SAR TEST REPORT

No. 2008SAR00032

For

TCT Mobile Suzhou Limited

GSM/GPRS 850/1900 dual-band mobile phone

OT-S521A

With

Hardware Version: PIO2

Software Version: V929

FCCID:RAD071

Issued Date: 2008-07-15

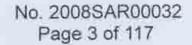
No. DAT-P-114/01-01

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Information Industry


No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100083.

Tel:+86(0)10-62303288-2105, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

No. 2008SAR00032 Page 2 of 117

TABLE OF CONTENT

1 TEST LABORATORY	4
1.1 Testing Location	4
1.2 Testing Environment	
1.3 PROJECT DATA	
2 CLIENT INFORMATION	4
2.1 Applicant Information	4
2.2 MANUFACTURER INFORMATION	4
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1 About EUT	5
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
4 OPERATIONAL CONDITIONS DURING TEST	6
4.1 SCHEMATIC TEST CONFIGURATION	
4.2 SAR MEASUREMENT SET-UP	
4.3 DASY4 E-FIELD PROBE SYSTEM	
4.4 E-FIELD FROBE CALIBRATION	
4.6 Equivalent Tissues	
4.7 System Specifications	10
5 CHARACTERISTICS OF THE TEST	10
5.1 APPLICABLE LIMIT REGULATIONS	
5.2 APPLICABLE MEASUREMENT STANDARDS	11
6 LABORATORY ENVIRONMENT	11
7 CONDUCTED OUTPUT POWER MEASUREMENT	11
7.1 SUMMARY	11
7.2 Conducted Power	12
8 TEST RESULTS	12
8.1 DIELECTRIC PERFORMANCE	12
8.2 System Validation	
8.3 SUMMARY OF MEASUREMENT RESULTS (850MHz)	
8.4 SUMMARY OF MEASUREMENT RESULTS (1900MHz)	
9 MEASUREMENT UNCERTAINTY	
10 MAIN TEST INSTRUMENTS	
ANNEX A: MEASUREMENT PROCESS	
ANNEX B: TEST LAYOUT	
ANNEX C: GRAPH RESULTS	23
ANNEX D SYSTEM VALIDATION RESULTS	95
ANNEX E PROBE CALIBRATION CERTIFICATE	97
ANNEX F DIPOLE CALIBRATION CERTIFICATE	106

SAR TEST REPORT

Test report No.	2008SAR00032	Date of report	July 15 th , 2008
Test laboratory	TMC Beljing, Telecommunication Metrology Center of MII	Client	TCT Mobile Suzhou Limited
Test device	Model type: OT-S52	PRS 850/1900 dual-band mol 1A 100063734	bile phone
Test reference documents	EN 50360-2001: Product standar human exposure to electromagnetic EN 50361-2001: Basic standard for exposure to electromagnetic fields ANSI C95.1-1999: IEEE Standar Frequency Electromagnetic Fields IEEE 1528-2003: Recommended Absorption Rate (SAR) in the Hum Techniques. OET Bulletin 65 (Edition 97-01) Evaluating Compliance of Mobile at IEC 62209-1: Human exposure to communication devices - Human determine the specific absorption of (frequency range of 300 MHz to 3 IEC 62209-2 (Draft): Human exposi- wireless communication devices Procedure to determine the Specific Handheld and Body-Mounted Device	ic fields from mobile phones. or the measurement of Specific At from mobile phones. d for Safety Levels with Respec , 3 kHz to 300 GHz. d Practice for Determining the ean Body Due to Wireless Commu and Supplement C (Edition 04 and Portable Devices with FCC Lin radio frequency fields from hand-f models, instrumentation, and pr rate (SAR) for hand-held devices L GHz) psure to radio frequency fields from – Human models, instrumentati ic Absorption Rate (SAR) in the he	bsorption Rate related to human t to Human Exposure to Radio Peak Spatial-Average Specific nications Devices: Experimental 1-01): Additional Information for mits, held and body-mounted wireless rocedures –Part 1:Procedure to used in close proximity to the ear m hand-held and body-mounted ion, and procedures – Part 2: ad and body for 30MHz to 6GHz
Test conclusion	Localized Specific Absorption been measured in all cases in this test report. Maximum loc relevant standards cited in Cl General Judgment: Pass	equested by the relevant stan ocalized SAR is below expo	idards cited in Clause 5.2 o
Signature	Lu Bingsong Deputy Director of the laboratory (Approved for this report)	Sun Qian SAR Project Leader (Reviewed for this report)	Lin Xiaojun SAR Test Engineer (Prepared for this report)

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MII
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100083
Telephone:	+86-10-62303288
Fax:	+86-10-62304793
Address: Postal Code: Telephone:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China 100083 +86-10-62303288

1.2 Testing Environment

Temperature:	Min. = 15 °C, Max. = 30 °C
Relative humidity:	Min. = 30%, Max. = 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Sun Qian
Test Engineer:	Lin Xiaojun
Testing Start Date:	May 6, 2008
Testing End Date:	May 9, 2008

2 Client Information

2.1 Applicant Information

Company Name:	TCT Mobile Suzhou Limited
Address /Post:	4/F, South Building,No.2966, Jinke Road, Zhangjiang High-Tech Park, Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460884
Fax:	+86-21-61460602

2.2 Manufacturer Information

Company Name:	TCT Mobile Suzhou Limited
Address /Dest:	4/F, South Building,No.2966, Jinke Road, Zhangjiang High-Tech Park,
Address /Post:	Pudong, Shanghai, 201203, P.R. China
City:	Shanghai
Postal Code:	201203
Country:	P.R. China
Telephone:	+86-21-61460884
Fax:	+86-21-61460602

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	GSM/GPRS 850/1900 dual-band mobile phone
Model:	OT-S521A
Frequency Band:	GSM850/1900
GPRS Class:	10

Picture 1: Constituents of the sample

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	011438000063734	PIO2	V929

EUT1 011438000063734 PIO2

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

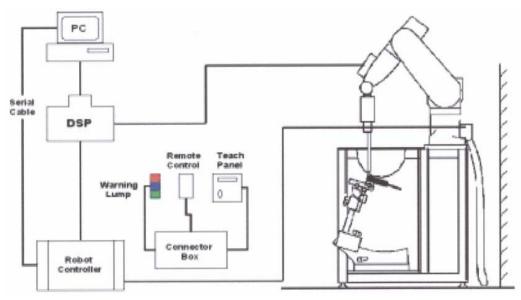
AE ID*	Description	Model	SN	Manufacturer
AE1	Travel Adapter	T5002684AGAA	١	Tenpao
AE2	Battery	CAB3010010C1	١	BYD
		CAB3010010C2	١	Coslight

*AE ID: is used to identify the test sample in the lab internally

4 OPERATIONAL CONDITIONS DURING TEST

The GSM850/PCS1900 mobile phone, OT-S521A, supporting GSM850/PCS1900, manufactured by TCT Mobile Suzhou Limited is a variant of OT-S520A for the test. Only the T-Flash Card should be supported on the variant model. So only the Radiation test should be tested. The other test result is coming from the test result of OT-S520A.

4.1 Schematic Test Configuration


During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

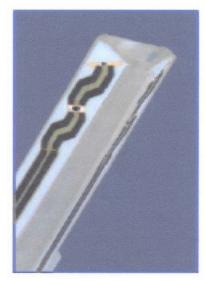
The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 2: SAR Lab Test Measurement Set-up


The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

4.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core
	Built-in optical fiber for surface detection
	System(ET3DV6 only)
	Built-in shielding against static charges
	PEEK enclosure material(resistant to
	organic solvents, e.q., glycol)
Calibration	In air from 10 MHz to 2.5 GHz
	In brain and muscle simulating tissue at
	frequencies of 450MHz, 900MHz and 1.8GHz
	(accuracy±8%)
	Calibration for other liquids and frequencies
	upon request
Frequency	I 0 MHz to > 6 GHz; Linearity: ±0.2 dB
	(30 MHz to 3 GHz)

Picture 3: ET3DV6 E-field Probe

No. 2008SAR00032 Page 8 of 117

Directivity	±0.2 dB in brain tissue (rotation around probe axis)	
	±0.4 dB in brain tissue (rotation normal probe axis)	Cane
Dynamic Range	5u W/g to > 100mW/g; Linearity: ±0.2dB	LEN
Surface Detection	±0.2 mm repeatability in air and clear liquids	
	over diffuse reflecting surface(ET3DV6 only)	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	1
	Body diameter: 12mm	Vi
	Tip diameter: 6.8mm	A.
	Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 3GHz	
	Compliance tests of mobile phones	
	Fast automatic scanning in arbitrary phantoms	1

4.4 E-field Probe Calibration

Picture 4: ET3DV6 E-field

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Picture 5: Device Holder

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

- σ = Simulated tissue conductivity,
- ρ = Tissue density (kg/m³).

4.5 Other Test Equipment

4.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

4.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0. l mm
Filling Volume	Approx. 20 liters
Dimensions	810 x l000 x 500 mm (H x L x W)
Available	Special

4.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000

Picture 6: Generic Twin Phantom

MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 4 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

FREQUENCY 850MHz				
41.45				
56.0				
1.45				
0.1				
1.0				
f=850MHz ε=41.5 σ=0.90				
FREQUENCY 1900MHz				
55.242				
44.452				
0.306				
f=1900MHz ε=40.0 σ=1.40				

FREQUENCY 850MHz					
52.5					
45.0					
1.4					
0.1					
1.0					
f=850MHz ε=55.2 σ=0.97					
FREQUENCY 1900MHz					
69.91					
29.96					
0.13					
f=1900MHz ε=53.3 σ=1.52					

Table 2. Composition of the Body Tissue Equivalent Matter

4.7 System Specifications

4.7.1 Robotic System Specifications

Specifications

 Positioner:
 Stäubli Unimation Corp. Robot Model: RX90L

 Repeatability:
 ±0.02 mm

 No. of Axis:
 6

 Data Acquisition Electronic (DAE) System

 Cell Controller

Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

5 CHARACTERISTICS OF THE TEST

5.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for

portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

IEC 62209-1: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1:Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)

IEC 62209-2 (Draft): Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR)in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the Body.

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 LABORATORY ENVIRONMENT

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found ve	ery low and in compliance with requirement of standards. Reflection of surround

Table 3: The Ambient Conditions during EMF Test

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surround objects is minimized and in compliance with requirement of standards.

7 CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power and ERP for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

7.2 Conducted Power

7.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels.

7.2.2 Measurement result

Table 4: Conducted Power Measurement Results

850MHZ	Conducted Power (dBm)				
	Channel 251(848.8MHz) Channel 190(836.6MHz) Channel 128(824.2MHz				
Before SAR Test	31.68	31.58	31.89		
After SAR Test	31.67 31.56 31.87				
1900MHZ	Conducted Power (dBm)				
	Channel 810	Channel 661	Channel 512		
	(1909.8MHz)	(1880MHz)	(1850.2MHz)		
Before SAR Test	29.11	29.53	29.66		
After SAR Test	29.12	29.51	29.64		

7.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 8 to Table 9 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

8 TEST RESULTS

8.1 Dielectric Performance

Table 5: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.3 °C and relative humidity 49%.							
Liquid temperature during the test: 22.5°C							
/	FrequencyPermittivity εConductivity σ (S/m)						
Target value	850 MHz	41.5	0.90				
	1900 MHz	40.0	1.40				
Measurement value	850 MHz	43.5	0.92				
(Average of 10 tests)	1900 MHz	40.9	1.38				

Table 6: Dielectric Performance of Body Tissue Simulating Liquid

	Table 6. Dielectric renormance of Dody Hissue officiality Elquid							
Measurement is made at tempe	Measurement is made at temperature 23.3 °C and relative humidity 49%.							
Liquid temperature during the te	est: 22.5°C							
/ Frequency Permittivity ε Conductivity σ (S/m)								
Torget value	850 MHz	55.2	0.97					
Target value	1900 MHz	53.3	1.52					
Measurement value	850 MHz	55.0	0.98					
(Average of 10 tests)	1900 MHz	52.2	1.49					

8.2 System Validation

Table 7: System Validation

Measuremen	t is made at ter	nperature 2	3.3 °C, relativ	ve humidity 4	9%, input pow	er 250 mW.	
Liquid temper	rature during th	e test: 22.5	°C				
	Frequency Permittivity ε Conductivity σ (S/m)						ν σ (S/m)
Liquid paran	neters	835 MHz		41.7		0.88	
		1900 MHz		40.9		1.38	
	Frequency	Target va	alue (W/kg)	Measured value (W/kg)		Deviation	
	Frequency	10 g	1 g	10 g 1 g		10 g	1 g
Verification		Average	Average	Average	Average	Average	Average
results	835 MHz	1.60	2.48	1.62	2.50	1.25%	0.81%
	1900 MHz	5.09	9.73	5.27	9.91	3.3%	1.9%

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

8.3 Summary of Measurement Results (850MHz)

Table 8: SAR Values (850MHz-Head)

Limit of SAR (W/kg)	10 g	1 g	
	Average	Average	
	2.0	1.6	Power
Test Case	Measureme	ent Result	Drift
	(W/ł	(g)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.1)	0.671	0.949	-0.003
Left hand, Touch cheek, Mid frequency(See Fig.3)	0.787	1.11	-0.082
Left hand, Touch cheek, Bottom frequency(See Fig.5)	0.811	1.14	-0.151
Left hand, Tilt 15 Degree, Top frequency(See Fig.7)	0.282	0.383	-0.017
Left hand, Tilt 15 Degree, Mid frequency(See Fig.9)	0.309	0.418	-0.075
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.11)	0.328	0.444	-0.098
Right hand, Touch cheek, Top frequency(See Fig.13)	0.664	0.939	-0.200
Right hand, Touch cheek, Mid frequency(See Fig.15)	0.774	1.09	-0.073
Right hand, Touch cheek, Bottom frequency(See Fig.17)	0.810	1.15	-0.200
Right hand, Tilt 15 Degree, Top frequency(See Fig.19)	0.313	0.428	-0.032
Right hand, Tilt 15 Degree, Mid frequency(See Fig.21)	0.347	0.472	-0.113
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.23)	0.362	0.490	-0.164

No. 2008SAR00032 Page 14 of 117

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average 1.6	Power
Test Case	Measurement Result (W/kg)		Drift (dB)
	10 g Average	1 g Average	
Body, Towards Phantom, Top frequency(See Fig.25)	0.644	0.912	-0.068
Body, Towards Phantom, Mid frequency(See Fig.27)	0.790	1.11	-0.096
Body, Towards Phantom, Bottom frequency(See Fig.29)	0.808	1.14	-0.116
Body, Towards Ground, Top frequency(See Fig.31)	0.638	0.913	0.033
Body, Towards Ground, Mid frequency(See Fig.33)	0.805	1.15	-0.082
Body, Towards Ground, Bottom frequency(See Fig.35)	0.819	1.17	-0.117

Table 9: SAR Values (850MHz-GPRS)

8.4 Summary of Measurement Results (1900MHz)

Table 10: SAR Values (1900MHz-Head)

Limit of SAD (W/kg)	10 g	1 g	
Limit of SAR (W/kg)	Average	Average	
	2.0	1.6	Power
Test Case	Measureme	ent Result	Drift
	(W/k	(g)	(dB)
	10 g	1 g	
	Average	Average	
Left hand, Touch cheek, Top frequency(See Fig.37)	0.582	1.07	-0.200
Left hand, Touch cheek, Mid frequency(See Fig.39)	0.539	0.988	0.023
Left hand, Touch cheek, Bottom frequency(See Fig.41)	0.398	0.727	0.011
Left hand, Tilt 15 Degree, Top frequency(See Fig.43)	0.120	0.199	0.001
Left hand, Tilt 15 Degree, Mid frequency(See Fig.45)	0.101	0.163	-0.200
Left hand, Tilt 15 Degree, Bottom frequency(See Fig.47)	0.084	0.130	0.042
Right hand, Touch cheek, Top frequency(See Fig.49)	0.580	1.15	-0.047
Right hand, Touch cheek, Mid frequency(See Fig.51)	0.516	1.02	0.043
Right hand, Touch cheek, Bottom frequency(See Fig.53)	0371	0.723	0.071
Right hand, Tilt 15 Degree, Top frequency(See Fig.55)	0.101	0.161	0.063
Right hand, Tilt 15 Degree, Mid frequency(See Fig.57)	0.089	0.140	-0.029
Right hand, Tilt 15 Degree, Bottom frequency(See Fig.59)	0.081	0.123	0.200

Limit of SAR (W/kg)	10 g Average 2.0	1 g Average	Power
Test Case	Measureme (W/k	Drift (dB)	
	10 g Average	1 g Average	
Body, Towards Phantom, Top frequency(See Fig.61)	0.282	0.476	-0.040
Body, Towards Phantom, Mid frequency(See Fig.63)	0.250	0.419	0.031
Body, Towards Phantom, Bottom frequency(See Fig.65)	0.185	0.307	-0.028
Body, Towards Ground, Top frequency(See Fig.67)	0.330	0.541	0.043
Body, Towards Ground, Mid frequency(See Fig.69)	0.307	0.501	0.064
Body, Towards Ground, Bottom frequency(See Fig.71)	0.229	0.369	-0.027

Table 11: SAR Values (1900MHz-GPRS)

8.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

9 Measurement Uncertainty

SN	а	Туре	с	d	e = f(d,k)	f	h = c x f / e	k
	Uncertainty Component		Tol. (± %)	Prob Dist.	Div.	c _i (1 g)	1 g u _i (±%)	Vi
1	System repetivity	А	0.5	Ν	1	1	0.5	9
	Measurement System							
2	Probe Calibration	В	5	Ν	2	1	2.5	∞
3	Axial Isotropy	В	4.7	R	√3	(1-cp) ^{1/} 2	4.3	×
4	Hemispherical Isotropy	В	9.4	R	√3	√c _p		∞
5	Boundary Effect	В	0.4	R	√3	1	0.23	∞
6	Linearity	В	4.7	R	√3	1	2.7	∞
7	System Detection Limits	В	1.0	R	√3	1	0.6	∞
8	Readout Electronics	В	1.0	Ν	1	1	1.0	∞
9	RF Ambient Conditions	В	3.0	R	√3	1	1.73	∞
10	Probe Positioner Mechanical Tolerance	В	0.4	R	√3	1	0.2	∞
11	Probe Positioning with respect to Phantom	В	2.9	R	√3	1	1.7	x

No. 2008SAR00032 Page 16 of 117

	Shell							
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	в	3.9	R	√3	1	2.3	8
	Test sample Related							
13	Test Sample Positioning	A	4.9	N	1	1	4.9	N- 1
14	Device Holder Uncertainty	А	6.1	N	1	1	6.1	N- 1
15	Output Power Variation - SAR drift measurement	в	5.0	R	√3	1	2.9	×
	Phantom and Tissue Parameters							
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	√3	1	0.6	×
17	Liquid Conductivity - deviation from target values	в	5.0	R	√3	0.64	1.7	×
18	Liquid Conductivity - measurement uncertainty	в	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	√3	0.6	1.7	8
20	Liquid Permittivity - measurement uncertainty	в	5.0	N	1	0.6	1.7	М
	Combined Standard Uncertainty			RSS			11.25	
	Expanded Uncertainty (95% CONFIDENCE INTERVAL)			K=2			22.5	

10 MAIN TEST INSTRUMENTS

Table 12: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 31,2007	One year	
02	Power meter	NRVD	101253	June 21, 2007	One year	
03	Power sensor	NRV-Z5	100333	Julie 21, 2007		
04	Power sensor	NRV-Z6	100011	September 3, 2007	One year	
05	Signal Generator	E4433B	US37230472	September 5, 2007	One Year	
06	Amplifier	VTL5400	0505	No Calibration Requested		
07	BTS	CMU 200	105948	August 16, 2007	One year	
08	E-field Probe	SPEAG ES3DV3	3142	September 7, 2007	One year	
09	DAE	SPEAG DAE4	777	September 7, 2007	One year	
10	Dipole Validation Kit	SPEAG D835V2	443	February 19, 2007	Two years	
11	Dipole Validation Kit	SPEAG D1900V2	541	February 20, 2007	Two years	

END OF REPORT BODY

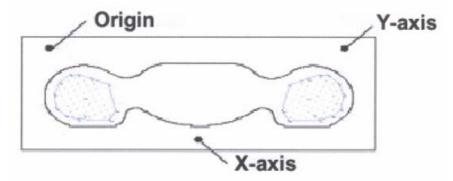
No. 2008SAR00032 Page 17 of 117

ANNEX A: MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

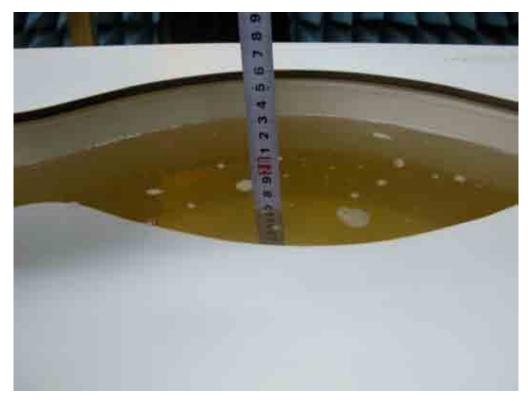

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.


Picture A: SAR Measurement Points in Area Scan

No. 2008SAR00032 Page 18 of 117

ANNEX B TEST LAYOUT

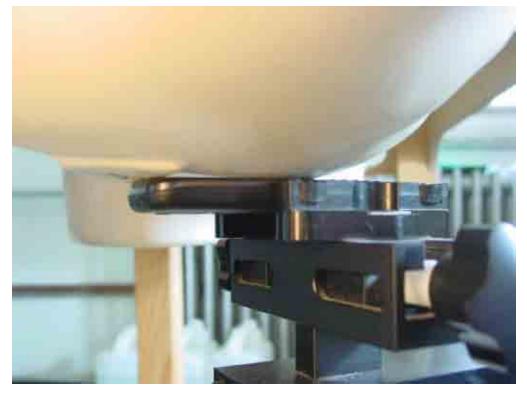
Picture B1: Specific Absorption Rate Test Layout

Picture B2: Liquid depth in the Flat Phantom (850 MHz)

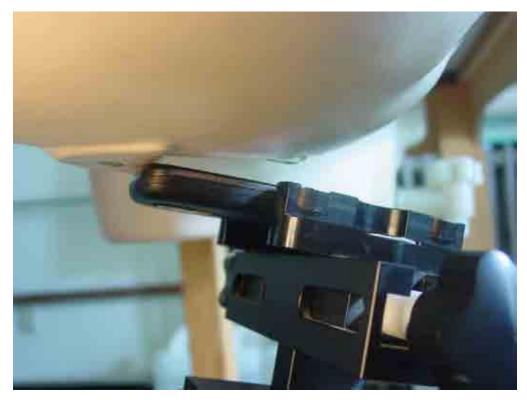
No. 2008SAR00032 Page 19 of 117

Picture B3 Liquid depth in the Flat Phantom (1900MHz)

No. 2008SAR00032 Page 20 of 117

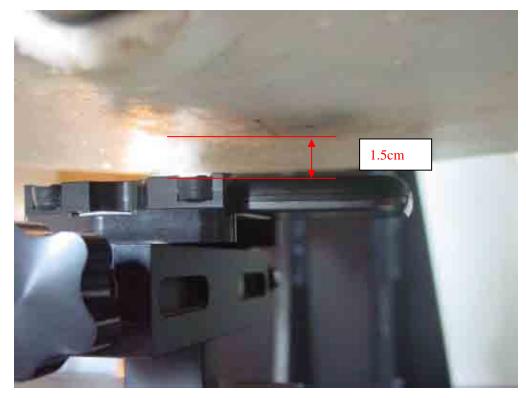


Picture B4: Left Hand Touch Cheek Position

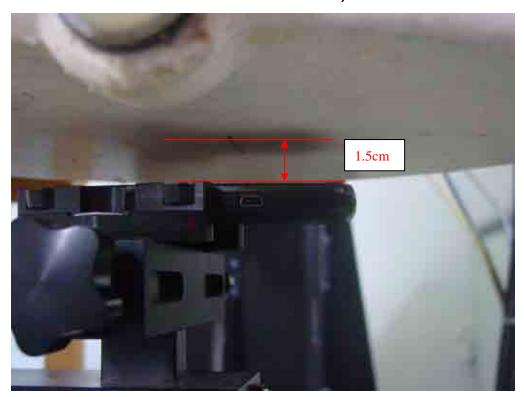


Picture B5: Left Hand Tilt 15° Position

No. 2008SAR00032 Page 21 of 117



Picture B6: Right Hand Touch Cheek Position



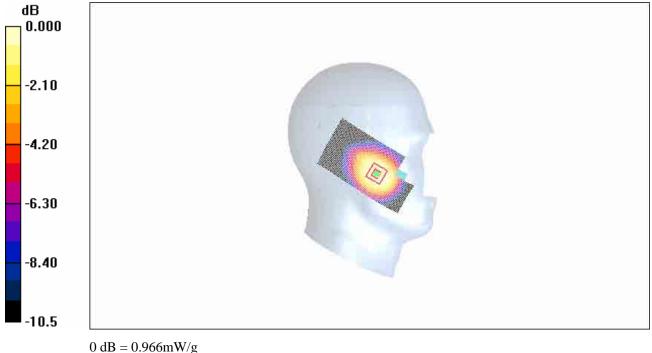
Picture B7: Right Hand Tilt 15° Position

No. 2008SAR00032 Page 22 of 117

Picture B8: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture B9: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm)

ANNEX C: GRAPH RESULTS


850 Left Cheek High

Date/Time: 2008-5-9 9:59:55 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.02 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.671 mW/g Maximum value of SAR (measured) = 0.966 mW/g

Fig. 1 850MHz CH251

No. 2008SAR00032 Page 24 of 117

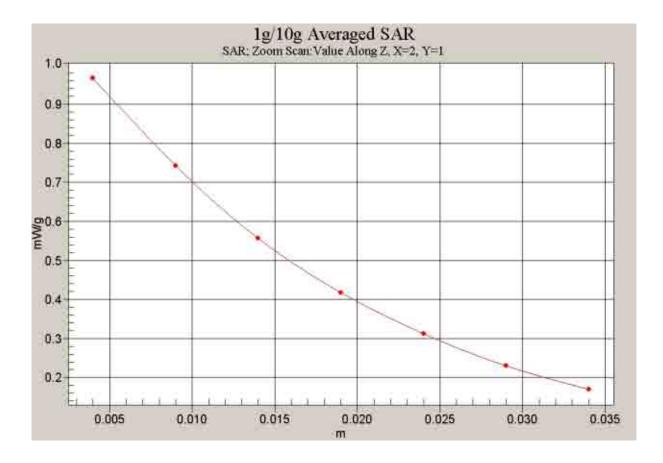
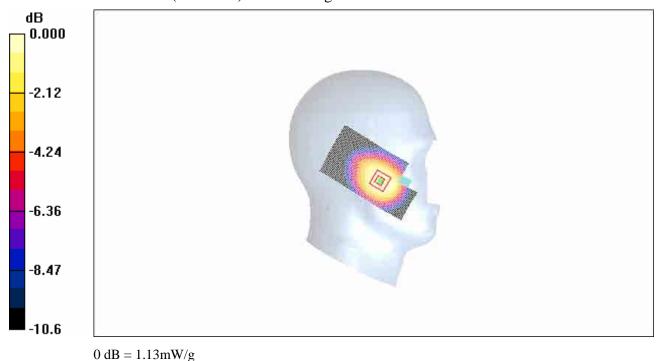


Fig. 2 Z-Scan at power reference point (850 MHz CH251)


850 Left Cheek Middle

Date/Time: 2008-5-9 10:10:42 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.787 mW/g Maximum value of SAR (measured) = 1.13 mW/g

No. 2008SAR00032 Page 26 of 117

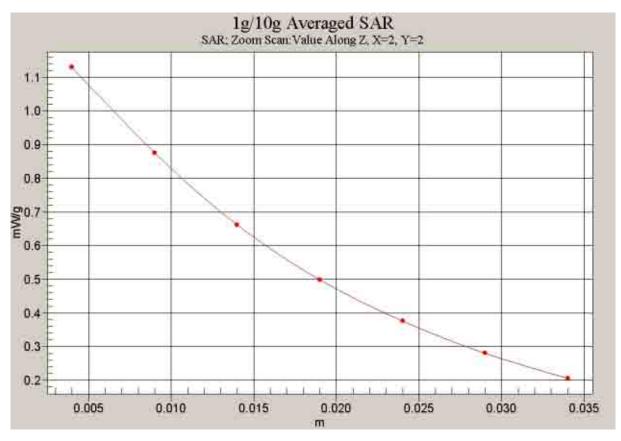
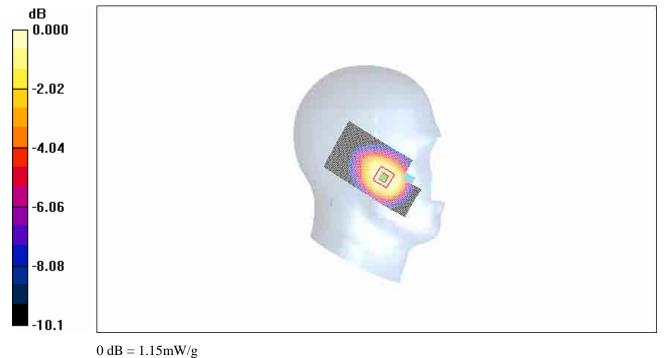


Fig. 4 Z-Scan at power reference point (850 MHz CH190)


850 Left Cheek Low

Date/Time: 2008-5-9 10:30:11 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.22 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = -0.151 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.811 mW/g Maximum tables of SAB (measured) = 1.15 mW/g

Maximum value of SAR (measured) = 1.15 mW/g

No. 2008SAR00032 Page 28 of 117

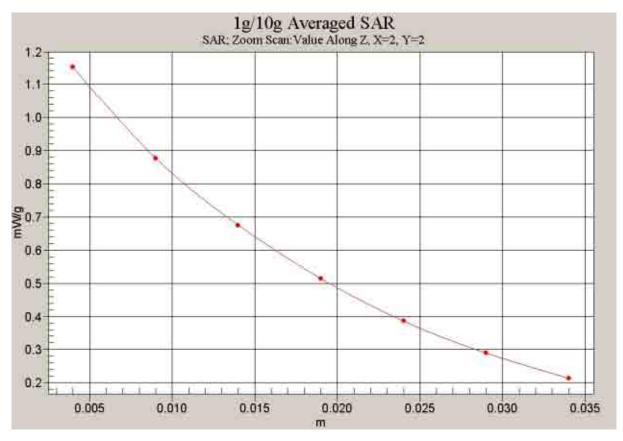
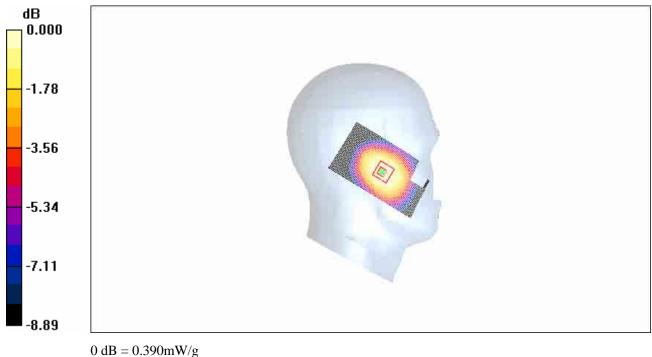


Fig. 6 Z-Scan at power reference point (850 MHz CH190)


850 Left Tilt High

Date/Time: 2008-5-9 12:54:09 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.411 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.017 dBPeak SAR (extrapolated) = 0.476 W/kg**SAR(1 g) = 0.383 \text{ mW/g}; SAR(10 g) = 0.282 \text{ mW/g}** Maximum value of SAR (measured) = 0.390 mW/g

No. 2008SAR00032 Page 30 of 117

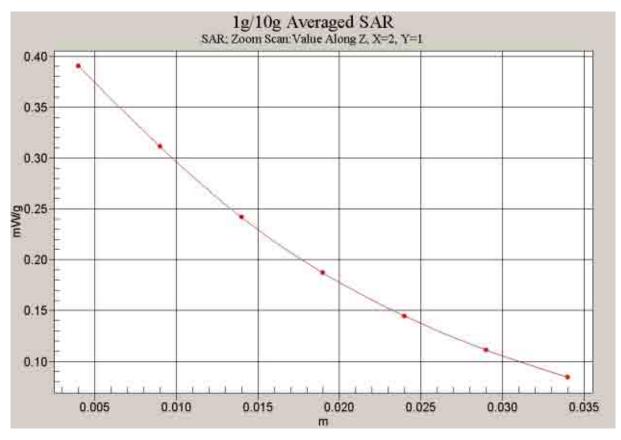
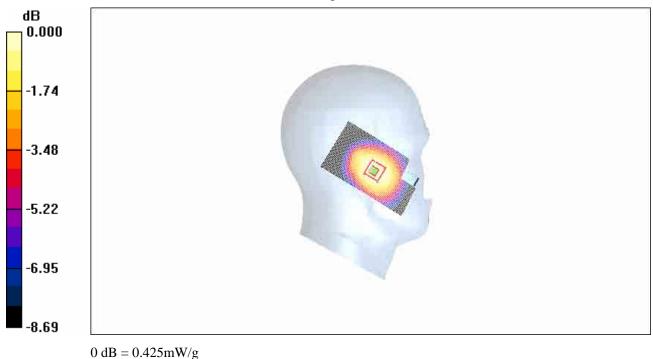


Fig. 8 Z-Scan at power reference point (850 MHz CH251)


850 Left Tilt Middle

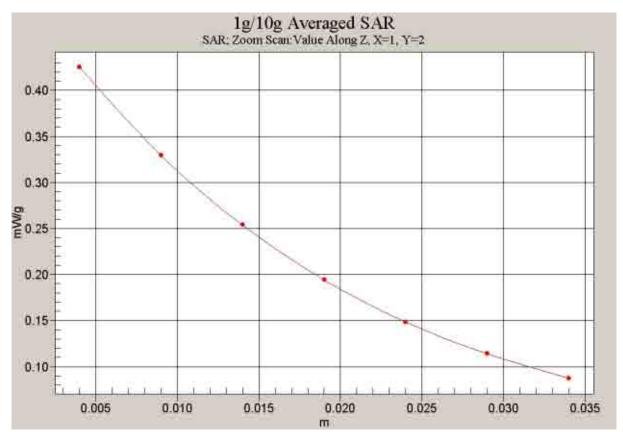
Date/Time: 2008-5-9 10:55:04 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

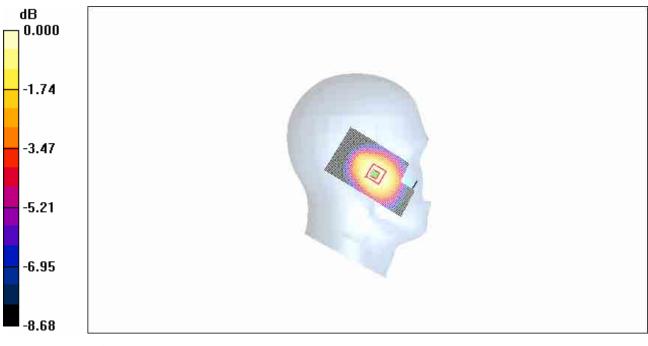
Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.447 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.4 V/m; Power Drift = -0.075 dBPeak SAR (extrapolated) = 0.522 W/kgSAR(1 g) = 0.418 mW/g; SAR(10 g) = 0.309 mW/gMaximum value of SAR (measured) = 0.425 mW/g

No. 2008SAR00032 Page 32 of 117




Fig. 10 Z-Scan at power reference point (850 MHz CH190)

850 Left Tilt Low

Date/Time: 2008-5-9 10:44:50 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.471 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.0 V/m; Power Drift = -0.098 dB Peak SAR (extrapolated) = 0.557 W/kg SAR(1 g) = 0.444 mW/g; SAR(10 g) = 0.328 mW/g Maximum value of SAR (measured) = 0.454 mW/g

 $0 \ dB = 0.454 mW/g$

No. 2008SAR00032 Page 34 of 117

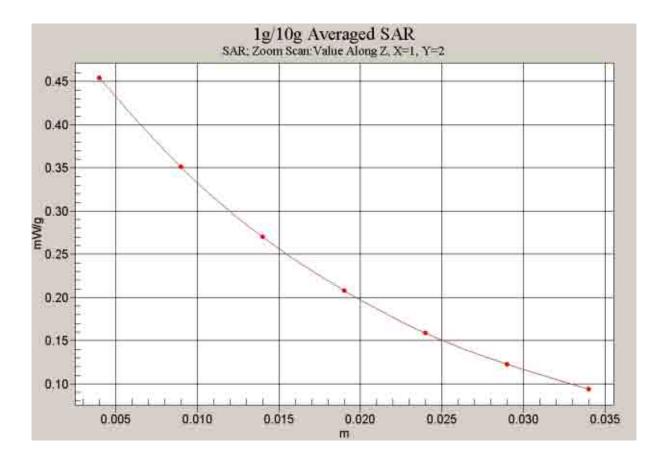
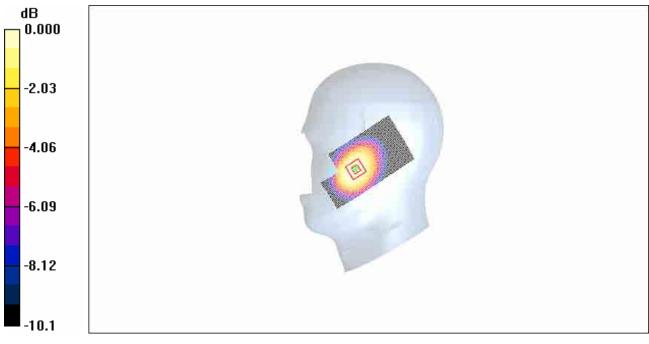


Fig. 12 Z-Scan at power reference point (850 MHz CH128)


850 Right Cheek High

Date/Time: 2008-5-9 8:31:39 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.02 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.30 V/m; Power Drift = -0.200 dBPeak SAR (extrapolated) = 1.20 W/kgSAR(1 g) = 0.939 mW/g; SAR(10 g) = 0.664 mW/gMaximum value of SAR (measured) = 0.964 mW/g

 $0 \; dB = 0.964 mW/g$

No. 2008SAR00032 Page 36 of 117

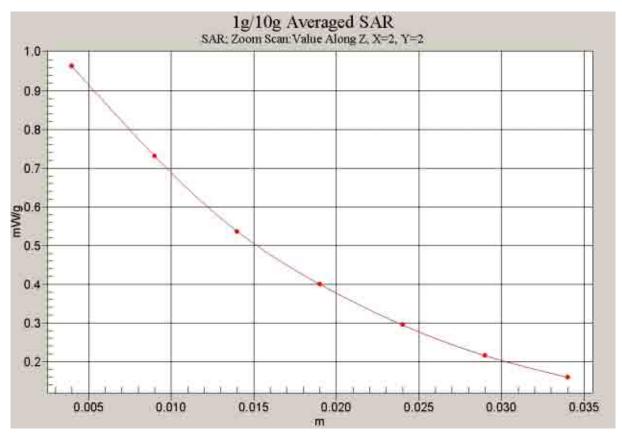
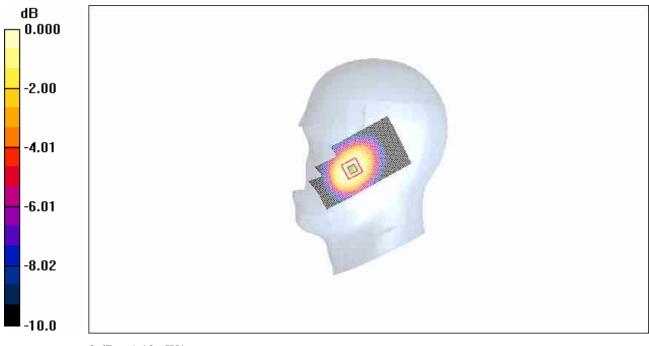


Fig. 14 Z-Scan at power reference point (850 MHz CH251)


850 Right Cheek Middle

Date/Time: 2008-5-9 8:42:12 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.88 V/m; Power Drift = -0.073 dBPeak SAR (extrapolated) = 1.39 W/kgSAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.774 mW/gMaximum value of SAR (measured) = 1.12 mW/g

 $0 \; dB = 1.12 mW/g$

No. 2008SAR00032 Page 38 of 117

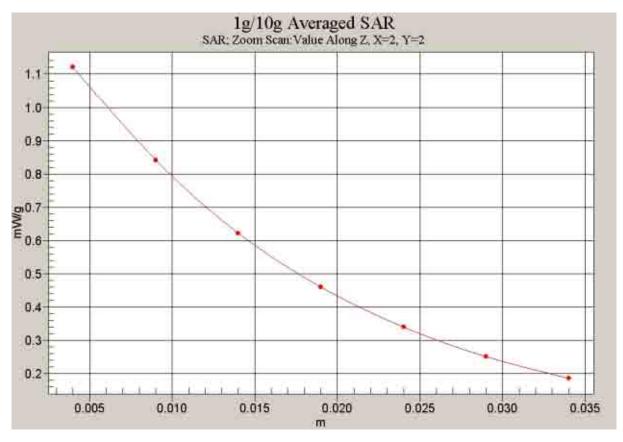


Fig. 16 Z-Scan at power reference point (850 MHz CH190)


850 Right Cheek Low

Date/Time: 2008-5-9 8:54:24 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.23 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.97 V/m; Power Drift = -0.200 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.810 mW/g

Maximum value of SAR (measured) = 1.17 mW/g

0 dB = 1.17 mW/g

No. 2008SAR00032 Page 40 of 117

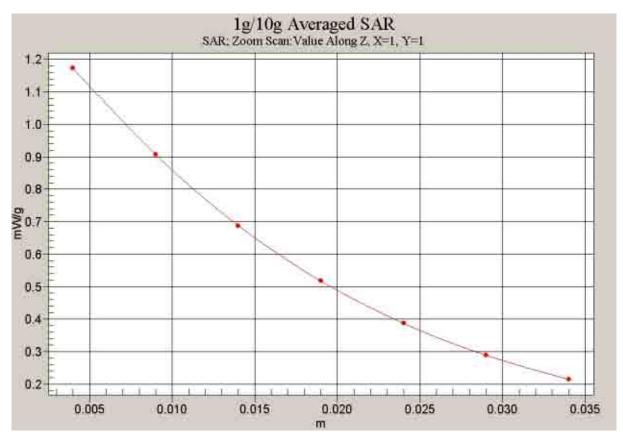
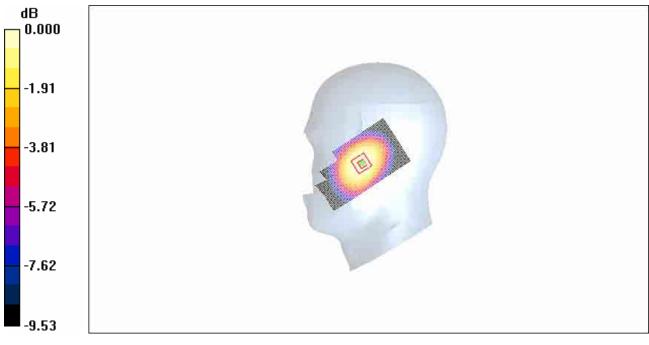


Fig. 18 Z-Scan at power reference point (850 MHz CH128)


850 Right Tilt High

Date/Time: 2008-5-9 9:41:16 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.92$ mho/m; $\epsilon_r = 43.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.458 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.032 dBPeak SAR (extrapolated) = 0.542 W/kg**SAR(1 g) = 0.428 \text{ mW/g}; SAR(10 g) = 0.313 \text{ mW/g}** Maximum value of SAR (measured) = 0.439 mW/g

0 dB = 0.439 mW/g

No. 2008SAR00032 Page 42 of 117

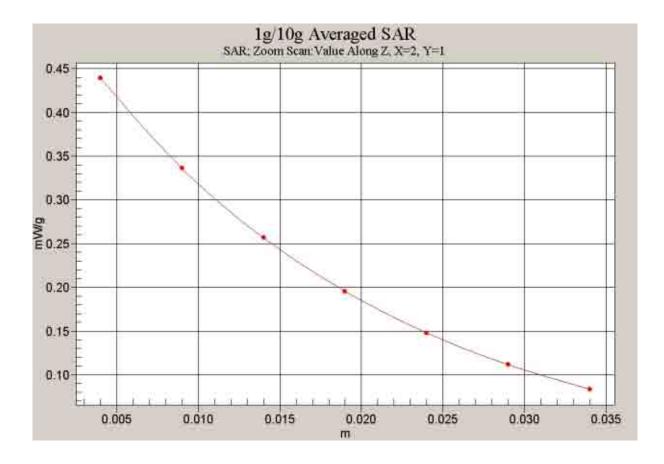
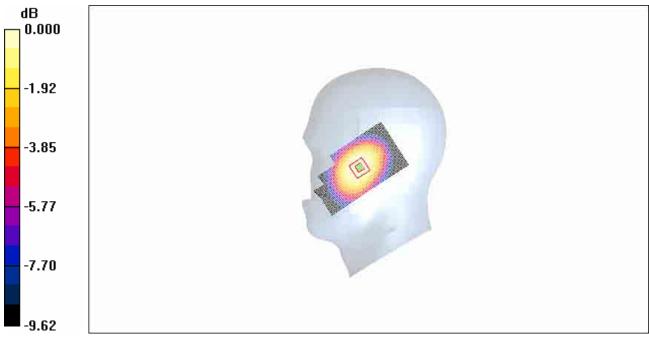


Fig. 20 Z-Scan at power reference point (850 MHz CH251)


850 Right Tilt Middle

Date/Time: 2008-5-9 9:30:52 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.909$ mho/m; $\epsilon_r = 43.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

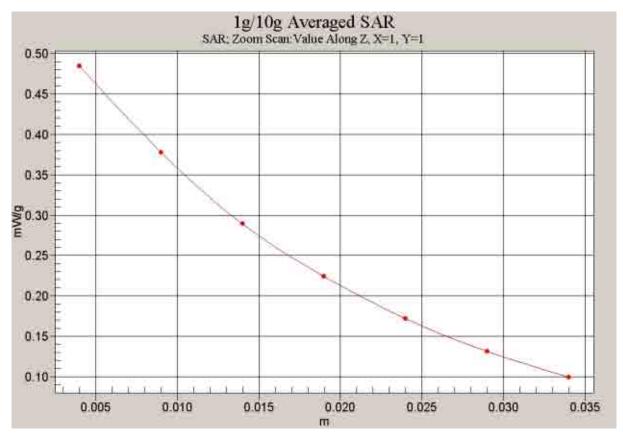
Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.509 mW/g

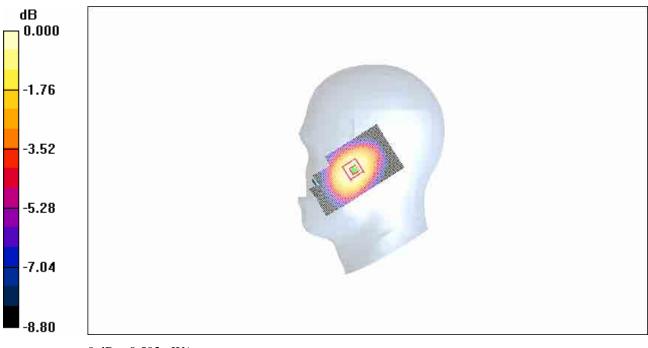
Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 0.595 W/kg SAR(1 g) = 0.472 mW/g; SAR(10 g) = 0.347 mW/g Maximum value of SAR (measured) = 0.483 mW/g

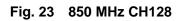
 $0 \; dB = 0.483 mW/g$

No. 2008SAR00032 Page 44 of 117




Fig. 22 Z-Scan at power reference point (850 MHz CH190)

850 Right Tilt Low


Date/Time: 2008-5-9 9:20:31 Electronics: DAE4 Sn777 Medium: Head GSM850 Medium parameters used: f = 825 MHz; $\sigma = 0.897$ mho/m; $\epsilon_r = 44$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liqiud Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(5.97, 5.97, 5.97)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.527 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 14.9 V/m; Power Drift = -0.164 dB Peak SAR (extrapolated) = 0.620 W/kg SAR(1 g) = 0.490 mW/g; SAR(10 g) = 0.362 mW/g Maximum value of SAR (measured) = 0.503 mW/g

 $0 \ dB = 0.503 mW/g$

No. 2008SAR00032 Page 46 of 117

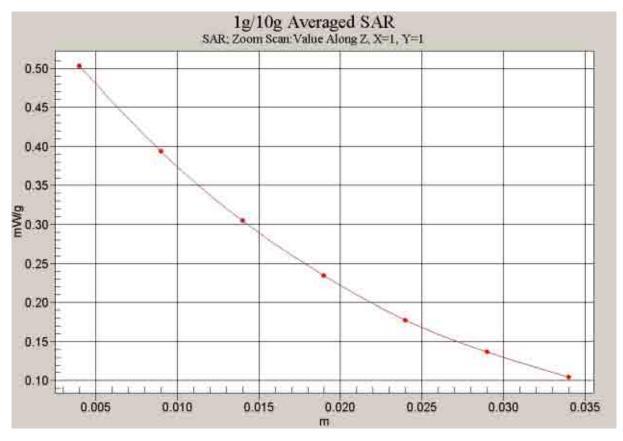
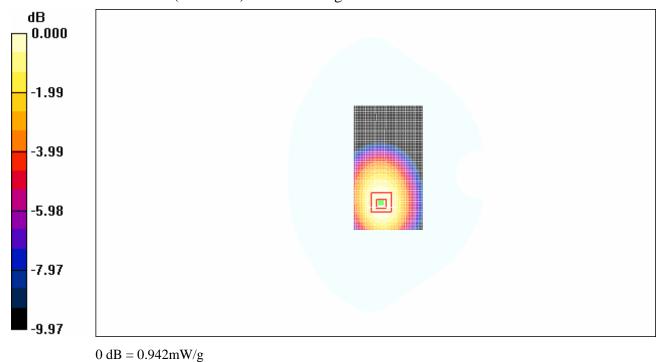


Fig. 24 Z-Scan at power reference point (850 MHz CH128)

No. 2008SAR00032 Page 47 of 117


850 Body Towards Phantom High with GPRS

Date/Time: 2008-5-9 13:31:18 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.981 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 25.3 V/m; Power Drift = -0.068 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.912 mW/g; SAR(10 g) = 0.644 mW/g Maximum value of SAR (measured) = 0.942 mW/g

No. 2008SAR00032 Page 48 of 117

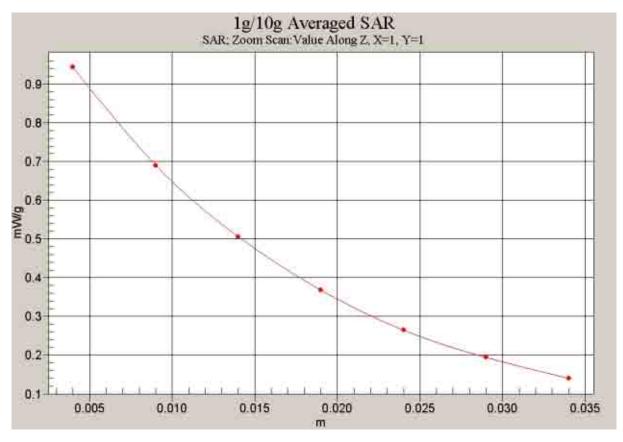
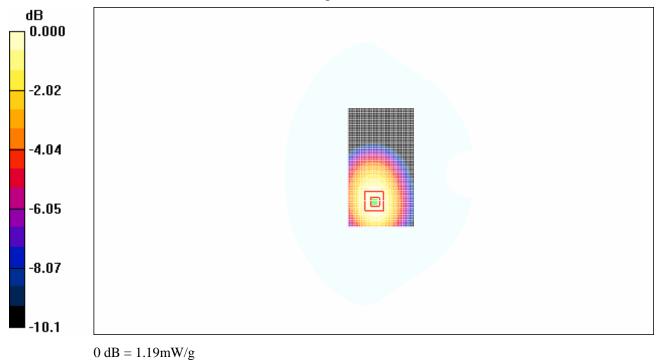


Fig. 26 Z-Scan at power reference point (850 MHz CH251)


850 Body Towards Phantom Middle with GPRS

Date/Time: 2008-5-9 13:41:13 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.20 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 28.1 V/m; Power Drift = -0.096 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.790 mW/g Maximum value of SAR (measured) = 1.19 mW/g

No. 2008SAR00032 Page 50 of 117

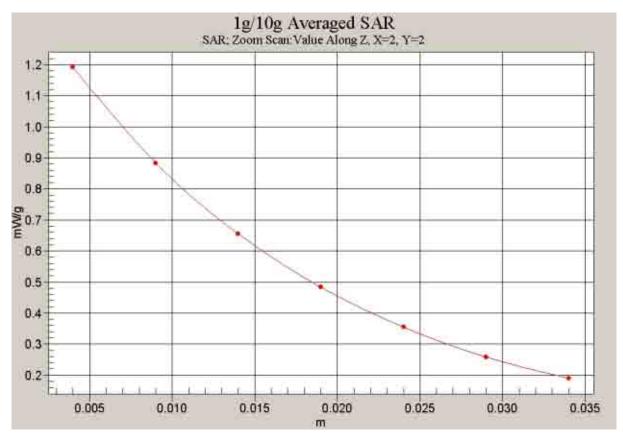
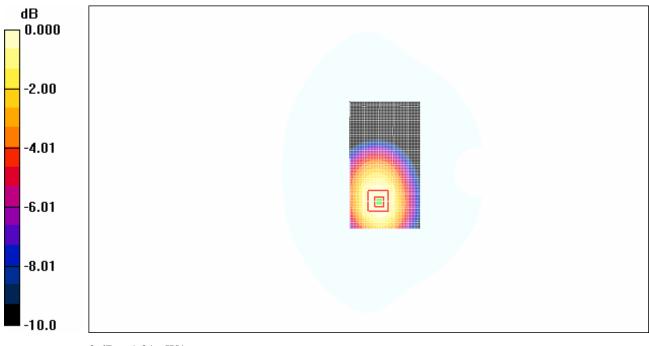


Fig. 28 Z-Scan at power reference point (850 MHz CH190)

No. 2008SAR00032 Page 51 of 117


850 Body Towards Phantom Low with GPRS

Date/Time: 2008-5-9 13:53:23 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used: f = 825 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.23 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.3 V/m; Power Drift = -0.116 dB Peak SAR (extrapolated) = 1.48 W/kg SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.808 mW/g Maximum value of SAR (measured) = 1.21 mW/g

 $0 \ dB = 1.21 mW/g$

Fig. 29 850 MHz CH128

No. 2008SAR00032 Page 52 of 117

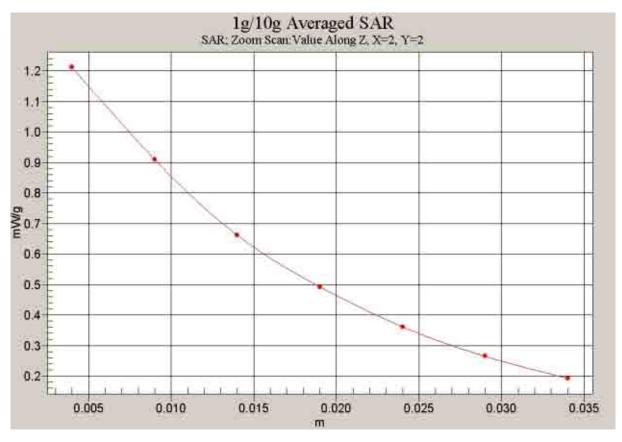


Fig. 30 Z-Scan at power reference point (850 MHz CH128)

850 Body Towards Ground High with GPRS

Date/Time: 2008-5-9 14:49:20 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.983$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.971 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = 0.033 dBPeak SAR (extrapolated) = 1.24 W/kgSAR(1 g) = 0.913 mW/g; SAR(10 g) = 0.638 mW/gMaximum value of SAR (measured) = 0.973 mW/g

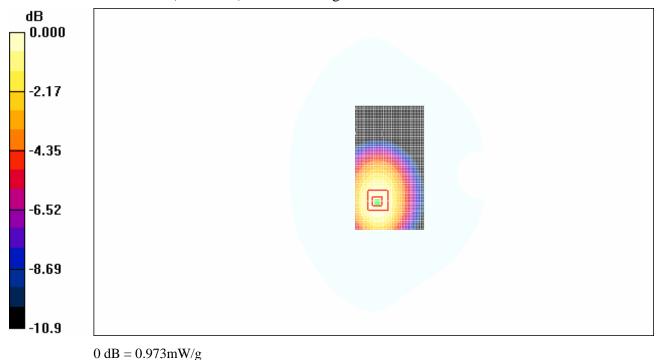


Fig. 31 850 MHz CH251

No. 2008SAR00032 Page 54 of 117

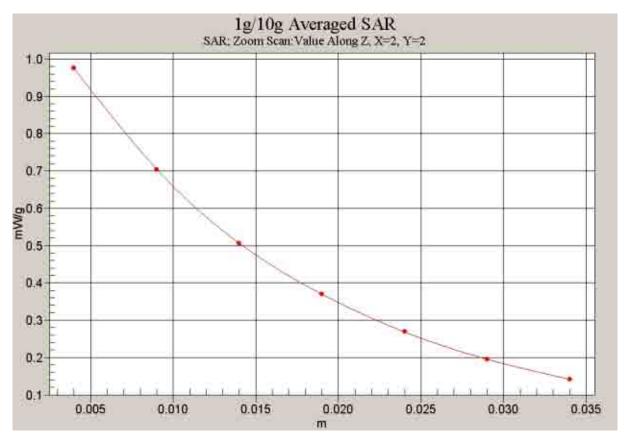
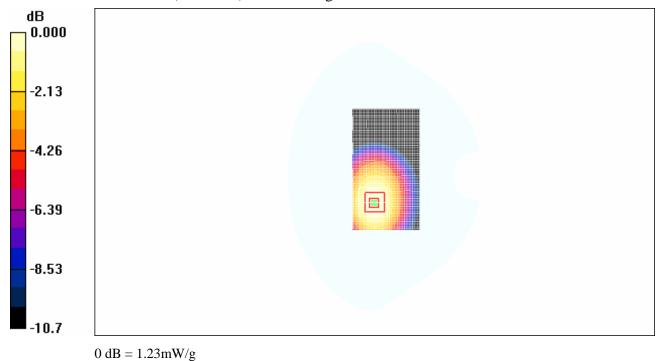


Fig. 32 Z-Scan at power reference point (850 MHz CH251)


850 Body Towards Ground Middle with GPRS

Date/Time: 2008-5-9 14:36:43 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971 \text{ mho/m}$; $\epsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.24 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 27.8 V/m; Power Drift = -0.082 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.805 mW/g Maximum value of SAR (measured) = 1.23 mW/g

No. 2008SAR00032 Page 56 of 117

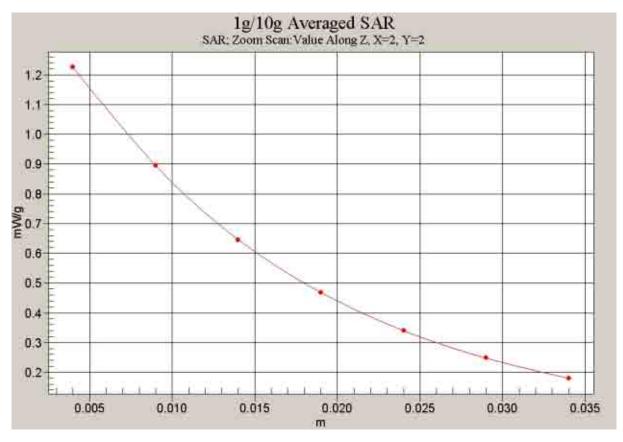
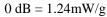


Fig. 34 Z-Scan at power reference point (850 MHz CH190)

No. 2008SAR00032 Page 57 of 117


850 Body Towards Ground Low with GPRS

Date/Time: 2008-5-9 15:02:52 Electronics: DAE4 Sn777 Medium:850 Body Medium parameters used: f = 825 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(5.66, 5.66, 5.66)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.26 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.0 V/m; Power Drift = -0.117 dBPeak SAR (extrapolated) = 1.56 W/kgSAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.819 mW/gMaximum value of SAR (measured) = 1.24 mW/g

Fig. 35 850 MHz CH128

No. 2008SAR00032 Page 58 of 117

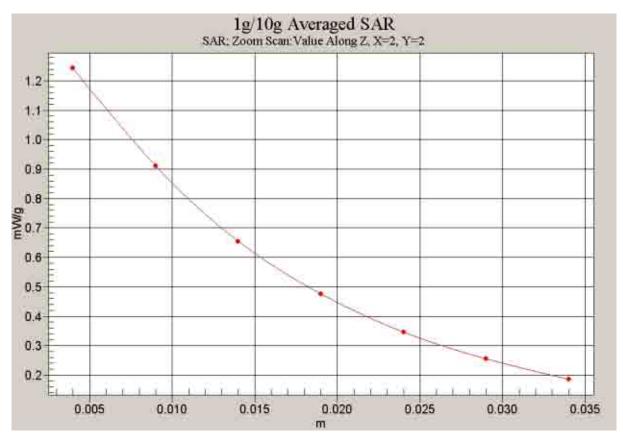
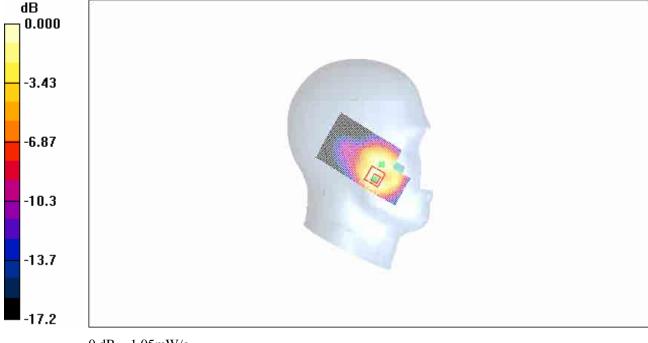


Fig. 36 Z-Scan at power reference point (850 MHz CH128)


1900 Left Cheek High

Date/Time: 2008-5-6 10:02:07 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

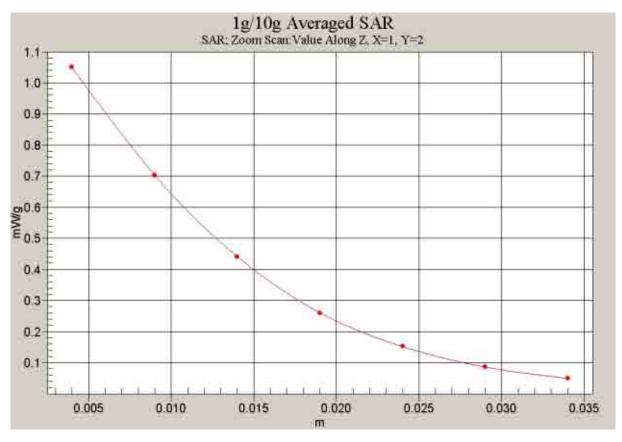
Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.18 mW/g

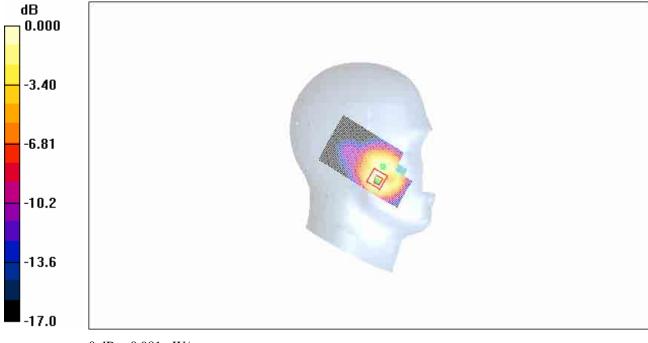
Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.70 V/m; Power Drift = -0.200 dB Peak SAR (extrapolated) = 1.88 W/kg SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.582 mW/g

Maximum value of SAR (measured) = 1.05 mW/g

0 dB = 1.05 mW/g

No. 2008SAR00032 Page 60 of 117




Fig. 38 Z-Scan at power reference point (1900 MHz CH810)

1900 Left Cheek Middle

Date/Time: 2008-5-6 10:13:22 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.06 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.57 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.988 mW/g; SAR(10 g) = 0.539 mW/g Maximum value of SAR (measured) = 0.981 mW/g

0 dB = 0.981 mW/g

Fig. 39 1900 MHz CH661

No. 2008SAR00032 Page 62 of 117

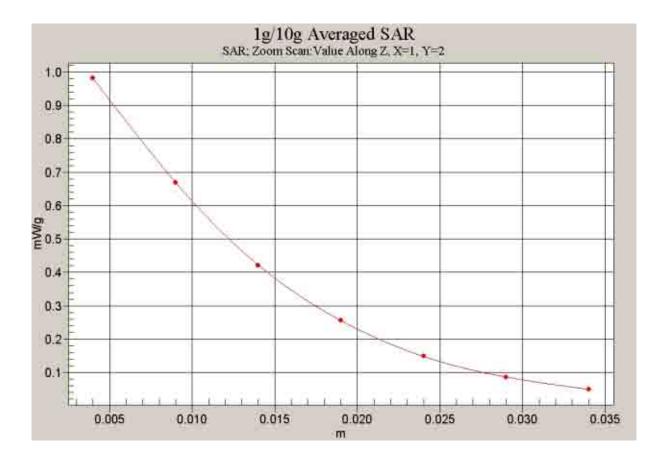


Fig. 40 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Cheek Low

Date/Time: 2008-5-6 10:23:57 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.771 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.14 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.398 mW/g Maximum value of SAR (measured) = 0.726 mW/g

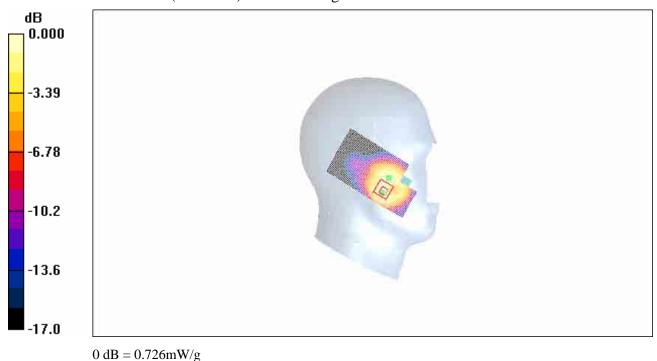


Fig. 41 1900 MHz CH512

No. 2008SAR00032 Page 64 of 117

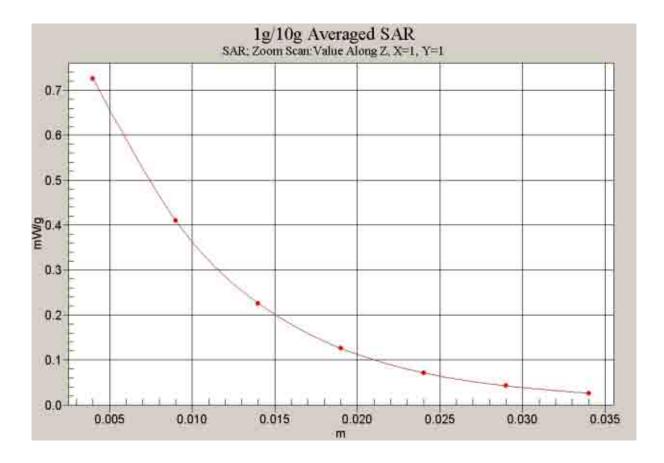
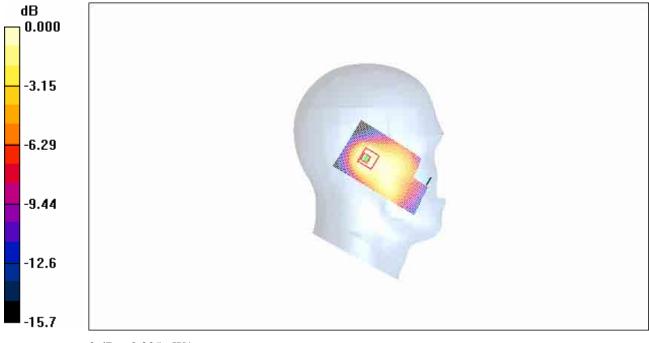


Fig. 42 Z-Scan at power reference point (1900 MHz CH512)


1900 Left Tilt High

Date/Time: 2008-5-6 10:55:13 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.236 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.001 dBPeak SAR (extrapolated) = 0.317 W/kg**SAR(1 g) = 0.199 \text{ mW/g}; SAR(10 g) = 0.120 \text{ mW/g}** Maximum value of SAR (measured) = 0.205 mW/g

0 dB = 0.205 mW/g

Fig.43 1900 MHz CH810

No. 2008SAR00032 Page 66 of 117

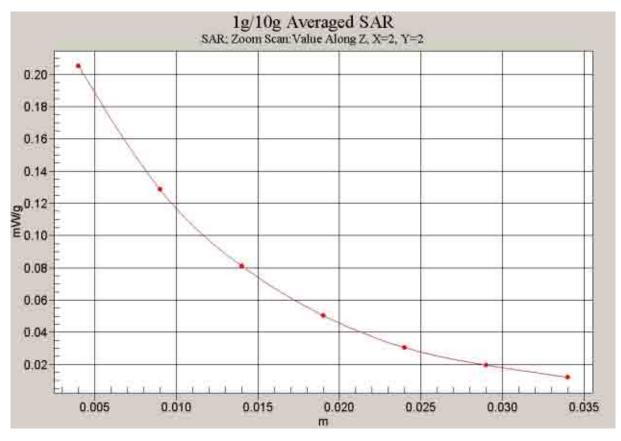
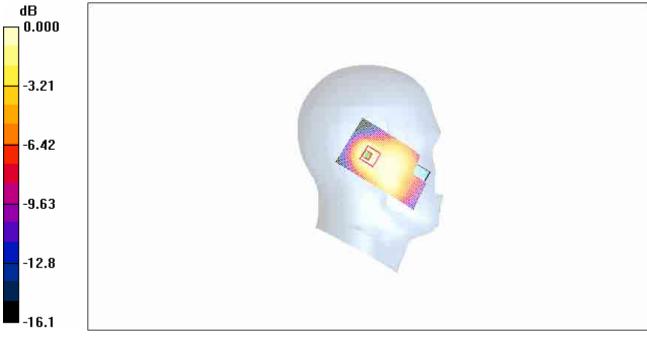


Fig. 44 Z-Scan at power reference point (1900 MHz CH810)


1900 Left Tilt Middle

Date/Time: 2008-5-6 10:45:01 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.37 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.187 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.200 dBPeak SAR (extrapolated) = 0.254 W/kgSAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.101 mW/gMaximum value of SAR (measured) = 0.166 mW/g

0 dB = 0.166 mW/g

Fig. 45 1900 MHz CH661

No. 2008SAR00032 Page 68 of 117

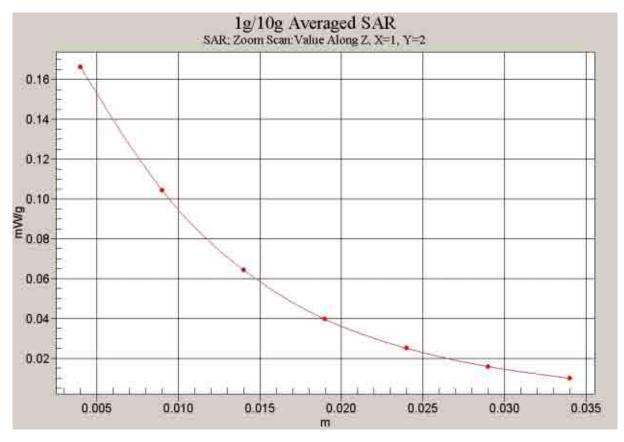
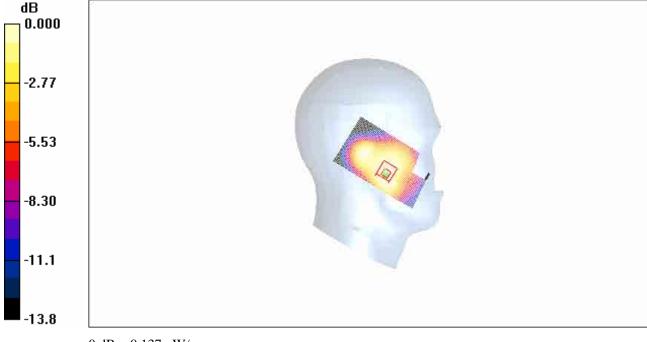


Fig. 46 Z-Scan at power reference point (1900 MHz CH661)

1900 Left Tilt Low


Date/Time: 2008-5-6 10:34:55 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.139 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.05 V/m; Power Drift = 0.042 dB Peak SAR (extrapolated) = 0.188 W/kg

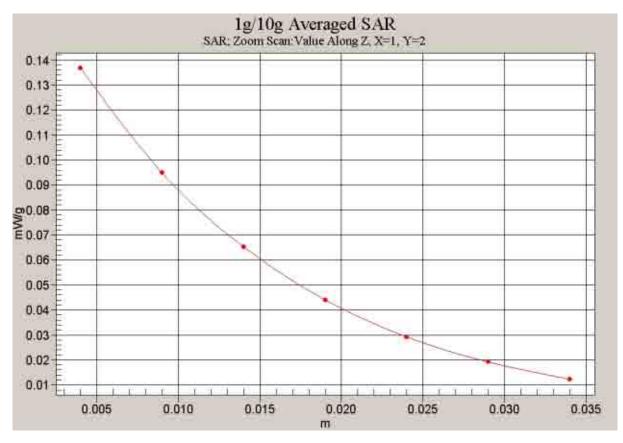
SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.084 mW/g

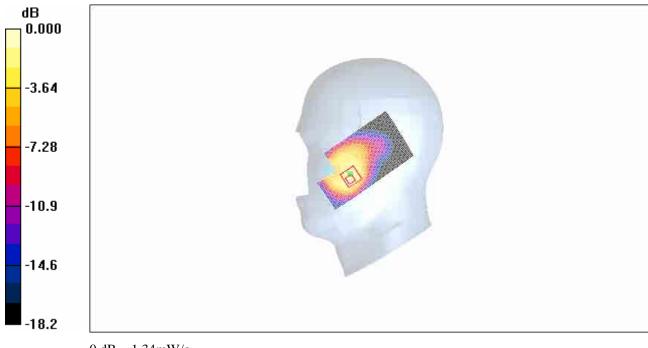
Maximum value of SAR (measured) = 0.137 mW/g

 $^{0 \,} dB = 0.137 mW/g$

Fig. 47 1900 MHz CH512

No. 2008SAR00032 Page 70 of 117




Fig. 48 Z-Scan at power reference point (1900 MHz CH512)

1900 Right Cheek High

Date/Time: 2008-5-6 13:06:33 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

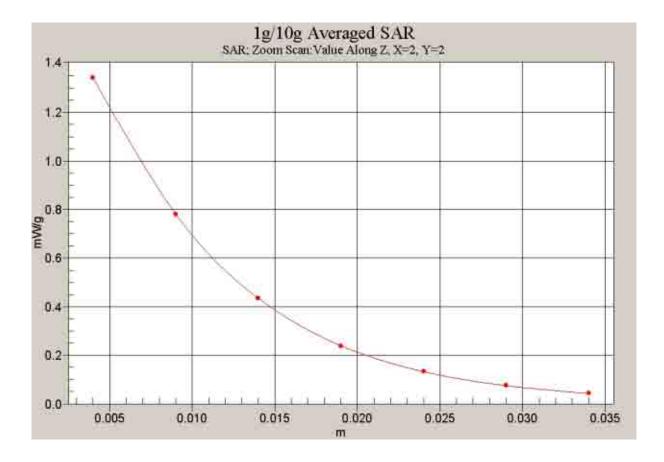
Cheek High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.13 mW/g

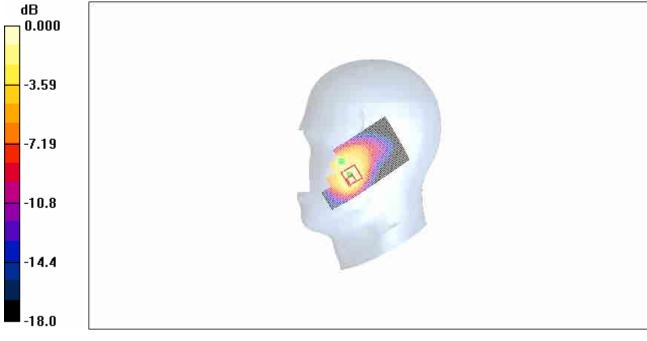
Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.63 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.580 mW/g Maximum value of SAR (measured) = 1.34 mW/g

0 dB = 1.34 mW/g

Fig. 49 1900 MHz CH810

No. 2008SAR00032 Page 72 of 117




Fig. 50 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Cheek Middle

Date/Time: 2008-5-6 13:17:21 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.01 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.73 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 1.85 W/kg SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.516 mW/g Maximum value of SAR (measured) = 1.12 mW/g

0 dB = 1.12 mW/g

No. 2008SAR00032 Page 74 of 117

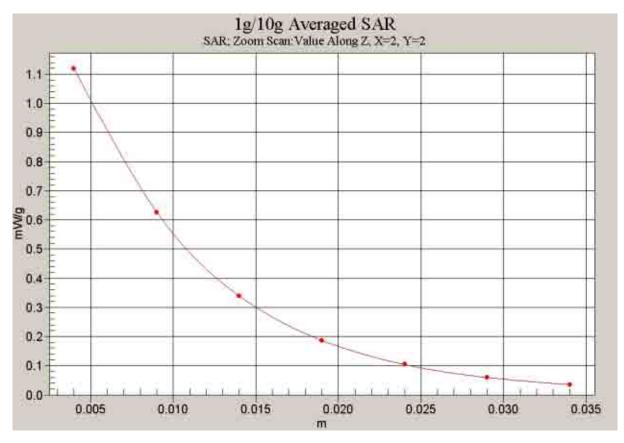
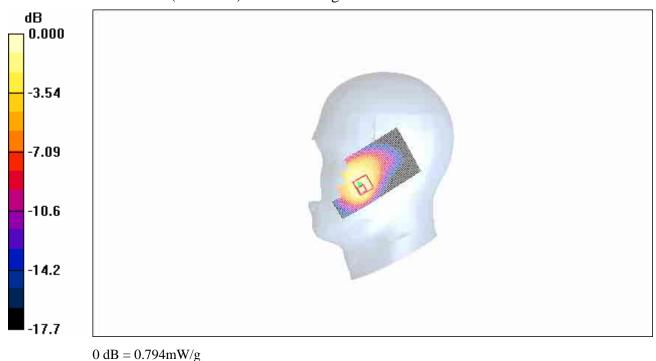


Fig. 52 Z-Scan at power reference point (1900 MHz CH661)


1900 Right Cheek Low

Date/Time: 2008-5-6 13:28:01 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Cheek Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.710 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.25 V/m; Power Drift = 0.071 dB Peak SAR (extrapolated) = 1.31 W/kg SAR(1 g) = 0.723 mW/g; SAR(10 g) = 0.371 mW/g Maximum value of SAR (measured) = 0.794 mW/g

No. 2008SAR00032 Page 76 of 117

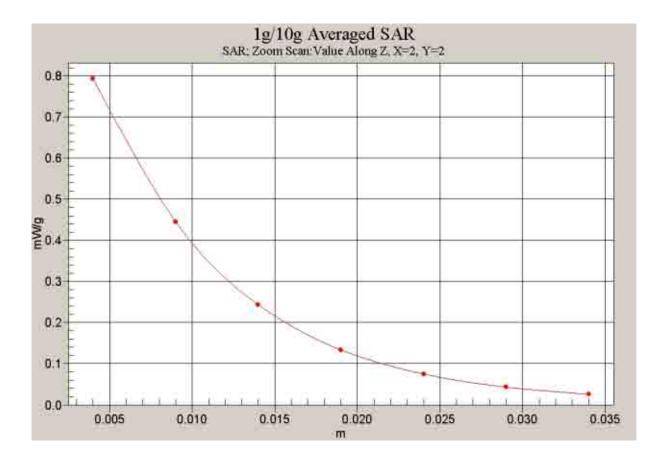
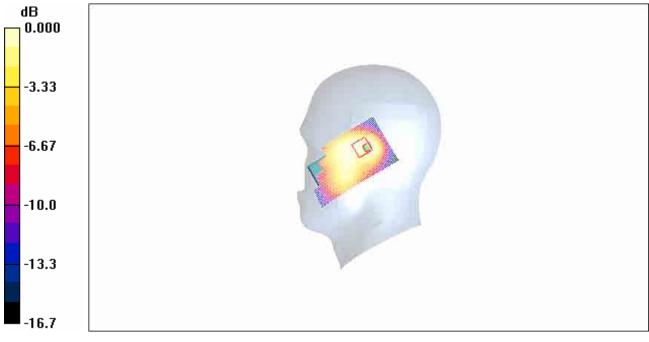


Fig. 54 Z-Scan at power reference point (1900 MHz CH512)


1900 Right Tilt High

Date/Time: 2008-5-6 14:16:21 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.191 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.2 V/m; Power Drift = 0.063 dBPeak SAR (extrapolated) = 0.251 W/kg**SAR(1 g) = 0.161 \text{ mW/g}; SAR(10 g) = 0.101 \text{ mW/g}** Maximum value of SAR (measured) = 0.172 mW/g

 $0 \, dB = 0.172 mW/g$

Fig. 55 1900 MHz CH810

No. 2008SAR00032 Page 78 of 117

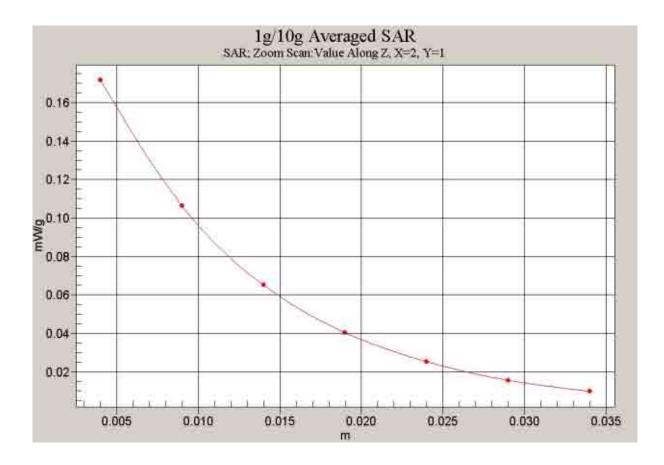
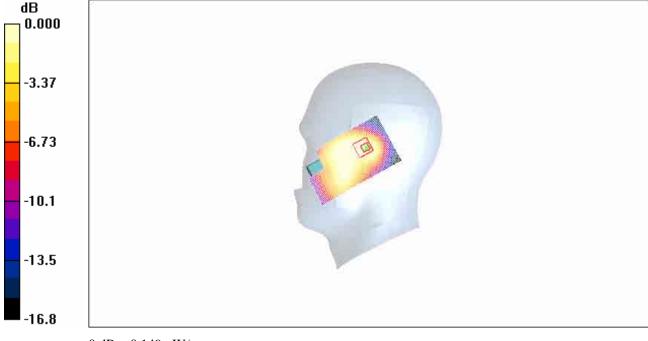


Fig. 56 Z-Scan at power reference point (1900 MHz CH810)

1900 Right Tilt Middle

Date/Time: 2008-5-6 13:59:13 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)


Tilt Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.170 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.37 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.089 mW/g

Maximum value of SAR (measured) = 0.149 mW/g

0 dB = 0.149 mW/g

Fig.57 1900 MHz CH661

No. 2008SAR00032 Page 80 of 117

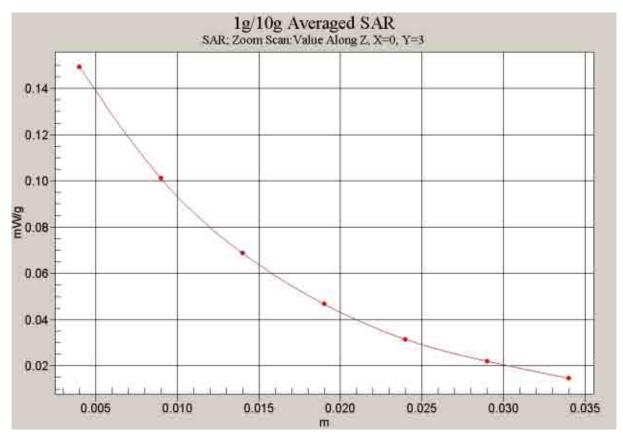


Fig. 58 Z-Scan at power reference point (1900 MHz CH661)

1900 Right Tilt Low

Date/Time: 2008-5-6 13:38:52 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3142 ConvF(4.87, 4.87, 4.87)

Tilt Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.129 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.51 V/m; Power Drift = 0.200 dB Peak SAR (extrapolated) = 0.176 W/kg SAR(1 g) = 0.123 mW/g; SAR(10 g) = 0.081 mW/g

Maximum value of SAR (measured) = 0.130 mW/g

 $^{0 \}text{ dB} = 0.130 \text{mW/g}$

Fig.59 1900 MHz CH512

No. 2008SAR00032 Page 82 of 117

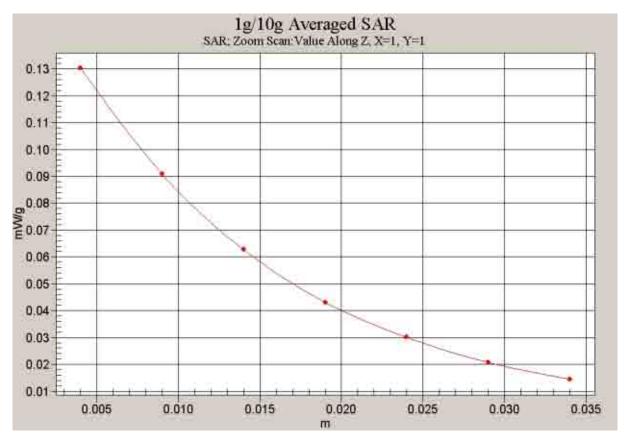
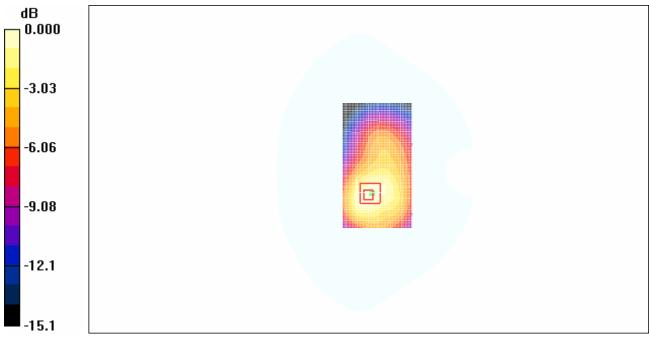


Fig. 60 Z-Scan at power reference point (1900 MHz CH512)


1900 Body Towards Phantom High with GPRS

Date/Time: 2008-5-6 15:23:31 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Phantom High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.491 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.9 V/m; Power Drift = -0.040 dB Peak SAR (extrapolated) = 0.804 W/kg SAR(1 g) = 0.476 mW/g; SAR(10 g) = 0.282 mW/g Maximum value of SAR (measured) = 0.514 mW/g

0 dB = 0.514 mW/g

No. 2008SAR00032 Page 84 of 117

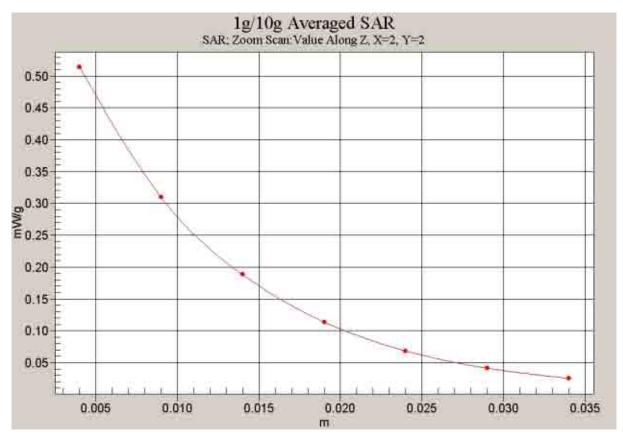
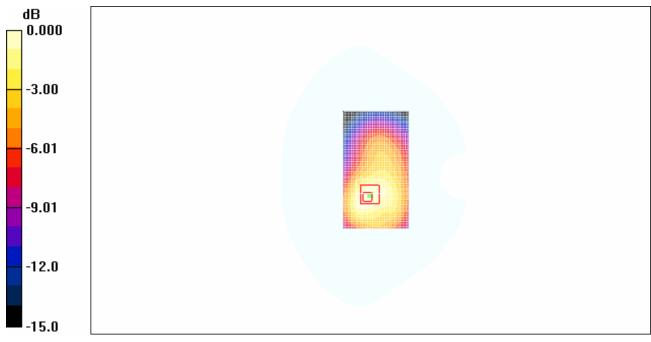


Fig. 62 Z-Scan at power reference point (1900 MHz CH810)


1900 Body Towards Phantom Middle with GPRS

Date/Time: 2008-5-6 15:36:20 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.430 mW/g

Toward Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 13.2 V/m; Power Drift = 0.031 dB Peak SAR (extrapolated) = 0.708 W/kg SAR(1 g) = 0.419 mW/g; SAR(10 g) = 0.250 mW/g Maximum value of SAR (measured) = 0.446 mW/g

 $0 \ dB = 0.446 mW/g$

Fig. 63 1900 MHz CH661

No. 2008SAR00032 Page 86 of 117

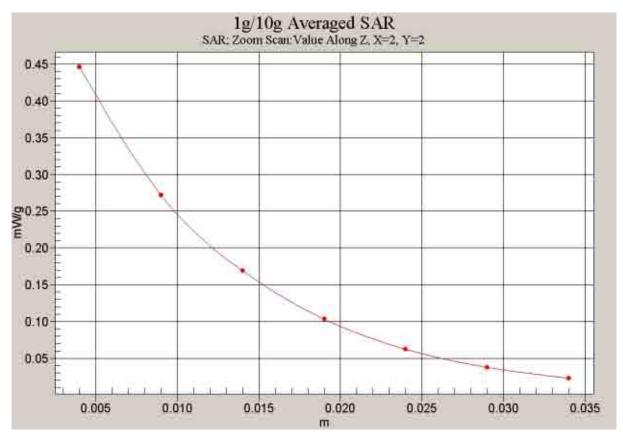
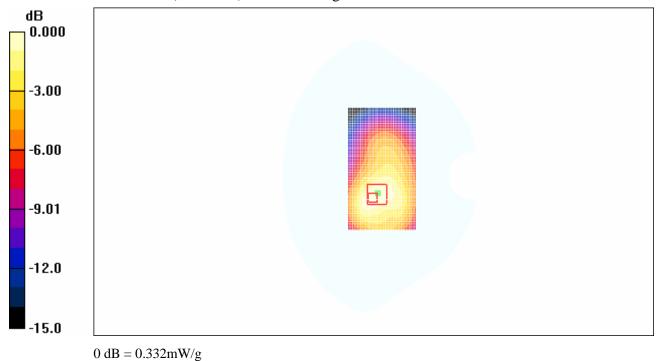


Fig. 64 Z-Scan at power reference point (1900 MHz CH661)


1900 Body Towards Phantom Low with GPRS

Date/Time: 2008-5-6 15:49:04 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Phantom Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.317 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = -0.028 dB Peak SAR (extrapolated) = 0.514 W/kg SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.185 mW/g Maximum value of SAR (measured) = 0.332 mW/g

No. 2008SAR00032 Page 88 of 117

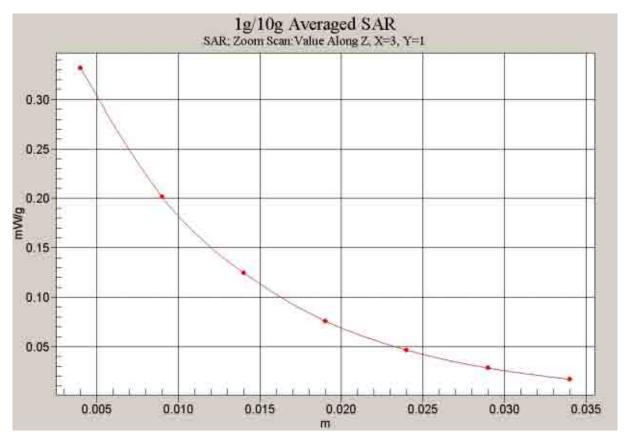
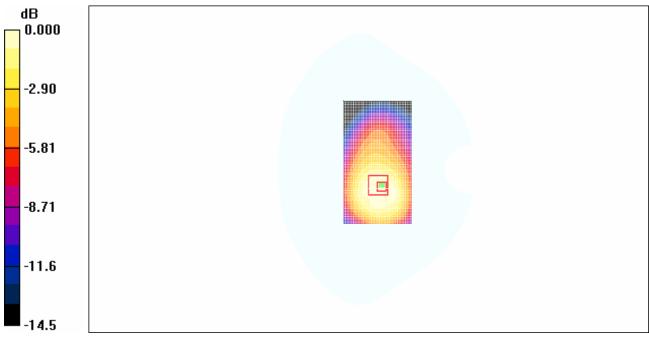


Fig. 66 Z-Scan at power reference point (1900 MHz CH512)

No. 2008SAR00032 Page 89 of 117

1900 Body Towards Ground High with GPRS


Date/Time: 2008-5-6 16:38:23 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; σ = 1.5 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.574 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 0.897 W/kg SAR(1 g) = 0.541 mW/g; SAR(10 g) = 0.330 mW/g Maximum value of SAR (measured) = 0.583 mW/g

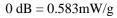


Fig. 67 1900 MHz CH810

No. 2008SAR00032 Page 90 of 117

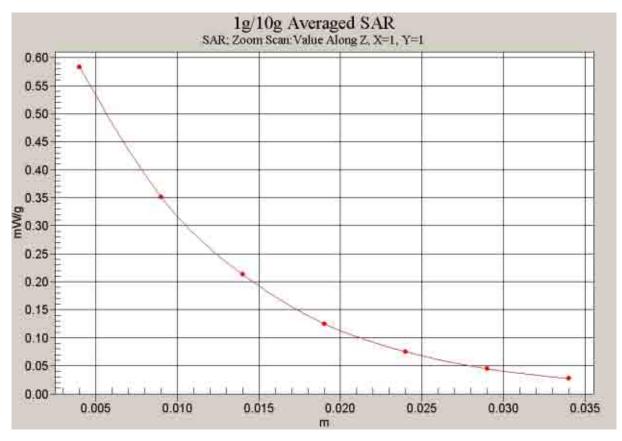
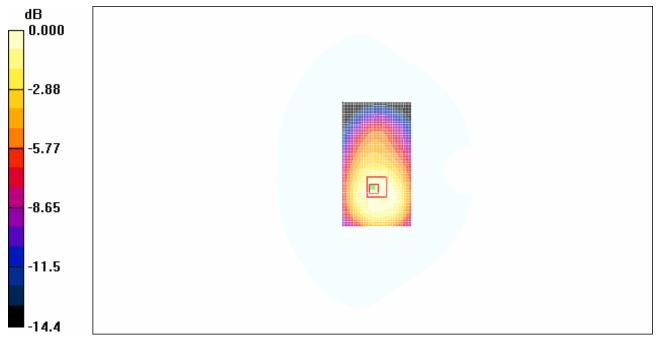


Fig. 68 Z-Scan at power reference point (1900 MHz CH810)


1900 Body Towards Ground Middle with GPRS

Date/Time: 2008-5-6 16:17:05 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mmMaximum value of SAR (interpolated) = 0.519 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5m,

dy=5mm, dz=5mm Reference Value = 15.6 V/m; Power Drift = 0.064 dBPeak SAR (extrapolated) = 0.842 W/kgSAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.307 mW/gMaximum value of SAR (measured) = 0.537 mW/g

 $0 \ dB = 0.537 mW/g$

Fig. 69 1900 MHz CH661

No. 2008SAR00032 Page 92 of 117

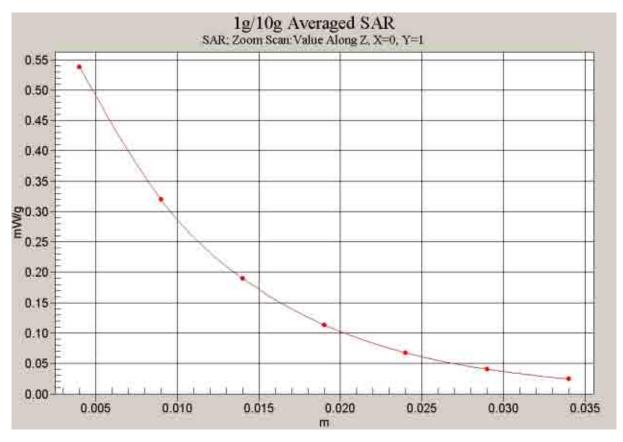
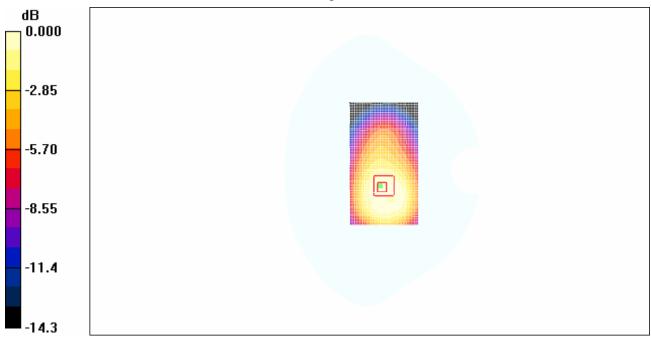


Fig. 70 Z-Scan at power reference point (1900 MHz CH661)


1900 Body Towards Ground Low with GPRS

Date/Time: 2008-5-6 16:02:34 Electronics: DAE4 Sn777 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3142 ConvF(4.61, 4.61, 4.61)

Toward Ground Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.390 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.027 dBPeak SAR (extrapolated) = 0.616 W/kgSAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.229 mW/gMaximum value of SAR (measured) = 0.401 mW/g

 $0 \; dB = 0.401 mW/g$

Fig. 71 1900 MHz CH512

No. 2008SAR00032 Page 94 of 117

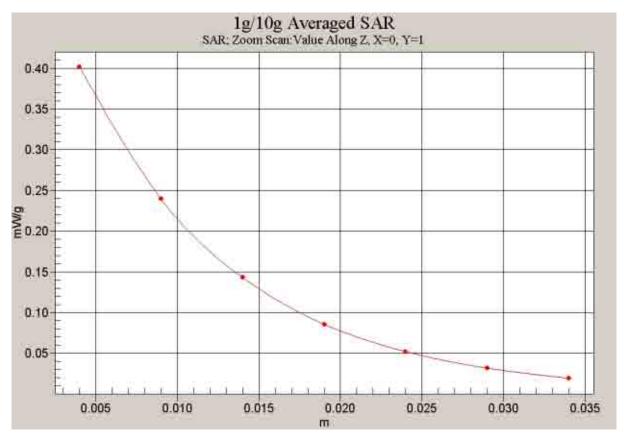
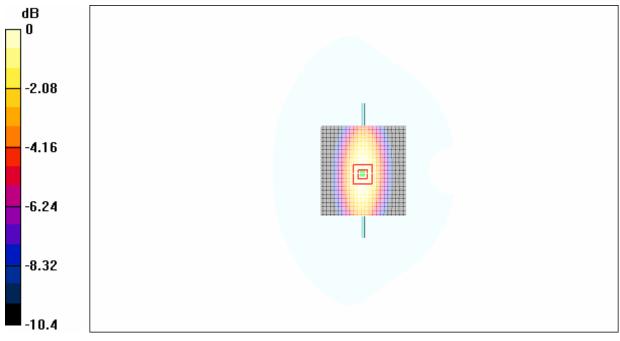
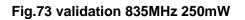


Fig. 72 Z-Scan at power reference point (1900 MHz CH512)


ANNEX D SYSTEM VALIDATION RESULTS

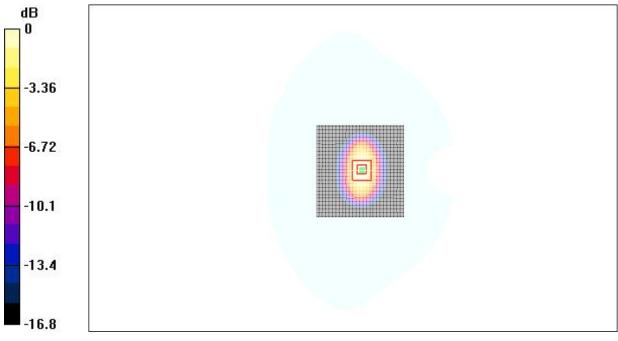
835MHzDAE777Probe3142


Date/Time: 2008-5-9 7:21:38 Electronics: DAE4 Sn777 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 41.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 24.5°C Liquid Temperature: 24.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.97, 5.97, 5.97)

835MHz/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.68 mW/g

835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.67 W/kgSAR(1 g) = 2.50 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 2.69 mW/g

0 dB = 2.69 mW/g


1900MHz DAE777Probe3142

Date/Time: 2008-5-6 7:31:30 Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 24.5°C Liquid Temperature: 24.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 – SN3142 ConvF(5.66, 5.66, 5.66)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.1 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.27 mW/gMaximum value of SAR (measured) = 11.3 mW/g

 $^{0 \}text{ dB} = 11.3 \text{mW/g}$

Fig.74 validation 1900MHz 250mW

No. 2008SAR00032 Page 97 of 117

ANNEX E PROBE CALIBRATION CERTIFICATE

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	y of h, Switzerland		ichweizerischer Kalibrien ervice suisse d'étalonna ervizio svizzero di taratu wiss Calibration Service
Accredited by the Swiss Federal O			.: SCS 108
Multilateral Agreement for the n			
Client TMC Beijing			S3-3142_Sep07
CALIBRATION	CERTIFICAT	1E martine and the second second	
Object	ES3DV3 - SN:3	142	
Calibration procedure(s)		and QA CAL-12.v5	
	Calibration proc	edure for dosimetric E-field probes	
Calibration date:	September 7, 2	007	
Condition of the calibrated item	In Tolerance		and the later of street in
This calibration certificate docum The measurements and the unce	ents the traceability to na rtainties with confidence	tional standards, which realize the physical units of probability are given on the following pages and arr ory facility: environment temperature (22 ± 3)°C and	e part of the certificate.
This calibration certificate docum The measurements and the unce	ents the traceability to na rtainties with confidence cted in the closed laborat	probability are given on the following pages and an ory facility: environment temperature $(22 \pm 3)^{\circ}C$ and	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	ents the traceability to na rtainties with confidence cted in the closed laborat	probability are given on the following pages and an ory facility: environment temperature $(22 \pm 3)^{\circ}C$ and	e part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu	ents the traceability to na rtainties with confidence sted in the closed laborat ITE critical for calibration)	probability are given on the following pages and arr ory facility: environment temperature $(22 \pm 3)^{\circ}C$ and	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages and arr ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ents the traceability to na rtainties with confidence cted in the closed laborat FE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been condui Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ents the traceability to na rtainties with confidence cted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages and arr ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Mar-08
This calibration certificate docum The measurements and the unce All calibrations have been condur Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b)	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Aug-08
This calibration certificate docum The measurements and the unce All calibrations have been condui Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013	probability are given on the following pages and are ony facility: environment temperature (22 ± 3)°C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	ents the traceability to na rtainties with confidence cted in the closed laborat FE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 554	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	e part of the certificate. d humidity < 70%. <u>Scheduled Calibration</u> Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Aug-08 Jan-08 Jan-08 Apr-08
This calibration certificate docum The measurements and the unce All calibrations have been condui Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41498277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID #	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)°C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Aug-08 Jan-08 Apr-08 Scheduled Check
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)°C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	e part of the certificate. d humidity < 70%. <u>Scheduled Calibration</u> Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ents the traceability to na rtainties with confidence cted in the closed laborat FE critical for calibration) ID # GB41293874 MY41495087 SN: 55054 (3c) SN: 55054 (3c) SN: 55056 (20b) SN: 55056 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	probability are given on the following pages and are cory facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00671) 20-Mar-07 (METAS, No. 217-00712) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Mar-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07
This calibration certificate docum The measurements and the unce All calibrations have been condui Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ents the traceability to na rtainties with confidence ted in the closed laborat FE critical for calibration) ID # GB41293874 MY41498277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	probability are given on the following pages and an ony facility: environment temperature (22 ± 3)°C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00670) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07
This calibration certificate docum The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ents the traceability to na rtainties with confidence ted in the closed laborat IE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (30) SN: S5054 (30) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name Katja Pokovic	probability are given on the following pages and an ory facility: environment temperature (22 ± 3)*C and 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00710) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-0071) 20-Mar-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05) Function Technical Manager	e part of the certificate. d humidity < 70%. Scheduled Calibration Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Mar-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07

No. 2008SAR00032 Page 98 of 117

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 5004 Zurich, Switzsrland

(BR)

s

Schweizerischer Kalibrientienst S Service autose d'étaloninge С Servizio svizzero di teratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swee Federal Office of Matrology and Accredit The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossan/

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point.
Polarization o	o rotation around probe axis
Polarization 3	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This . linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from Isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Cartificate No: ES3-3142_Sep07

Page 2 of 9

No. 2008SAR00032 Page 99 of 117

ES3DV3 SN:3142

September 7, 2007

Probe ES3DV3

SN:3142

Manufactured: Calibrated: March 13, 2007 September 7, 2007

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3142_Sep07

Page 3 of 9.

No. 2008SAR00032 Page 100 of 117

ES3DV3 SN:3142

September 7, 2007

DASY - Parameters of Probe: ES3DV3 SN:3142

Sensitivity in Free Space^A

Diode Compression^B

NormX	$\textbf{1.21} \pm \textbf{10.1\%}$	μV/(V/m) [*]	DCP X	96 mV
NormY	1.28 ± 10.1%	µV/(V/m) ²	DCP Y	95 mV
NormZ	1.15 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL.

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR ₆₀ [%]	Without Correction Algorithm	2.6	0.8
SARte [%]	With Correction Algorithm	0.0	0.4

TSL.

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR . [%]	Without Correction Algorithm	7.6	4.5
SAR (%)	With Correction Algorithm	0.2	0.1

Sensor Offset

	to Sen		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

2.0 mm

* The uncertainting of NormX,Y,Z do not affect the E^E field uncertainty inside TSI, (see Page 8)

* Neuronetal Industriality permittees an entertainly not required.

Certificate No: ES3-3142_Sep07

Page 4 of 9

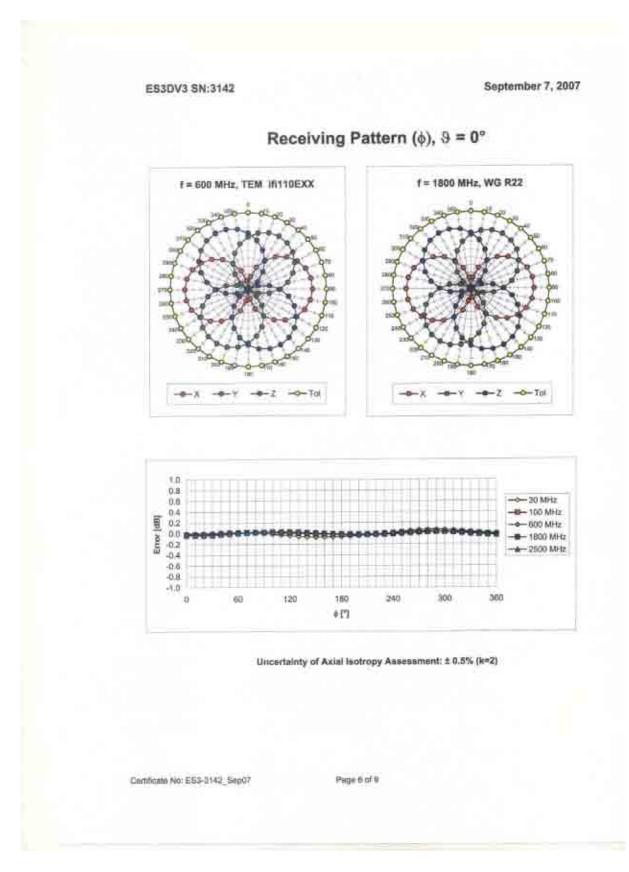
No. 2008SAR00032 Page 101 of 117

ES3DV3 SN:3142

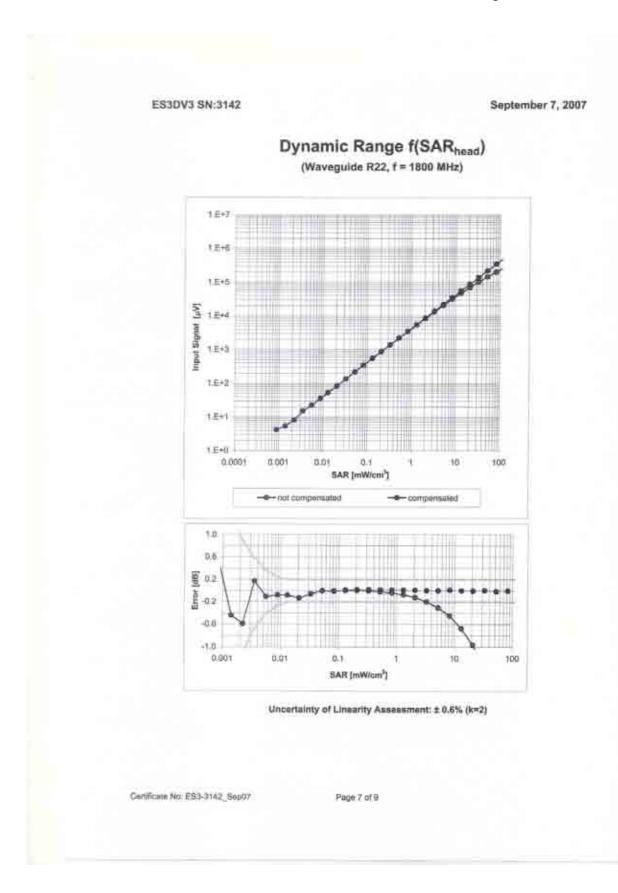
September 7, 2007

1.5 1.4 8.7 (normalized) 1.2 1.1 HELPORTER VOI 1.0 9 0.9 Frequer 0.7 0.0 0.5 0 2500 500 1000 1500 2000 3000 f [MHz] -0-R22

(TEM-Cell:ifi110 EXX, Waveguide: R22)

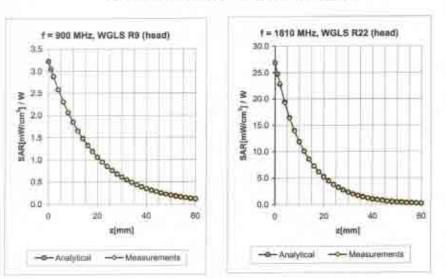

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3142_Sep07

Page 5 of 9

No. 2008SAR00032 Page 102 of 117


No. 2008SAR00032 Page 103 of 117

No. 2008SAR00032 Page 104 of 117

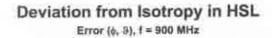
ES3DV3 SN:3142

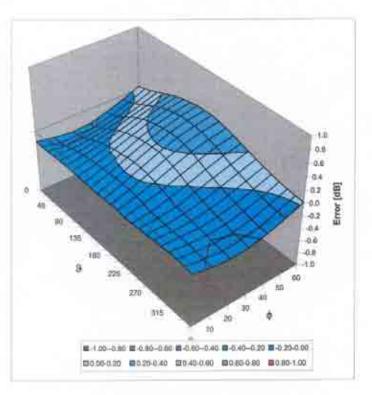
September 7, 2007

Conversion Factor Assessment

f (MHz)	Validity [MHz] [®]	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.32	1.29	6.16 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5±5%	0.97 ± 5%	1.00	1.09	5.97 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	$1.40\pm5\%$	0.60	1.41	4.87 ± 11.0% (k=2)
450	± 50 / ± 100	Body	$56.7\pm5\%$	0.94 ± 5%	0.24	1.24	6.68 ± 13.3% (k=2)
900	± 50 / ± 100	Body	$55.0\pm5\%$	1.05 ± 5%	0.94	1,1E	5.68 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.73	1.33	4.61 = 11.0% (k=2)

⁹ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvP uncertainty at calibration frequency and the unmentainty for the indicated frequency tend.


Certificate No: ES3-3142_Sep07


Page 8 of 9

No. 2008SAR00032 Page 105 of 117

ES3DV3 SN:3142

September 7, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3142_Sep07

Page 9 of 9

No. 2008SAR00032 Page 106 of 117

ANNEX F DIPOLE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

Schweizerischer Kallbrierdienst Bervice suises d'étalonnage Bervizio avizzero di taratura Bwiss Calibration Service

s

C

S

Accredited by the Swiss Federal Office of metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TMC China

Accreditation No.: SCS 108

and the second	ICATE			
Object	D835V2-5	SN: 443		
Calibration procedure(s)	QA CAL- Calibratio	05.v6 on procedure for dipole validation kits		
Calibration date: February 19, 2007				
Condition of the calibrated item	n In Tolera	nce		
Calibration Equipment used (M& Primary Standards	1D#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration	
		03-Oct-06 (METAS, NO. 217-00608)		
Power meter EPM-442A	GB37480704		Oct-07	
Power sensor 8481A	US37292783	03-Oct-06 (METAS, NO 217-00608)	Oct-07	
Power sensor 8481A Reference 20 dB Attenuator	US37292783 SN:5086 (20g.)	03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591)	Oct-07 Aug-07	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	US37292783 SN:5086 (20g) SN:5047_2 (10r)	03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591)	Oct-07 Aug-07 Aug-07	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4	US37292783 SN:5086 (20g.)	03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591)	Oct-07 Aug-07	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DV6 (HF)	US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601	03-Oct-06 (METAS, NO 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO.DAE4-601_Jan07)	Oct-07 Aug-07 Aug-07 Jan-08	
Power sensor 8481A Reference 20 dB Attenuator	US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507	03-Oct-06 (METAS, NO. 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO.DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06)	Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DV6 (HF) Secondary Standards Power sensor HP 8481A	US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507	03-Oct-06 (METAS, NO 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO.DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06) Check Data (In house)	Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DV6 (HF) Secondary Standards	US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID# MY41092317	03-Oct-06 (METAS, NO 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06) Check Data (In house) 18-Oct-02(SPEAG, in house check Oct-05) 11-May-05(SPEAG, in house check Nov-05) 5 18-Oct-01(SPEAG, in house check Oct-06)	Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov -07 In house check: Oct-07	
Power sensor 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator DAE4 Reference Probe ET3DV6 (HF) Secondary Standards Power sensor HP 8481A RF generator Aglient E44218 Network Analyzer HP 8753E	US37292783 SN:5086 (20g.) SN:5047_2 (10r) SN:601 SN: 1507 ID# MY41092317 MY41092317 MY41090678	03-Oct-06 (METAS, NO 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct05) Check Data (In house) Check Data (In house) 18-Oct-02(SPEAG, In house check Oct-05) 11-May-05(SPEAG, In house check Nov-05) 5 18-Oct-01(SPEAG, In house check Oct-06) Function	Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov -07	
Power sensor 8481A Reference 20 dB Attenuator DAE4 Reference 10 dB Attenuator DAE4 Reference Probe ET3DV8 (HF) Secondary Standards Power sensor HP 8481A RF generator Aglient E44218 Network Analyzer HP 8753E	US37292783 SN:5086 (20g.) SN:5047_2 (107) SN:601 SN: 1507 ID# MY41092317 MY41092317 MY41000678 US3739058554206	03-Oct-06 (METAS, NO 217-00608) 10-Aug-06 (METAS, NO. 217-00591) 10-Aug-06 (METAS, NO. 217-00591) 30-Jan-07 (SPEAG, NO. DAE4-601_Jan07) 19-Oct-06 (SPEAG, NO. ET3-1507_Oct06) Check Data (In house) 18-Oct-02(SPEAG, in house check Oct-05) 11-May-05(SPEAG, in house check Nov-05) 5 18-Oct-01(SPEAG, in house check Oct-06)	Oct-07 Aug-07 Aug-07 Jan-08 Oct-07 Scheduled Calibration In house check: Oct-07 In house check: Nov -0 In house check: Oct-07	

Issued: February 21, 2007

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D835V2-443_Feb07

Page 1 of 6

No. 2008SAR00032 Page 107 of 117

Calibration Laboratory of Schmid & Partner Engineering AG setrasse 43, 8004 Zurich, Switzerland

SINES s C S

Schweizerischer Kalibrierdienst Service suisse d'étalo Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditati The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration Is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Feb07

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7
Advanced Extrapolation	
Modular Flat Phantom V4.9	
15 mm	with Spacer
dx, dy, dz = 5 mm	
835 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 15 mm dx, dy, dz = 5 mm

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	-	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 mW / g
SAR normalized	normalized to 1W	9.90 mW/g
SAR for nominal Head TSL parameters *	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 mW/g
SAR normalized	NU to the second	6.40 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31mW /g ± 16.5 % (k=2)

Certificate No: D835V2-443_Feb07

Page 3 of 6

No. 2008SAR00032 Page 109 of 117

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω - 6.8 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.402 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coasial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-alignals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

Certificate No: D835V2-443_Feb07

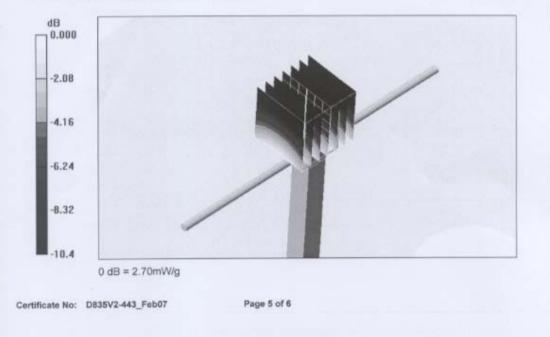
Page 4 of 6

No. 2008SAR00032 Page 110 of 117

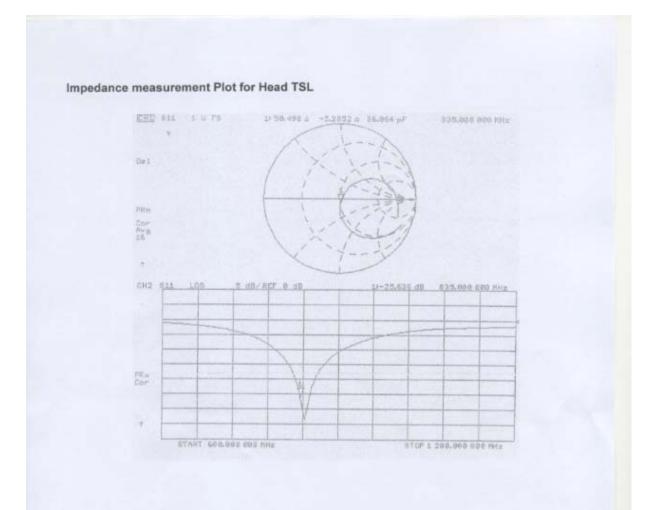
DASY4 Validation Report for Head TSL

Date/Time: 19.02.2007 10:04:15

Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; serial: D835V2-SN: 443

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz; Medium parameters used: f=835 MHz; σ=0.88 mho/m; ε,=39.9; ρ= 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV6-SN1507(HF); ConvF(6.01,6.01,6.01); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.6 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.60 mW/g Maximum value of SAR (measured) = 2.70 mW/g

No. 2008SAR00032 Page 111 of 117

Certificate No: D835V2-443_Feb07

Page 6 of 6

No. 2008SAR00032 Page 112 of 117

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Swizerland

(9pt

Schweizerlecher Kalibrierdienst S Service suisse d'Atalonnage C Servizio evizzero di taratura s **Swiss Calibration Service**

Accredited by the Swiss Federal Office of metrology and Accreonation

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC China

Certificate No: D1900V2-541_Feb07

Accreditation No.: SCS 108

ALIBRATION CERTIFICATE	
	-
Object	D1900V2-SN: 541
Calibration procedure(s)	QA CAL-05.v6 Calibration procedure for dipole validation kits
Calibration date:	February 20, 2007
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate

All calibrations have been conducted at an environment temperature (22±3)°C and humidity<70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Power sensor 8481A	US37292783	03-Oct-06 (METAS, NO. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN:5086 (20g)	10-Aug-05 (METAS, NO. 217-00591)	Aug-07
Reference 10 dB Attenuator	SN:5047_2 (10r)	10-Aug-06 (METAS, NO. 217-00591)	Aug-07
DAE4	SN:601	30-Jan-07 (SPEAG, NO DAE4-601_Jan07)	Jan-08
Reference Probe ET3DV6 (HP	F) SN: 1507	19-0ct-06 (SPEAG, NO. ET3-1507_Oct06)	Oct-07
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration
Power sensor HP 8481A	MY41092317	18-Oct-02(SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Aglient E4421B	MY41000576	11-May-05(SPEAG, in house check Nov-05) In house check: Nov -07
Network Analyzer HP 8753E	U\$37390585\$4206	18-Oct-01(SPEAG, in house check Oct-06)	In house check: Oct -07
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	Alter
Approved by:	Katja Pokovic	Technical Director	Ala Kot
		1	sued: February 21, 2007

This calibration certificate shall not be reported except in full without written approval of the laboratory.

Certificate No: D1900V2-541_Feb07

Page 1 of 6

No. 2008SAR00032 Page 113 of 117

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8804 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541_Feb07

Page 2 of 6

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9±6%	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) *C	-	-

SAR result with Head TSL

condition	
250 mW input power	9.73 mW /g
Wt of besilemon	38.9 mW /g
normalized to 1W	38.6 mW/g±17.0 % (k=2)
DOLUMETOD ID 144	anterina i M w sure ta fa-at
NORTHING OF 10 114	an and a first strengt
condition	ananiti fa tra ata-at
	5.09 mW /g
condition	
	250 mW input power

* Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb07

Page 3 of 6

No. 2008SAR00032 Page 115 of 117

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.4 Ω - 8.9 jΩ
Return Loss	- 26.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 4 , 2001

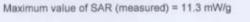
Certificate No: D1900V2-541_Feb07

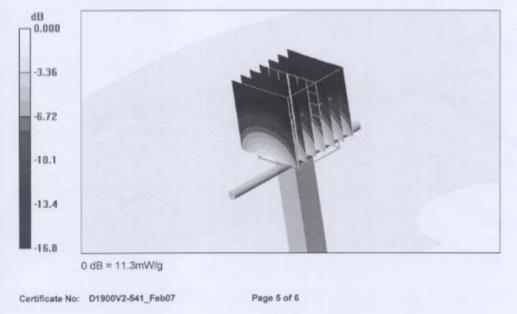
Page 4 of 6

No. 2008SAR00032 Page 116 of 117

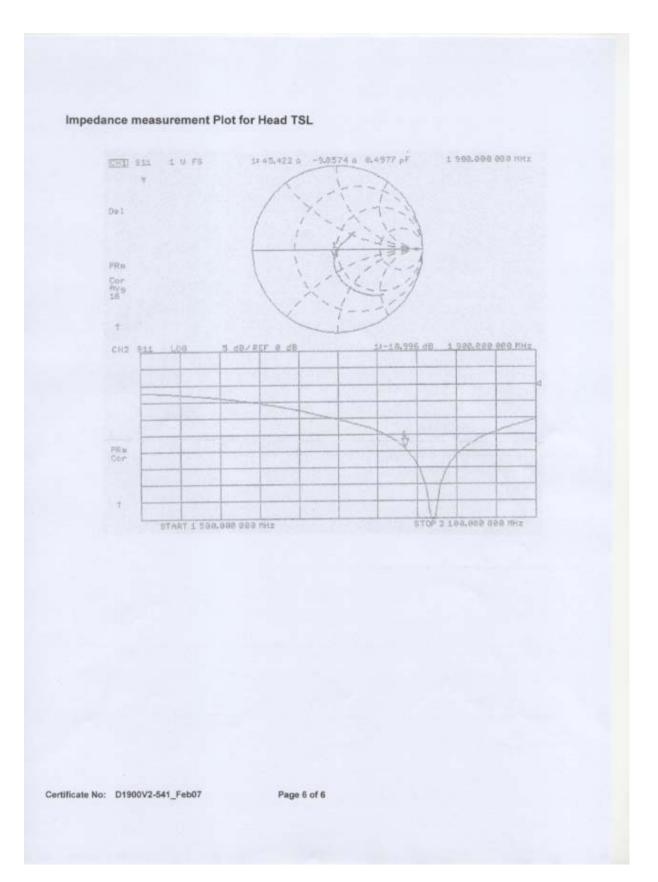
DASY4 Validation Report for Head TSL

Date/Time: 20.02.2007 09:25:37


Test laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; serial: D1900V2-SN: 541

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f=1900 MHz; σ =1.38 mho/m; ϵ_r =38.9; ρ = 1000kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) DASY4 Configuration:


- Probe: ET3DV8-SN1507(HF); ConvF(5.03, 5.03, 5.03); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.1_2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;
- Measurement SW: DASY, V4.7 Build 53; Post processing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.1 V/m; Power Drift = 0.059 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.73 mW/g; SAR(10 g) = 5.09 mW/g

No. 2008SAR00032 Page 117 of 117

