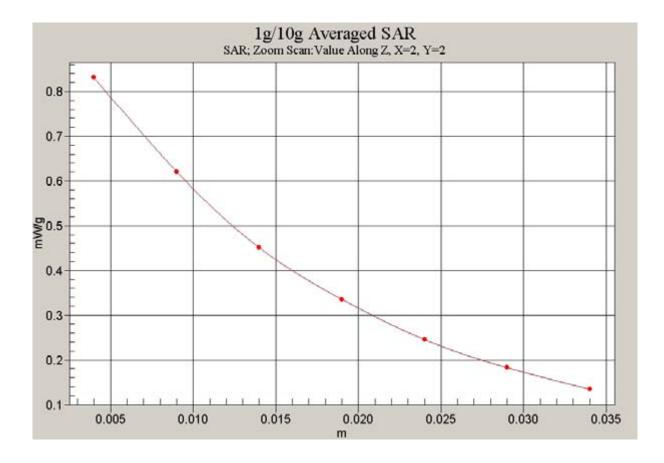
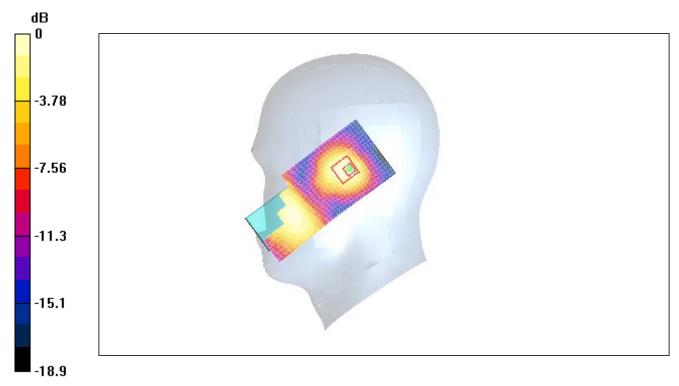
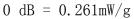


Fig. 50 Z-Scan at power reference point (1900 MHz CH512)


1900 Right Tilt High


Date/Time: 2008-8-4 11:14:26 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.278 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 6.74 V/m; Power Drift = 0.014 dB
Peak SAR (extrapolated) = 0.456 W/kg
SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.134 mW/g
Maximum value of SAR (measured) = 0.261 mW/g

No. 2008SAR00047 Page 74 of 109

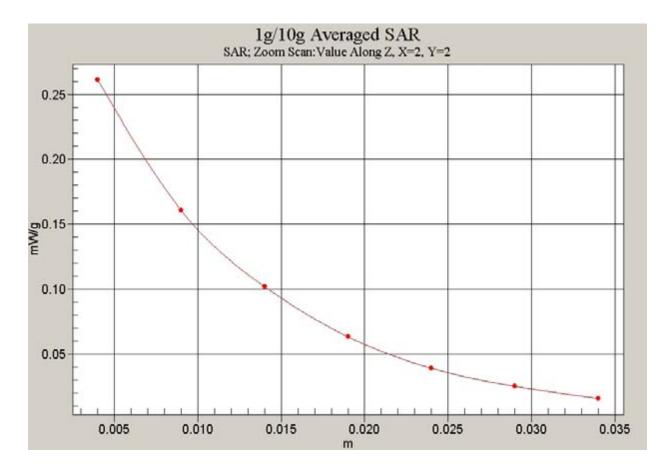
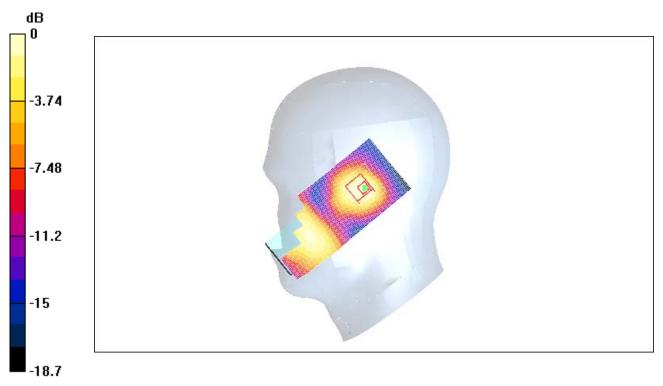


Fig. 52 Z-Scan at power reference point (1900 MHz CH810)


1900 Right Tilt Middle

Date/Time: 2008-8-4 11:26:39 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.296 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm
Reference Value = 7.17 V/m; Power Drift = -0.102 dB
Peak SAR (extrapolated) = 0.443 W/kg
SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.152 mW/g
Maximum value of SAR (measured) = 0.261 mW/g

 $0 \, dB = 0.261 \, mW/g$

No. 2008SAR00047 Page 76 of 109

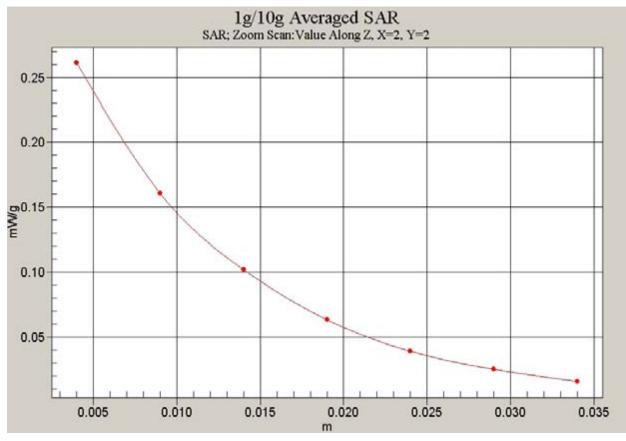
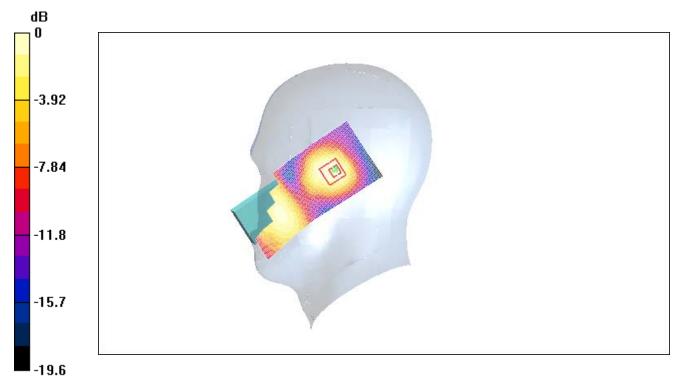


Fig. 54 Z-Scan at power reference point (1900 MHz CH661)


1900 Right Tilt Low

Date/Time: 2008-8-4 11:40:37 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.323 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.36V/m; Power Drift = 0.199 dB
Peak SAR (extrapolated) = 0.497 W/kg
SAR(1 g) = 0.254mW/g; SAR(10 g) = 0.155 mW/g
Maximum value of SAR (measured) = 0.279 mW/g

 $0 \, dB = 0.279 \, mW/g$

Fig.55 1900 MHz CH512

No. 2008SAR00047 Page 78 of 109

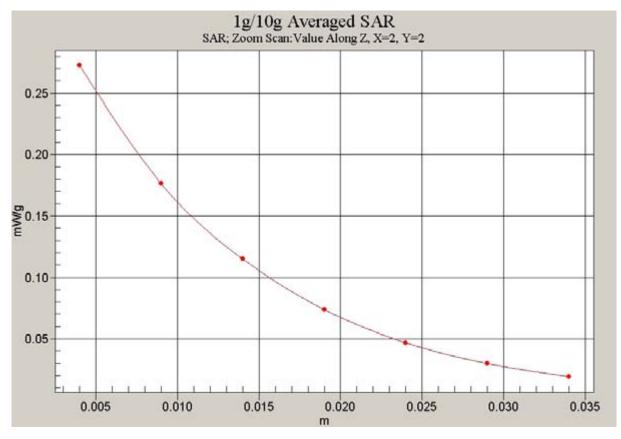


Fig. 56 Z-Scan at power reference point (1900 MHz CH512)

No. 2008SAR00047 Page 79 of 109

1900 Body Towards Ground High with GPRS

Date/Time: 2008-8-4 13:26:05 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground High/Area Scan (51x121x1): Measurement grid: dx=10mm,

dy=10mm Maximum value of SAR (interpolated) = 0.950 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 21.38V/m; Power Drift = -0.144 dB Peak SAR (extrapolated) = 1.192 W/kg SAR(1 g) = 0.906 mW/g; SAR(10 g) = 0.484 mW/g Maximum value of SAR (measured) = 0.937 mW/g

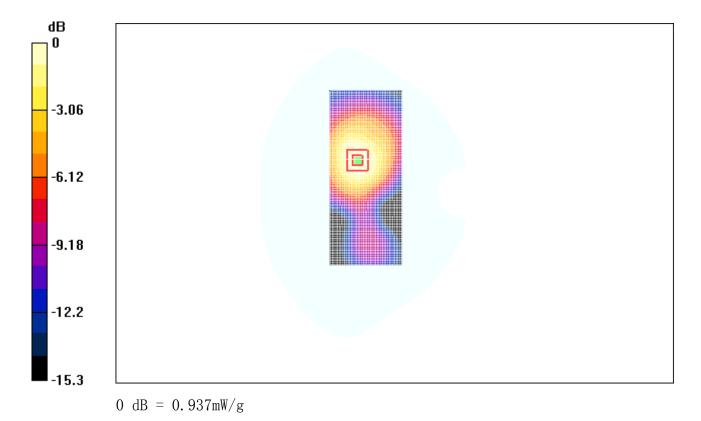


Fig. 57 1900 MHz CH810

No. 2008SAR00047 Page 80 of 109

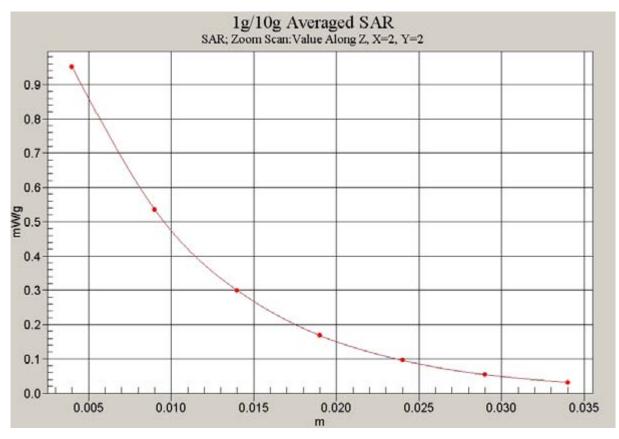
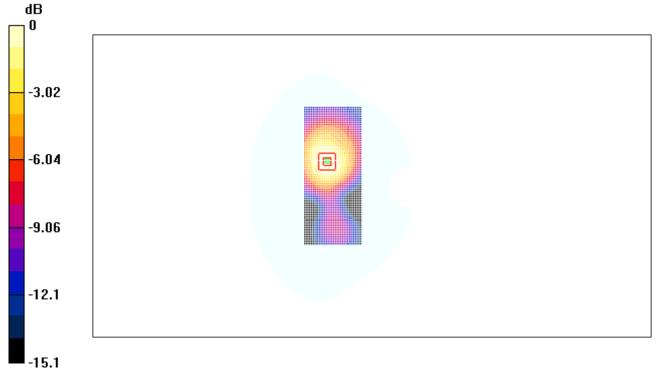


Fig. 58 Z-Scan at power reference point (1900 MHz CH810)

1900 Body Towards Ground Middle with GPRS


Date/Time: 2008-8-4 13:41:50 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Middle/Area Scan (51x121x1): Measurement grid: dx=10mm,

```
dy=10mm Maximum value of SAR (interpolated) = 1.218 mW/g \,
```

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

```
dy=5mm, dz=5mm
Reference Value = 23.96V/m; Power Drift = -0.065 dB
Peak SAR (extrapolated) = 1.403 W/kg
SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.623 mW/g
Maximum value of SAR (measured) = 1.184 mW/g
```



```
0 \text{ dB} = 1.184 \text{mW/g}
```

No. 2008SAR00047 Page 82 of 109

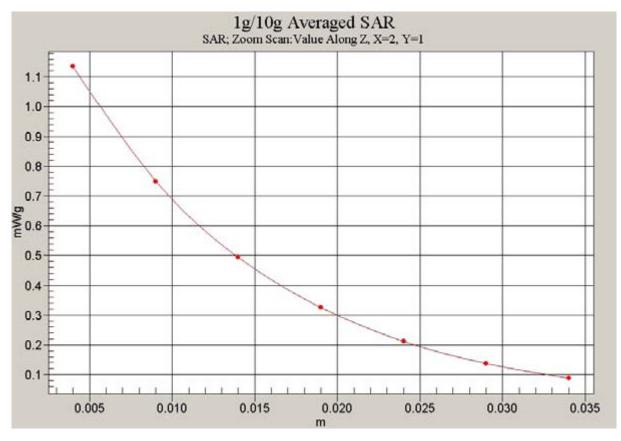
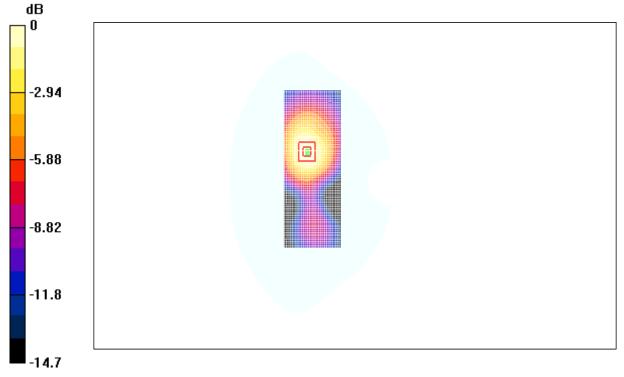


Fig. 60 Z-Scan at power reference point (1900 MHz CH661)

1900 Body Towards Ground Low with GPRS


Date/Time: 2008-8-4 13:56:04 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.45 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Low/Area Scan (51x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.351 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

```
dy=5mm, dz=5mm
Reference Value = 25.17V/m; Power Drift = -0.053 dB
Peak SAR (extrapolated) = 1.502 W/kg
SAR(1 g) = 1.29mW/g; SAR(10 g) = 0.705 mW/g
Maximum value of SAR (measured) = 1.322 mW/g
```


0 dB = 1.322 mW/g

Fig. 61 1900 MHz CH512

No. 2008SAR00047 Page 84 of 109

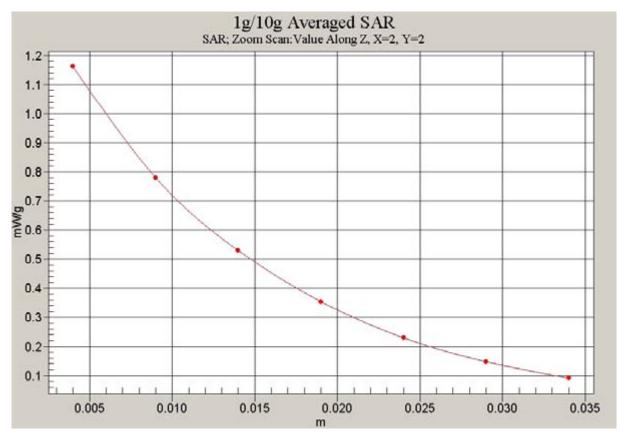
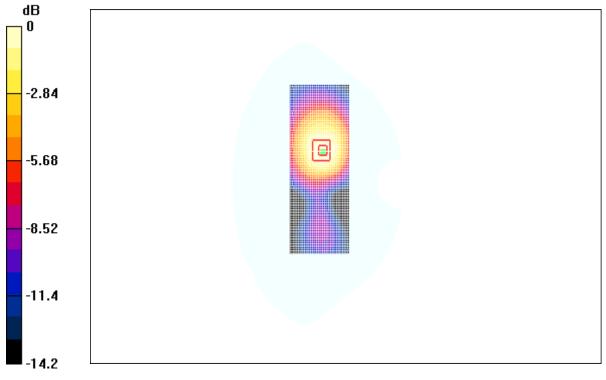
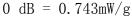


Fig. 62 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Ground Low with Headset


Date/Time: 2008-8-4 15:08:46 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.45 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)


Toward Ground Low With Earphone/Area Scan (51x121x1): Measurement grid:

dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.766 mW/g

Toward Ground Low With Earphone/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.89V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 0.905 W/kg SAR(1 g) = 0.692mW/g; SAR(10 g) = 0.377 mW/g Maximum value of SAR (measured) = 0.743 mW/g

No. 2008SAR00047 Page 86 of 109

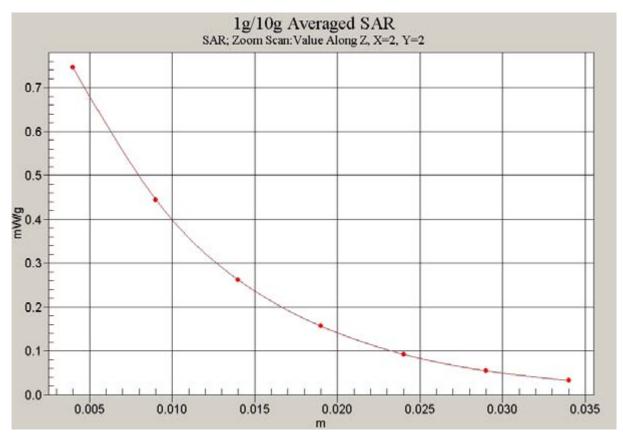
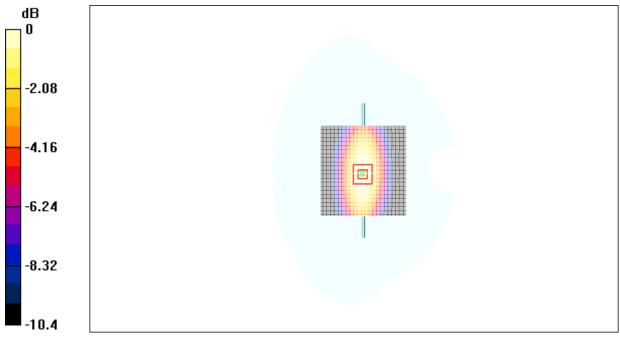


Fig. 64 Z-Scan at power reference point (1900 MHz CH512)


ANNEX D SYSTEM VALIDATION RESULTS

835MHzDAE777Probe3142

Date/Time: 2008-8-5 7:32:25 Electronics: DAE4 Sn777 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.97, 5.97, 5.97)

835MHz/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.68 mW/g

835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.67 W/kgSAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 2.69 mW/g

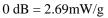
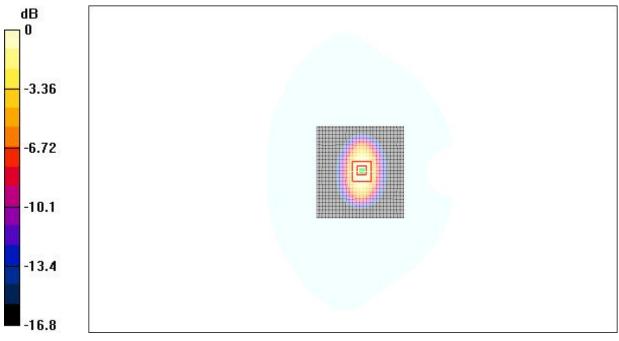


Fig.65 validation 835MHz 250mW


1900MHz DAE777Probe3142

Date/Time: 2008-8-4 7:49:11 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.66, 5.66, 5.66)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.27 mW/gMaximum value of SAR (measured) = 11.3 mW/g

 $^{0 \;} dB = 11.3 mW/g$

Fig.66 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	ry of	Hac MEA (C) C ;	chweizerischer Kalibrie ervice suisse d'étalonne ervizio svizzero di tarah wiss Calibration Service
Accredited by the Swiss Federal C The Swiss Accreditation Service Multilateral Agreement for the r	e is one of the signatori	ies to the EA	: SCS 108
Client TMC Beijing	+C=CONSIST	Certificate No: E	S3-3142_Sep07
CALIBRATION (CERTIFICAT	E	
Object	ES3DV3 - SN:3	142	A CONTRACTOR
Calibration procedure(s)		and QA CAL-12.v5 edure for dosimetric E-field probes	
Calibration date:	September 7, 2	007	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Condition of the calibrated item	In Tolerance		State of the
Calibration Equipment used (M&T	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter E44198	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	
	MY41498087	and a second a second second second	Mar-08
Power sensor E4412A		29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Mar-08 Aug-08
Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: \$5086 (20b)	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Aug-08 Mar-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5086 (20b) SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720)	Mar-08 Aug-08 Mar-08 Aug-08
Reference 3 dB Attenuator Reference 20 dB Attenuator	SN: \$5086 (20b)	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671)	Mar-08 Aug-08 Mar-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. 253-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07)	Mar-06 Aug-08 Mar-06 Aug-08 Jan-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Mar-08 Aug-08 Mar-06 Aug-08 Jan-08 Apr-08
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. 253-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-08 Aug-08 Mar-06 Aug-08 Jan-08 Apr-08 Scheduled Check
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Mar-08 Aug-08 Mar-06 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	S-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-013, Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-08 Aug-08 Mar-06 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0 In house check: Cet-00
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 6753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	S-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) S-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. 283-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	Mar-05 Aug-08 Mar-06 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-0 In house check: Nov-0 In house check: Oct-0 Signature

No. 2008SAR00047 Page 90 of 109

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SINS

s

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

Swisa Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y.z. Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This . linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3142_Sep07

Page 2 of 9

No. 2008SAR00047 Page 91 of 109

ES3DV3 SN:3142

September 7, 2007

Probe ES3DV3

SN:3142

Manufactured: Calibrated: March 13, 2007 September 7, 2007

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3142_Sep07

Page 3 of 9

No. 2008SAR00047 Page 92 of 109

ES3DV3 SN:3142

September 7, 2007

DASY - Parameters of Probe: ES3DV3 SN:3142

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.21 ± 10.1%	$\mu V/(V/m)^2$	DCP X	96 mV
NormY	1.28 ± 10.1%	μV/(V/m) ²	DCP Y	95 mV
NormZ	1.15 ± 10.1%	μV/(V/m) ²	DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.6	0.8
SARbe [%]	With Correction Algorithm	0.0	0.4

TSL

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.6	4.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

Sensor Offset

Probe Tip to Sensor Center

2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).
^B Numerical linearization parameter: uncertainty not required.

Certificate No: ES3-3142_Sep07

Page 4 of 9

No. 2008SAR00047 Page 93 of 109

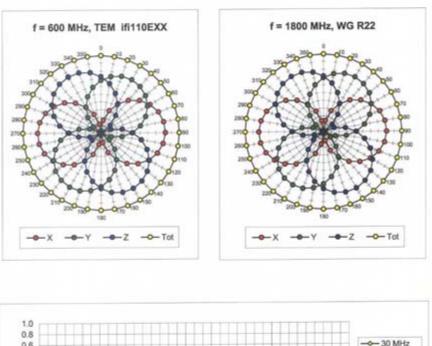
ES3DV3 SN:3142

September 7, 2007

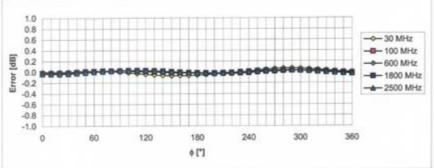
(TEM-Cell:ifi110 EXX, Waveguide: R22) 1,5 1.4 1.3 (normalized) 1.2 1.1 Lieduency response (n 8.0 6.0 8.0 1.0 9 0.7 0.6 0.5 0 2500 500 1000 1500 2000 3000 f [MHz] -O-TEM -0- R22

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3142_Sep07

Page 5 of 9

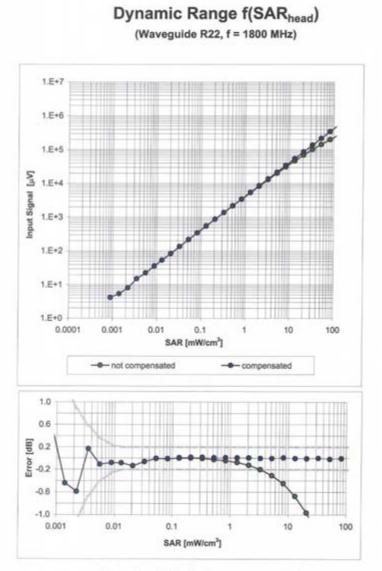

No. 2008SAR00047 Page 94 of 109

ES3DV3 SN:3142

September 7, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3142_Sep07

Page 6 of 9

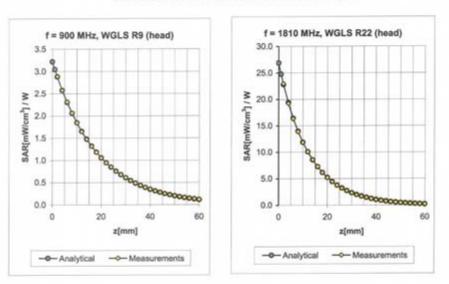
No. 2008SAR00047 Page 95 of 109

ES3DV3 SN:3142

September 7, 2007

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3142_Sep07


Page 7 of 9

No. 2008SAR00047 Page 96 of 109

ES3DV3 SN:3142

September 7, 2007

0.73 1.33 4.61 ± 11.0% (k=2)

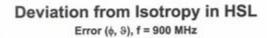
Conversion Factor Assessment

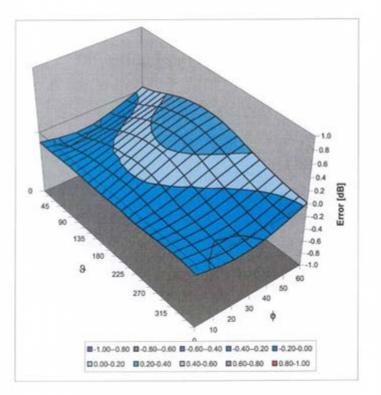
f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	$43.5 \pm 5\%$	0.87 ± 5%	0.32	1.29	6.16 ± 13.3% (k=
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.00	1.09	5.97 ± 11.0% (k
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	1.41	4.87 ± 11.0% (k
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.24	1.24	6.68 ± 13.3% (k
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.94	1.16	5.66 ± 11.0% (k

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Body 53.3 ± 5% 1.52 ± 5%

Certificate No: ES3-3142_Sep07


1810 ± 50 / ± 100


Page 8 of 9

No. 2008SAR00047 Page 97 of 109

ES3DV3 SN:3142

September 7, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3142_Sep07

Page 9 of 9

No. 2008SAR00047 Page 98 of 109

ANNEX F DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

Schweizerischer Kallbrierdienst Bervice suises d'étalonnage Bervizio avizzero di taratura Bwiss Calibration Service

s

C

S

Accredited by the Swiss Federal Office of metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of cellbration certificates Client TMC China

- The second second

Accreditation No.: SCS 108

The measurements and the uncertaintie All calibrations have been conducted at Calibration Equipment used (M&TE critic Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	February In Toleran e traceability to na es with confidence an environment to cal for calibration)	5.v6 n procedure for dipole validation kits 19, 2007 ICE ational standards, which realize the physical uni probability are given on the following pages an emperature (22±3) ⁰ C and humidity<70%	
Calibration date: Condition of the calibrated item This calibration certificate documents the the measurements and the uncertaintie All calibrations have been conducted at Calibration Equipment used (M&TE critic Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	Calibratio	n procedure for dipole validation kits 19, 2007 ace ational standards, which realize the physical uni probability are given on the following pages an emperature (22±3) ⁶ C and humidity<70% Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	d are part of the certificate Scheduled Calibration Oct-07
Condition of the calibrated item This calibration certificate documents the The measurements and the uncertaintie All calibrations have been conducted at Calibration Equipment used (M&TE critic Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	In Toleran e traceability to na is with confidence an environment to cal for calibration) 5 137480704 137292783	tional standards, which realize the physical uni probability are given on the following pages an emperature (22±3) ⁹ C and humidity<70% Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	d are part of the certificate Scheduled Calibration Oct-07
This calibration certificate documents the The measurements and the uncertaintie All calibrations have been conducted at Calibration Equipment used (M&TE critic Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	e traceability to na es with confidence an environment te cal for calibration) # 37480704 37292783	ational standards, which realize the physical uni probability are given on the following pages an emperature (22±3) ⁹ C and humidity<70% Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	d are part of the certificate Scheduled Calibration Oct-07
The measurements and the uncertaintie All calibrations have been conducted at Calibration Equipment used (M&TE critic Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	is with confidence an environment to cal for calibration) 5 37480704 37292783	probability are given on the following pages an emperature (22±3) ⁶ C and humidity<70% Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	d are part of the certificate Scheduled Calibration Oct-07
Calibration Equipment used (M&TE ortifier Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	cal for calibration) # 37480704 37292783	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Primary Standards ID# Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	\$ 37480704 37292783	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Power meter EPM-442A GB Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	37480704 37292783	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Power sensor 8481A US Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN	37292783		Oct-07
Reference 20 dB Attenuator SN Reference 10 dB Attenuator SN DAE4 SN			
Reference 10 dB Attenuator SN DAE4 SN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-Aug-06 (METAS, NO. 217-00591)	Aug-07
DAE4 SN	:5047_2 (10r)	10-Aug-06 (METAS, NO. 217-00591)	Aug-07
Contraction of the state of the second second	601	30-Jan-07 (SPEAG, NO.DAE4-601 Jan07)	Jan-08
Reference Probe ET3DV6 (HF) SN	: 1507	19-Oct-06 (SPEAG, NO: ET3-1507_Oct05)	Oct-07
Secondary Standards ID#		Check Data (in house)	Scheduled Calibration
	41092317	18-Oct-02(SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Aglient E44218 MY	41000676	11-May-05(SPEAG, in house check Nov-05)	In house check: Nov -0
	3739058554206	18-Oct-01(SPEAG, in house check Oct-06)	In house check: Oct -0
Name		Function	Signature
Calibrated by: Marcel	l Fehr	Laboratory Technician	A.M.
Approved by: Katja F	Pokovic	Technical Director	2la Koto

Certificate No: D835V2-443_Feb07

Page 1 of 6

No. 2008SAR00047 Page 99 of 109

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Bervizio evizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration Is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361. "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Feb07

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7
Advanced Extrapolation	
Modular Flat Phantom V4.9	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 15 mm dx, dy, dz = 5 mm

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 mW / g
SAR normalized	normalized to 1W	9.90 mW/g
SAR for nominal Head TSL parameters *	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.6DmW/g
SAR normalized	normalized to 1W	6.40 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb07

Page 3 of 6

No. 2008SAR00047 Page 101 of 109

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5·Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

1	Electrical Delay (one direction)	1.402 ns
- 1		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coasial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-alignals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

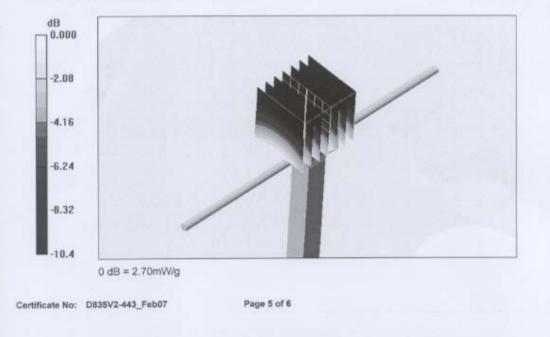
Page 4 of 6

No. 2008SAR00047 Page 102 of 109

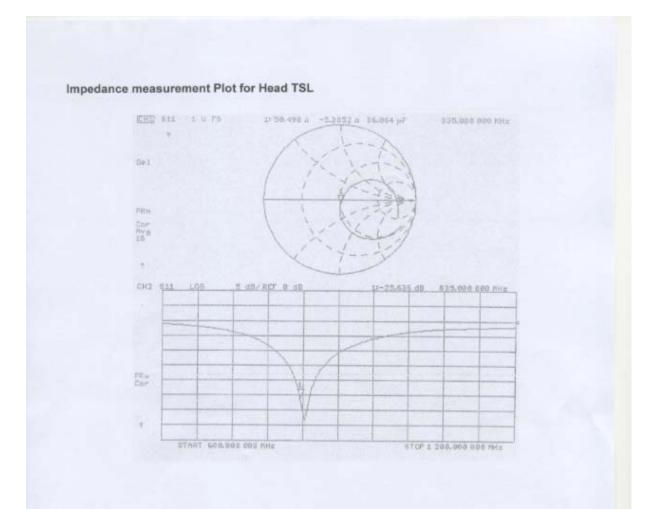
DASY4 Validation Report for Head TSL

Date/Time: 19.02.2007 10:04:15

Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz; Medium parameters used: f=835 MHz; σ=0.88 mho/m; ε,=39.9; ρ= 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.6 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.60 mW/g Maximum value of SAR (measured) = 2.70 mW/g

No. 2008SAR00047 Page 103 of 109

Certificate No: D835V2-443_Feb07

Page 6 of 6

No. 2008SAR00047 Page 104 of 109

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

NISS

Apt

S Schweizerischer Kalibrierdienst G Service suizes d'Atalonnage Servizio avizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of metrology and Accreonation

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC China

Certificate No: D1900V2-541_Feb07

Object	D1900V2-SN: 541
Calibration procedure(s)	QA CAL-05.v6 Calibration procedure for dipole validation kits
Calibration date:	February 20, 2007

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted at an environment temperature (22±3)°C and humidity<70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Power sensor 8481A	US37292783	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN:5086 (20g)	10-Aug-05 (METAS, NO. 217-00591)	Aug-07
Reference 10 dB Attenuator	SN:5047_2 (10r)	10-Aug-06 (METAS, NO. 217-00591)	Aug-07
DAE4	SN:601	30-Jan-07 (SPEAG, NO DAE4-601_Jan07)	Jan-08
Reference Probe ET3DV6 (HP	F) SN: 1507	19-0ct-06 (SPEAG, NO. ET3-1507_Oct06)	Oct-07
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
Power sensor HP 8481A	MY41092317	18-Oct-02(SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Aglient E4421B	MY41000576	11-May-05(SPEAG, in house check Nov-05) In house check: Nov -07
Network Analyzer HP 8753E	U\$37390585\$4206	18-Oct-01(SPEAG, in house check Oct-06)	In house check: Oct -07
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	Alter
Approved by:	Katja Pokovic	Technical Director	Ala Kot
		1	sued: February 21, 2007

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D1900V2-541_Feb07

Page 1 of 6

No. 2008SAR00047 Page 105 of 109

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8804 Zurich, Switzerland

Schweizerlacher Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541_Feb07

Page 2 of 6

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	t0 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9±6%	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) *C	-	-

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.73 mW /g
SAR normalized	NV of besilemon	38.9 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.6 mW/g±17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL. SAR measured	condition 250 mW input power	5.09 mW /g
		5.09 mW /g 20.4 mW /g
SAR measured	250 mW input power	

* Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb07

Page 3 of 6

No. 2008SAR00047 Page 107 of 109

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 8.9 jΩ
Return Loss	- 26.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 4 , 2001

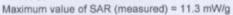
Certificate No: D1900V2-541_Feb07

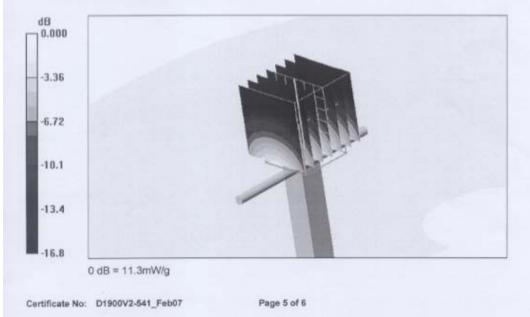
Page 4 of 6

No. 2008SAR00047 Page 108 of 109

DASY4 Validation Report for Head TSL

Date/Time: 20.02.2007 09:25:37


Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; serial: D1900V2-SN: 541

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f=1900 MHz; σ =1.38 mho/m; ϵ_r =38.9; ρ = 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV8-SN1507(HF); ConvF(5.03, 5.03, 5.03); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.1 V/m; Power Drift = 0.059 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.09 mW/g

No. 2008SAR00047 Page 109 of 109

