SAR TEST REPORT

No. 2008SAR00042

For

TCT Mobile Suzhou Limited

OT-V570A

ClaireA

With

Hardware Version: PIO2

Software Version: sw723

FCCID: RAD084

Issued Date: 2008-07-10

No. DAT-P-114/01-01 Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Information Industry

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100083.

Tel:+86(0)10-62303288-2105, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

No. 2008SAR00042 Page 2 of 105

TABLE OF CONTENT

1 TEST LABORATORY	4
1.1 TESTING LOCATION	4
1.2 Testing Environment	
1.3 Project Data	4
2 CLIENT INFORMATION	4
2.1 Applicant Information	4
2.2 MANUFACTURER INFORMATION	4
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1 About EUT	5
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
4 OPERATIONAL CONDITIONS DURING TEST	6
4.1 Schematic Test Configuration	6
4.2 SAR MEASUREMENT SET-UP	
4.3 DASY4 E-FIELD PROBE SYSTEM.	
4.4 E-field Probe Calibration	
4.6 Equivalent Tissues	
4.7 System Specifications	
5 CHARACTERISTICS OF THE TEST	10
5.1 APPLICABLE LIMIT REGULATIONS	
5.2 APPLICABLE MEASUREMENT STANDARDS	11
6 LABORATORY ENVIRONMENT	11
7 CONDUCTED OUTPUT POWER MEASUREMENT	11
7.1 Summary	11
7.2 Conducted Power	
8 TEST RESULTS	12
8.1 DIELECTRIC PERFORMANCE	
8.2 System Validation	
8.3 SUMMARY OF MEASUREMENT RESULTS (850MHz)	
8.4 SUMMARY OF MEASUREMENT RESULTS (1900MHz)	
9 MEASUREMENT UNCERTAINTY	
10 MAIN TEST INSTRUMENTS	
	-
ANNEX A: MEASUREMENT PROCESS	
ANNEX B TEST LAYOUT	
ANNEX C: GRAPH RESULTS	
ANNEX D SYSTEM VALIDATION RESULTS	
ANNEX E PROBE CALIBRATION CERTIFICATE	
ANNEX F DIPOLE CALIBRATION CERTIFICATE	94

No. 2008SAR00042 Page 3 of 105

	SAR test report		st report
Test report No.	2008SAR00042	Date of report	July 30 th , 2008
Test laboratory	TMC Beijing, Telecommunication Metrology Center of MII	Client	TCT Mobile Suzhou Limited
Test device	Product name: OT-V570 Model type: ClaireA		
Test reference documents	 EN 50360-2006: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones. EN 62209-1-2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. OET Bulletin 65 (Edition 97-01) and Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) IEC 62209-2 (Draft): Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the Body. 		
Test conclusion	Localized Specific Absorption been measured in all cases re this test report. Maximum loo relevant standards cited in Cla General Judgment: Pass	equested by the relevant stan calized SAR is below expos	dards cited in Clause 5.2 of
Signature	Lu Bingsong Deputy Director of the laboratory (Approved for this report)	Qi Dianyuan SAR Project Leader (Reviewed for this report)	Lin Xiaojun SAR Test Engineer (Prepared for this report)

SAR test report

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MII
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100083
Telephone:	+86-10-62303288
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	Min. = 15 °C, Max. = 30 °C
Relative humidity:	Min. = 30%, Max. = 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Sun Qian
Test Engineer:	Lin Hao
Testing Start Date:	July 10, 2008
Testing End Date:	July 14, 2008

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Suzhou Limited
Address /Post:	4/F, South Building,No.2966, Jinke Road, Zhangjiang High-Tech Park, Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460883
Fax:	+86-21-61460602

2.2 Manufacturer Information

Company Name:	TCT Mobile Suzhou Limited
Address (Dest	4/F, South Building,No.2966, Jinke Road, Zhangjiang High-Tech Park,
Address /Post:	Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460883
Fax:	+86-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description: Model:

Frequency Band: GPRS Class:

GSM/GPRS 850/1900 dual-band mobile phone
ClaireA
GSM850/1900
10

Picture 1: Constituents of the sample

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	011552000002995	PIO2	sw723

*EUT ID: is used to identify the test sample in the lab internally.

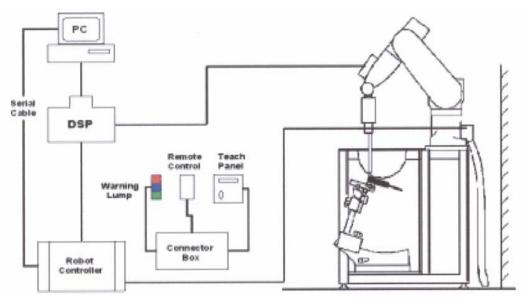
3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Travel Adapter	T5002684AGAA	١	Tenpao
AE2	Battery	CAB3010010C1	١	BYD

*AE ID: is used to identify the test sample in the lab internally

4 OPERATIONAL CONDITIONS DURING TEST

4.1 Schematic Test Configuration


During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

4.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core	
	Interleaved sensors	17
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL 1810	17
	Additional CF for other liquids and frequencies	
	upon request	Picture 3: ES3DV3 E-field Probe
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)	
Directivity	± 0.2 dB in HSL (rotation around probe axis)	
	± 0.3 dB in tissue material (rotation normal to probe axis	3)

No. 2008SAR00042 Page 8 of 105

Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones

4.4 E-field Probe Calibration

Picture4:ES3DV3 E-field probe

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = Exposure time (30 seconds),$

- C = Heat capacity of tissue (brain or muscle),
- ΔT = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

Picture 5: Device Holder

4.5 Other Test Equipment

4.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

4.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0. l mm
Filling Volume	Approx. 20 liters
Dimensions	810 x l000 x 500 mm (H x L x W)
Available	Special

4.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000

Picture 6: Generic Twin Phantom

MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 4 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 1. Composition of the Head Tissue Equivalent Matter	r
---	---

FREQUENCY 850MHz				
41.45				
56.0				
1.45				
0.1				
1.0				
f=850MHz ε=41.5 σ=0.90				
FREQUENCY 1900MHz				
55.242				
44.452				
0.306				
f=1900MHz ε=40.0 σ=1.40				

MIXTURE %	FREQUENCY 850MHz				
Water	52.5				
Sugar	45.0				
Salt	1.4				
Preventol	0.1				
Cellulose	1.0				
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97				
MIXTURE %	FREQUENCY 1900MHz				
Water	69.91				
Glycol monobutyl	29.96				
Salt	0.13				
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52				

Table 2. Composition of the Body Tissue Equivalent Matter

4.7 System Specifications

4.7.1 Robotic System Specifications

Specifications

 Positioner:
 Stäubli Unimation Corp. Robot Model: RX90L

 Repeatability:
 ±0.02 mm

 No. of Axis:
 6

 Data Acquisition Electronic (DAE) System

 Cell Controller

Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

5 CHARACTERISTICS OF THE TEST

5.1 Applicable Limit Regulations

EN 50360–2006: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for

portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

EN 62209-1–2006: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

IEC 62209-2 (Draft): Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR)in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the Body.

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 LABORATORY ENVIRONMENT

Table 3: The Ambient Conditions during EMF Test

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient naise is sheeled and found	way low and in compliance with requirement of standards. Deflection of ourround

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surround objects is minimized and in compliance with requirement of standards.

7 CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

7.2 Conducted Power

7.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels.

7.2.2 Measurement result

Table 4: Conducted Power Measurement Results

850MHZ	Conducted Power (dBm)				
	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 128(824.2MHz				
Before SAR Test	32.27	32.10	32.33		
After SAR Test	32.25	32.11	32.31		
1900MHZ	Conducted Power (dBm)				
	Channel 810	Channel 661	Channel 512		
	(1909.8MHz)	(1880MHz)	(1850.2MHz)		
Before SAR Test	28.83	29.24	29.30		
After SAR Test	28.81	29.22	29.29		

7.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 8 to Table 13 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8 TEST RESULTS

8.1 Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.						
Liquid temperature during the te	st: 22.5°C					
/ Frequency Permittivity ϵ Conductivity σ (S/m)						
Townot walks	850 MHz	41.5	0.90			
Target value	1900 MHz	40.0	1.40			
Measurement value	850 MHz	43.3	0.92			
(Average of 10 tests)	1900 MHz	40.8	1.38			

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

Table 0. Delectric renormance of body rissue Simulating Liquid							
Measurement is made at temperature 23.3 °C and relative humidity 49%.							
Liquid temperature during the te	st: 22.5°C						
/	/ Frequency Permittivity ϵ Conductivity σ (S/m)						
Torrect velve	850 MHz	55.2	0.97				
Target value	1900 MHz	53.3	1.52				
Measurement value	850 MHz	53.7	1.02				
(Average of 10 tests)	(Average of 10 tests) 1900 MHz 52.1 1.49						

8.2 System Validation

Table 7: System Validation

Measurement is made at temperature 23.3 °C, relative humidity 49%, input power 250 mW.								
Liquid temper	ature during th	e test: 22.5	°C					
	Frequency Permittivity ε Conductivity σ (S/m)							
Liquid paran	neters	835	MHz	43.5	5	0.91		
		1900 MHz		40.8		1.38		
	Frequency	Target va	alue (W/kg)	Measured value (W/kg) Dev		Devia	viation	
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
Verification		Average	Average	Average	Average	Average	Average	
results	835 MHz	1.60	2.48	1.62	2.50	1.25%	0.81%	
	1900 MHz	5.09	9.73	5.27	9.91	3.3%	1.9%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

8.3 Summary of Measurement Results (850MHz)

Table 8: SAR Values (850MHz-Head)

Limit of SAR (W/kg)	10 g	1 g	
	Average	Average	
	2.0	1.6	Power
Test Case	Measureme	ent Result	Drift
	(W/k	(g)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.1)	0.676	0.961	-0.200
Left hand, Touch cheek, Mid frequency(See Fig.3)	0.527	0.757	-0.027
Left hand, Touch cheek, Bottom frequency(See Fig.5)	0.454	0.647	0.012
Left hand, Tilt 15 Degree, Top frequency(See Fig.7)	0.254	0.344	0.060
Left hand, Tilt 15 Degree, Mid frequency(See Fig.9)	0.206	0.276	0.108
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.11)	0.194	0.262	0.062
Right hand, Touch cheek, Top frequency(See Fig.13)	0.624	0.910	0.115
Right hand, Touch cheek, Mid frequency(See Fig.15)	0.483	0.707	0.200
Right hand, Touch cheek, Bottom frequency(See Fig.17)	0.412	0.601	0.200
Right hand, Tilt 15 Degree, Top frequency(See Fig.19)	0.262	0.358	-0.004
Right hand, Tilt 15 Degree, Mid frequency(See Fig.21)	0.208	0.282	0.133
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.23)	0.184	0.249	0.139

Limit of SAR (W/kg)	10 g Average	1 g Average	Power	
	2.0	1.6		
Test Case	Measurement Result (W/kg)		Drift (dB)	
	10 g	1 g		
	Average	Average		
Body, Towards Ground, Top frequency(See Fig.25)	0.679	0.960	-0.071	
Body, Towards Ground, Mid frequency(See Fig.27)	0.620	0.869	-0.020	
Body, Towards Ground, Bottom frequency(See Fig.29)	0.654	0.910	-0.009	

Table 9: SAR Values (850MHz-GPRS)

8.4 Summary of Measurement Results (1900MHz)

Table 10: SAR Values (1900MHz-Head)

Limit of SAR (W/kg)	10 g Average	1 g Average	
	2.0	1.6	Power
Test Case	Measurement Result (W/kg)		Drift (dB)
	10 g	1 g	
Left band Touch about Ton fragman ov(Con Fig. 24)	Average	Average	0.000
Left hand, Touch cheek, Top frequency(See Fig.31)	0.223	0.429	-0.200
Left hand, Touch cheek, Mid frequency(See Fig.33)	0.242	0.485	0.200
Left hand, Touch cheek, Bottom frequency(See Fig.35)	0.229	0.469	-0.069
Left hand, Tilt 15 Degree, Top frequency(See Fig.37)	0.152	0.258	0.035
Left hand, Tilt 15 Degree, Mid frequency(See Fig.39)	0.177	0.296	-0.019
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.41)	0.184	0.303	0.070
Right hand, Touch cheek, Top frequency(See Fig.43)	0.367	0.610	0.200
Right hand, Touch cheek, Mid frequency(See Fig.45)	0.342	0.563	-0.085
Right hand, Touch cheek, Bottom frequency(See Fig.47)	0.287	0.472	-0.144
Right hand, Tilt 15 Degree, Top frequency(See Fig.49)	0.137	0.222	-0.059
Right hand, Tilt 15 Degree, Mid frequency(See Fig.51)	0.146	0.232	-0.115
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.53)	0.146	0.229	0.015

Table 11: SAR Values (1900MHz-GPRS)

Limit of SAD (W/kg)	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	Power
Test Case	Measurement I	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Ground, Top frequency(See Fig.55)	0.476	0.770	-0.160
Body, Towards Ground, Mid frequency(See Fig.57)	0.464	0.747	-0.032
Body, Towards Ground, Bottom frequency(See Fig.59)	0.425	0.681	-0.036

8.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

9 Measurement Uncertainty

SN	a	Туре	с	d	e = f(d,k)	f	h = c x f /	k
	Uncertainty Component		Tol. (± %)	Prob	Div.	c _i (1 g)	e 1 g u _i	Vi
1	System repetivity	A	0.5	Dist. N	1	1	(±%) 0.5	9
	Measurement System	1			I	L		
2	Probe Calibration	В	5	Ν	2	1	2.5	∞
3	Axial Isotropy	В	4.7	R	√3	(1-cp) ^{1/} 2	4.3	×
4	Hemispherical Isotropy	В	9.4	R	√3	√c _p		∞
5	Boundary Effect	В	0.4	R	√3	1	0.23	∞
6	Linearity	В	4.7	R	√3	1	2.7	∞
7	System Detection Limits	В	1.0	R	√3	1	0.6	∞
8	Readout Electronics	В	1.0	Ν	1	1	1.0	x
9	RF Ambient Conditions	В	3.0	R	√3	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	√3	1	0.2	∞
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	√3	1	1.7	x
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	в	3.9	R	√3	1	2.3	×
	Test sample Related							
13	Test Sample Positioning	А	4.9	Ν	1	1	4.9	N-

No. 2008SAR00042 Page 16 of 105

								1
14	Device Holder Uncertainty	А	6.1	N	1	1	6.1	N- 1
15	Output Power Variation - SAR drift measurement	В	5.0	R	√3	1	2.9	×
	Phantom and Tissue Parameters							
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	√3	1	0.6	x
17	Liquid Conductivity - deviation from target values	В	5.0	R	√3	0.64	1.7	x
18	Liquid Conductivity - measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	√3	0.6	1.7	x
20	Liquid Permittivity - measurement uncertainty	В	5.0	N	1	0.6	1.7	М
	Combined Standard Uncertainty			RSS			11.25	
	Expanded Uncertainty (95% CONFIDENCE INTERVAL)			K=2			22.5	

10 MAIN TEST INSTRUMENTS

Table 12: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 31,2007	One year	
02	Power meter	NRVD	101253	June 20, 2008 Or		
03	Power sensor	NRV-Z5	100333	June 20, 2008	One year	
04	Power sensor	NRV-Z6	100011	September 3, 2007	One year	
05	Signal Generator	E4433B	US37230472	September 5, 2007	One Year	
06	Amplifier	VTL5400	0505	No Calibration Requested		
07	BTS	CMU 200	105948	August 16, 2007	One year	
08	E-field Probe	SPEAG ES3DV3	3142	September 7, 2007	One year	
09	DAE	SPEAG DAE4	777	September 7, 2007	One year	
10	Dipole Validation Kit	SPEAG D835V2	443	February 19, 2007	Two years	
11	Dipole Validation Kit	SPEAG D1900V2	541	February 20, 2007	Two years	

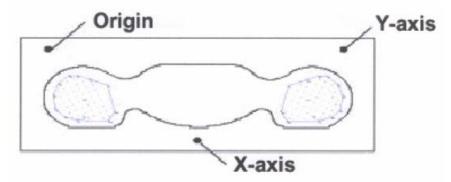
END OF REPORT BODY

ANNEX A: MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

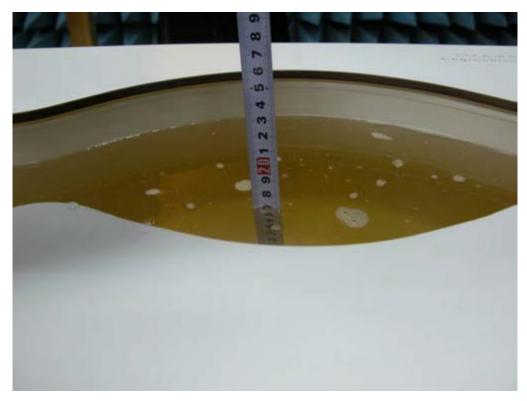

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.


Picture A: SAR Measurement Points in Area Scan

No. 2008SAR00042 Page 18 of 105

ANNEX B TEST LAYOUT

Picture B1: Specific Absorption Rate Test Layout

Picture B2: Liquid depth in the Flat Phantom (850 MHz)

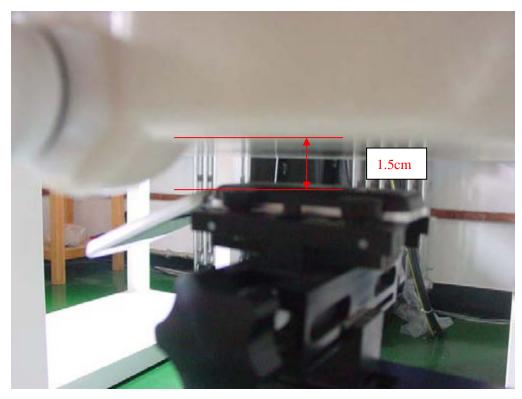
Picture B3 Liquid depth in the Flat Phantom (1900MHz)

No. 2008SAR00042 Page 20 of 105

Picture B4: Left Hand Touch Cheek Position

Picture B5: Left Hand Tilt 15° Position

No. 2008SAR00042 Page 21 of 105



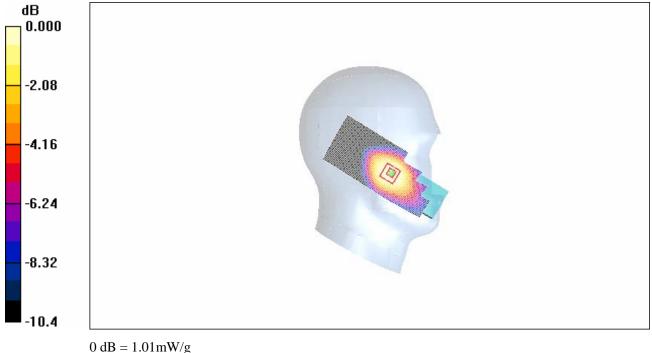
Picture B6: Right Hand Touch Cheek Position

Picture B7: Right Hand Tilt 15° Position

No. 2008SAR00042 Page 22 of 105

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C: GRAPH RESULTS


850 Left Cheek High

Date/Time: 2008-7-14 9:57:14 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.14 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

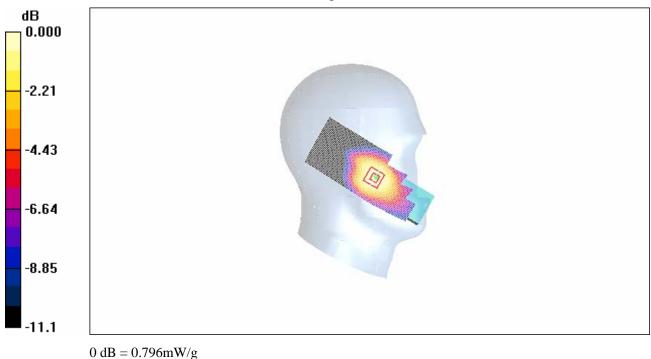
Reference Value = 5.88 V/m; Power Drift = -0.200 dBPeak SAR (extrapolated) = 1.30 W/kgSAR(1 g) = 0.961 mW/g; SAR(10 g) = 0.676 mW/gMaximum value of SAR (measured) = 1.01 mW/g

Fig. 1 850MHz CH251

No. 2008SAR00042 Page 24 of 105



Fig. 2 Z-Scan at power reference point (850 MHz CH251)


850 Left Cheek Middle

Date/Time: 2008-7-14 10:13:50 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.799 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.77 V/m; Power Drift = -0.027 dBPeak SAR (extrapolated) = 1.02 W/kgSAR(1 g) = 0.757 mW/g; SAR(10 g) = 0.527 mW/gMaximum value of SAR (measured) = 0.796 mW/g

No. 2008SAR00042 Page 26 of 105

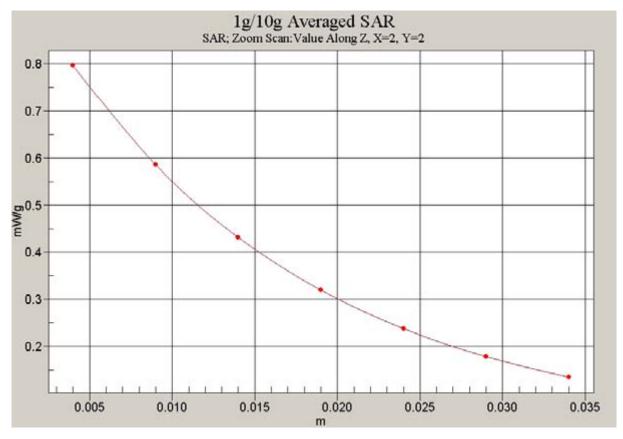
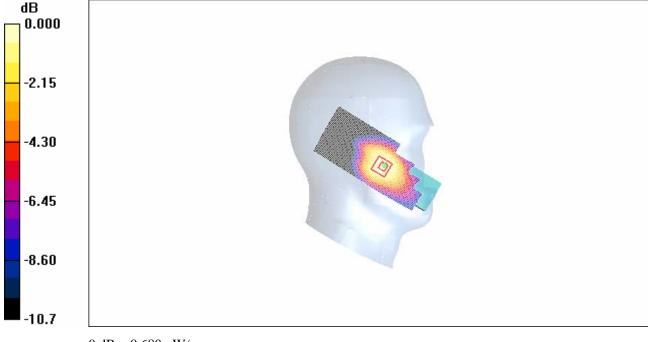


Fig. 4 Z-Scan at power reference point (850 MHz CH190)

850 Left Cheek Low

Date/Time: 2008-7-14 10:28:01 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)


Cheek Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.689 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.41 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.877 W/kg

SAR(1 g) = 0.647 mW/g; SAR(10 g) = 0.454 mW/g

Maximum value of SAR (measured) = 0.680 mW/g

0 dB = 0.680 mW/g

No. 2008SAR00042 Page 28 of 105

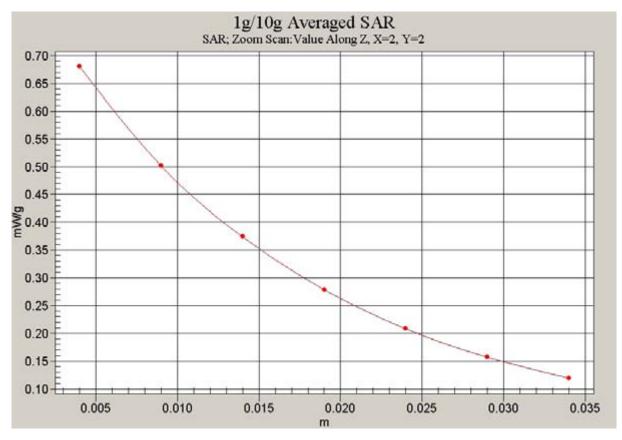


Fig. 6 Z-Scan at power reference point (850 MHz CH190)

850 Left Tilt High

Date/Time: 2008-7-14 11:10:24 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.358 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.61 V/m; Power Drift = 0.060 dBPeak SAR (extrapolated) = 0.440 W/kgSAR(1 g) = 0.344 mW/g; SAR(10 g) = 0.254 mW/gMaximum value of SAR (measured) = 0.362 mW/g

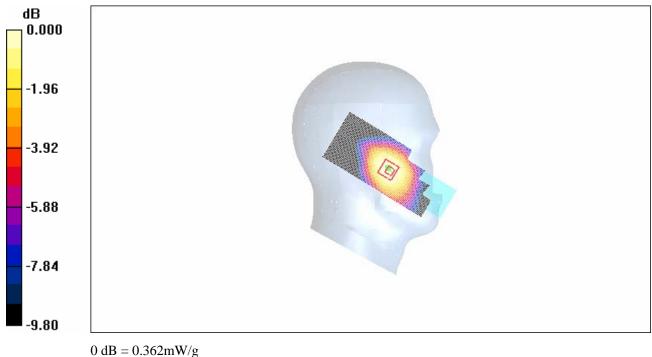


Fig.7 850 MHz CH251

No. 2008SAR00042 Page 30 of 105

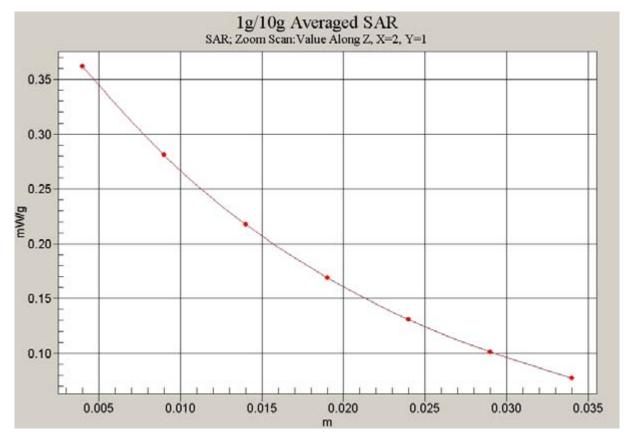


Fig. 8 Z-Scan at power reference point (850 MHz CH251)

850 Left Tilt Middle

Date/Time: 2008-7-14 10:56:29 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.290 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.66 V/m; Power Drift = 0.108 dBPeak SAR (extrapolated) = 0.346 W/kgSAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.206 mW/gMaximum value of SAR (measured) = 0.287 mW/g

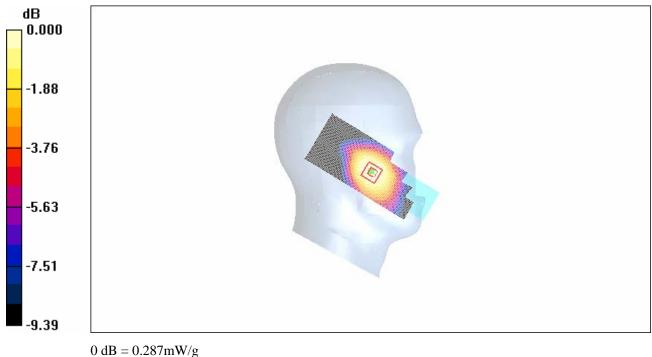
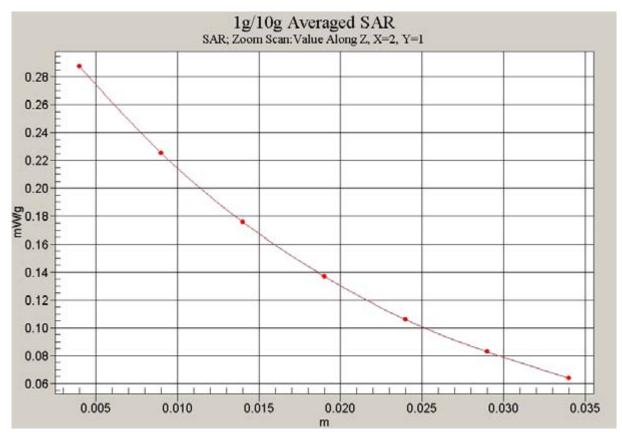
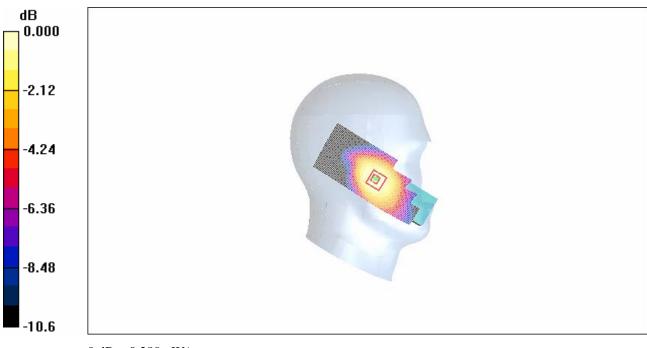


Fig.9 850 MHz CH190

No. 2008SAR00042 Page 32 of 105




Fig. 10 Z-Scan at power reference point (850 MHz CH190)

850 Left Tilt Low

Date/Time: 2008-7-14 10:42:23 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.267 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.35 V/m; Power Drift = 0.062 dB Peak SAR (extrapolated) = 0.331 W/kg SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.194 mW/g Maximum value of SAR (measured) = 0.280 mW/g

 $0 \ dB = 0.280 mW/g$

No. 2008SAR00042 Page 34 of 105

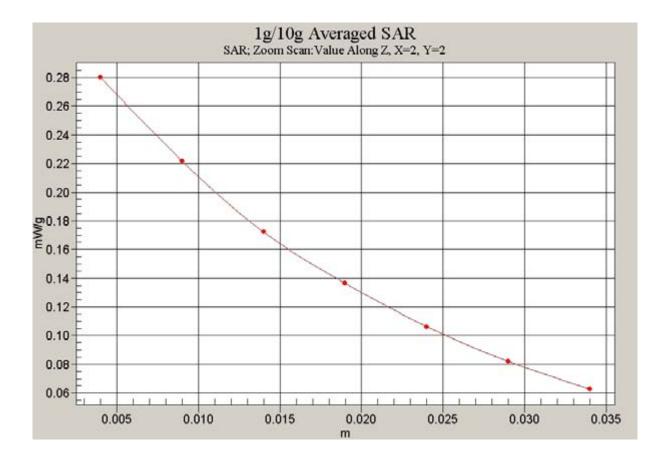
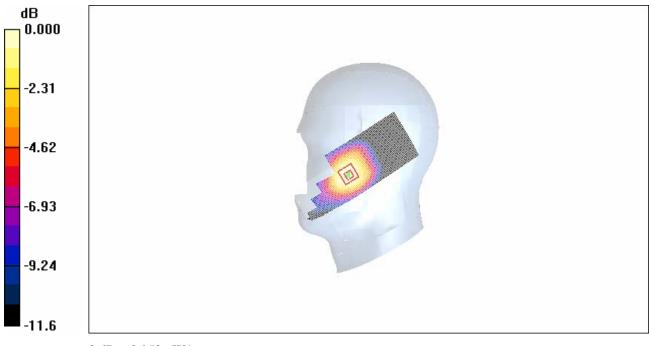


Fig. 12 Z-Scan at power reference point (850 MHz CH128)


850 Right Cheek High

Date/Time: 2008-7-14 13:22:26 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.01 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

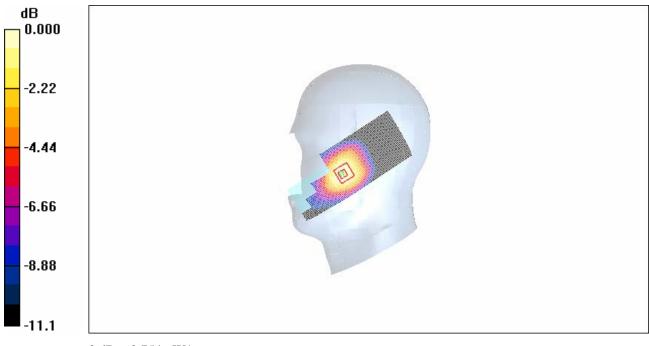
Reference Value = 3.89 V/m; Power Drift = 0.115 dBPeak SAR (extrapolated) = 1.25 W/kgSAR(1 g) = 0.910 mW/g; SAR(10 g) = 0.624 mW/gMaximum value of SAR (measured) = 0.952 mW/g

0 dB = 0.952 mW/g

Fig. 13 850 MHz CH251

No. 2008SAR00042 Page 36 of 105

Fig. 14 Z-Scan at power reference point (850 MHz CH251)


850 Right Cheek Middle

Date/Time: 2008-7-14 13:37:27 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.59$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.765 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.38 V/m; Power Drift = 0.200 dB Peak SAR (extrapolated) = 0.973 W/kg SAR(1 g) = 0.707 mW/g; SAR(10 g) = 0.483 mW/g Maximum value of SAR (measured) = 0.754 mW/g

 $0 \; dB = 0.754 mW/g$

No. 2008SAR00042 Page 38 of 105

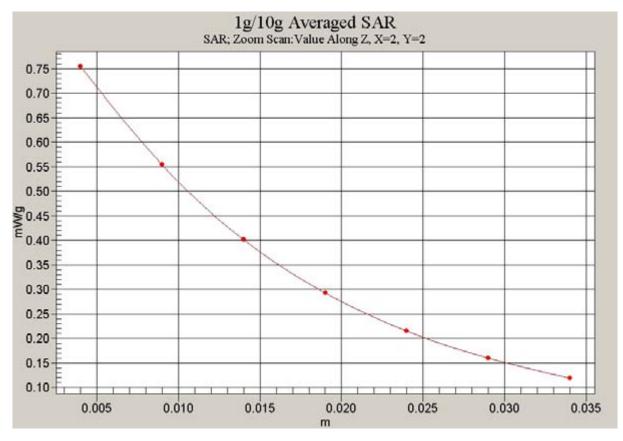
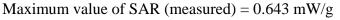
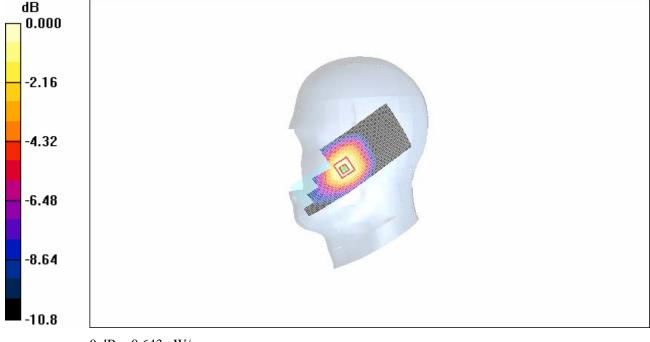


Fig. 16 Z-Scan at power reference point (850 MHz CH190)


850 Right Cheek Low


Date/Time: 2008-7-14 13:52:30 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.645 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.11 V/m; Power Drift = 0.200 dB Peak SAR (extrapolated) = 0.838 W/kg SAR(1 g) = 0.601 mW/g; SAR(10 g) = 0.412 mW/g

0 dB = 0.643 mW/g

No. 2008SAR00042 Page 40 of 105

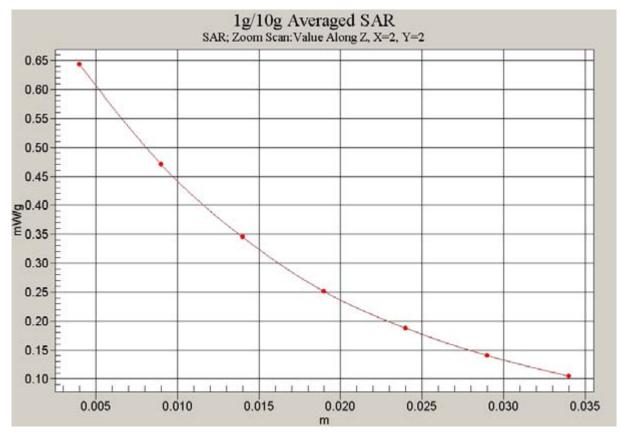
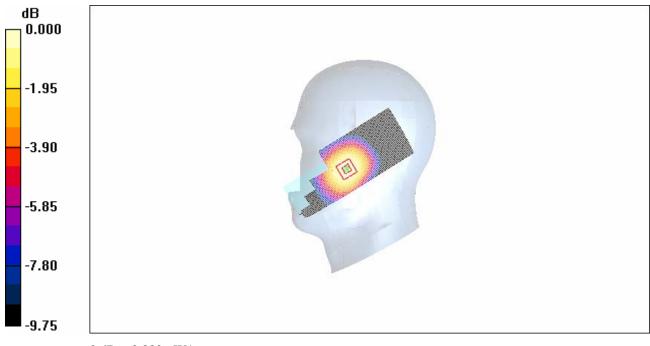


Fig. 18 Z-Scan at power reference point (850 MHz CH128)


850 Right Tilt High

Date/Time: 2008-7-14 14:55:41 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.383 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.36 V/m; Power Drift = -0.004 dBPeak SAR (extrapolated) = 0.463 W/kg**SAR(1 g) = 0.358 \text{ mW/g}; SAR(10 g) = 0.262 \text{ mW/g}** Maximum value of SAR (measured) = 0.382 mW/g

 $0 \, dB = 0.382 mW/g$

No. 2008SAR00042 Page 42 of 105

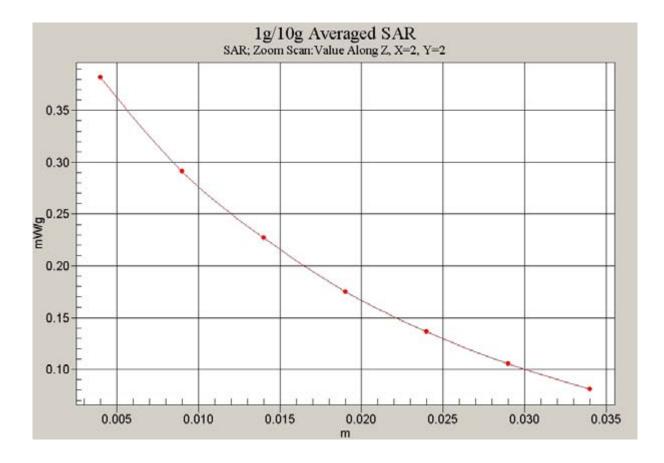


Fig. 20 Z-Scan at power reference point (850 MHz CH251)

850 Right Tilt Middle

Date/Time: 2008-7-14 14:39:54 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.5$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

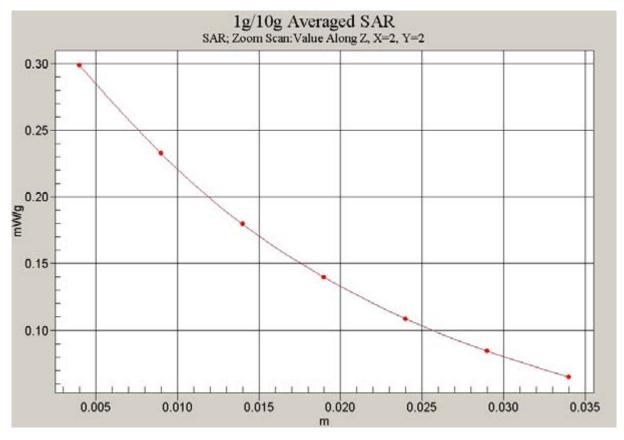
Tilt Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.300 mW/g

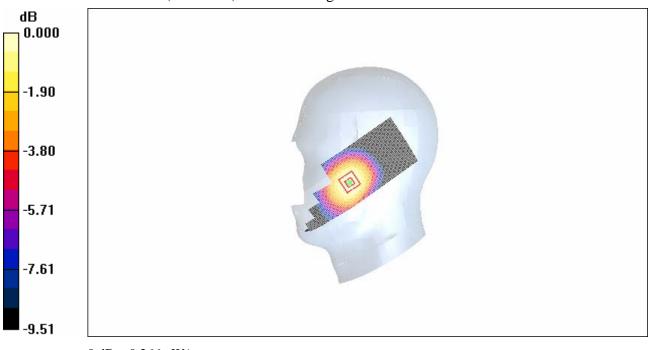
Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.91 V/m; Power Drift = 0.133 dB Peak SAR (extrapolated) = 0.357 W/kg SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.208 mW/g Maximum value of SAR (measured) = 0.299 mW/g

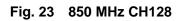
 $0 \; dB = 0.299 mW/g$

No. 2008SAR00042 Page 44 of 105




Fig. 22 Z-Scan at power reference point (850 MHz CH190)

850 Right Tilt Low


Date/Time: 2008-7-14 14:08:14 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.265 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.85 V/m; Power Drift = 0.139 dB Peak SAR (extrapolated) = 0.315 W/kg SAR(1 g) = 0.249 mW/g; SAR(10 g) = 0.184 mW/g Maximum value of SAR (measured) = 0.266 mW/g

 $0 \ dB = 0.266 mW/g$

No. 2008SAR00042 Page 46 of 105

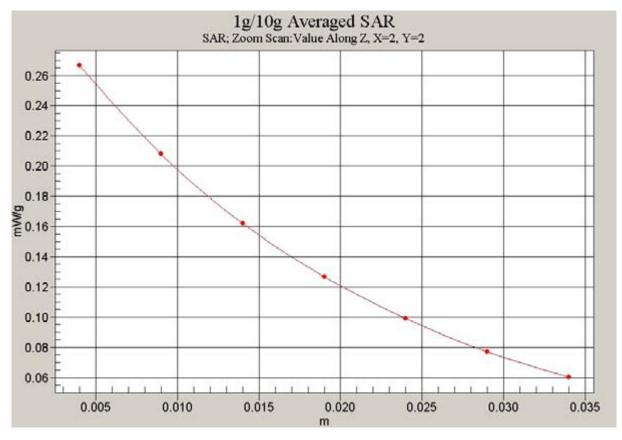
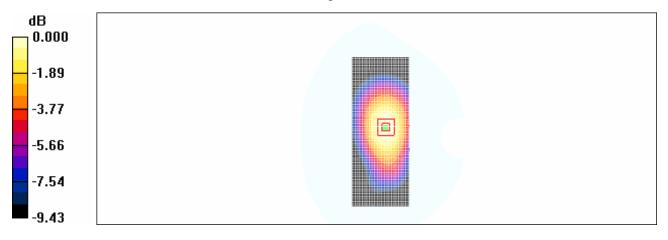


Fig. 24 Z-Scan at power reference point (850 MHz CH128)


850 Body Towards Ground High with GPRS

Date/Time: 2008-7-14 16:41:50 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.02 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.6 V/m; Power Drift = -0.071 dBPeak SAR (extrapolated) = 1.30 W/kgSAR(1 g) = 0.960 mW/g; SAR(10 g) = 0.679 mW/gMaximum value of SAR (measured) = 1.02 mW/g

0 dB = 1.02 mW/g

Fig. 25 850 MHz CH251

No. 2008SAR00042 Page 48 of 105

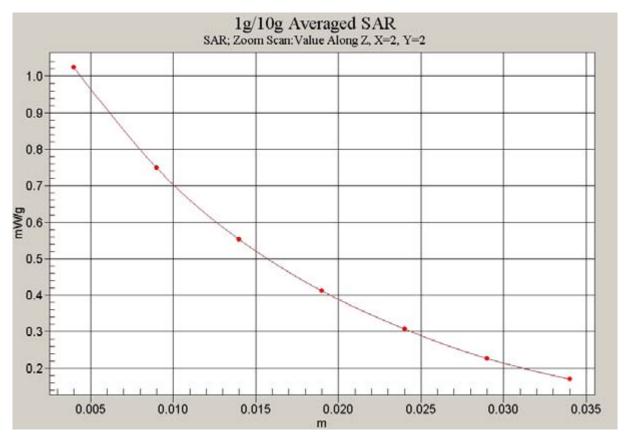
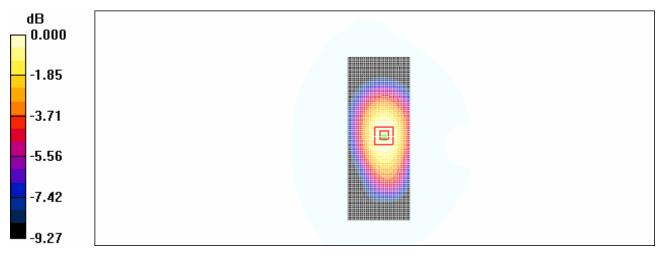


Fig. 26 Z-Scan at power reference point (850 MHz CH251)


850 Body Towards Ground Middle with GPRS

Date/Time: 2008-7-14 17:00:08 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.922 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 29.7 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.869 mW/g; SAR(10 g) = 0.620 mW/g Maximum value of SAR (measured) = 0.914 mW/g

 $0 \ dB = 0.914 mW/g$

No. 2008SAR00042 Page 50 of 105

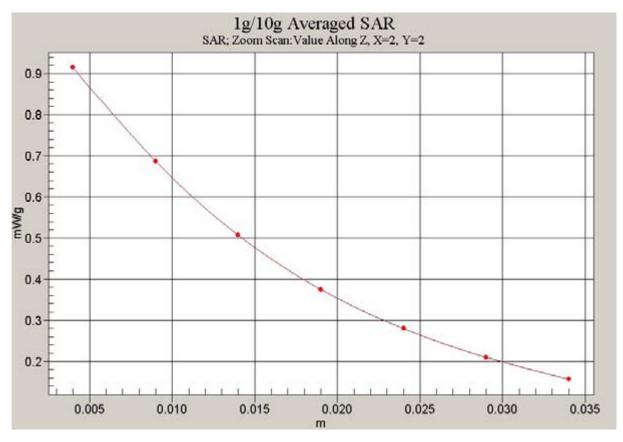
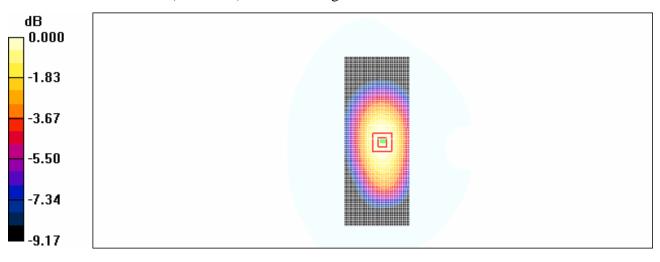


Fig. 28 Z-Scan at power reference point (850 MHz CH190)

No. 2008SAR00042 Page 51 of 105

850 Body Towards Ground Low with GPRS


Date/Time: 2008-7-14 17:25:05 Electronics: DAE4 Sn777 Medium: 850 Body Medium parameters used: f = 825 MHz; $\sigma = 0.993$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.969 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.3 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.910 mW/g; SAR(10 g) = 0.654 mW/g Maximum value of SAR (measured) = 0.959 mW/g

 $0 \ dB = 0.959 mW/g$

Fig. 29 850 MHz CH128

No. 2008SAR00042 Page 52 of 105

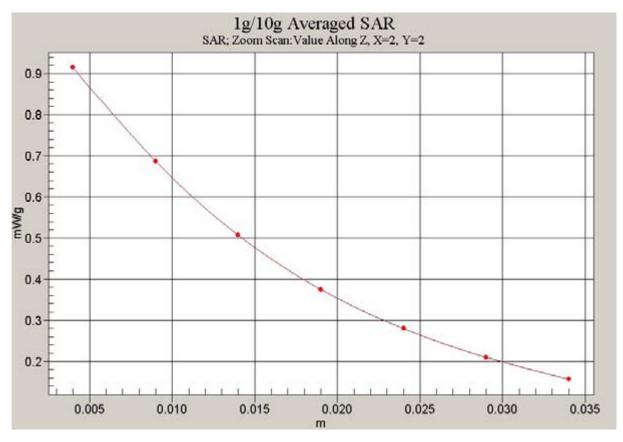


Fig. 30 Z-Scan at power reference point (850 MHz CH128)

1900 Left Cheek High

Date/Time: 2008-7-10 13:19:31 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.487 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.11 V/m; Power Drift = -0.200 dB Peak SAR (extrapolated) = 0.813 W/kg SAR(1 g) = 0.429 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.500 mW/g

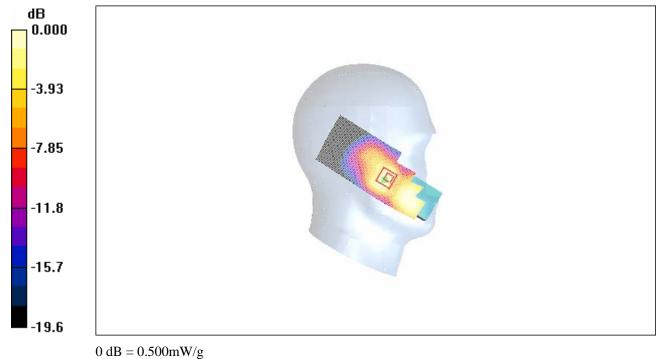


Fig. 31 1900 MHz CH810

No. 2008SAR00042 Page 54 of 105

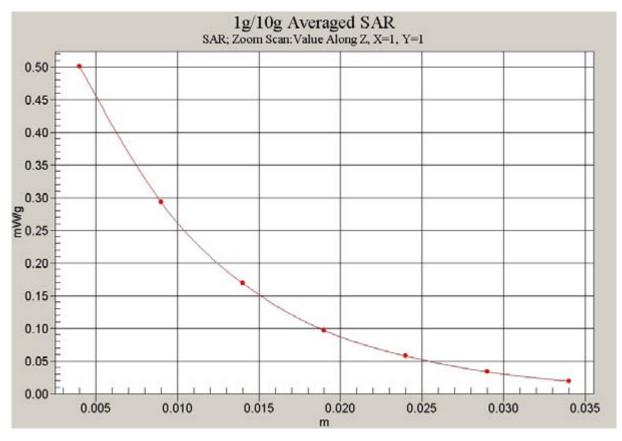
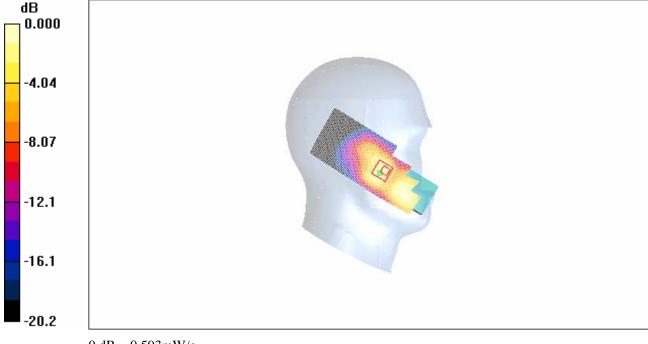


Fig. 32 Z-Scan at power reference point (1900 MHz CH810)


1900 Left Cheek Middle

Date/Time: 2008-7-10 14:12:06 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.493 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.95 V/m; Power Drift = 0.200 dB Peak SAR (extrapolated) = 0.939 W/kg SAR(1 g) = 0.485 mW/g; SAR(10 g) = 0.242 mW/g

Maximum value of SAR (measured) = 0.593 mW/g

 $0 \, dB = 0.593 mW/g$

Fig. 33 1900 MHz CH661

No. 2008SAR00042 Page 56 of 105

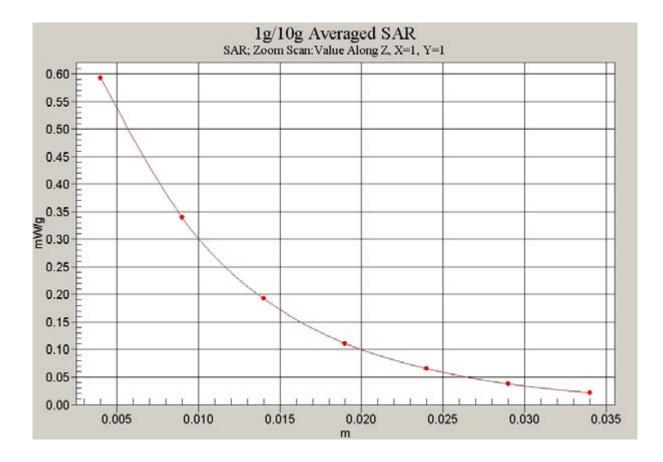
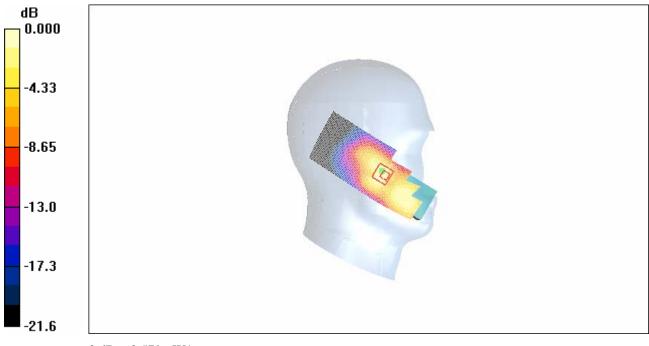


Fig. 34 Z-Scan at power reference point (1900 MHz CH661)


1900 Left Cheek Low

Date/Time: 2008-7-10 14:27:15 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.452 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.94 V/m; Power Drift = -0.069 dBPeak SAR (extrapolated) = 0.864 W/kg**SAR(1 g) = 0.469 \text{ mW/g}; SAR(10 g) = 0.229 \text{ mW/g}** Maximum value of SAR (measured) = 0.579 mW/g

 $^{0 \} dB = 0.579 mW/g$

Fig. 35 1900 MHz CH512

No. 2008SAR00042 Page 58 of 105

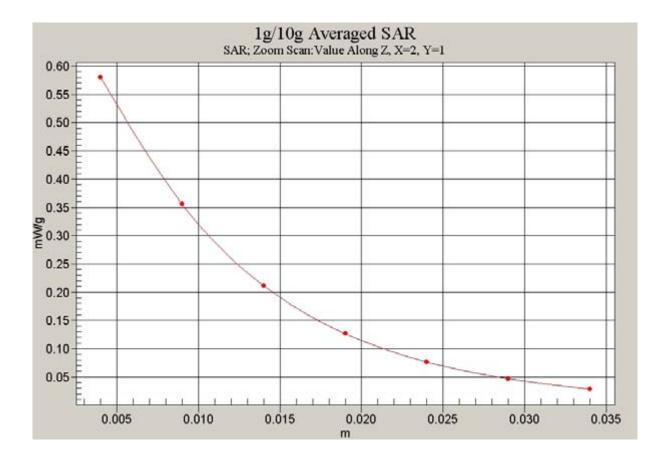
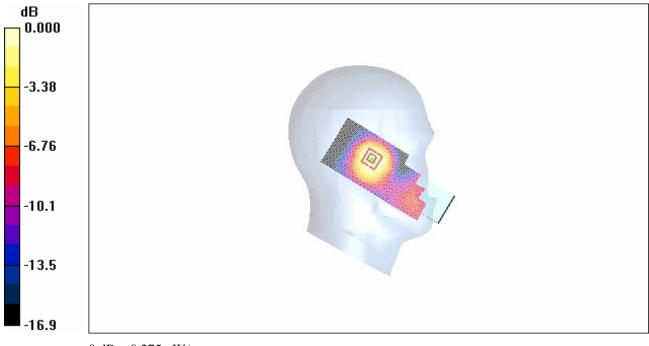


Fig. 36 Z-Scan at power reference point (1900 MHz CH512)


1900 Left Tilt High

Date/Time: 2008-7-10 15:27:35 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.299 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.31 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 0.411 W/kg **SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.152 mW/g Maximum value of SAR (measured) = 0.275 mW/g**

 $^{0 \}text{ dB} = 0.275 \text{mW/g}$

No. 2008SAR00042 Page 60 of 105

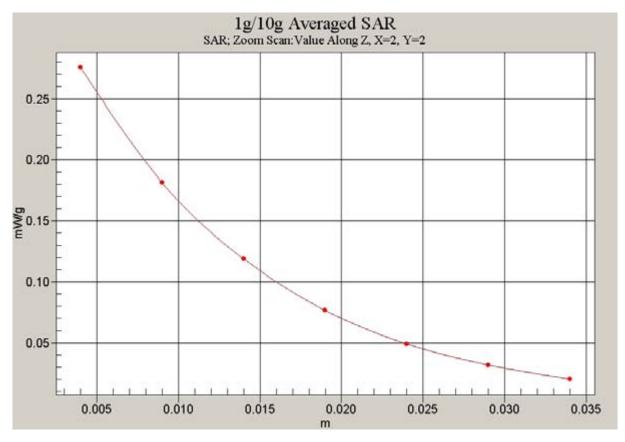
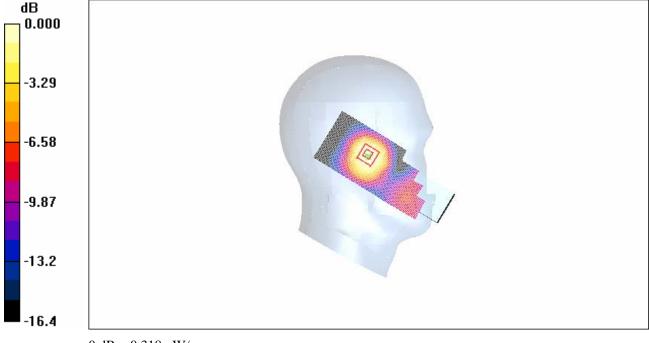


Fig. 38 Z-Scan at power reference point (1900 MHz CH810)

1900 Left Tilt Middle

Date/Time: 2008-7-10 15:13:06 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)


Tilt Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.341 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.85 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.177 mW/g

Maximum value of SAR (measured) = 0.318 mW/g

0 dB = 0.318 mW/g

Fig. 39 1900 MHz CH661

No. 2008SAR00042 Page 62 of 105

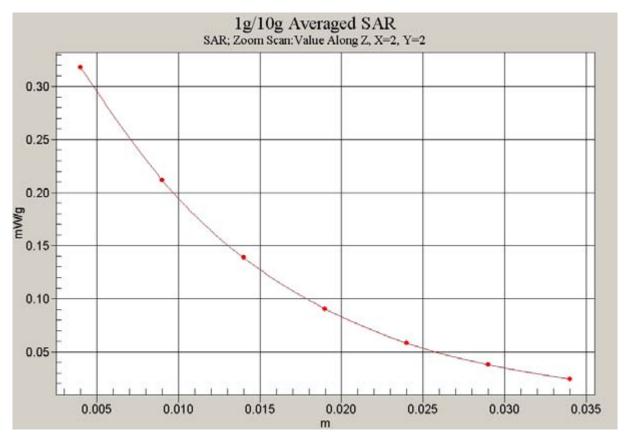
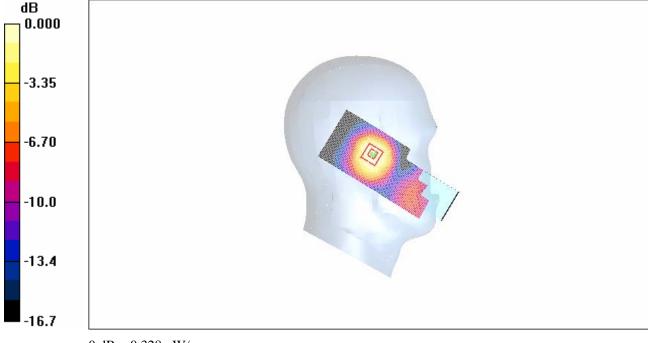


Fig. 40 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Tilt Low


Date/Time: 2008-7-10 14:55:25 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.348 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.88 V/m; Power Drift = 0.070 dB Peak SAR (extrapolated) = 0.461 W/kg

SAR(1 g) = 0.303 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.328 mW/g

 $0 \, dB = 0.328 \, mW/g$

Fig. 41 1900 MHz CH512

No. 2008SAR00042 Page 64 of 105

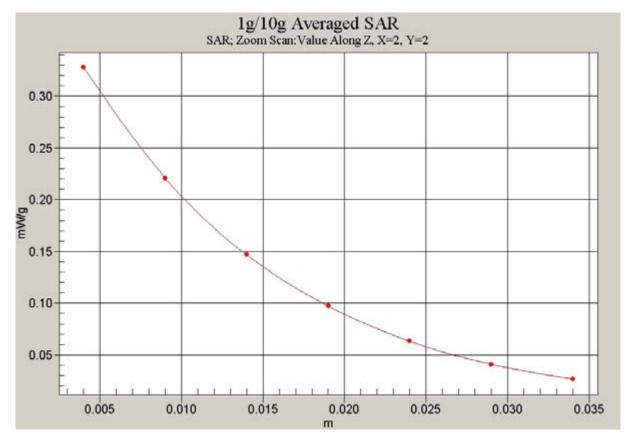
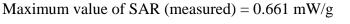
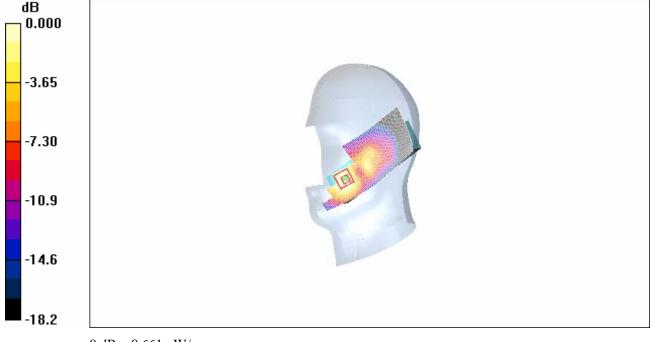


Fig. 42 Z-Scan at power reference point (1900 MHz CH512)


1900 Right Cheek High


Date/Time: 2008-7-10 16:12:22 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.704 mW/g

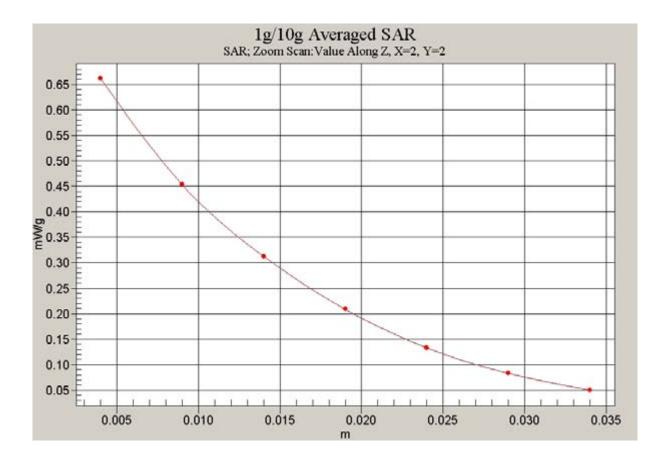
Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

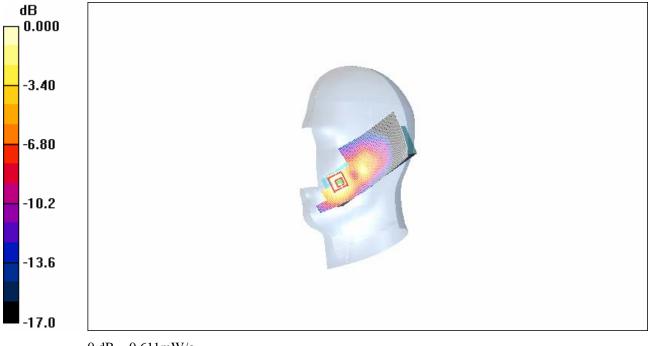
Reference Value = 5.18 V/m; Power Drift = 0.200 dB Peak SAR (extrapolated) = 0.904 W/kg SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.367 mW/g Maximum value of SAB (measured) = 0.661 mW/g

 $0 \ dB = 0.661 mW/g$

Fig. 43 1900 MHz CH810

No. 2008SAR00042 Page 66 of 105




Fig. 44 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Cheek Middle

Date/Time: 2008-7-10 16:27:51 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.631 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.57 V/m; Power Drift = -0.085 dB Peak SAR (extrapolated) = 0.824 W/kg SAR(1 g) = 0.563 mW/g; SAR(10 g) = 0.342 mW/g Maximum value of SAR (measured) = 0.611 mW/g

 $0 \ dB = 0.611 mW/g$

Fig. 45 1900 MHz CH661

No. 2008SAR00042 Page 68 of 105

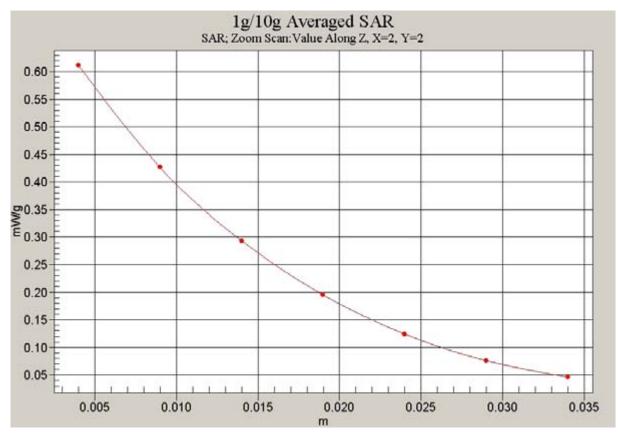
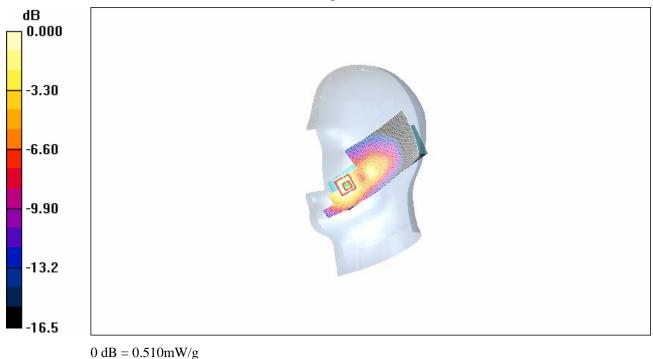


Fig. 46 Z-Scan at power reference point (1900 MHz CH661)


1900 Right Cheek Low

Date/Time: 2008-7-10 16:43:09 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.509 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.07 V/m; Power Drift = -0.144 dBPeak SAR (extrapolated) = 0.693 W/kgSAR(1 g) = 0.472 mW/g; SAR(10 g) = 0.287 mW/gMaximum value of SAR (measured) = 0.510 mW/g

No. 2008SAR00042 Page 70 of 105

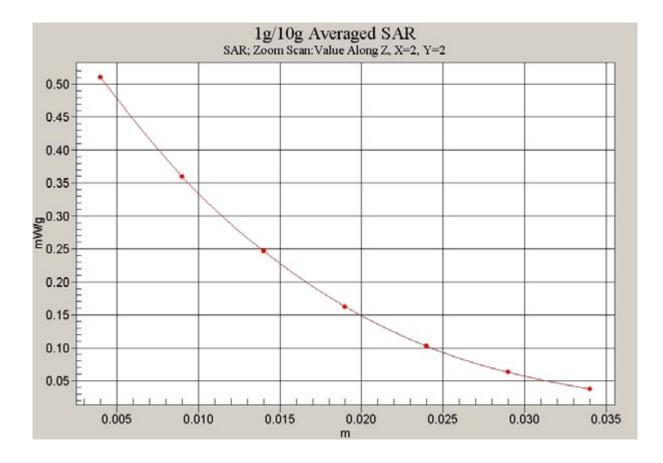
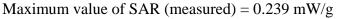


Fig. 48 Z-Scan at power reference point (1900 MHz CH512)


1900 Right Tilt High

Date/Time: 2008-7-10 17:46:43 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.263 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.137 mW/g

 $^{0 \,} dB = 0.239 mW/g$

Fig. 49 1900 MHz CH810

No. 2008SAR00042 Page 72 of 105

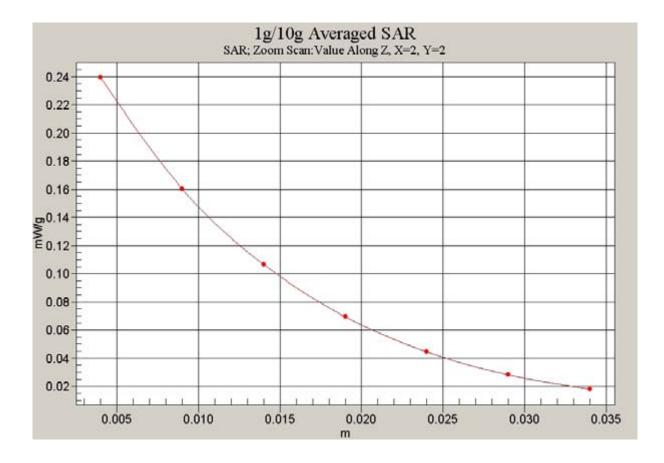
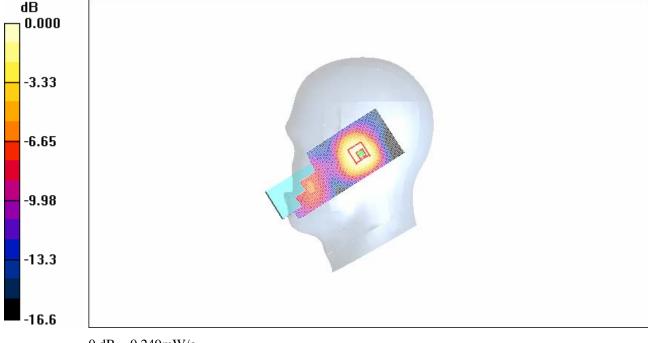


Fig. 50 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Tilt Middle


Date/Time: 2008-7-10 17:18:52 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.278 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.115 dB Peak SAR (extrapolated) = 0.349 W/kg SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.146 mW/g Maximum value of SAB (measured) = 0.240 mW/g

Maximum value of SAR (measured) = 0.249 mW/g

 $0 \, dB = 0.249 \, mW/g$

No. 2008SAR00042 Page 74 of 105

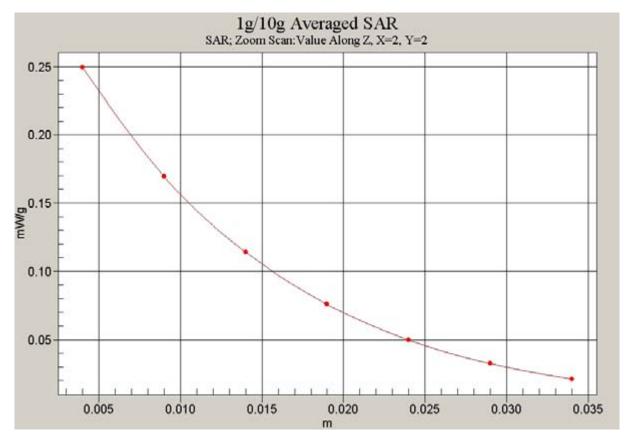
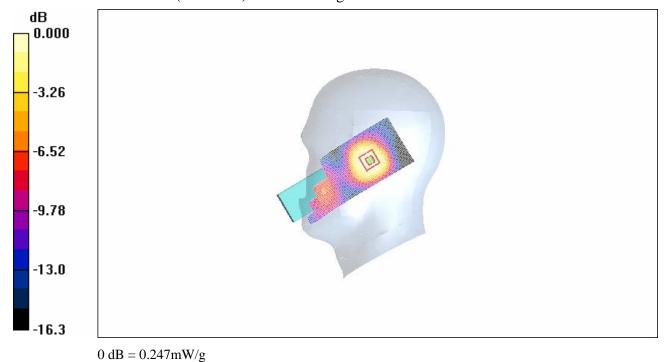


Fig. 52 Z-Scan at power reference point (1900 MHz CH661)

1900 Right Tilt Low


Date/Time: 2008-7-10 16:58:55 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.273 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.4 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 0.335 W/kg

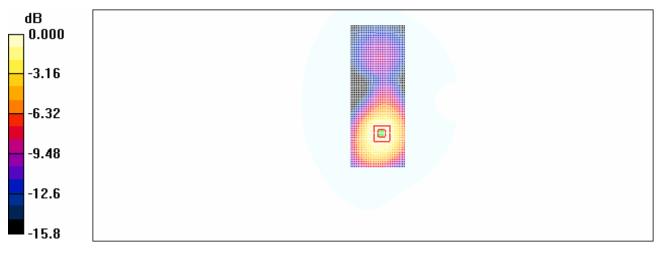
SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.146 mW/g

Maximum value of SAR (measured) = 0.247 mW/g

No. 2008SAR00042 Page 76 of 105

Fig. 54 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Ground High with GPRS


Date/Time: 2008-7-10 8:20:30 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground High/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.841 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.160 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.770 mW/g; SAR(10 g) = 0.476 mW/g Maximum value of SAR (measured) = 0.827 mW/g

 $0 \ dB = 0.827 mW/g$

Fig. 55 1900 MHz CH810

No. 2008SAR00042 Page 78 of 105

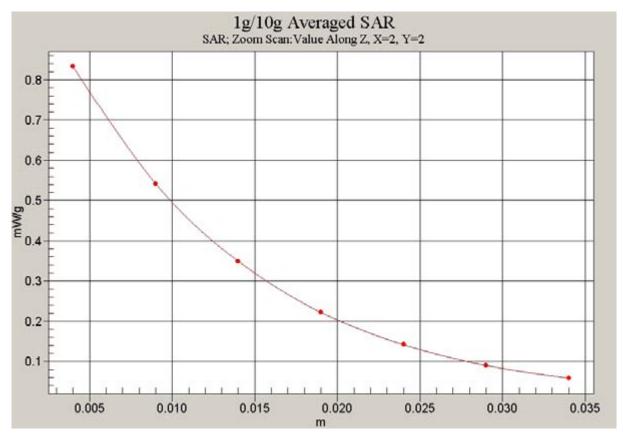
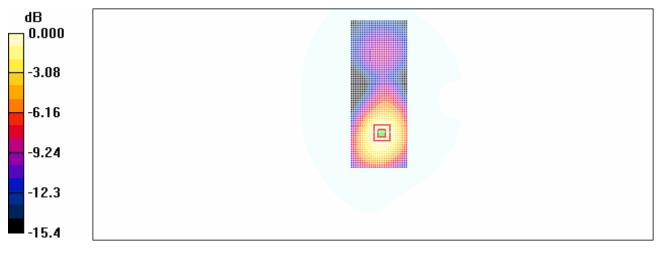


Fig. 56 Z-Scan at power reference point (1900 MHz CH810)


1900 Body Towards Ground Middle with GPRS

Date/Time: 2008-7-10 8:36:03 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.47 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Middle/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.817 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 10.8 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.747 mW/g; SAR(10 g) = 0.464 mW/g Maximum value of SAR (measured) = 0.800 mW/g

 $0 \ dB = 0.800 mW/g$

Fig. 57 1900 MHz CH661

No. 2008SAR00042 Page 80 of 105

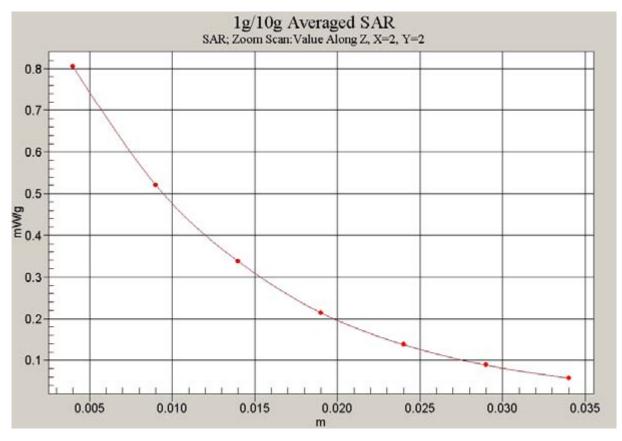
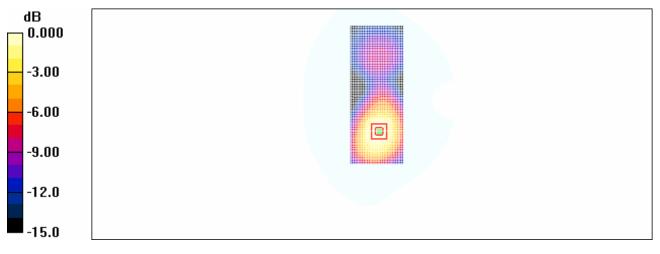


Fig. 58 Z-Scan at power reference point (1900 MHz CH661)


1900 Body Towards Ground Low with GPRS

Date/Time: 2008-7-10 8:52:26 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Low/Area Scan (51x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.738 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.681 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.740 mW/g

 $0 \, dB = 0.740 mW/g$

Fig. 59 1900 MHz CH512

No. 2008SAR00042 Page 82 of 105

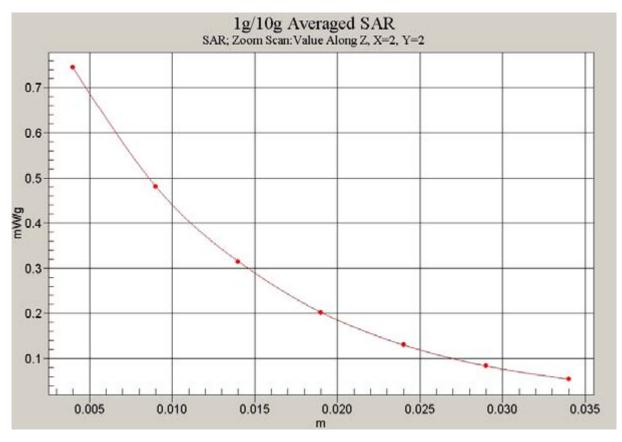
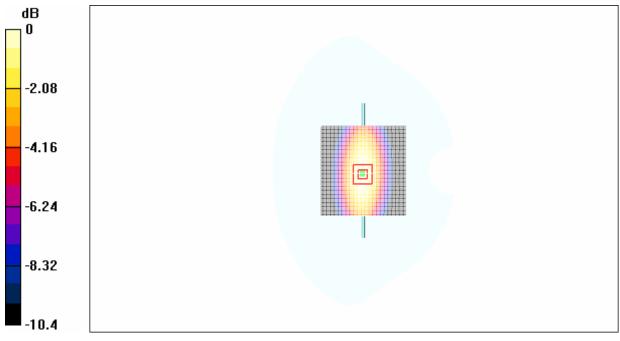


Fig. 60 Z-Scan at power reference point (1900 MHz CH512)


ANNEX D SYSTEM VALIDATION RESULTS

835MHzDAE777Probe3142

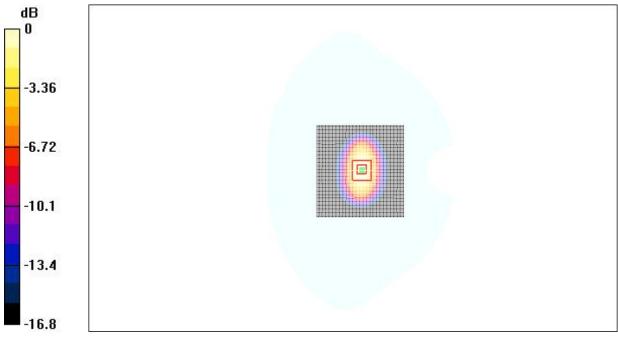
Date/Time: 2008-7-14 8:11:24 Electronics: DAE4 Sn777 Medium: 835 Head Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ_r = 43.5; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liqiud Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.97, 5.97, 5.97)

835MHz/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.68 mW/g

835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.69 mW/g

0 dB = 2.69 mW/g

Fig.61 validation 835MHz 250mW


1900MHz DAE777Probe3142

Date/Time: 2008-7-10 7:58:16 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.66, 5.66, 5.66)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.27 mW/gMaximum value of SAR (measured) = 11.3 mW/g

 $^{0 \}text{ dB} = 11.3 \text{mW/g}$

Fig.62 validation 1900MHz 250mW

ANNEX E PROBE CALIBRATION CERTIFICATE

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	ry of		Ichweizerischer Kalibrier Iervice suisse d'étalonna Iervizio svizzero di taratu Iwiss Calibration Service
Accredited by the Swiss Federal (The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signator	ies to the EA	a: SCS 108
Client TMC Beijing	# (CON 10 10 10 10 10 10 10 10 10 10 10 10 10	Statistical and statistical	S3-3142_Sep07
CALIBRATION	CERTIFICAT	TE	i la che i la che
Object	ES3DV3 - SN:3	142	A CONTRACTOR
Calibration procedure(s)		and QA CAL-12.v5 redure for dosimetric E-field probes	an increase
Calibration date:	September 7, 2	007	
Condition of the calibrated item	In Tolerance		Stores and
The measurements and the unce	intainties with confidence	ational standards, which realize the physical units o probability are given on the following pages and ar lory facility: environment temperature (22 ± 3)°C an	e part of the certificate.
The measurements and the unce	ertainties with confidence	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an	e part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power mater E44198	International action of the closed laboration of the closed laboration of the calibration	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00570)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	International action of the confidence of the closed laborat TE ortical for calibration)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	International Statement of the second	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	International action of the confidence of the closed laborat TE ortical for calibration)	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	International and a second sec	probability are given on the following pages and at ony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00570) 29-Mar-07 (METAS, No. 217-00570) 8-Aug-07 (METAS, No. 217-00571) 8-Aug-07 (METAS, No. 217-00571) 8-Aug-07 (METAS, No. 217-00571)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-06 Aug-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 910dB R30V2	Italinties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41496037 SN: 55054 (3c) SN: 55129 (30b) SN: 35129 (30b) SN: 3013	probability are given on the following pages and at ony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00671) 29-Mar-07 (METAS, No. 217-00671) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-06 Aug-08 Jan-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V/2 DAE4	International action of the closed laborat TE ontical for calibration) ID # GB41293874 MY41495087 SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 654	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07)	e part of the certificate. d humidity < 70%, Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	International action of the closed laborat TE ontical for calibration) ID # GB41293874 MY41498277 MY41498087 SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID #	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-0070) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	e part of the certificate. d humidity < 70%, Scheduled Calibration Mar-08 Mar-08 Mar-08 Aag-08 Mar-08 Aag-08 Jan-08 Apr-08 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe E530V/2 DAE4	International action of the closed laborat TE ontical for calibration) ID # GB41293874 MY41495087 SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 654	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07)	e part of the certificate. d humidity < 70%, Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	International and a second sec	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00570) 29-Mar-07 (METAS, No. 217-00570) 3-Aug-07 (METAS, No. 217-00570) 3-Aug-07 (METAS, No. 217-00570) 3-Aug-07 (METAS, No. 217-00571) 8-Aug-07 (METAS, No. 217-00751) 8-Aug-07 (METAS, No. 217-00750) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	International and a second sec	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00570) 29-Mar-07 (METAS, No. 217-00570) 29-Mar-07 (METAS, No. 217-00570) 5-Aug-07 (METAS, No. 217-00571) 8-Aug-07 (METAS, No. 217-00571) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013, Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Mar-06 Aug-08 Jan-06 Apr-08 Scheduled Check In house check: Nov-07 In house check: Nov-07 Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe E530V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	International and a second sec	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)*C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-0070) 4-Jan-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0070) 4-Jan-07 (SPEAG, No. 218-4057) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nor-07 In house check: Nor-07 Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	International action of the closed laborat TE ontical for calibration) ID # GB41293874 MY41495277 MY4149687 SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US3642U01700 US3655 Name Katja Pokovic Niels Kuster	probability are given on the following pages and at lony facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00701) 8-Aug-07 (METAS, No. 217-00719) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-09 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Aug-08 Aug-08 Jun-06 Aug-08 Jun-06 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07

No. 2008SAR00042 Page 86 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNIS

s

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

Swisa Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	o rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This . linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3142_Sep07

Page 2 of 9

No. 2008SAR00042 Page 87 of 105

ES3DV3 SN:3142

September 7, 2007

Probe ES3DV3

SN:3142

Manufactured: Calibrated: March 13, 2007 September 7, 2007

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3142_Sep07

Page 3 of 9

No. 2008SAR00042 Page 88 of 105

ES3DV3 SN:3142

September 7, 2007

DASY - Parameters of Probe: ES3DV3 SN:3142

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.21 ± 10.1%	$\mu V/(V/m)^2$	DCP X	96 mV
NormY	1.28 ± 10.1%	μV/(V/m) ²	DCP Y	95 mV
NormZ	1.15 ± 10.1%	μV/(V/m) ²	DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.6	0.8
SARbe [%]	With Correction Algorithm	0.0	0.4

TSL

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.6	4.5
SARbe [%]	With Correction Algorithm	0.2	0.1

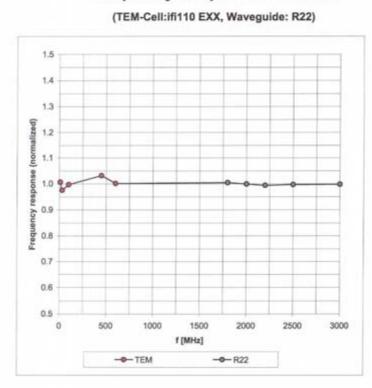
Sensor Offset

Probe	Tip	to Se	insor	Center	

2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required.

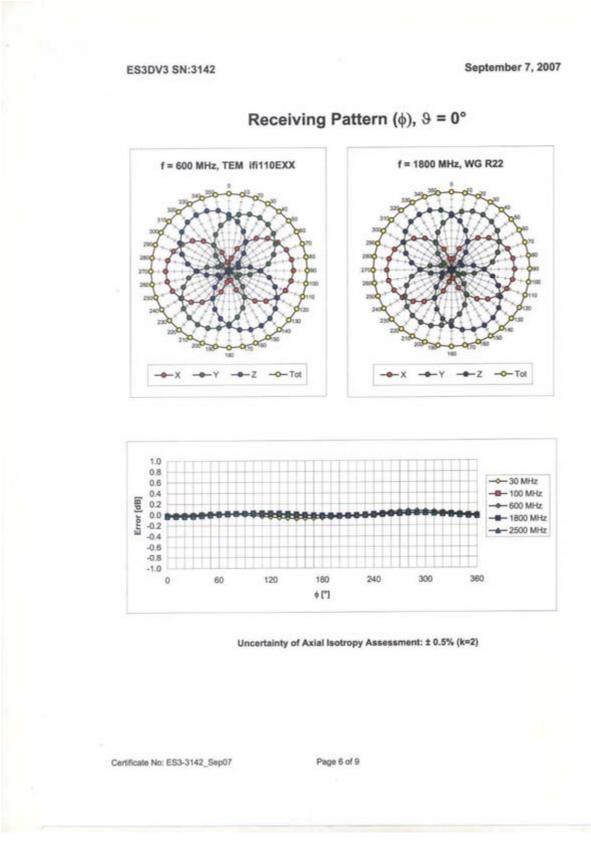

Certificate No: ES3-3142_Sep07

Page 4 of 9

No. 2008SAR00042 Page 89 of 105

ES3DV3 SN:3142

September 7, 2007

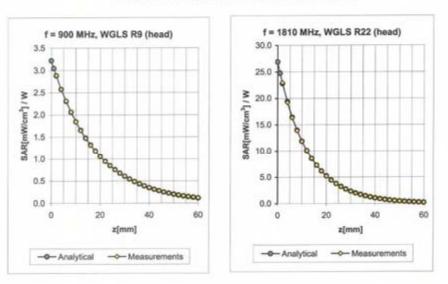

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3142_Sep07

Page 5 of 9

No. 2008SAR00042 Page 90 of 105


No. 2008SAR00042 Page 91 of 105

No. 2008SAR00042 Page 92 of 105

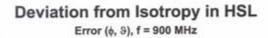
ES3DV3 SN:3142

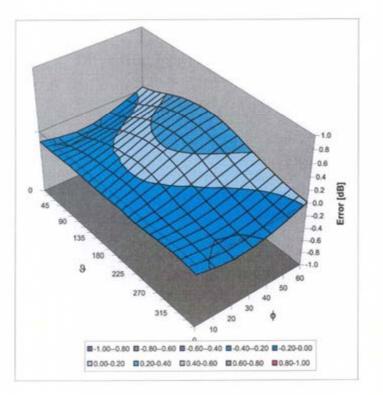
September 7, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.32	1.29	6.16 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.00	1.09	5.97 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	1.41	4.87 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.24	1.24	6.68 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.94	1.16	5.66 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.73	1.33	4.61 ± 11.0% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ES3-3142_Sep07


Page 8 of 9

No. 2008SAR00042 Page 93 of 105

ES3DV3 SN:3142

September 7, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3142_Sep07

Page 9 of 9

No. 2008SAR00042 Page 94 of 105

ANNEX F DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

Schweizerischer Kallbrierdienst Bervice suises d'étalonnage Bervizio avizzero di taratura Bwiss Calibration Service

s

C

S

Accredited by the Swiss Federal Office of metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC China

- DWARD IN WARD TREES AND AND A

Accreditation No.: SCS 108

	I manager and		
Object	D835V2-S	N: 443	
Calibration procedure(6)	QA CAL-0 Calibratio	5.v6 n procedure for dipole validation kits	
Calibration date:	February	19, 2007	
Condition of the calibrated item	In Toleran	ce	
		probability are given on the following pages and	d are part of the certificate
Il calibrations have been conduct	ted at an environment te	mperature (22±3) ⁰ C and humidity<70%	
alibration Equipment used (M&T	CONTRACTOR OF A DESCRIPTION OF A DESCRIP		Scheduled Calibration
rimary Standards	1D#	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	Scheduled Calibration
rimary Standards Yower meter EPM-442A	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	Cal Data (Calibrated by, Certification NO.)	
Primary Standards Yower meter EPM-442A Yower sensor 8481A	ID# GB37480704 US37292783	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Primary Standards Power meter EPM-442A Power sensor 8481A Reference 20 dB Attenuator	ID# GB37480704 US37292783 SN:5086 (20g)	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608)	Oct-07 Oct-07
Primary Standards Yower meter EPM-442A Yower sensor 8481A	ID# GB37480704 US37292783	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591)	Oct-07 Oct-07 Aug-07
Primary Standards Yower meter EPM-442A Yower sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID# G837480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r)	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591)	Oct-07 Oct-07 Aug-07 Aug-07
Primary Standards Yower meter EPM-442A Yower sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4	ID# G837480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO.DAE4-601_Jan07)	Oct-07 Oct-07 Aug-07 Aug-07 Jan-08
Primary Standards Yower meter EPM-442A Yower sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator OAE4 Reference Probe ET3DV6 (HF)	ID# GB37480704 US37292783 SN:5086 (20g) SN:5047_2 (10r) SN:601 SN: 1507	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06)	Oct-07 Oct-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration
Primary Standards Power meter EPM-442A Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator OAE4 Reference Probe ET3DV6 (HF) Secondary Standards	ID# GB37480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID#	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06) Check Data (In house)	Oct-07 Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07
Primary Standards Power meter EPM-442A Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator OAE4 Reference Probe ET3DV6 (HF) Secondary Standards Power sensor HP 8481A	ID# GB37480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID# MY41092317	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00561) 10-Aug-06 (METAS, NO. 217-00561) 30-Jan-07 (SPEAG, NO. 217-00561) 30-Jan-07 (SPEAG, NO. 213-1507_Oct06) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06) Check Data (In house) 18-Oct-02(SPEAG, In house check Oct-05)	Oct-07 Oct-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov-0
Primary Standards Power meter EPM-442A Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DVB (HF) Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B Network Analyzer HP 8753E	ID# GB37480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID# MY41092317 MY41092317 MY41090676	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct05) Check Data (in house) 18-Oct-02(SPEAG, in house check Oct-05) 11-May-05(SPEAG, in house check Nov-05)	Oct-07 Oct-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov-0
Primary Standards Power meter EPM-442A Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DV6 (HF) Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B Network Analyzer HP 8753E N	ID# GB37480704 US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID# MY41092317 MY41000676 US3739058554206	Cal Data (Calibrated by, Certification NO.) 03-Oct-06 (METAS, NO. 217-00608) 03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct05) Check Data (in house) 18-Oct-02(SPEAG, in house check Oct-05) 11-May-05(SPEAG, in house check Nov-05) 18-Oct-01(SPEAG, in house check Oct-06)	Oct-07 Oct-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov -0 In house check: Oct-07

Certificate No: D835V2-443_Feb07

Page 1 of 6

No. 2008SAR00042 Page 95 of 105

Calibration Laboratory of Schmid & Partner Engineering AG setrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalo Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	And the second sec
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Feb07

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7
Advanced Extrapolation	
Modular Flat Phantom V4.9	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 15 mm dx, dy, dz = 5 mm

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.88-mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 mW / g
SAR normalized	normalized to 1W	9.90 mW/g
SAR for nominal Head TSL parameters *	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)
	1	
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.6DmW/g
SAR normalized	normalized to 1W	6.40 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb07

Page 3 of 6

No. 2008SAR00042 Page 97 of 105

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5·Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.402 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coasial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-alignals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

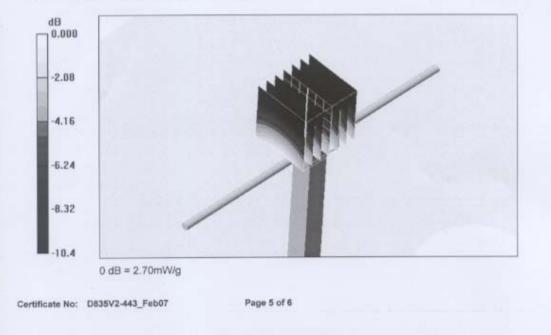
Page 4 of 6

No. 2008SAR00042 Page 98 of 105

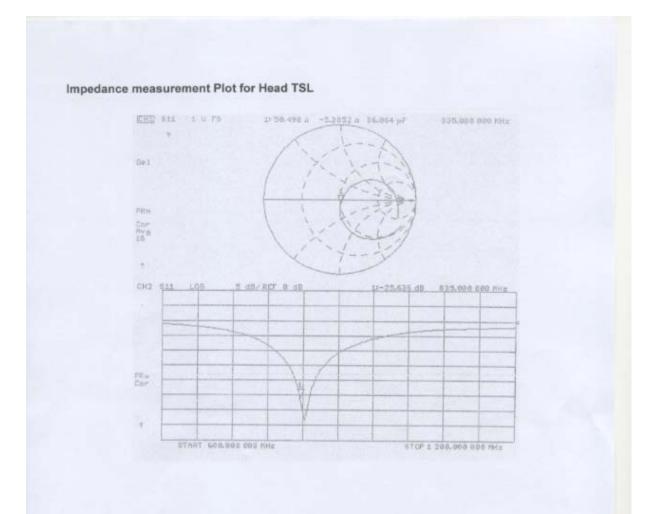
DASY4 Validation Report for Head TSL

Date/Time: 19.02.2007 10:04:15

Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz; Medium parameters used: f=835 MHz; σ=0.88 mho/m; ε,=39.9; ρ= 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.6 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.60 mW/g Maximum value of SAR (measured) = 2.70 mW/g

No. 2008SAR00042 Page 99 of 105

Certificate No: D835V2-443_Feb07

Page 6 of 6

No. 2008SAR00042 Page 100 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

NISS

901

S Schweizerischer Kalibrierdienst G Service suizes d'Atalonnage Servizio avizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of metrology and Accreonation

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC China

Certificate No: D1900V2-541_Feb07

CALIBRATION CERTIFICATE	
Object	D1900V2-SN: 541
Calibration procedure(s)	QA CAL-05.v6 Calibration procedure for dipole validation kits
Calibration date:	February 20, 2007
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted at an environment temperature (22±3)°C and humidity<70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Power sensor 8481A	US37292783	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN:5086 (20g)	10-Aug-05 (METAS, NO. 217-00591)	Aug-07
Reference 10 dB Attenuator	SN:5047_2 (10r)	10-Aug-06 (METAS, NO. 217-00591)	Aug-07
DAE4	SN:601	30-Jan-07 (SPEAG, NO DAE4-601_Jan07)	Jan-08
Reference Probe ET3DV6 (HP	F) SN: 1507	19-0ct-06 (SPEAG, NO. ET3-1507_Oct06)	Oct-07
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
Power sensor HP 8481A	MY41092317	18-Oct-02(SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Aglient E4421B	MY41000576	11-May-05(SPEAG, in house check Nov-05) In house check: Nov -07
Network Analyzer HP 8753E	U\$37390585\$4206	18-Oct-01(SPEAG, in house check Oct-06)	In house check: Oct -07
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	Alter
Approved by:	Katja Pokovic	Technical Director	Ala Kot
		1	sued: February 21, 2007

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D1900V2-541_Feb07

Page 1 of 6

No. 2008SAR00042 Page 101 of 105

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8804 Zurich, Switzerland

SANISS S S

Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541_Feb07

Page 2 of 6

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	t0 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mhalm
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9±6%	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) *C	-	-

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.73 mW /g
SAR normalized	NV of besilemon	38.9 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.6 mW/g±17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL. SAR measured	condition 250 mW input power	5.09 mW /g
		5.09 mW /g 20.4 mW /g
SAR measured	250 mW input power	

* Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb07

Page 3 of 6

No. 2008SAR00042 Page 103 of 105

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.4 Ω - 8.9 μΩ
Return Loss	- 26.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

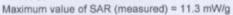
Manufactured by	SPEAG
Manufactured on	October 4 , 2001

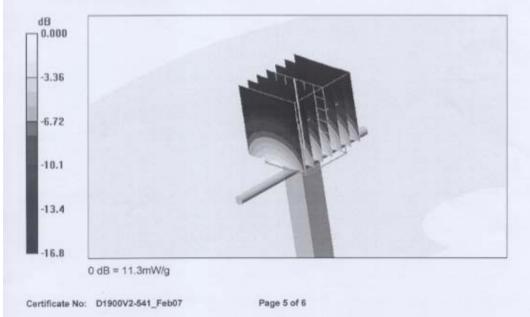
Page 4 of 6

No. 2008SAR00042 Page 104 of 105

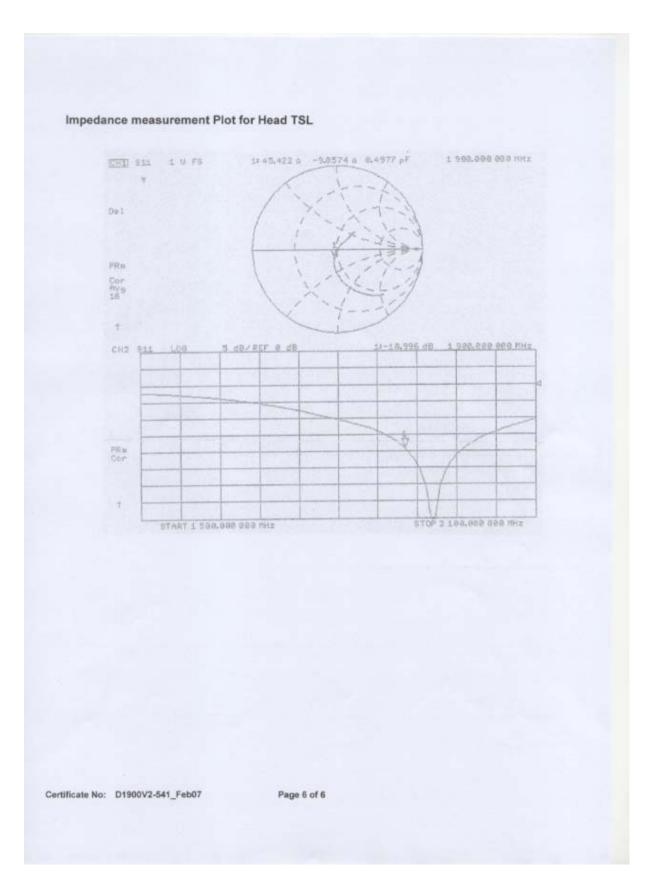
DASY4 Validation Report for Head TSL

Date/Time: 20.02.2007 09:25:37


Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; serial: D1900V2-SN: 541

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f=1900 MHz; σ =1.38 mho/m; ϵ_r =38.9; ρ = 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV8-SN1507(HF); ConvF(5.03, 5.03, 5.03); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.1 V/m; Power Drift = 0.059 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.09 mW/g

No. 2008SAR00042 Page 105 of 105

