

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 1 of 84

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 22 SUBPART H and PART 24 SUBPART E REQUIREMENT

OF

Product Name: GSM 850/1900 mobile phone

Brand Name: Alcatel

Model Name: VLE5

Market Name: OT-E160a

FCC ID: **RAD022**

Report No.: ER/2005/90007

Issue Date: Oct. 07 2005

FCC Rule Part: 2 & 24E& 22H

Prepared for **TCL & Alcatel Mobile Phones**

30/F, Times Square, 500 Zhangyang Rd.,

Shanghai 200122, P.R. China

Prepared by SGS Taiwan Ltd.

No. 134, Wu Kung Rd., Wuku Industrial Zone,

Taipei County, Taiwan.

Note: This report shall not be reproduced except in full, without the written approval of SGS Taiwan Ltd. This document may be altered or revised by SGS Taiwan Ltd. personnel only, and shall be noted in the revision section of the document.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 2

VERIFICATION OF COMPLIANCE

Applicant: TCL & Alcatel Mobile Phones

30/F, Times Square, 500 Zhangyang Rd., Shanghai 200122, P.R. China

Equipment Under Test: GSM 850/1900 mobile phone

FCC ID Number: RAD022 **Brand Name:** Alcatel Model No.: VLE5

Market Name: OT-E160a

Model Difference: N/A

File Number: ER/2005/90007

Date of test: Sep. 15, 2005 ~ Oct. 04, 2005

. . .

Date of EUT Received: Sep. 14, 2005

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-1-1998 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 subpart H and FCC PART 24 subpart E.

The test results of this report relate only to the tested sample identified in this report.

Test By:	Willis Chen	Date	Oct. 07, 2005
Prepared By:	Willis Chen	Date	Oct. 07, 2005
Approved By	Gigi Yeh Tihuut lu Vincent Su	Date	Oct. 07, 2005

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 3

Version

Version No.	Date
00	Oct. 07, 2005

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 4

Table of Contents

1.	GEN	ERAL INFORMATION	6
	1.1	Product Description	6
	1.2	Related Submittal(s) / Grant (s)	6
	1.3	Test Methodology	6
	1.4	Test Facility	7
	1.5	Special Accessories	7
	1.6	Equipment Modifications	7
2.	SYS	TEM TEST CONFIGURATION	8
	2.1	EUT Configuration	8
	2.2	EUT Exercise	8
	2.3	Test Procedure	8
	2.4	Configuration of Tested System	9
3.	SUM	MARY OF TEST RESULTS	. 10
4.	DES	CRIPTION OF TEST MODES	. 10
5.	RF P	OWER OUTPUT MEASUREMENT	. 11
	5.1	Standard Applicable	. 11
	5.2	Test Set-up:	. 11
	5.3	Measurement Procedure	. 11
	5.4	Measurement Equipment Used:	. 11
	5.5	Measurement Result	. 13
6.	ERP	, EIRP MEASUREMENT	. 14
	6.1	Standard Applicable	. 14
	6.2	Test SET-UP (Block Diagram of Configuration)	. 14
	6.3	Measurement Procedure	. 16
	6.4	Measurement Equipment Used:	. 17
	6.5	Measurement Result	. 18
7.	occ	CUPIED BANDWIDTH MEASUREMENT	. 20
	7.1	Standard Applicable	. 20
	7.2	Test Set-up:	. 20
	7.3	Measurement Procedure	. 20
	7.4	Measurement Equipment Used:	. 20
	7.5	Measurement Result:	. 20
8.	OUT	OF BAND EMISSION AT ANTENNA TERMINALS	. 27
	8.1	Standard Applicable	. 27
	8.2	Test SET-UP	. 27

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 5

	8.3	Measurement Procedure	27
	8.4	Measurement Equipment Used:	28
	8.5	Measurement Result	28
9.	FIEL	D STRENGTH OF SPURIOUS RADIATION MEASUREMENT	37
	9.1	Standard Applicable	37
	9.2	EUT Setup (Block Diagram of Configuration)	37
	9.3	Measurement Procedure	39
	9.4	Measurement Equipment Used:	40
	9.5	Measurement Result	40
10.	FRE	QUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	47
	10.1	Standard Applicable	
	10.2	Test Set-up:	47
	10.3	Measurement Procedure	47
	10.4	Measurement Equipment Used:	48
	10.5	Measurement Result	48
11.	FRE	QUENCY STABILITY V.S. VOLTAGE MEASUREMENT	50
	11.1	Standard Applicable	50
	11.2	Test Set-up:	50
	11.3	Measurement Procedure	50
	11.4	Measurement Equipment Used:	50
	11.5	Measurement Result	52
12.	AC P	OWER LINE CONDUCTED EMISSION TEST	53
	12.1	Standard Applicable	53
	12.2	EUT Setup	53
	12.3	Measurement Procedure	53
	12.4	Measurement Equipment Used:	54
	12.5	Measurement Result	54
PH	ото	GRPHS OF SET UP	71
DЦ	OTO	ERPHS OF FUT	73

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 6

1. GENERAL INFORMATION

Product Description 1.1

Product	GSM 850/1900 mobile phone			
Model Name	VLE5			
Market Name	OT-E160a			
Model Difference:	N/A			
Trade Name	Alcatel			
Frequency Range and	TX: 824.2 MHz – 848.8 MHz	33 dBm		
Power	TX: 1850.2MHz –1909.8MHz	30 dBm		
Type of Emission	300KGXW			
Power Supply	Four 5V DC by AC/DC Adapters model number: 3DS09371AGAA,(supplier: Astec and Leader Electronics) model number: 3DS09371AAAA (supplier: Astec and Leader Electronics) One 5Vdc Car Charge Model number:3DS07848AAAA (supplier: Primax)			

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: RAD022 filing to comply with Section Part 22 subpart H and Part 24 subpart E of the FCC CFR 47 Rules.

Test Methodology 1.3

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 (2003) and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 7

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 1993 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Anechoic chamber (3 meters) Registration Number: 573967

1.5 Special Accessories

Not available for this EUT intended for grant.

1.6 Equipment Modifications

Not available for this EUT intended for grant.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 8

SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

2.3 **Test Procedure**

2.3.1 Conducted Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is placed on a turn table which is 1.0 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 9

2.4 Configuration of Tested System

Fig. 2-1 ConFig. 2-1 Configuration of Tested System

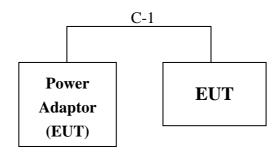


Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	FCC ID	Series No.	Data Cable	Power Cord
1.	N/A						

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 10

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§2.1046(a)		
§22.913(a)	RF Power Output	Compliant
§24.232(a)		
§2.1046(a)		
§22.913(a)	ERP/ EIRP measurement	Compliant
§24.232(a)		
§2.1049(h)	99% Occupied Bandwidth	Compliant
§ 2.1051	Out of Band Emissions at Antenna	
§22.917(a)	Terminals and	Compliant
§24.238(a)	Band Edge	
§ 2.1053		
§22.917(a)	Field Strength of Spurious Radiation	Compliant
§24.238(a)		
§2.1055(a)(1)(b)	Frequency Stability vs. Temperature	Compliant
§2.1055(d)(1)(2)	Frequency Stability vs. Voltage	Compliant
§15.107;§15.207	AC Power Line Conducted Emission	Compliant

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

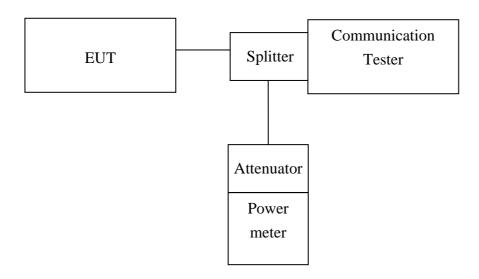
EUT staying in continuous transmitting mode. Channel Low, Mid and High for each type and band with rated data rate are chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for both GSM and GPRS with all power adaptors. The worst-case E2 mode for GSM 850 band and E2 mode for GSM 1900 band with power adaptor model number: 3DS09371AGAA for channel Low, Mid and High at GSM/PCS mode was reported.

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 11

RF POWER OUTPUT MEASUREMENT


5.1 Standard Applicable

According to FCC §2.1046.

FCC 22.913(a) Mobile station are limited to 7W.

FCC 24.232(b) Mobile station are limited to 2W.

5.2 **Test Set-up:**

Note: Measurement setup for testing on Antenna connector

5.3 Measurement Procedure

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

5.4 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT MFR MODEL SERIAL LAST CAL DUI								
TYPE		NUMBER	NUMBER	CAL.				
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006			
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006			

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 12

Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2004	11/12/2005
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006
Signal Generator	R&S	SMR40	100210	11/09/2004	11/10/2005

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 13

5.5 Measurement Result

EUT Mode	Frequency (MHz)	СН	Power meter Reading (dBm)	Path Loss (dB)	Peak Power (dBm)
GSM 850	824.20	128	15.3	16.60	31.90
	836.60	190	15.4	16.60	32.00
	848.80	251	15.4	16.60	32.00

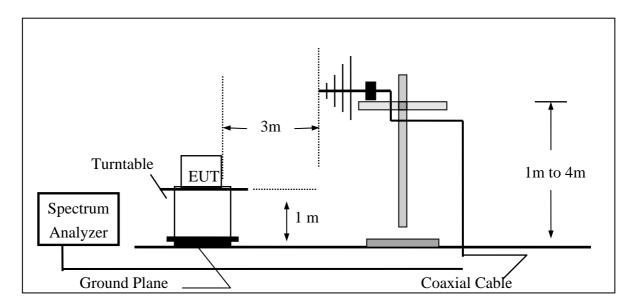
EUT Mode	Frequency (MHz)	СН	Power Meter Reading (dBm)	Path Loss (dB)	Peak Power (dBm)
PCS 1900	1850.20	512	12.6	17.00	29.60
	1880.00	661	12.7	17.00	29.70
	1909.80	810	12.5	17.00	29.50

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 14

6. ERP, EIRP MEASUREMENT

6.1 Standard Applicable

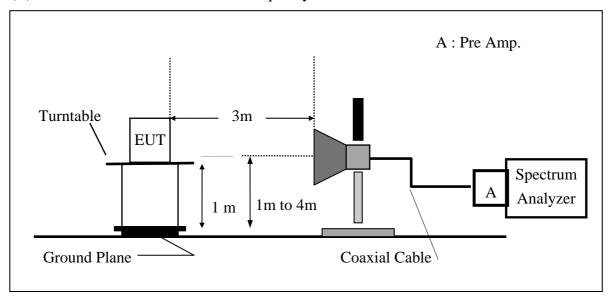

According to FCC §2.1046

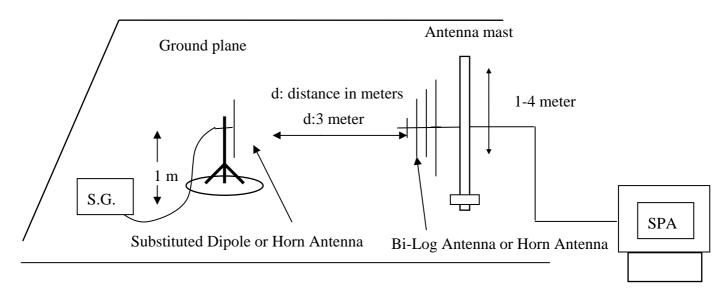
FCC 22.913(a) Mobile station are limited to 7W ERP.

FCC 24.232(b) Mobile station are limited to 2W EIRP.

6.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz




Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 15

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

(C) Substituted Method Test Set-UP

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 16

6.3 Measurement Procedure

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824.2 –848.80.8MHz were measured using a substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follows:

EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 17

6.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2005	05/26/2006
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2005	06/02/2006
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2005	08/15/2006
Pre-Amplifier	HP	8447D	2944A09469	07/19/2005	07/18/2006
Pre-Amplifier	HP	8494B	3008A00578	02/26/2005	02/25/2006
Signal Generator	R&S	SMR40	100210	02/09/2005	02/10/2006
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2005	10/08/2006
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005
Site NSA	SGS	10m Open-Site	N/A	10/02/2005	10/01/2006
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2005	10/13/2006
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2005	06/11/2006
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2005	06/11/2006
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2005	08/15/2006

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 18

6.5 Measurement Result

EUT Mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. Output (dBm)	Antenna Gain (dBd)	Cable Loss (dB)	ERP (dBm)	Limit (dBm)		
			Н	V	122.75	35.43	-7.87	3.64	23.91	38.45		
			П	Н	127.41	39.75	-7.87	3.64	28.24	38.45		
	824.20	128	E1	V	129.67	42.35	-7.87	3.64	30.83	38.45		
	624.20	120	E1	Н	120.69	33.03	-7.87	3.64	21.52	38.45		
			E2	V	119.49	32.17	-7.87	3.64	20.65	38.45		
				Н	131.45	43.79	-7.87	3.64	32.28	38.45		
		190	Н	V	123.17	36.14	-7.88	3.70	24.57	38.45		
				Н	126.07	38.73	-7.88	3.70	27.16	38.45		
GSM 850	836.60		E1	V	129.07	42.04	-7.88	3.70	30.47	38.45		
GSM 930				Н	120.96	33.62	-7.88	3.70	22.05	38.45		
			E2	V	117.00	29.97	-7.88	3.70	18.40	38.45		
				Н	130.15	42.81	-7.88	3.70	31.24	38.45		
			Н	V	122.82	36.08	-7.88	3.75	24.45	38.45		
			П	Н	127.47	40.45	-7.88	3.75	28.82	38.45		
	848.80	251	E1	V	128.28	41.54	-7.88	3.75	29.91	38.45		
	040.00	231	31 El	Н	121.02	34.00	-7.88	3.75	22.37	38.45		
			F2	V	117.93	31.19	-7.88	3.75	19.56	38.45		
						E2	Н	129.14	42.12	-7.88	3.75	30.49

Remark:

The RBW, VBW of SPA for frequency (1)

Below 1GHz was RBW=100 KHz, VBW=300KHz,

Above 1GHz was RBW= 1MHz, VBW= 3MHz

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 19

EUT Mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. Output (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)
			Н	V	124.53	17.57	9.90	5.41	22.06	33.00
				Н	130.69	23.80	9.90	5.41	28.29	33.00
	1850.20	512	E1	V	130.42	23.46	9.90	5.41	27.95	33.00
	1830.20	312	EI	Н	127.69	20.80	9.90	5.41	25.29	33.00
			E2	V	128.70	21.74	9.90	5.41	26.23	33.00
			E2	Н	132.54	25.65	9.90	5.84	29.71	33.00
	1880.00	00 661	Н	V	125.17	18.22	9.99	5.46	22.75	33.00
				Н	130.53	23.66	9.99	5.46	28.19	33.00
PCS 1900			E1	V	130.57	23.62	9.99	5.46	28.15	33.00
PCS 1900				Н	127.98	21.11	9.99	5.46	25.64	33.00
			E2	V	128.24	21.29	9.99	5.46	25.82	33.00
				Н	130.89	24.02	9.99	5.46	28.55	33.00
			Н	V	125.70	18.76	10.08	5.51	23.33	33.00
			п	Н	130.14	23.29	10.08	5.51	27.85	33.00
	1909.80	810	E1	V	129.75	22.81	10.08	5.51	27.38	33.00
				Н	127.38	20.53	10.08	5.51	25.09	33.00
			E2	V	127.69	20.75	10.08	5.51	25.32	33.00
				Н	130.96	24.11	10.08	5.51	28.67	33.00

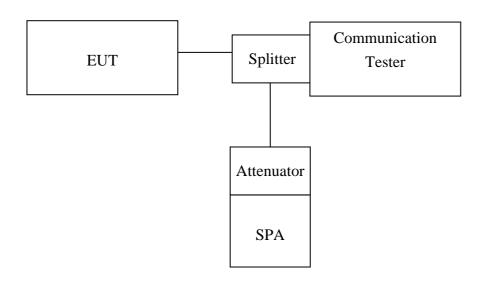
Remark:

The RBW, VBW of SPA for frequency (1)

Below 1GHz was RBW=100 KHz, VBW=300KHz,

Above 1GHz was RBW= 1MHz , VBW= 3MHz

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005


Page: 20

7. OCCUPIED BANDWIDTH MEASUREMENT

7.1 Standard Applicable

According to §FCC 2.1049.

7.2 Test Set-up:

Note: Measurement setup for testing on Antenna connector

7.3 **Measurement Procedure**

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW (10/30KHz) was set to about 1% of emission BW, VBW= 3 times RBW(30/100KHz), -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

7.4 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT MFR MODEL SERIAL LAST CAL DU								
TYPE		NUMBER	NUMBER	CAL.				
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006			
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006			
Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005			

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 21

Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2004	11/12/2005
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006
Signal Generator	R&S	SMR40	100210	11/09/2004	11/10/2005

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 22

7.5 Measurement Result:.

EUT Mode	Frequency (MHz)	СН	99% Bandwidth (MHz)
GSM 850	824.20	128	0.2411
	836.60	190	0.2400
	848.80	251	0.2417

EUT Mode	Frequency (MHz)	СН	99% Bandwidth (MHz)
	1850.20	512	0.2419
PCS 1900	1880.00	661	0.2415
	1909.80	810	0.2411

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 23

Figure 7-1: GSM Channel Low

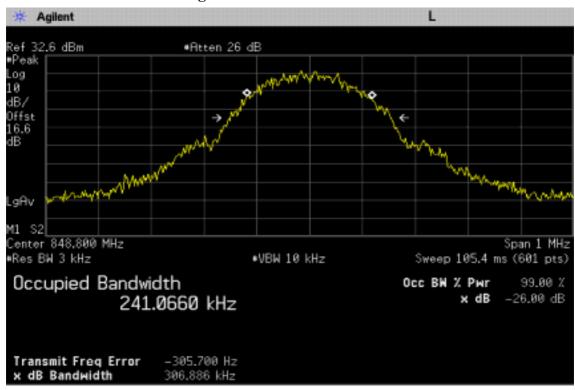
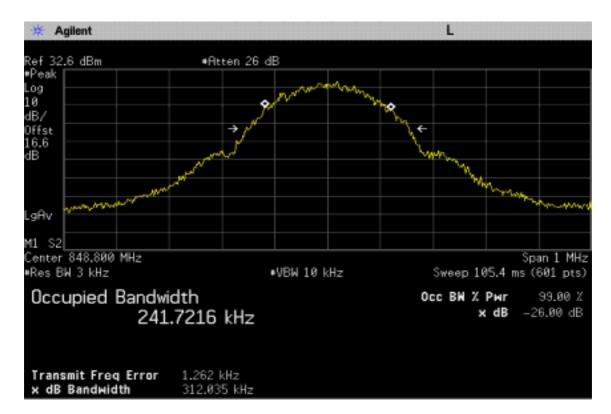


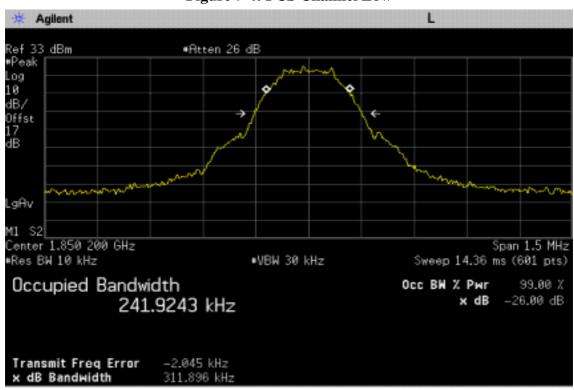

Figure 7-2 GSM Channel Mid

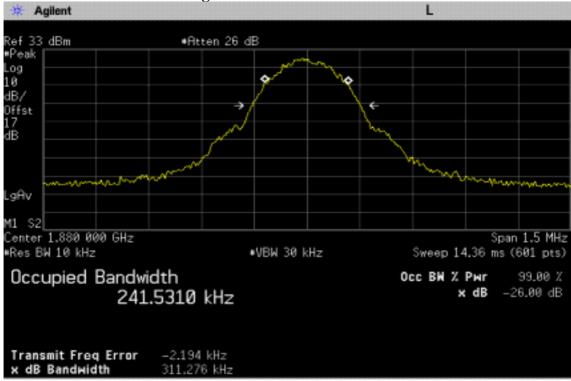


Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 24

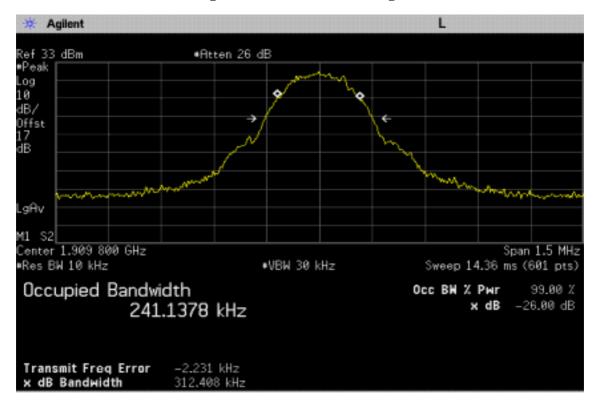
Figure 7-3: GSM Channel High




Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 25

Figure 7-4: PCS Channel Low



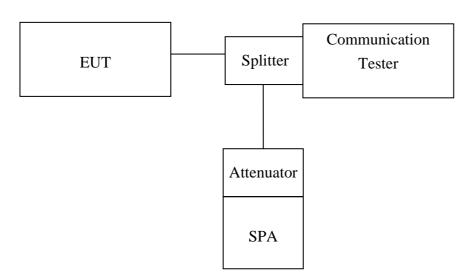
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 26

Figure 7-6: PCS Channel High

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 27


OUT OF BAND EMISSION AT ANTENNA TERMINALS

8.1 **Standard Applicable**

According to FCC §2.1051.

FCC §22.917(a),§24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

8.2 **Test SET-UP**

Note: Measurement setup for testing on Antenna connector

8.3 **Measurement Procedure**

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10th harmonic. Limit = -13dBm

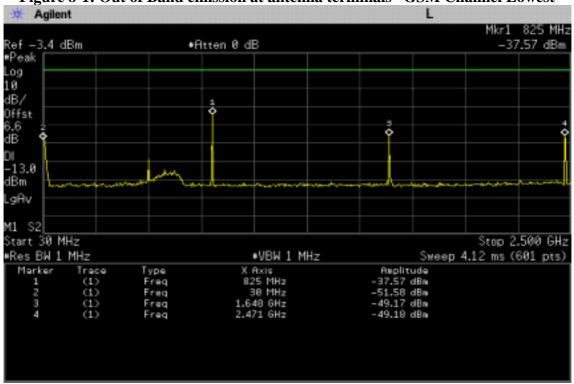
Band Edge Requirements: In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

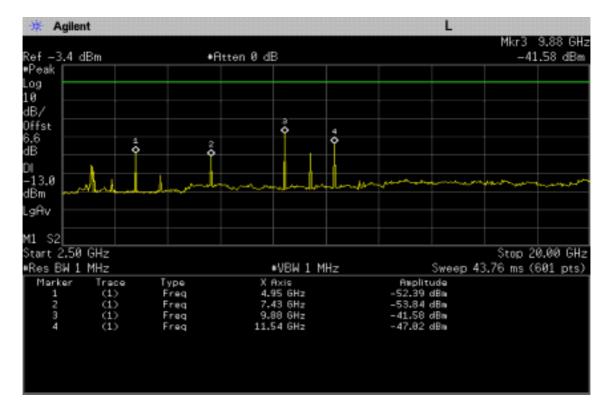
Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 28

8.4 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.			
TYPE		NUMBER	NUMBER	CAL.				
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006			
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006			
Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005			
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006			
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006			
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2004	11/12/2005			
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A			
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006			
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006			
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006			
Signal Generator	R&S	SMR40	100210	11/09/2004	11/10/2005			

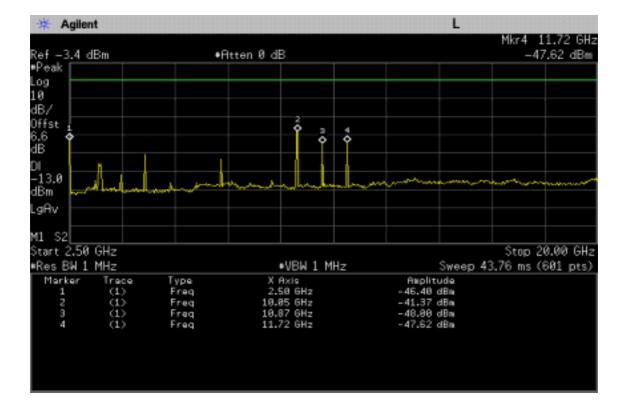



Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 29

8.5 **Measurement Result**

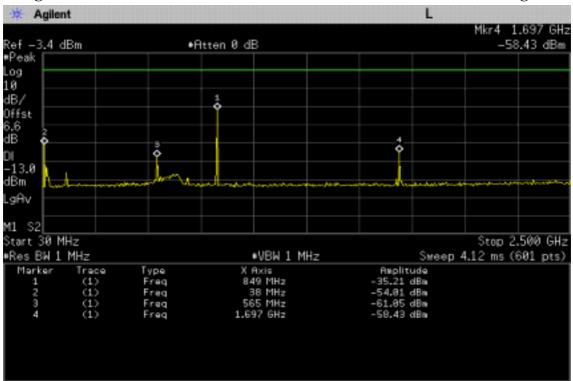
Figure 8-1: Out of Band emission at antenna terminals-GSM Channel Lowest

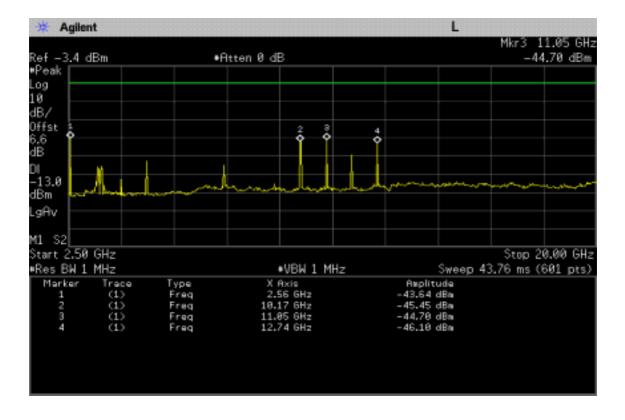


Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 30

Figure 8-2: Out of Band emission at antenna terminals –GSM Channel Mid





Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 31

Figure 8-3: Out of Band emission at antenna terminals-GSM Channel Highest

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 32

Figure 8-4: Bad edge emission at antenna terminals – GSM Channel Lowest

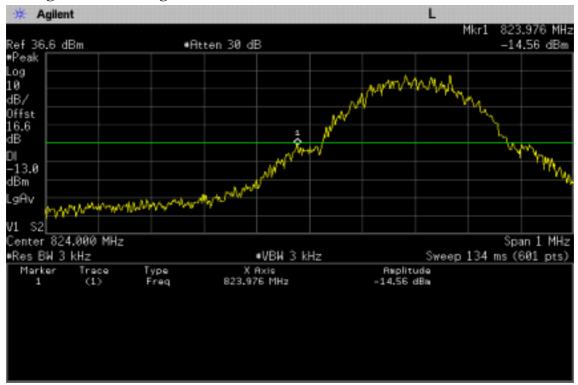
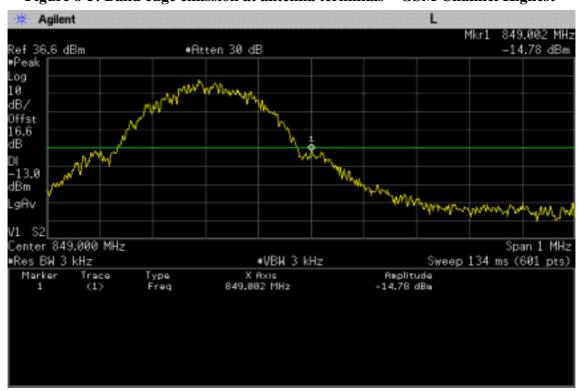
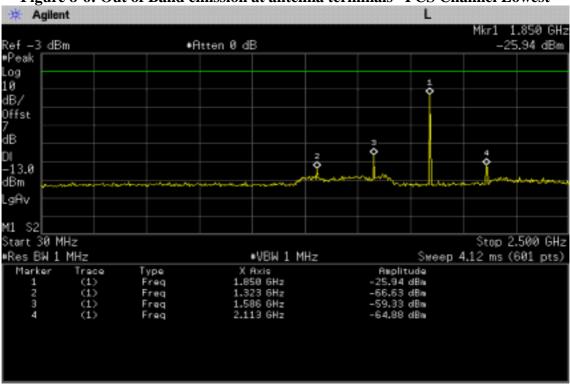
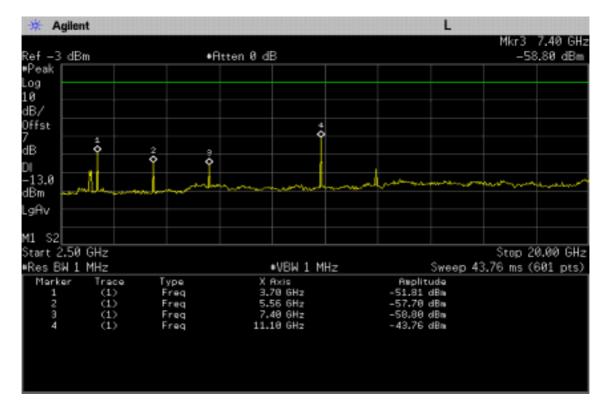



Figure 8-5: Band edge emission at antenna terminals – GSM Channel Highest

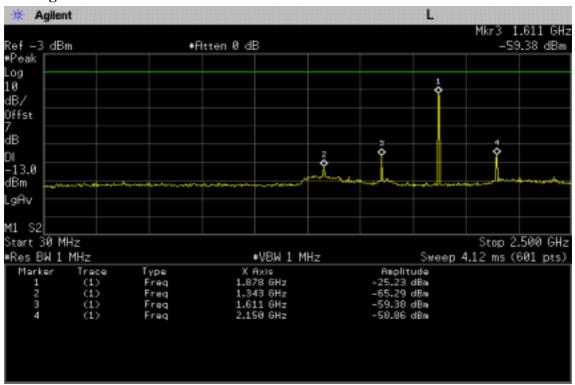


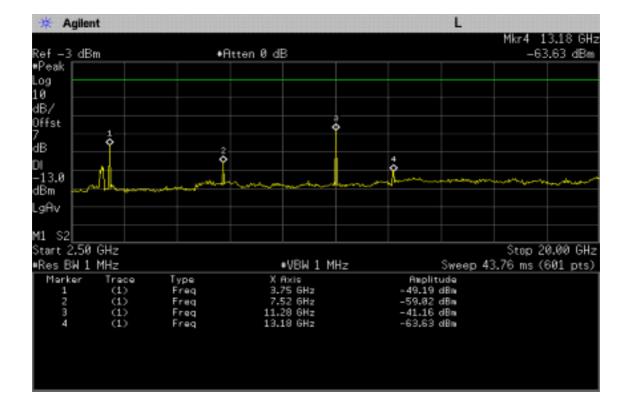


Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 33

Figure 8-6: Out of Band emission at antenna terminals- PCS Channel Lowest

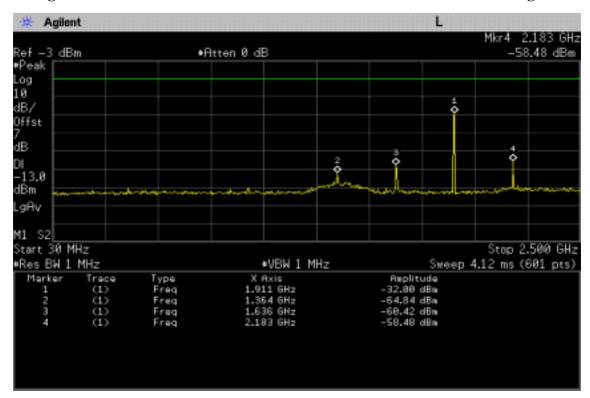


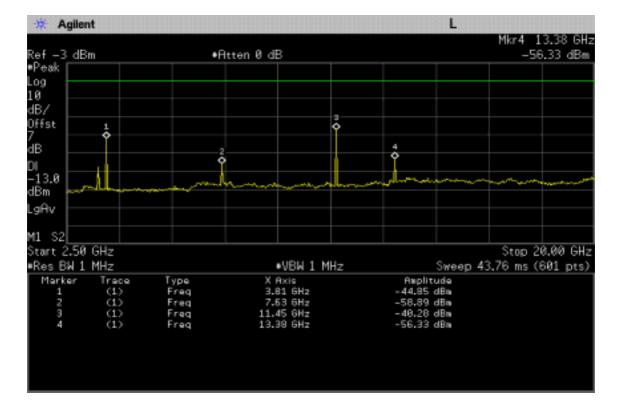


Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 34

Figure 8-7: Out of Band emission at antenna terminals –PCS Channel Mid





Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 35

Figure 8-8: Out of Band emission at antenna terminals-PCS Channel Highest

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 36

Figure 8-9: Bad edge emission at antenna terminals – PCS Channel Lowest

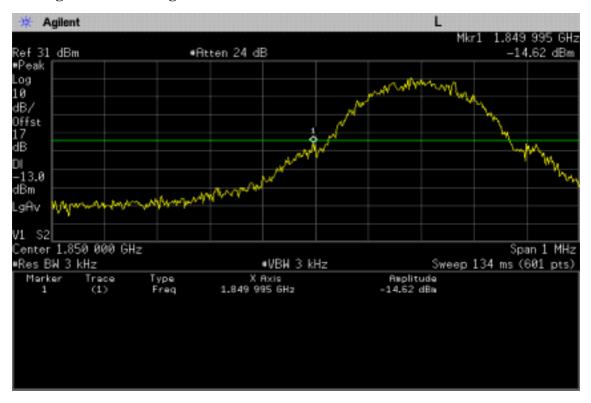
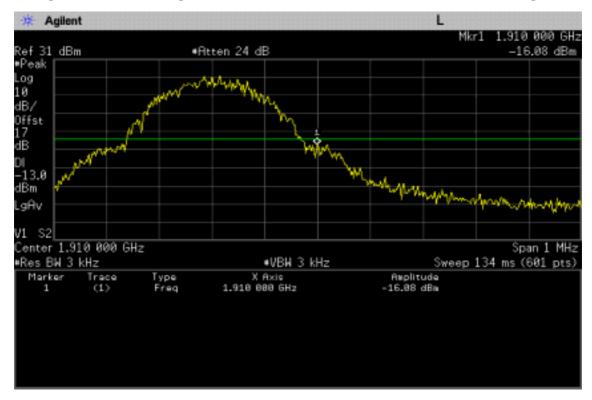
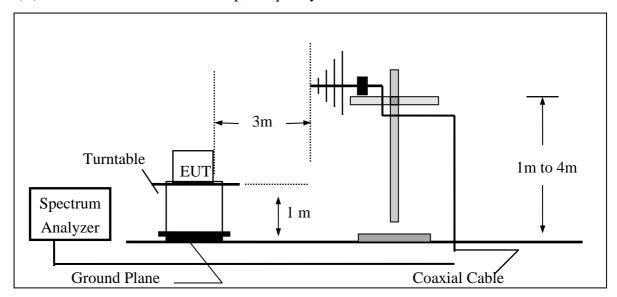



Figure 8-10: Band edge emission at antenna terminals – PCS Channel Highest

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 37

FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

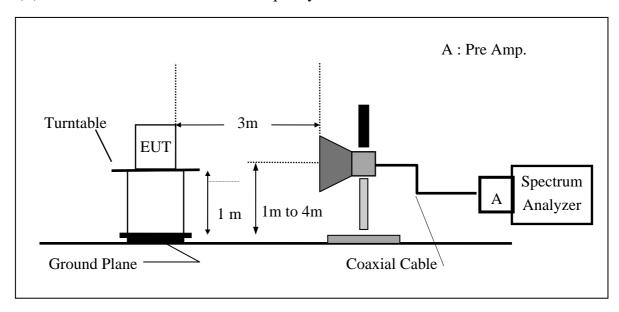

9.1 **Standard Applicable**

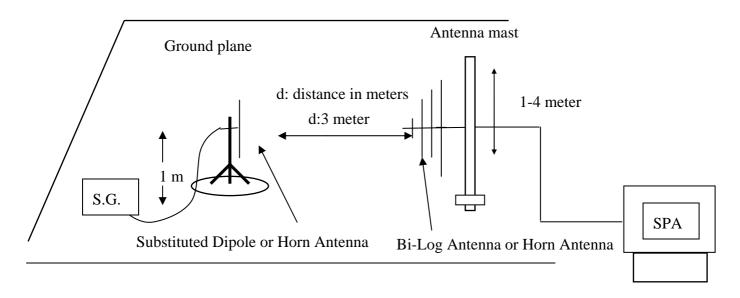
According to FCC §2.1053,

FCC §22.917(a),§24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

9.2 EUT Setup (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz




Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 38

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

(C) Substituted Method Test Set-UP

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 39

9.3 Measurement Procedure

The EUT was placed on a non-conductive, The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain(dBd) - Cable Loss <math>(dB)

EIRP = S.G. output (dBm) + Antenna Gain(dBi) – Cable Loss (dB)

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 40

9.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2005	05/26/2006
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2005	08/26/2006
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2005	06/02/2006
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2005	08/15/2006
Pre-Amplifier	HP	8447D	2944A09469	07/19/2005	07/18/2006
Pre-Amplifier	HP	8494B	3008A00578	02/26/2005	02/25/2006
Signal Generator	R&S	SMR40	100210	02/09/2005	02/10/2006
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2005	10/08/2006
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2005	10/08/2006
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005
Site NSA	SGS	10m Open-Site	N/A	10/02/2005	10/01/2006
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2005	10/13/2006
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2005	06/11/2006
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2005	06/11/2006
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2005	08/15/2006

9.5 **Measurement Result**

Refer to attach tabular data sheets.

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 41

Radiated Spurious Emission Measurement Result: GSM 850 Mode

Operation Mode : TX CH Low E2 Mode Test Date: Sep.27, 2005

Fundamental Frequency : 824.20 MHz Willis Test By: Temperature Pol: Ver / Hor : 26

Adaptor Model: 3DS09371AGAA Humidity : 67%

> Supplier: Leader

	CID A		0.00.4	.		EDD/		
Freq.	SPA. Reading	Ant.Pol.	S.G Out- put	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
30.00	39.37	V	-65.33	-7.34	0.69	-73.36	-13.00	-60.36
51.34	40.62	V	-66.96	-0.58	0.91	-68.44	-13.00	-55.44
92.08	41.57	V	-62.68	-7.75	1.17	-71.61	-13.00	-58.61
153.19	35.01	V	-62.89	-7.80	1.47	-72.16	-13.00	-59.16
182.29	34.84	V	-65.67	-7.83	1.53	-75.02	-13.00	-62.02
823.98	75.25	V	-12.08	-7.87	3.64	-23.60	-13.00	-10.60
1643.50	77.59	V	-29.45	9.27	5.05	-25.23	-13.00	-12.23
2475.50	59.93	V	-44.12	10.07	6.30	-40.34	-13.00	-27.34
3288.00	47.68	V	-54.90	12.15	7.25	-50.01	-13.00	-37.01
4113.50	41.19	V	-58.62	12.61	8.32	-54.32	-13.00	-41.32
4945.50	41.28	V	-55.29	12.65	9.19	-51.83	-13.00	-38.83
5771.00	38.49	V	-56.10	13.56	9.80	-52.34	-13.00	-39.34
7418.43	-							
8242.70								
33.88	39.41	Н	-65.29	-5.52	0.72	-71.53	-13.00	-58.53
61.04	44.61	Н	-66.70	-0.52	0.95	-68.18	-13.00	-55.18
90.14	45.16	Н	-58.53	-7.75	1.16	-67.45	-13.00	-54.45
153.19	33.23	Н	-65.56	-7.80	1.47	-74.83	-13.00	-61.83
193.93	35.86	Н	-65.55	-7.84	1.55	-74.93	-13.00	-61.93
823.98	84.29	Н	-3.37	-7.87	3.64	-14.89	-13.00	-1.89
1643.50	63.40	Н	-43.61	9.27	5.05	-39.39	-13.00	-26.39
2475.50	60.75	Н	-43.29	10.07	6.30	-39.52	-13.00	-26.52
3288.00	46.59	Н	-55.78	12.15	7.25	-50.88	-13.00	-37.88
4945.50	40.09	Н	-56.41	12.65	9.19	-52.95	-13.00	-39.95
5771.00	36.24	Н	-58.30	13.56	9.80	-54.55	-13.00	-41.55
7418.43								
8242.70								

Remark:

- The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 42

Radiated Spurious Emission Measurement Result: GSM 850 Mode

: TX CH Mid E2 Mode Operation Mode Test Date: Sep.27, 2005

Fundamental Frequency: 836.60 MHz Willis Test By: Temperature Pol: Ver / Hor : 25

Humidity Adaptor Model: 3DS09371AGAA : 65%

> Supplier: Leader

	SPA.		S C Out	Antonno		ERP/		
Freq.	Reading	Ant.Pol.	put	Gain	Cable Loss	EKP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
30.00	39.67	V	-65.03	-7.34	0.69	-73.06	-13.00	-60.06
51.34	40.74	V	-66.84	-0.58	0.91	-68.32	-13.00	-55.32
75.59	41.01	V	-70.51	-1.85	1.05	-73.42	-13.00	-60.42
92.08	41.43	V	-62.82	-7.75	1.17	-71.75	-13.00	-58.75
153.19	34.26	V	-63.64	-7.80	1.47	-72.91	-13.00	-59.91
1663.00	77.49	V	-29.54	9.33	5.08	-25.29	-13.00	-12.29
2508.00	60.78	V	-43.10	10.08	6.35	-39.36	-13.00	-26.36
3333.50	44.89	V	-57.68	12.25	7.28	-52.71	-13.00	-39.71
4178.50	43.40	V	-56.18	12.62	8.39	-51.95	-13.00	-38.95
5010.50	42.72	V	-53.60	12.66	9.25	-50.19	-13.00	-37.19
5771.00								
33.88	38.55	Н	-66.15	-5.52	0.72	-72.39	-13.00	-59.39
58.13	39.41	Н	-71.02	-0.49	0.94	-72.45	-13.00	-59.45
92.08	37.15	Н	-66.45	-7.75	1.17	-75.37	-13.00	-62.37
155.13	32.51	Н	-66.40	-7.80	1.48	-75.68	-13.00	-62.68
203.63	38.08	Н	-63.65	-7.84	1.59	-73.09	-13.00	-60.09
1663.00	71.44	Н	-35.56	9.33	5.08	-31.31	-13.00	-18.31
2508.00	52.84	Н	-51.04	10.08	6.35	-47.30	-13.00	-34.30
3333.50	44.52	Н	-57.81	12.25	7.28	-52.85	-13.00	-39.85
4178.50	37.11	Н	-62.33	12.62	8.39	-58.10	-13.00	-45.10
5010.50	37.50	Н	-58.77	12.66	9.25	-55.36	-13.00	-42.36
5855.50	39.52	Н	-54.80	13.68	9.85	-50.96	-13.00	-37.96
8365.20								

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 43

Radiated Spurious Emission Measurement Result: GSM 850 Mode

: TX CH High E2 Mode Operation Mode Test Date: Sep.27, 2005

Fundamental Frequency: 848.80 MHz Willis Test By: Temperature Pol: Ver / Hor : 25

Humidity Adaptor Model: 3DS09371AGAA : 65%

> Supplier: Leader

	Supplier. Leader					<u>Jeudel</u>		
Freq.	SPA.	Ant.Pol.	S.G Out-	Antenna	Cable	ERP/	Limit	Safe Margin
rieq.	Reading	Allt.1 Ul.	put	Gain	Loss	EIRP	Lillit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
31.94	39.20	V	-64.94	-6.43	0.70	-72.07	-13.00	-59.07
53.28	40.36	V	-68.05	-0.55	0.92	-69.52	-13.00	-56.52
94.99	40.94	V	-63.11	-7.75	1.19	-72.06	-13.00	-59.06
153.19	33.58	V	-64.32	-7.80	1.47	-73.59	-13.00	-60.59
182.29	33.61	V	-66.90	-7.83	1.53	-76.25	-13.00	-63.25
849.02	75.61	V	-11.12	-7.88	3.75	-22.75	-13.00	-9.75
1695.50	76.09	V	-30.93	9.43	5.14	-26.64	-13.00	-13.64
2540.50	53.38	V	-50.42	10.18	6.39	-46.63	-13.00	-33.63
3385.50	40.46	V	-62.09	12.36	7.32	-57.05	-13.00	-44.05
4243.50	41.76	V	-57.59	12.63	8.46	-53.42	-13.00	-40.42
5088.50	39.82	V	-56.34	12.74	9.31	-52.92	-13.00	-39.92
7639.83								
8488.70								
33.88	39.01	Н	-65.69	-5.52	0.72	-71.93	-13.00	-58.93
58.13	40.20	Н	-70.23	-0.49	0.94	-71.66	-13.00	-58.66
92.08	37.25	Н	-66.35	-7.75	1.17	-75.27	-13.00	-62.27
153.19	32.87	Н	-65.92	-7.80	1.47	-75.19	-13.00	-62.19
298.19	34.40	Н	-65.26	-7.92	1.99	-75.16	-13.00	-62.16
849.02	82.94	Н	-4.08	-7.88	3.75	-15.70	-13.00	-2.70
1695.50	68.26	Н	-38.72	9.43	5.14	-34.43	-13.00	-21.43
2540.50	53.74	Н	-50.05	10.18	6.39	-46.27	-13.00	-33.27
3385.50	38.63	Н	-63.66	12.36	7.32	-58.62	-13.00	-45.62
4243.50	39.55	Н	-59.64	12.63	8.46	-55.47	-13.00	-42.47
5088.50	37.55	Н	-58.56	12.74	9.31	-55.13	-13.00	-42.13
5933.50	38.70	Н	-55.42	13.80	9.89	-51.50	-13.00	-38.50
8488.70								

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 44

Radiated Spurious Emission Measurement Result: PCS 1900 Mode

: TX CH Low E2 Mode Operation Mode Test Date Sep.28, 2005

Fundamental Frequency: 1850.20MHz Test By: Willis Temperature Pol: Ver / Hor : 25

Humidity : 65% Adaptor Model: 3DS09371AGAA

> Supplier: Leader

(MHz) (dBuV) H/V (dBm) (dB/dBi) (dB) (dBm) (dBm) <t< th=""><th>Margin 7.29 8.80 9.19 8.96 9.62</th></t<>	Margin 7.29 8.80 9.19 8.96 9.62
31.94 40.98 V -63.16 -6.43 0.70 -70.29 -13.00 -57.5 56.19 39.30 V -70.36 -0.51 0.93 -71.80 -13.00 -58.5 92.08 40.99 V -63.26 -7.75 1.17 -72.19 -13.00 -59.5 126.03 37.70 V -62.83 -7.78 1.35 -71.96 -13.00 -58.5 153.19 33.55 V -64.35 -7.80 1.47 -73.62 -13.00 -60.5	7.29 3.80 9.19 3.96
56.19 39.30 V -70.36 -0.51 0.93 -71.80 -13.00 -58 92.08 40.99 V -63.26 -7.75 1.17 -72.19 -13.00 -59 126.03 37.70 V -62.83 -7.78 1.35 -71.96 -13.00 -58 153.19 33.55 V -64.35 -7.80 1.47 -73.62 -13.00 -60	3.80 9.19 3.96
92.08 40.99 V -63.26 -7.75 1.17 -72.19 -13.00 -59.00 126.03 37.70 V -62.83 -7.78 1.35 -71.96 -13.00 -58.00 153.19 33.55 V -64.35 -7.80 1.47 -73.62 -13.00 -60.00	9.19 3.96
126.03 37.70 V -62.83 -7.78 1.35 -71.96 -13.00 -58 153.19 33.55 V -64.35 -7.80 1.47 -73.62 -13.00 -60	3.96
153.19 33.55 V -64.35 -7.80 1.47 -73.62 -13.00 -60	
).62
182.29 34.27 V -66.24 -7.83 1.53 -75.59 -13.00 -62	2.59
1850.00 79.31 V -27.65 9.90 5.41 -23.16 -13.00 -10).16
3695.00 48.16 V -53.44 12.61 7.72 -48.56 -13.00 -35	5.56
5545.00 42.38 V -52.84 13.22 9.68 -49.31 -13.00 -36	5.31
5550.60 V13.00	
7.100.00	
720100	
11101.20 V13.00	
12951.40 V13.00	
14801.60 V13.00	
16651.80 V13.00	
18502.00 V13.00	
33.88 38.26 H -66.44 -5.52 0.72 -72.68 -13.00 -59	9.68
58.13 36.84 H -73.59 -0.49 0.94 -75.02 -13.00 -62	2.02
65.89 36.81 H -75.04 -0.83 0.98 -76.85 -13.00 -63	3.85
92.08 37.20 H -66.40 -7.75 1.17 -75.32 -13.00 -62	2.32
126.03 34.21 H -66.58 -7.78 1.35 -75.71 -13.00 -62	2.71
150.28 31.64 H -66.96 -7.80 1.47 -76.23 -13.00 -6.	323
1850.00 85.74 H -21.15 9.90 5.41 -16.66 -13.00 -3	.66
3695.00 48.66 H -52.72 12.61 7.72 -47.83 -13.00 -34	1.83
5545.00 41.36 H -53.78 13.22 9.68 -50.24 -13.00 -37	7.24
5550.60 H13.00	
7400.80 H13.00	
9251.00 H13.00	
11101.20 H13.00	
12951.40 H13.00	
14801.60 H13.00	
16651.80 H13.00	
18502.00 H13.00	

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 45

Radiated Spurious Emission Measurement Result: PCS 1900 Mode

Test Date Operation Mode : TX CH Mid E2 Mode Sep.28, 2005

Fundamental Frequency: 1880MHz Test By Willis Ver / Hor Temperature : 25 Pol

Adaptor Model: 3DS09371AGAA Humidity : 65%

> Supplier: Leader

						Supplier:	Leader	
Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
31.94	41.60	V	-62.54	-6.43	0.70	-69.67	-13.00	-56.67
56.19	38.76	V	-70.90	-0.51	0.93	-72.34	-13.00	-59.34
92.08	42.45	V	-61.80	-7.75	1.17	-70.73	-13.00	-57.73
126.03	36.97	V	-63.56	-7.78	1.35	-72.69	-13.00	-59.69
153.19	33.40	V	-64.50	-7.80	1.47	-73.77	-13.00	-60.77
3760.00	53.68	V	-47.62	12.60	7.82	-42.84	-13.00	-29.84
5635.00	40.98	V	-53.99	13.35	9.73	-50.37	-13.00	-37.37
5640.00		V					-13.00	
7520.00		V					-13.00	
9400.00		V					-13.00	
11280.00		V					-13.00	
13160.00		V					-13.00	
15040.00		V					-13.00	
16920.00		V					-13.00	
18800.00		V					-13.00	
33.88	37.86	Н	-66.84	-5.52	0.72	-73.08	-13.00	-60.08
58.13	35.83	Н	-74.60	-0.49	0.94	-76.03	-13.00	-63.03
65.89	37.73	Н	-74.12	-0.83	0.98	-75.93	-13.00	-62.93
92.08	38.72	Н	-64.88	-7.75	1.17	-73.80	-13.00	-60.80
104.69	37.04	Н	-63.93	-7.78	1.34	-73.05	-13.00	-60.05
124.09	39.77	Н	-61.20	-7.78	1.34	-70.32	-13.00	-57.32
3760.00	50.20	Н	-50.91	12.60	7.82	-46.12	-13.00	-33.12
5635.00	53.11	Н	-41.79	13.35	9.73	-38.17	-13.00	-25.17
7520.00		Н					-13.00	
9400.00		Н					-13.00	
11280.00		Н					-13.00	
13160.00		Н					-13.00	
15040.00		Н					-13.00	
16920.00		Н					-13.00	
18800.00		Н					-13.00	

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 46

Radiated Spurious Emission Measurement Result: PCS 1900 Mode

Operation Mode : TX CH High E2 Mode **Test Date** Sep.28, 2005

Fundamental Frequency: 1909.8 MHz Test By Willis Temperature : 25 Pol Ver / Hor

Humidity 3DS09371AGAA : 65% Adaptor Model:

> Supplier: Leader

Freq.	SPA.	Ant.Pol.	S.G Output	Antenna	Cable Loss	ERP/	Limit	Safe Margin
	Reading		-	Gain		EIRP		
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm) -13.00	(dBm)
31.94	41.98	V	-62.16	-6.43	0.70	-69.29	1	-56.29
58.13	39.31		-71.19	-0.49	0.94	-72.61	-13.00 -13.00	-59.61
92.08	41.90	V	-62.35	-7.75	1.17	-71.28		-58.28
126.03	36.55	V	-63.98	-7.78	1.35	-73.11	-13.00	-60.11
153.19	34.46	V	-63.44	-7.80	1.47	-72.71	-13.00	-59.71
182.29	34.02	V	-66.49	-7.83	1.53	-75.84	-13.00	-62.84
1910.03	79.26	V	-27.68	10.08	5.51	-23.11	-13.00	-10.11
3820.00	55.08	V	-45.95	12.60	7.92	-41.26	-13.00	-28.26
5720.00	36.90	V	-57.83	13.48	9.77	-54.12	-13.00	-41.12
7639.20		V					-13.00	
9549.00		V					-13.00	
11458.80		V					-13.00	
13368.60		V					-13.00	
15278.40		V					-13.00	
17188.20		V					-13.00	
19098.00		V					-13.00	
33.88	37.90	Н	-66.80	-5.52	0.72	-73.04	-13.00	-60.04
56.19	37.27	Н	-72.37	-0.51	0.93	-73.81	-13.00	-60.81
65.89	36.44	Н	-75.41	-0.83	0.98	-77.22	-13.00	-64.22
92.08	38.50	Н	-65.10	-7.75	1.17	-74.02	-13.00	-61.02
104.69	36.93	Н	-65.84	-7.76	1.24	-74.84	-13.00	-61.84
126.03	34.93	Н	-65.86	-7.78	1.35	-74.99	-13.00	-61.99
1910.02	82.31	Н	-24.54	10.08	5.51	-19.98	-13.00	-6.98
3820.00	50.71	Н	-50.15	12.60	7.92	-45.46	-13.00	-32.46
5720.00	39.77	Н	-54.91	13.48	9.77	-51.20	-13.00	-38.20
5729.40		Н					-13.00	
7639.20		Н					-13.00	
9549.00		Н					-13.00	
11458.80		Н					-13.00	
13368.60		Н					-13.00	
15278.40		Н					-13.00	
17188.20		Н					-13.00	
19098.00		Н					-13.00	

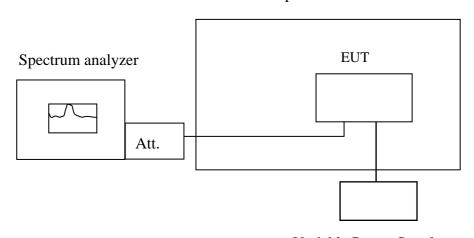
Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- The result basic equation calculation is as follows:
- ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 47

10. FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT


10.1 Standard Applicable

According to FCC §2.1055(a)(1)(b).

Frequency Tolerance: 2.5 ppm

10.2 Test Set-up:

Temperature Chamber

Variable Power Supply

Note: Measurement setup for testing on Antenna connector

10.3 Measurement Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 48

10.4 Measurement Equipment Used:

	Conducted Emission Test Site									
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.					
TYPE		NUMBER	NUMBER	CAL.						
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006					
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006					
Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005					
Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006					
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006					
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2004	11/12/2005					
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A					
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006					
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006					
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006					
Signal Generator	R&S	SMR40	100210	11/09/2004	11/10/2005					

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 49

10.5 Measurement Result

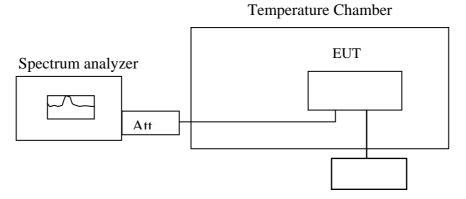
Re	Reference Frequency: GSM Mid Channel 836.6 MHz @ 25								
	Limit: +/- 2.5 ppm = 2091 Hz								
Power Supply	Environment	Frequency	Delta (Hz)	Limit (Hz)					
Vdc	Temperature ()	(MHz)	Della (HZ)	Lilliit (HZ)					
3.7	-30	836.59901	820.00	2091					
3.7	-20	836.59929	540.00	2091					
3.7	-10	836.59957	260.00	2091					
3.7	0	836.59963	200.00	2091					
3.7	10	836.59979	40.00	2091					
3.7	20	836.59983	0.00	2091					
3.7	30	836.59991	-80.00	2091					
3.7	40	836.59972	110.00	2091					
3.7	50	836.60015	-320.00	2091					

Re	Reference Frequency: PCS Mid Channel 1880 MHz @ 25								
	Limit: +/- 2.5 ppm = 4700 Hz								
Power Supply	Environment	Frequency	Delta (Hz)	Limit (Hz)					
Vdc	Temperature ()	(MHz)	Della (112)	Limit (112)					
3.7	-30	1880.00086	-900.00	4700					
3.7	-20	1879.99913	830.00	4700					
3.7	-10	1879.99960	360.00	4700					
3.7	0	1879.99991	50.00	4700					
3.7	10	1879.99992	40.00	4700					
3.7	20	1879.99996	0.00	4700					
3.7	30	1880.00005	-90.00	4700					
3.7	40	1880.00002	-60.00	4700					
3.7	50	1880.00011	-150.00	4700					

Note: The battery is rated 3.7V dc.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 50


11. FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

11.1 Standard Applicable

According to FCC §2.1055(d)(1)(2)

Frequency Tolerance: 2.5 ppm

11.2 Test Set-up:

Variable DC Power Supply

Note: Measurement setup for testing on Antenna connector

11.3 Measurement Procedure

Set chamber temperature to 25 . Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

11.4 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT MFR MODEL SERIAL LAST CAL DU								
TYPE		NUMBER	NUMBER	CAL.				
Spectrum Analyzer	Agilent	E4446A	MY43360126	03/29/2005	03/28/2006			
Spectrum Analyzer	Agilent	7405A	US41160416	06/28/2005	06/29/2006			
Spectrum Analyzer	R&S	FSP 40	100034	11/09/2004	11/10/2005			

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 51

Power Sensor	Anritsu	MA2490A	31431	06/28/2005	06/29/2006
Power Meter	Anritsu	ML2487A	6K00002070	06/28/2005	06/29/2006
Temperature Chamber	TERCHY	MHG-120LF	911009	11/11/2004	11/12/2005
Low Loss Cable	HUBER+SUHNE R	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2005	10/06/2006
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2005	10/06/2006
Splitter	Mini-Circult	ZFSC-2-10G	N/A	10/07/2005	10/06/2006
Signal Generator	R&S	SMR40	100210	11/09/2004	11/10/2005

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 52

11.5 Measurement Result

Ro	Reference Frequency: GSM Mid Channel 836.6 MHz @ 25									
Limit: +/- 2.5 ppm = 2091 Hz										
Power Supply	Environment	Frequency	Data (II-)							
Vdc	Temperature ()	(MHz)	Delta (Hz)	Limit (Hz)						
3.70	25.00	836.5992	0.00	2091.00						
3.15	25.00	836.59953	-330.00	2091.00						
4.26	25.00	836.59834	860.00	2091.00						
2.9 (End Point)	25.00	836.59896	240.00	2091.00						

R	Reference Frequency: PCS Mid Channel 1880 MHz @ 25								
Limit: +/- 2.5 ppm = 4700 Hz									
Power Supply	Environment	Frequency	ency Dalta (II-) Limit (II-)						
Vdc	Temperature ()	(MHz)	Delta (Hz)	Limit (Hz)					
3.7	25	1880.00035	0.00	4700					
3.145	25	1879.99927	1080.00	4700					
4.255	25	1879.99979	560.00	4700					
2.9 (Endpoint)	25	1879.99995	400.00	4700					

Note: The battery is rated 3.7V dc.

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 53

12. AC POWER LINE CONDUCTED EMISSION TEST

12.1 Standard Applicable

According to §15.107/ §15.207. The emission value for frequency within 150KHz to 30MHz shall not exceed criteria of below chart.

	Limits				
Frequency range	dB(uV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Note

12.2 EUT Setup

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2001.
- 2. The EUT was plug-in DC power adaptort and was placed on the center of the back edge on the test table. The peripherals like earphone was placed on the side of the EUT. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The Power adaptor was connected with 110Vac/60Hz power source.

12.3 Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 54

12.4 Measurement Equipment Used:

Conducted Emission Test Site										
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.					
TYPE		NUMBER	NUMBER	CAL.						
EMC Analyzer	HP	8594EM	3624A00203	09/02/2005	09/03/2006					
EMI Test Receiver	R&S	ESCS30	828985/004	06/09/2005	06/10/2006					
Transient Limiter	HP	11947A	3107A02062	09/02/2005	09/03/2006					
LISN	Rolf-Heine	NNB-2/16Z	99012	12/31/2004	12/30/2005					
LISN	Rolf-Heine	NNB-2/16Z	99013	12/24/2004	12/23/2005					
Coaxial Cables	N/A	No. 3, 4	N/A	12/24/2004	12/23/2005					

12.5 Measurement Result

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 55

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM850 Normal Operating Test Date Sep.28, 2005 Operation Mode

Fundamental Frequency: N/A Willis Test By

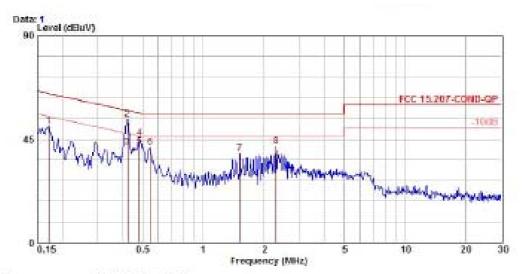
Temperature Pol Line/Neutral

Humidity : 69% Adaptor Model 3DS09371AAAA

Test Voltage :230Vac Serial number Leader

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.17	50.61		64.96	54.96	-14.35		L1
0.42	53.54	41.38	57.45	47.45	-3.91	-6.07	L1
0.48	45.27	41.66	56.34	46.34	-11.07	-4.68	L1
0.55	41.37		56.00	46.00	-14.63		L1
1.52	38.53		56.00	46.00	-17.47		L1
2.30	41.53		56.00	46.00	-14.47		L1
		1			•		
0.16	47.34		65.46	55.46	-18.12		L2
0.22	42.86		62.82	52.82	-19.96		L2
0.42	50.63	43.19	57.45	47.45	-6.82	-4.26	L2
0.49	42.13		56.17	46.17	-14.04		L2
0.55	39.08		56.00	46.00	-16.92		L2
2.30	38.71		56.00	46.00	-17.29		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

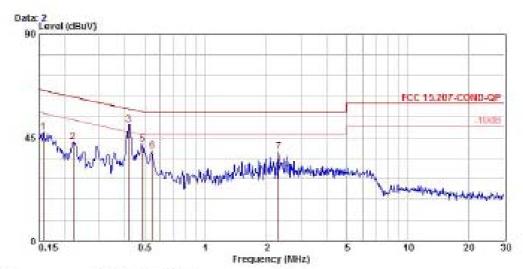
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 56

Conducted Emission Test Plot (3DS09371AAAA Supplier: Leader)

:consction room

:FCC 15.207-COND-QP NNB-2/162(99012) LINE Condition


Applicant: :TCL:ALCATEL Project No.: :ER-2005-90007

EUT Description::83M850/1900 MOBILE PHONE

EUI Model: :OT-E160a

GSM850 NORMAL OPERATION ADAPTOR#1 Test Mode:

:29/60 Temp./Humid. :WILLIS Operator:

Bite roonwoties room

:FCC 15.207-COMD-QP NM5-2/162(99012) NEUTRAL Condition

Applicant: :TCL4ALCATEL Project No.: :ER-2005-90007

EUT Description:: 83M850/1900 MOBILE FROME

EUT Model: :OT-E160a

Test Mode: :SSMESO NORMAL OPERATION ADAPTOR#1

Temp./Humid. :20/69 :WILLES Operators

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 57

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM1900 Normal Operating Test Date Operation Mode Sep.28, 2005

Fundamental Frequency: N/A Test By Willis

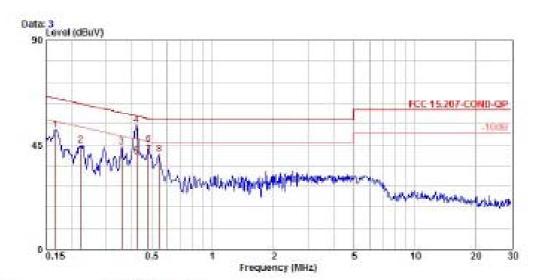
Line/Neutral Pol Temperature : 28

Humidity : 69% Adaptor Model 3DS09371AAAA

Test Voltage :230Vac Supplier Leader

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.17	51.24		64.96	54.96	-13.72		L1
0.22	44.53		62.82	52.82	-18.29		L1
0.36	43.85		58.73	48.73	-14.88		L1
0.42	53.28	39.61	57.45	47.45	-4.17	-7.84	L1
0.48	44.88	40.52	56.34	46.34	-11.46	-5.82	L1
0.55	40.71		56.00	46.00	-15.29		L1
					-	-	
0.16	48.03		65.46	55.46	-17.43		L2
0.22	43.04		62.82	52.82	-19.78		L2
0.29	41.97		60.52	50.52	-18.55		L2
0.42	52.80	43.91	57.45	47.45	-4.65	-3.54	L2
0.49	42.86		56.17	46.17	-13.31		L2
0.55	41.72		56.00	46.00	-14.28		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

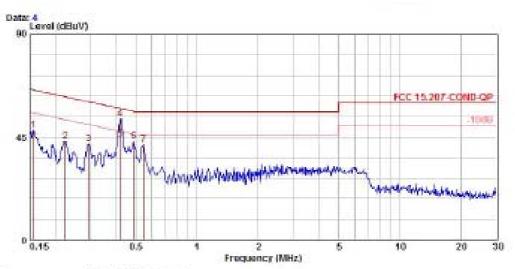
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 58

Conducted Emission Test Plot (3DS09371 AAAA Supplier: Leader)

Site :conwction room

:FCC 15.207-COMD-QF MMS-2/162(99013) LIME Condition


:TCL:ALCATEL Applicant: Project No.: :ER-2005-90007

EUT Description: #85M850/1900 MOBILE PHONE

:OT-E160a EUT Model:

:GSN1900 NORMAL OPERATION ADAPTOR#1 Test Mode:

:28/69 Temp./Humida Operators :WILLIS

Bite toonwotion room

:FCC 15.207-COMD-QP NM5-2/162(99012) NEUTRAL Condition

Applicant: :TCL&ALCATEL :ER-2005-90007

Project Mo.: EUT Description::05M850/1900 MOBILE FHONE

EUT Model: ICT-E160a

Test Hoder : GSM1900 MORMAL OPERATION ADAPTOR#1

Temp./Humida :20/69 :WILLES

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 59

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode : GSM850 Normal Operating **Test Date** Sep.28, 2005

Fundamental Frequency: N/A Test By Willis

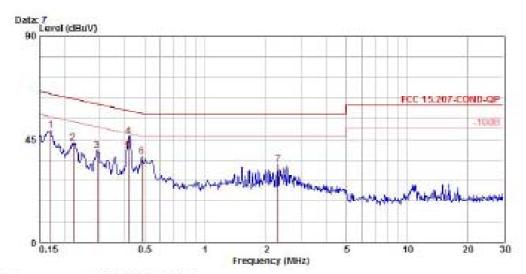
Temperature Pol Line/Neutral : 28

Adaptor Model 3DS09371AAAA Humidity : 69%

Test Voltage :230Vac Supplier Astec

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.17	48.88		64.96	54.96	-16.08		L1
0.22	43.17		62.82	52.82	-19.65		L1
0.29	40.16		60.52	50.52	-20.36		L1
0.42	46.34	39.88	57.45	47.45	-11.11	-7.57	L1
0.49	37.47		56.17	46.17	-18.70		L1
2.30	33.87		56.00	46.00	-22.13		L1
					•	3	
0.17	49.50		64.96	54.96	-15.46		L2
0.22	42.43		62.82	52.82	-20.39		L2
0.29	40.54		60.52	50.52	-19.98		L2
0.42	47.12	41.17	57.45	47.45	-10.33	-6.28	L2
0.48	37.41		56.34	46.34	-18.93		L2
1.78	36.28		56.00	46.00	-19.72		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

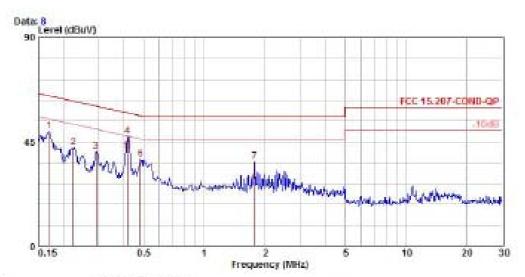
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 60

Conducted Emission Test Plot (3DS09371AAAA Supplier: Astec)

Size sconwoties room

Condition :FCC 15.207-COMD-QF NN5-2/162(99012) LIME


Applicant: :TCL&ALCATEL Project Mo.: :ER-2005-90007

EUT Description::83M850/1900 MOBILE PHONE

EUT Model: :0T-E160a

Test Mode: *SSM850 NORMAL OPERATION ADAPTOR#2

:20/69 Temp./Humid. :WILLES Operators

315c :conwction room

:FCC 15.207-COME-QF NMS-2/162(99012) HEUTRAL Condition

:TCL&ALCATEL Applicant: Project Mo.: :ER-2005-90007

EUT Description::BSM850/1900 MOBILE PHONE

BUT Model: :OT-E160e

: GSM850 NORMAL OPERATION ADAPTOR#2 Test Mode:

Temp./Humid. :26/69 Operators SWILLIS

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 61

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM1900 Normal Operating **Test Date** Operation Mode Sep 28, 2005

Fundamental Frequency: N/A Test By Willis

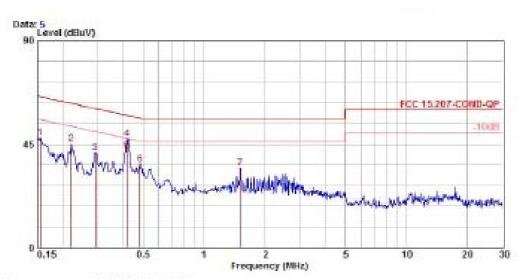
Pol Temperature Line/Neutral : 28

Humidity : 69% Adaptor Model 3DS09371AAAA

Test Voltage :230Vac Supplier Astec

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.16	47.49		65.46	55.46	-17.97		L1
0.22	44.87		62.82	52.82	-17.95		L1
0.29	41.09		60.52	50.52	-19.43		L1
0.42	47.13	41.92	57.45	47.45	-10.32	-5.53	L1
0.48	36.20		56.34	46.34	-20.14		L1
1.52	34.40		56.00	46.00	-21.60		L1
0.15	47.45		66.00	56.00	-18.55		L2
0.22	43.90		62.82	52.82	-18.92		L2
0.29	39.69		60.52	50.52	-20.83		L2
0.41	46.72	41.52	57.65	47.65	-10.93	-6.13	L2
0.48	37.09		56.34	46.34	-19.25		L2
2.30	33.40		56.00	46.00	-22.60		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

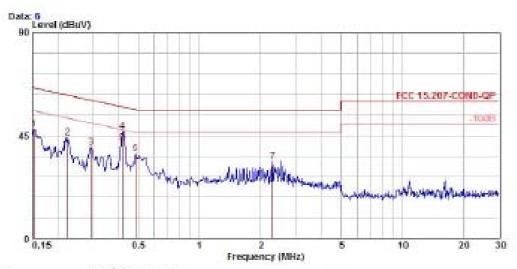
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 62

Conducted Emission Test Plot (3DS09371AAAA Supplier: Astec)

:consction room

:FCC 15.207-COMD-QP NNB-2/162(99012) LINE Condition


*TCL&ALCATEL Applicant: Project Mo.s sER-2005-90007

EUT Description::88M850/1900 MOBILE PHONE

:OT-E160a BUI Model:

:GSM1800 NORMAL OPERATION ADAPTOR#2 Test Mode:

:28/60 Temp./Humid. WILLIS Operator:

Site

:FOC 15.207-COMD-QP MMS-2/162(99012) NEUTRAL Condition

:TCL&ALCATEL Applicant: Project Mo.: :ER-2005-90007

EUT Description:: GSM850/1900 MOBILE PHONE

EUT Model: :OT-E160a

: SSM1900 NORMAL OPERATION ADAPTOR#2 Test Mode:

:20/69 Temp./Humid. :WILLIS Operators

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

22/37 32/07

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 63

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode : GSM850 Normal Operating **Test Date** Sep 28, 2005

Fundamental Frequency: N/A Test By Willis

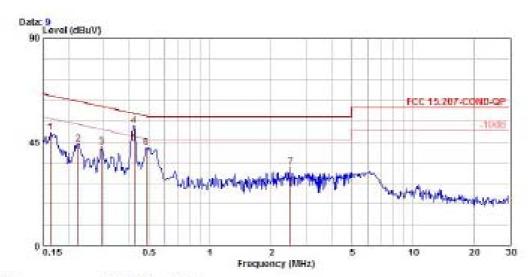
Temperature Pol Line/Neutral : 28

Humidity : 69% Adaptor Model 3DS09371AGAA

Test Voltage :110Vac Supplier Leader

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.16	49.03		65.46	55.46	-16.43		L1
0.22	43.96		62.82	52.82	-18.86		L1
0.29	42.72		60.52	50.52	-17.80		L1
0.42	52.05	44.29	57.45	47.45	-5.40	-3.16	L1
0.48	42.41		56.34	46.34	-13.93		L1
2.50	33.76		56.00	46.00	-22.24		L1
					-	-	
0.17	50.07		64.96	54.96	-14.89		L2
0.22	44.45		62.82	52.82	-18.37		L2
0.29	42.11		60.52	50.52	-18.41		L2
0.42	52.05	42.82	57.45	47.45	-5.40	-4.63	L2
0.51	42.74		56.00	46.00	-13.26		L2
2.49	33.96		56.00	46.00	-22.04		L2

Remark:

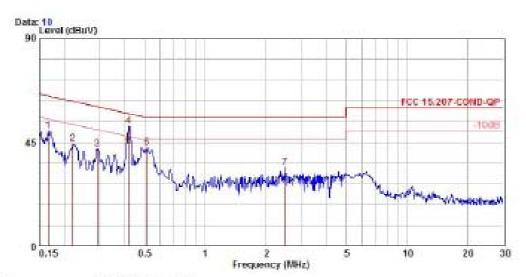

- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 64

Conducted Emission Test Plot (3DS09371AGAA Supplier: Leader)

Bitte sconuction room


Condition (FCC 15.207-COMD-QP NNB-2/16Z(99012) LIME Applicant: :TGL&ALCATEL Project No.: :ER-2005-90007

EUT Description::GSM850/1900 MOBILE PHONE

EUT Model: (OT-E160a

| BSM850 NORMAL OPERATION ADAPTOR#3 Test Mode!

:20/69 Temp./Humid. Operators :WILLES

Site :conwction room

:FCC 15.207-COMD-Q9 MWS-2/162(99012) MEUTRAL Condition

Applicant: :TCL:ALCATEL Project No.: 4ER-2005-90007

EUT Description:: GSM650/1900 MOBILE PHONE

EUT Model: :OT-E160e

: CSMSSO MORMAL OPERATION ADAPTORES Test Mode:

Temp./Humid. :25/69 Operator: EWILLIS

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 65

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM1900 Normal Operating Test Date Sep 28, 2005 Operation Mode

Fundamental Frequency: N/A Test By Willis

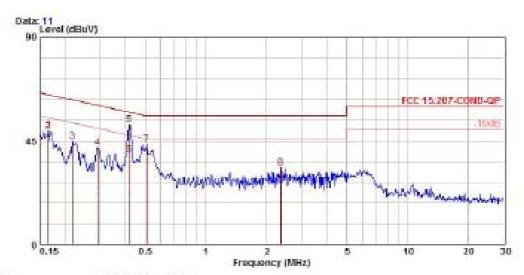
Pol Line/Neutral Temperature

Humidity : 69% Adaptor Model 3DS09371AGAA

Test Voltage :110Vac Supplier Leader

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.17	49.29		64.96	54.96	-15.67		L1
0.22	44.49		62.82	52.82	-18.33		L1
0.29	41.94		60.52	50.52	-18.58		L1
0.42	39.72	31.97	57.45	47.45	-17.73	-15.48	L1
0.51	43.15		56.00	46.00	-12.85		L1
2.36	32.95		56.00	46.00	-23.05		L1
	-	-			-	-	
0.16	47.01		65.46	55.46	-18.45		L2
0.22	43.18		62.82	52.82	-19.64		L2
0.29	41.54		60.52	50.52	-18.98		L2
0.42	52.03	37.82	57.45	47.45	-5.42	-9.63	L2
0.48	44.94	39.74	56.34	46.34	-11.40	-6.60	L2
2.82	33.95		56.00	46.00	-22.05		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

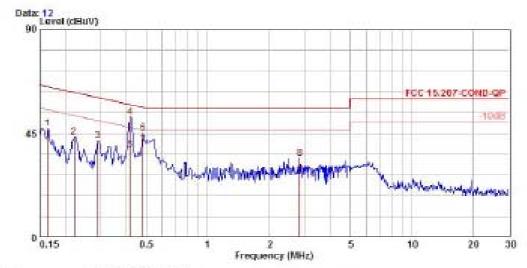
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 66

Conducted Emission Test Plot (3DS09371AGAA Supplier: Leader)

Bilte sconuction room

Condition 1FCC 15.207-COMD-QP NNB-2/16Z(99012) LIME


:TGL&ALCATEL :ER-2005-90007 Applicant: Project Bolz

EUT Description::GSM850/1900 MOBILE PHONE

EUT Model: (OT-E160a

Test Mode! | BSM1900 MORMAL OPERATION ADAPTOR#3

:25/69 Temp./Humid. Operators :WILLES

:consction room Site

:FCC 15.207-COMD-QF NM5-2/162(99012) MEUTRAL Condition

:TCL:ALCATEL Applicant: Project No.1 IER-2005-90007

EUT Description: @SM850/1900 MOBILE PHONE

:OT-E160a EUI Model:

: GSR1900 BORMAL OPERATION ADAPTOR#3 Test Mode:

Temp./Humid. :28/69 Operators :WILLIS

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 67

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM850 Normal Operating Test Date Sep 28, 2005 Operation Mode

Fundamental Frequency: N/A Test By Willis

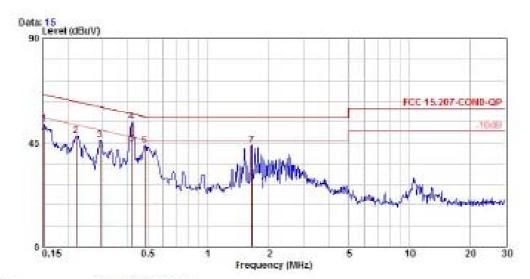
Pol Line/Neutral Temperature

Humidity : 69% Adaptor Model 3DS09371AGAA

Test Voltage :110Vac Supplier Astec

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.15	53.00		66.00	56.00	-13.00		L1
0.22	47.83		62.82	52.82	-14.99		L1
0.29	46.05		60.52	50.52	-14.47		L1
0.42	53.78	44.21	57.45	47.45	-3.67	-3.24	L1
0.49	43.80		56.17	46.17	-12.37		L1
1.65	43.78		56.00	46.00	-12.22		L1
0.16	52.68		65.46	55.46	-12.78		L2
0.22	49.89		62.82	52.82	-12.93		L2
0.28	46.29		60.82	50.82	-14.53		L2
0.42	53.43	39.19	57.45	47.45	-4.02	-8.26	L2
0.49	43.65		56.17	46.17	-12.52		L2
1.65	43.24		56.00	46.00	-12.76		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

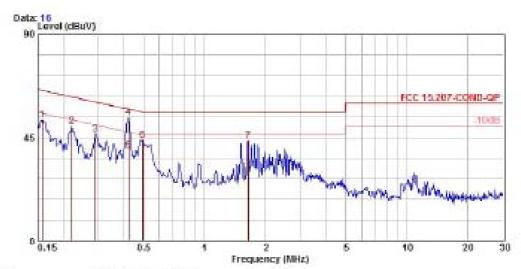
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 68

Conducted Emission Test Plot (3DS09371AGAA Supplier: Astec)

Site contection room

Condition :FCC 15.207-COMD-QP NWS-2/161(99012) LIME


Applicant: Project Mo.: :ER-2005-90007

EUT Description: BSM850/1900 MOBILE PHONE

:OT-E160a SUT Model:

: ESMSSO NORMAL OPERATION ADAPTOR+4 Test Mode:

:28/69 Temp./Humid. Operators SWILLES

Bite roonwoties room

:FCC 15.207-COMD-QP NM5-2/162(99012) NEUTRAL Condition

Applicant: :TCL4ALCATEL Project No.: :ER-2005-90007

EUT Description:: 83M850/1900 MOBILE FROME

EUT Model: :OT-E160a

Test Mode: * SSMESO NORMAL OPERATION ADAPTOR**

:20/69 Temp./Humid. :WILLES Operators

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 69

AC POWER LINE CONDUCTED EMISSION TEST DATA

: GSM1900 Normal Operating Test Date Sep 28, 2005 Operation Mode

Fundamental Frequency: N/A Test By Willis

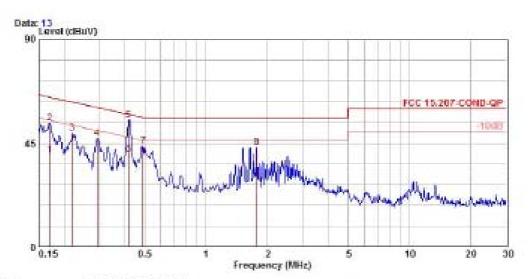
Pol Line/Neutral Temperature : 28

Humidity : 69% Adaptor Model 3DS09371AGAA

Test Voltage :110Vac Supplier Astec

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	Raw	Raw	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.17	53.65	39.71	64.96	54.96	-11.31		L1
0.22	49.52		62.82	52.82	-13.30		L1
0.29	47.07		60.52	50.52	-13.45		L1
0.42	54.75	39.94	57.45	47.45	-2.70	-7.51	L1
0.49	39.92	43.80	56.17	46.17	-16.25	-2.37	L1
1.78	42.61		56.00	46.00	-13.39		L1
	-	-	-	-	-	-	
0.16	51.35		65.46	55.46	-14.11		L2
0.22	48.47		62.82	52.82	-14.35		L2
0.29	45.31		60.52	50.52	-15.21		L2
0.42	53.54	38.93	57.45	47.45	-3.91	-8.52	L2
0.48	44.07	39.94	56.34	46.34	-12.27	-6.40	L2
1.97	43.26		56.00	46.00	-12.74		L2

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz_o
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

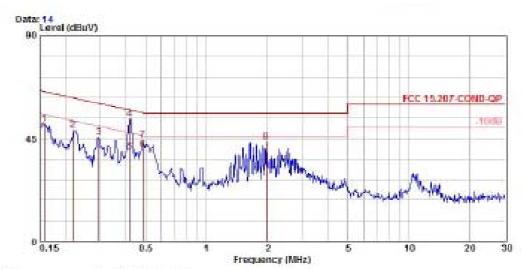
Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 70

Conducted Emission Test Plot (3DS09371AAAA Supplier: Astec)

:consction room

Condition. :FCC 15.207-COMD-QF NMS-2/162(99012) LIME


Applicant: :TCL:ALCATEL
Project No.: :ER-2005-90007

EUT Description: 8888850/1900 MOBILE PHONE

EUI Model: :OT-E160a

: ESKIRGO BORMAL OPERATION ADAPTOR#4 Test Mode:

:28/69 Temp./Humid. Operators WILLIS

Bitte sconuction room

Condition :FGC 15.207-COMD-QP NN5-2/162(99012) NEUTRAL

:TCLEALCATEL Applicant: Project No.: :ER-2005-90007

EUT Description::03M850/1900 MOBILE FHONE

EUT Model: 10T-E160a Test Mode: 15SM1900 NORMAL OPERATION ADAPTOR#4

Temp./Humid. :28/69 :WILLIS Operator:

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 71

APPENDIX 1 PHOTOGRPHS OF SET UP

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 72

Radiated Emission Set up Photos

Conducted Emission Set Up Photos

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 73

APPENDIX 2 PHOTOGRPHS OF EUT

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 74

All of EUT

Front View of EUT

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 75

Back View of EUT

Left View of EUT

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 76

Right View of EUT

Top View of EUT

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 77

Bottom View of EUT

Report No.: ER/2005/90007 Issue Date: Oct. 07, 2005

Page: 78

Battery

Adaptor-3DS09371AGAA Supplier: Leader Electronics

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 79

Adaptor-3DS09371AGAA Supplier: Astec

Adaptor-3DS09371AAAA Supplier: Astec

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 80

Adaptor-3DS09371AGAA Supplier: Leader Electronics

Adaptor-3DS07848AAAA Supplier :Primax

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 81

Open View of EUT

Internal of EUT --- 1

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 82

Internal of EUT --- 2

Internal of EUT --- 3

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 83

Internal of EUT --- 4

Internal of EUT --- 5

Report No.: ER/2005/90007 **Issue Date: Oct. 07, 2005**

Page: 84

Internal of EUT --- 6

