Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Pag

Page 1 of 58

Accredited by the German Accreditation Council DAR–Registration Number DAT-P-176/94-D1 Deutscher Akkreditierungs Rat

Independent ETSI compliance test house

Accredited Bluetooth[®] Test Facility (BQTF)

Test report no.	:	2-4020-01-01/05
Applicant	:	TCL & ALCATEL Mobile
		Phones
Туре	:	OT-C551a
Test Standard	:	FCC Part 22, 24
		RSS132, 133
FCC ID	:	RAD021
Certification No. IC	:	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 CETEC

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 2 of 58

Fax: -9075

Fax: -9075

Table of contents

1	GENE	RAL INFORMATION	
	1.1. Ad	DMINISTRATIVE DATA OF THE TEST FACILITY	
	1.1.1	Identification of the testing laboratory	
	1.2. No	OTES	
	1.3 De	ETAILS OF APPLICANT	
	1.4 Ap	PPLICATION DETAILS	
	1.5 TE	EST ITEM	5
	1.6 Te	EST SETUP	6
	1.7 TE	EST STANDARDS	6
2	STATE	EMENT OF COMPLIANCE	7
	2.1 Su	JMMARY OF MEASUREMENT RESULTS	
	2.1.1	PCS 1900	
	2.1.2	GSM 850	
3	MEAS	UREMENTS AND RESULTS	
	3.1 PA	ART PCS 1900	
	3.1.1	RF Power Output	
	3.1.3	Radiated Emissions	
	3.1.4	Receiver Radiated Emissions	
	3.2 PA	ART GSM 850	
	3.2.1	RF Power Output	
	3.2.3	Radiated Emissions	
	3.2.4	Receiver Radiated Emissions	
4	USED '	TESTEQUIPMENT	

Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	
Test report no.: 2-4020-01-01/05	Date: 2005-08-10	Page 3 of 58	

1 General information

1.1. Administrative data of the test facility

1.1.1 Identification of the testing laboratory

Company name:	Cetecom ICT Services GmbH	
Address:	Untertürkheimerstr. 6-10	
	D-66117 Saarbruecken	
	Germany	
Laboratory accreditation:	DAR-Registration No. DAT-P-176/94-D1	
	Bluetooth Qualification Test Facility (BQTF)	
	Federal Communications Commission (FCC)	
	Identification/Registration No : 90462	
Responsible for testing laboratory:	Gillmann D. / Hausknecht D.	
	Phone: +49 681 598 0	
	Fax: +49 681 598 9075	
	email: info@ict.cetecom.de	

1.2. Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

/ Responsible for testing laboratory (Gillmann D. / Hausknecht D.)

.....

Responsible for test report (Gillmann D. / Hausknecht D.)

Untertürkheimer Str. 6-10, 66117 Saarbruecken	
RSC-Laboratory	

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 4 of 58

Fax: -9075

Fax: -9075

1.3 Details of Applicant

TCL & ALCATEL Mobile Phones
165 boulevard de Valmy
92707 Colombes
France
+ 33-155-66-3220
+ 33-155-66-6402
Mr Jean Fleuriot
+ 33-155-66-3220
+ 33-155-66-6402
jean.fleuriot@alcatel.fr

1.4 Application Details

Date of receipt of application	:	2005-08-02
Date of receipt of test item	:	2005-08-04
Date(s) of test	:	2005-08-09 to 2005-08-10
Date of report	:	2005-08-10

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 5 of 58

1.5 Test Item

Type of equipment Type name Manufacturer Address City Country	: : : :	GSM dual band 850 / 1900 MHz handset OT-C551a TCL & ALCATEL Mobile Phones 165 boulevard de Valmy 92707 Colombes France
Frequency Type of modulation Number of channels Antenna Power supply (normal) Output power GSM 850 Output power GSM 1900 Transmitter Spurious (worst ca Receiver Spurious (worst case)		1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz 300KGXW 300 (PCS1900) and 125 (PCS850) Integral antenna 3.9V DC ERP: 29.8 dBm (Burst); EIRP: 29.9 dBm (Burst) Nothing found / mW / dBm Nothing found / μV/m @ 3 m
FCC ID Certification No. IC Open Area Test Site IC No. IC Standards	: : :	RAD021 3436 RSS132, Issue 1, RSS133, Issue 3

ATTESTATION: DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager :

2005-08-10 Date RSC 8431 Gillmann D. Section Name

Signature

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory	Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0	Fax: -9075 Fax: -9075	
Test report no.: 2-4020-01-01/05	Date: 2005-08-10	Page 6 of 58	

1.6 Test Setup

Hardware Software	:	01 01		
		neasurements) asurements)	:	 01057400002201-4

The radiated measurements were performed with a travel charger (manufacturer Leader, reference 3DS 09371 AAAA)

Remark:

This mobile phone "OT-C551a" is based on the former product "OT-C552a" which was tested under report number 2-3977-01-01/05

1.7 Test Standards

FCC:	CFR Part 22 H	
	CFR Part 24 E	
IC:	RSS 132, Issue 1	
	RSS 133, Issue 3	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0

Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 7 of 58

2 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

2.1 Summary of Measurement Results

2.1.1 PCS 1900

Section in	Test Name	Verdict
this Report		
3.1.1	RF Power Output	pass
3.1.3	Radiated Emissions	pass
3.1.4	Receiver Radiated Emissions	pass

2.1.2 GSM 850

Section in	Test Name Verdict	
this Report		
3.2.1	RF Power Output	pass
3.2.3	Radiated Emissions	pass
3.2.4	Receiver Radiated Emissions	pass

	Omori		
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 8 of 58

3 Measurements and results

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. Device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link).

3.1 PART PCS 1900

3.1.1 **RF** Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 3, Section 4.3

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Test Results: Output Power (conducted)

		Peak	Average
Frequency	Power Step	Output Power	Output Power
(MHz)		(dBm)	(dBm)
1850.2	0	-	-
1880.0	0	-	-
1909.8	0	-	-
Measurement uncertainty		±0.5 dB	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 9 of 58

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements was performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Page

Page 10 of 58

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

: equal to the signal source **Center Frequency** Resolution BW : 10 kHz Video BW : same Detector Mode : positive Average : off Span : 3 x the signal bandwidth (b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)(c) Select the frequency and E-field levels for ERP/EIRP measurements. (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna): DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }. (e) Mount the transmitting antenna at 1.5 meter high from the ground plane. (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }. (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual. (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization. (i) Tune the EMI Receivers to the test frequency. (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected. (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received. (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected. (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from thetransmitter was obtained in the test receiver. (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows: P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 11 of 58

Limits:

Power Step	Burst PEAK EIRP (dBm)
0	<33

Test Results: Output Power (radiated)

Frequency		BURST PEAK EIRP
(MHz)	Power Step	(dBm)
1850.2	0	29.9
1880.0	0	29.8
1909.8	0	29.4
Measurement uncertainty	±3 dB	

Sample Calculation:

Freg	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1850.2	128.2	24.8	8.4	0.0	3.3	29.9		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 12 of 58

Fax: -9075

Fax: -9075

3.1.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 3, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

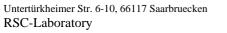
2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.


7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± 0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

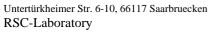
Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 13 of 58

Fax: -9075

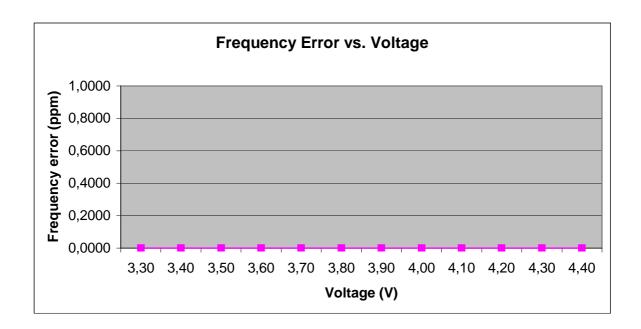

Fax: -9075

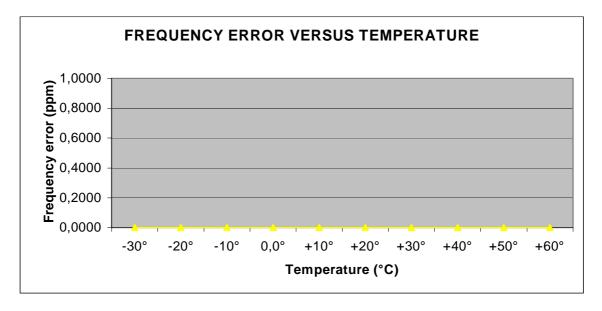
Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3.3	-	-	-
3.4	-	-	-
3.5	_	-	_
3.6	_	-	_
3.7	-	-	-
3.8	-	-	-
3.9	-	-	-
4.0	-	-	-
4.1	-	-	-
4.2	-	-	-
4.3	-	-	-
4.4	-	-	-

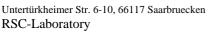
Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30	-	-	-
-20	-	-	-
-10	-	-	-
±0.0	-	-	-
+10	-	-	-
+20	-	-	-
+30	-	-	-
+40	-	-	-
+50	-	-	_
+60	-	-	-




Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05


Date: 2005-08-10

Page 14 of 58

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 15 of 58

Fax: -9075

Fax: -9075

3.1.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an ad

justable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.

e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43

dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation becomes 43 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 16 of 58

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization, the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

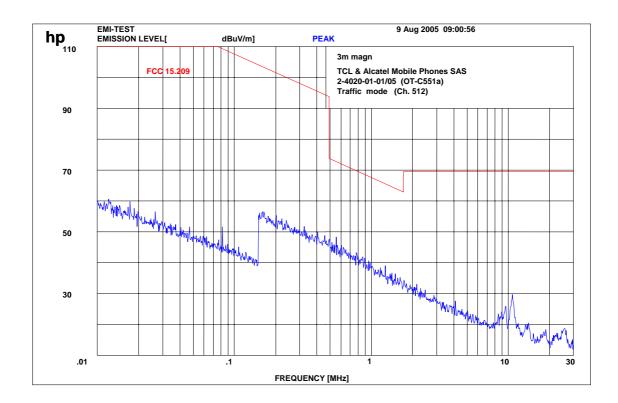
Harmonic	Tx ch512	Level	Tx ch661	Level	Tx ch810	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

No peaks found < 20 dB below limit.

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
	128.2	24.8	8.4	0.0	3.3	29.9		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)


Limits: § 15.209

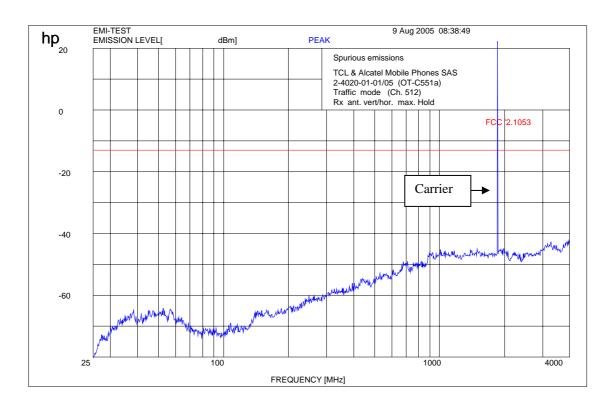
Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

CETECOM ICT Service	es GmbH		CETECOM
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	
Test report no.: 2-4020-01-01/05	Date: 2005-08-10	Page 17 of 58	

Traffic mode up to 30 MHz (Valid for all 3 channels)

Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0
RSC-Laboratory	Phone: +49 (0) 681 598-0

Test report no.: 2-4020-01-01/05


Date: 2005-08-10

Page 18 of 58

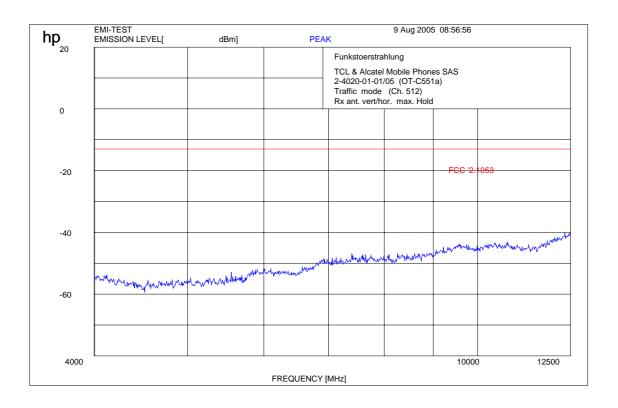
Fax: -9075

Fax: -9075

Channel 512 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0
RSC-Laboratory	Phone: +49 (0) 681 598-0


Fax: -9075 Fax: -9075

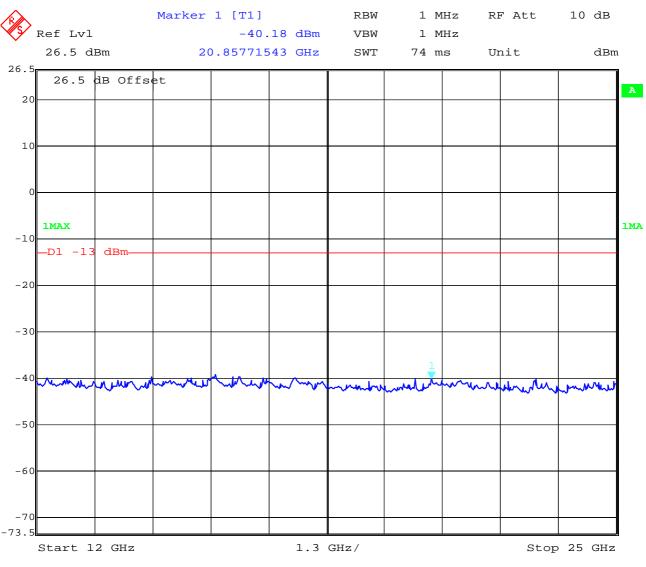
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 19 of 58

Channel 512 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$

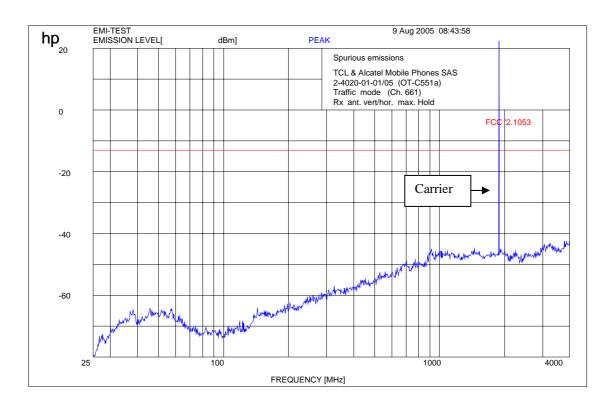

CETECOM ICT Service	es GmbH		CETECOM
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 20 of 58

Channel 512 (12 GHz - 25 GHz) valid for all 3 channels


98-0 Fax: -907	3
98-0 Fax: -907	5
	98-0 Fax: -907

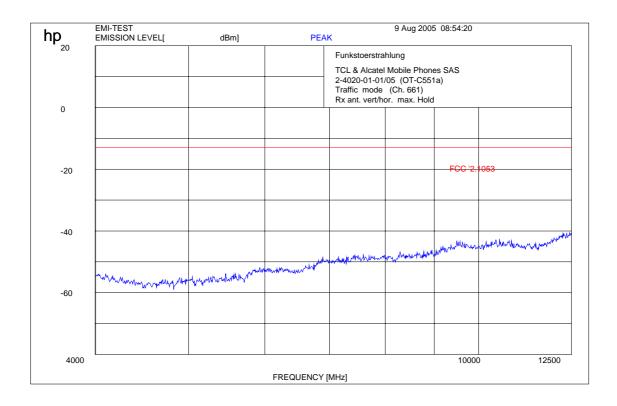
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 21 of 58

Channel 661 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$


RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075	Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
	RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

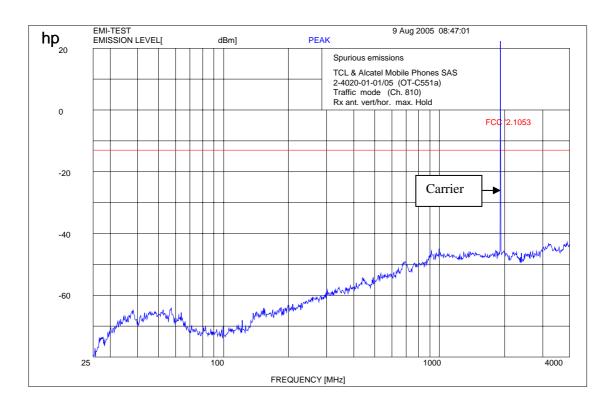
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 22 of 58

Channel 661 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$


Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

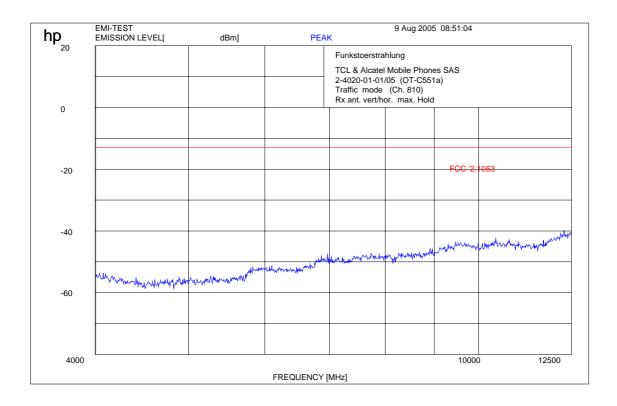
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

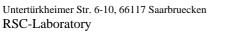
Page 23 of 58

Channel 810 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$


Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075

Test report no.: 2-4020-01-01/05


Date: 2005-08-10

Page 24 of 58

Channel 810 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \geq 1GHz: RBW \ / \ VBW \ 1 \ MHz$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 25 of 58

3.1.4 Receiver Radiated Emissions

Reference

FCC:	CFR Part 15.109, 2.1053
IC:	RSS 133, Issue 3, Section 4.5

Measurement Results

		S	SPURIOUS I	EMISSIONS	LEVEL (µV/m)		
	Idle mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Measurement uncertainty ±3 dB								

f < 1 GHz : RBW/VBW: 100 kHz H = Horizontal ; V= Vertical

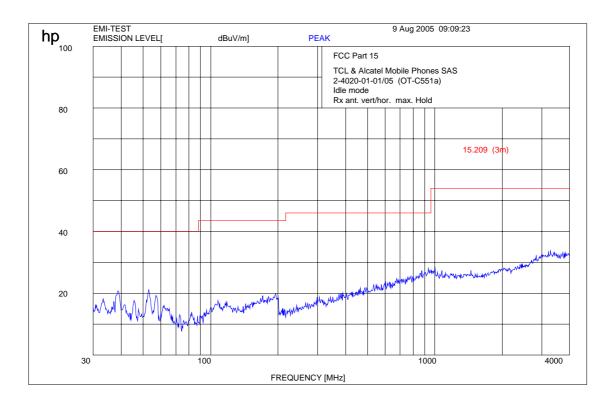
 $f \ge 1GHz$: RBW/VBW: 1 MHz

For measurement distance see table below

Limits: § 15.109

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0
RSC-Laboratory	Phone: +49 (0) 681 598-0


Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

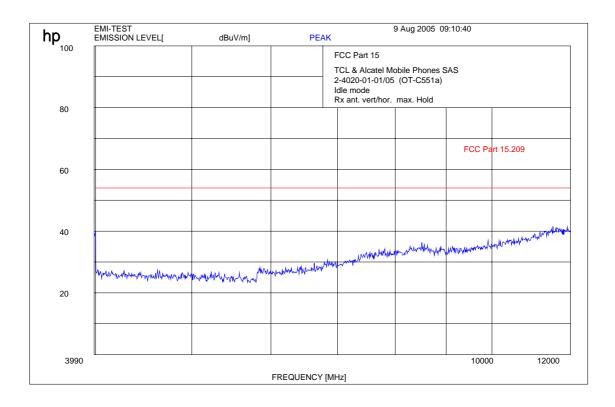
Date: 2005-08-10

Page 26 of 58

IDLE MODE (30 MHz - 4 GHz)

f < 1 GHz: RBW/VBW: 100 kHz

 $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory	Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0	Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

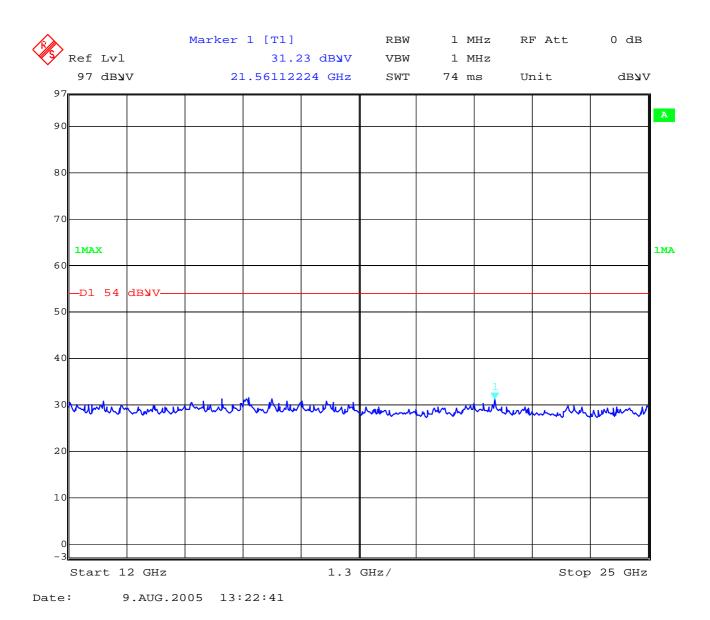
Date: 2005-08-10

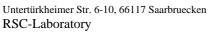
Page 27 of 58

Idle Mode (4 GHz – 12.0 GHz)

f < 1 GHz: RBW/VBW: 100 kHz

 $f \geq 1 GHz: RBW \ / \ VBW \ 1 \ MHz$


Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory	Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0	Fax: -9075 Fax: -9075


Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 28 of 58

Idle Mode (12 GHz - 25 GHz)

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 29 of 58

Fax: -9075

Fax: -9075

3.1.5 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency: 512 1850.2 MHz 661 1880.0 MHz 810 1909.8 MHz

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results:

Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
	848.2	-	848.2	-	848.2	-
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

Untertürkheimer Str. 6-10, 66117 Saarbruecken
RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 30 of 58

3.1.6 Block Edge Compliance

Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 3, Section 6.5

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Untertürkheimer Str. 6-10, 66117 Saarbruecken
RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 31 of 58

3.1.7 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 3, Section 6.5

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
	kHz	kHz
1850.2 MHz	-	-
1880.0 MHz	-	-
1909.8 MHz	-	-

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300.0 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

	~ ~	
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075

Test report no.: 2-4020-01-01/05 Date: 2005-08-10 Page 32 of 58

3.2 PART GSM 850

3.2.1 **RF** Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 1, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 824.2 MHz, 836.2 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
5	+33	± 2

Measurements Results Output Power (conducted)

		Peak	Average
Frequency	Power Step	Output Power	Output Power
(MHz)	_	(dBm)	(dBm)
824.2	5	-	-
836.4	5	-	-
848.8	5	-	-
Measurement uncertainty		±0.5 dB	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Pa

Page 33 of 58

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements was performed with full ${\mbox{rf}}$ output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source Resolution BW : 10 kHz Video BW : same Detector Mode : positive Average : off Span : 3 x the signal bandwidth (b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)(c) Select the frequency and E-field levels for ERP/EIRP measurements. (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna): .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }. (e) Mount the transmitting antenna at 1.5 meter high from the ground plane. (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }. (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual. (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization. (i) Tune the EMI Receivers to the test frequency. (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected. (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received. (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected. (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Page 34

Page 34 of 58

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1EIRP = P + G1 = P3 + L2 - L1 + A + G1 ERP = EIRP - 2.15 dB Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1 Where: P: Actual RF Power fed into the substitution antenna port after corrected. P1: Power output from the signal generator P2: Power measured at attenuator A input P3: Power reading on the Average Power Meter EIRP: EIRP after correction ERP: ERP after correction (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o) (p) Repeat step (d) to (o) for different test frequency (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Power Step	Burst Peak (dBm)
0	<33

Measurement Results Output Power (Radiated)

		BURST Peak		
Frequency	Power Step	(dBm)		
(MHz)		ERP		
824.2	5	29.5		
836.4	5	29.6		
848.8	5	29.8		
Measurement uncertainty: 1.5%				

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
-	Reading	Setting	gain	gain	loss		
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	134.6	38.6		-10.50	1.67	29.8	UHAP Schwarzbeck S/N 460
$EDD = SC((1Duu) = C(11) + L_{11}(1D) + L_{11}((1D))$							

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Pag

Page 35 of 58

3.2.2 Frequency Stability

Reference

FCC:	CFR Part 22.355, 2.1055
IC:	RSS 132, Issue 1, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

RADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac

Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± -0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 F

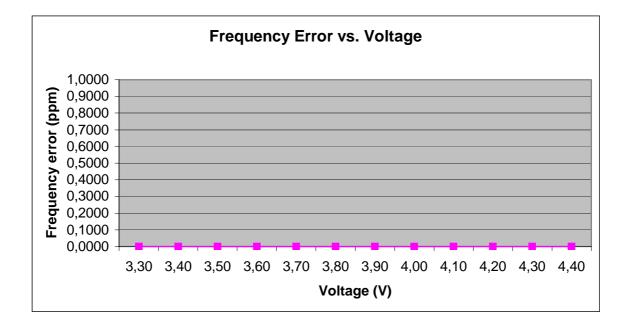
Page 36 of 58

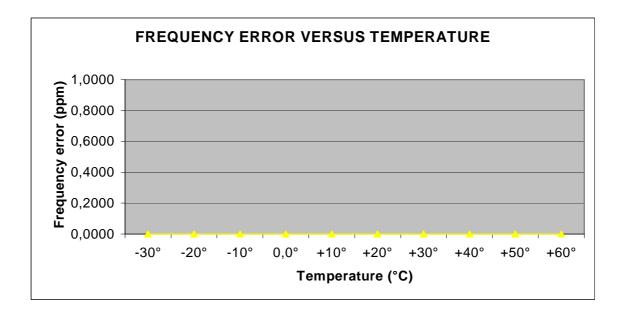
Measurement Results: AFC FREQ ERROR vs. VOLTAGE

Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3.3	-	-	-
3.4	-	-	-
3.5	-	-	-
3.6	-	-	-
3.7	-	-	-
3.8	-	-	-
3.9	-	-	-
4.0	-	-	-
4.1	-	-	-
4.2	-	-	-
4.3	-	-	_
4.4	-	-	-

Measurement Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30	-	-	-
-20	-	-	-
-10	-	-	-
±0.0	-	-	-
+10	-	-	-
+20	-	-	-
+30	-	-	-
+40	-	-	-
+50	-	-	-
+60	-	-	-


Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 37 of 58

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Page 3

Page 38 of 58

3.2.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 1, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest

frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603 .

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05Date: 2005-08-10Page 39 of 58

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.2 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages. All measurements were done in horizontal and vertical polarization, the plots shows the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch190 Freq. (MHz)	Level (dBm)	Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-	1673.2	- -	1697.6	-
3	2472.6	-	2509.8	-	2546.4	-
4	3296.8	-	3346.4	-	3395.2	-
5	4121.0	-	4183.0	-	4244.0	-
6	4945.2	-	5019.6	-	5092.8	-
7	5769.4	-	5856.2	-	5941.6	-
8	6593.6	-	6692.8	-	6790.4	-
9	7417.8	-	7529.4	-	7639.2	-
10	8242.0	_	8366.0	-	8488.0	_

Sample calculation:

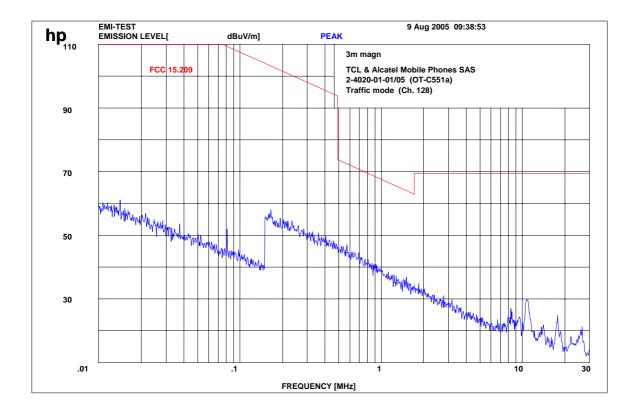
Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
	Reading	Setting	gain	gain	loss		
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	134.6	38.6		-10.50	1.67	29.8	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

CETECOM ICT Services	GmbH		
Untertivelsheimen Sta 6 10 66117 Seenhauselsen	D home: $(40, 0) \in \mathbb{R}^{1} = 509, 0$	Eart. 0075	

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



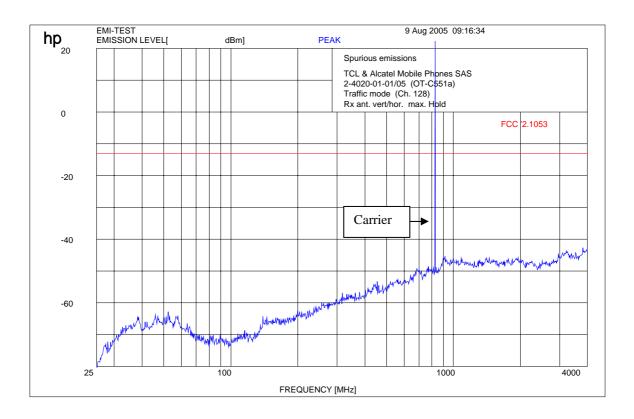
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 40 of 58

Traffic mode up to 30 MHz (Valid for all 3 channels)

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



Test report no.: 2-4020-01-01/05

Date: 2005-08-10

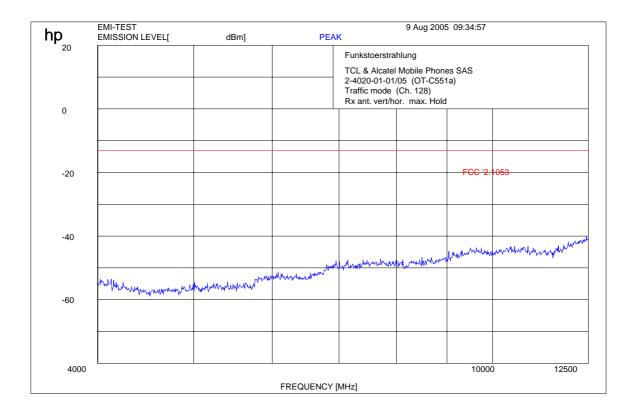
Page 41 of 58

Channel 128 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

CETECOM ICT Services GmbH	
---------------------------	--

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



Test report no.: 2-4020-01-01/05

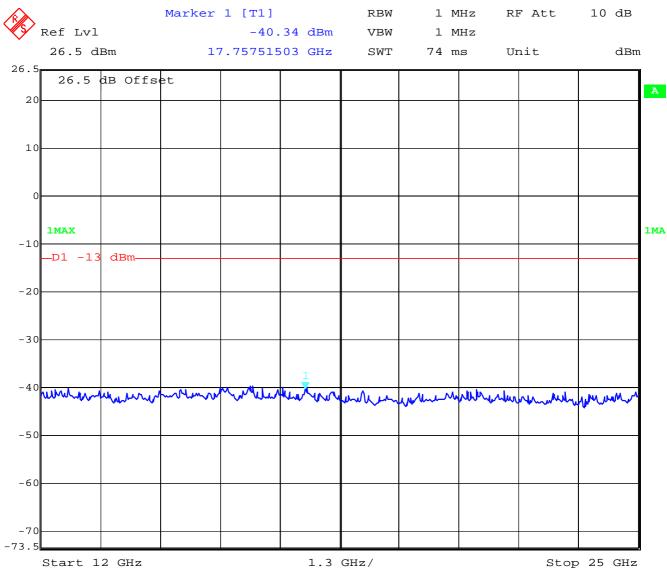
Date: 2005-08-10

Page 42 of 58

Channel 128 (4 GHz – 12.5 GHz)

 $\label{eq:generalized_formula} \begin{array}{ll} f < 1 \mbox{ GHz}: \mbox{RBW/VBW}: 100 \mbox{ kHz} & f \geq \\ \mbox{Carrier suppressed with a rejection filter} \end{array}$

CETECOM ICT Service			
Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory	Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0	Fax: -9075 Fax: -9075	


Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 43 of 58

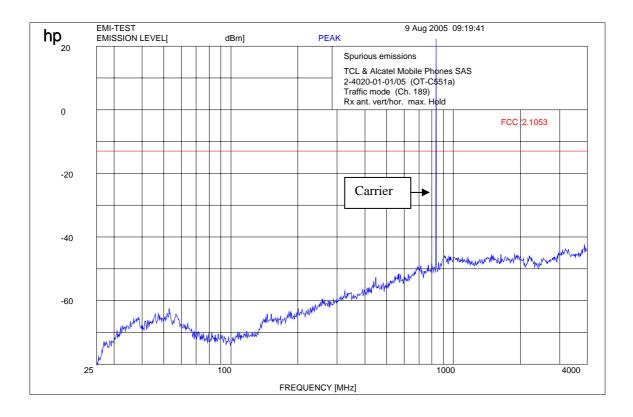
CETECOM

Channel 128 (12 GHz - 25 GHz) valid for all 3 channels

Date: 9.AUG.2005 13:21:16

CETECOM ICT Services GmbH	
---------------------------	--

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



Test report no.: 2-4020-01-01/05

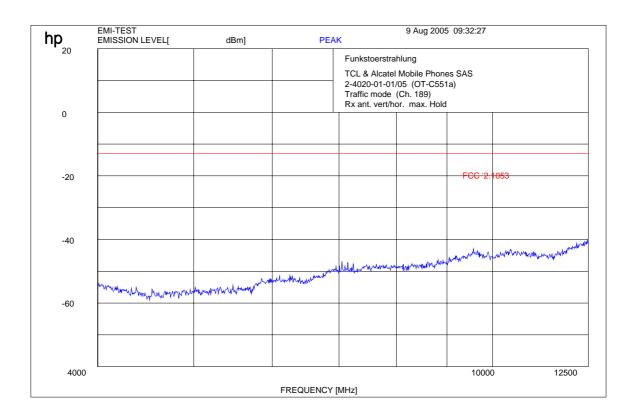
Date: 2005-08-10

Page 44 of 58

Channel 189 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



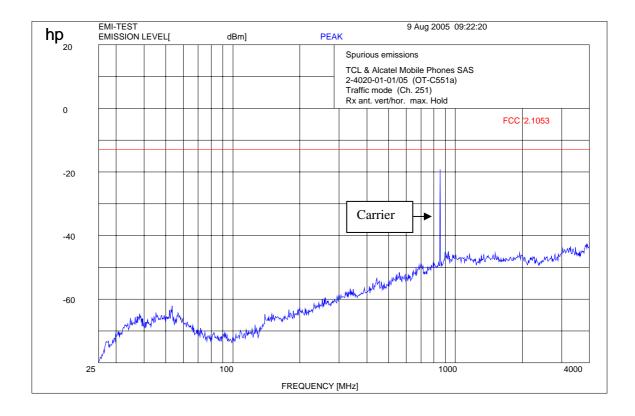
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 45 of 58

Channel 189 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter


CETECOM ICT Service	CETECO		
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

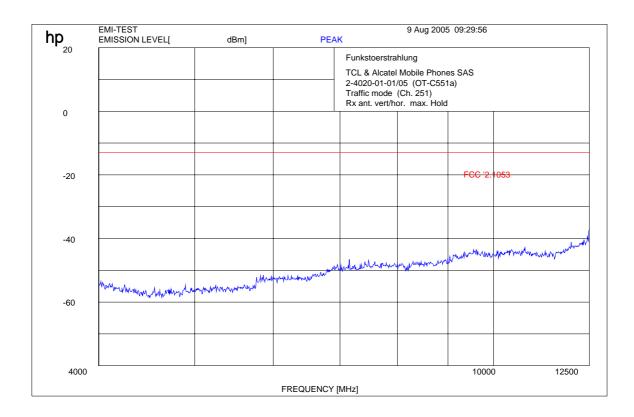
Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 46 of 58

Channel 251 (30 MHz - 4 GHz)

 $\label{eq:generalized_states} \begin{array}{l} f < 1 \ GHz: RBW/VBW: 100 \ kHz \\ Carrier \ suppressed \ with \ a \ rejection \ filter \end{array}$


CETECOM ICT Service	es GmbH		CETECO
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05 Da

Date: 2005-08-10

Page 47 of 58

Channel 251 (4 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 P

Page 48 of 58

Fax: -9075

Fax: -9075

3.2.4 Receiver Radiated Emissions

Reference

FCC:	CFR Part 15.109, 2.1053
IC:	RSS 132, Issue 1, Section 4.6 and 6.6

			SPURIOUS	EMISSIONS	S LEVEL (µV	/m)		
	Idle Mode				•			
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Measuren	nent uncertaint	y	±3 dB					

f < 1 GHz : RBW/VBW: 100 kHz

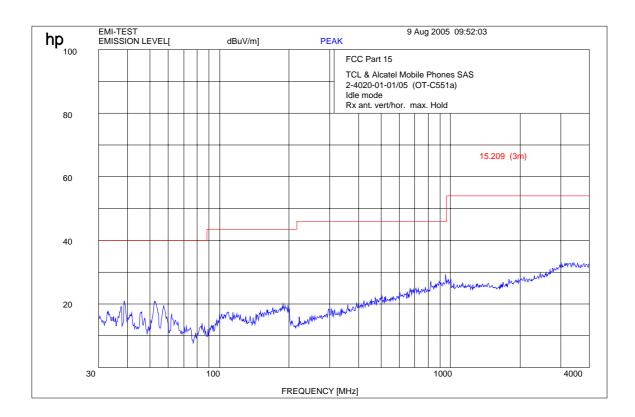
 $f \ge 1GHz$: RBW/VBW: 1 MHz

H = Horizontal ; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3


CETECOM ICT Service	es GmbH		CETECOM
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05

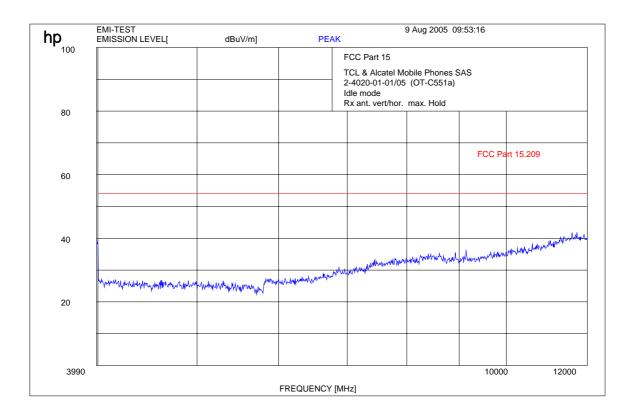
Date: 2005-08-10

Page 49 of 58

Idle-Mode (30 MHZ - 4 GHZ)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}$: RBW / VBW 1 MHz

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075



Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 50 of 58

IDLE-MODE (4 GHz – 12.0 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}$: RBW / VBW 1 MHz

CETECOM ICT Service	es GmbH		CETECOM
Untertürkheimer Str. 6-10, 66117 Saarbruecken	Phone: +49 (0) 681 598-0	Fax: -9075	
RSC-Laboratory	Phone: +49 (0) 681 598-0	Fax: -9075	

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 51 of 58

IDLE-MODE (12 GHz - 25 GHz)

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 52 of 58

3.2.5 Conducted Spurious Emissions

Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 1, Section 4.5 and 6.5

Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz. 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency 128 824.2 MHz 189 836.2 MHz 251 848.8 MHz

Measurement Limit

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results

Harmonic	Тх сн128	Level	Тх сн190	Level	Тх сн251	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	1648.4	-	1673.2	-	1697.6	-
3	2472.6	-	2509.8	-	2546.4	-
4	3296.8	-	3346.4	-	3395.2	-
5	4121.0	-	4183.0	-	4244.0	-
6	4945.2	-	5019.6	-	5092.8	-
7	5769.4	-	5856.2	-	5941.6	-
8	6593.6	-	6692.8	-	6790.4	-
9	7417.8	-	7529.4	-	7639.2	-
10	8242.0	-	8366.0	-	8488.0	-

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 F

Page 53 of 58

3.2.6 Block Edge Compliance

Reference

FCC:	CFR Part 22.917
IC:	RSS 132, Issue 1, Section 6.5

Measurement Limit:

Sec. 22.917(b) Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 Pa

Page 54 of 58

3.2.7 Occupied Bandwidth

Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 1, Section 4.2

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
	(kHz)	(kHz)
824.2 MHz	-	-
836.4 MHz	-	-
848.8 MHz	-	-

Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 2-4020-01-01/05

Date: 2005-08-10 P

Page 55 of 58

4 Used Testequipment

Anachoic chamber C:

Device	Manufacturer	Туре	S/N Number	Inv. No. Cetecom
Spektrum Analyser	HP	8566B	2747A05306	300001000
Spektrum Analyser Display	HP	85662A	2816A16541	300002297
Quasi-Peak-Adapter	HP	85650A	2811A01131	300000999
Power Dupply	HP	6032A	2818A03450	300001040
Power Attenuator	Byrd	8325	1530	300001595
Bikonical Antenna	EMCO	3104	3758	300001602
Log. Period. Antenna	EMCO	3146	2130	300001603
Double Ridged Antenna	EMCO	HP 3115P	3088	300001032
Active Loop Antenna	EMCO	6502	2210	300001015
Antenna VDE/FCC		HP11965B		300002298
SRM-Drive	HP	9144A	2823e46556	300001044
Software	HP	EMI		300000983
Busisolator	Kontron			300001056
Absorberhalle	MWB		87400/02	300000996
Salzsäule	Kontron			300001055
Antenna	R&S	HMO20	832211/003	300002243
Indukt.Tast Antenna	R&S	HFH 2 Z4	881468/026	300001464
System-Rack	HP I.V.	85900	*	300000222
Spectrum Analyzer	HP	8566B	2747A05275	300000219
Quasi-Peak-Adapter	HP	85650A	2811A01135	300000216
RF-Preselector	HP	85685A	2837A00779	300000218
Rahmen Antenne	R&S	HFH2-Z2	891847-35	300001169
Leitungsteiler	HP	11850C		300000997
Breitband-Hornantenne EMI	HP	35155P		300002300
PC	HP	Vectra VL		300001688
VHF Meßantenne	Schwarzbeck	VHA 9103		300001778
Spectrum Analyzer Display	HP	85662A	2816A16497	300001690
VHF Meßantenna	Schwarzbeck	VHA 9103		300001780
Biconical Antenna	EMCO	3104 C	9909-4868	300002590

SRD Laboratory:

	300001207	Туре	S/N Number	Inv. No. Cetecom
Device				
Spectrum Analyzer	300001208	494AP	B010241	300000863
Spectrum Analyzer	HP	71210A (70000)	2731A02347	300000321
Spectrum Analyzer Display	HP	70206A	2840A01553	300002017
Reference Frequency	HP	70310A	2736A00707	300002018
Local Oscillator	HP	70900A	2842A02221	300002019
ZF-Modul 10Hz-300 kHz	HP	70902A	2840A02145	300002020
ZF-Modul 100 kHz-3 MHz	HP	70903A	2835A01069	300002021
HF-Teil für 71210A 100Hz- 22GHz	HP	70908A		300002022
Spectrum Analyzer 2	HP	85660B	3138A07614	
Spectrum Analyzer Display 2	HP	85662A	3144A20627	

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 56 of 58

Signal Generator DC-600 KHz	HP	8904A	2822A01213	300001157
Signal Generator DC-600 KHz	HP	8904A	2822A01213	300001157
Powersupply	HP	6038A	3122A01214	300001138
Netznachbildung	R&S	ESH3-Z5	828576/020	300001204
Amplituden Controller	R&S	SMDU-Z2	871829/051	300001210
Trenntrafo	Erfi	913501	0/1029/031	300002309
Trenntrafo	Grundig	RT5A	9242	300001203
Relais Matrix	HP	3488A	2719A15013	300001027
Multimeter	Siemens		2/19A15015	300001136
Peak Power Calibrator	HP	Multizet		
		8900B	10150	300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova	X XX XX A (500		300002476
Klimaschrank	Heraeus Voetsch	VUK04/500	1005100055	300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro		2007	300001109
Oszilloscope	Tektronix	7633		300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300001176
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001115
Signal Generator	R&S	SMPC	882416/019	300001162
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001105
Powersensor	HP	8482A		300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001108
Powersupply	HP	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001132
Signal Generator NF	R&S	SPN	880139/068	300001142
Trenntrafo	Erfi	MPL	91350	300001151
Attenuator	JFW	30 db	1350h/104	300001703
Attenuator	JFW	10 db	1350h/103	300001704
Attenuator	JFW	20 db	1350h/106	300001705
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755		300001791
1 111/1	Spinici	100100		200001771

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 57 of 58

Powersensor	HP	8484A	2237A10494	300001666
Powersupply	HP	6038A	3122A11097	300001204
Netznachbildung	R&S	ESH3-Z5	828576/020	300001204
Amplituden Controller	R&S	SMDU-Z2	871829/051	300001210
Trenntrafo	Erfi	913501	0/1029/031	300002309
		RT5A	9242	300001203
Trenntrafo	Grundig			
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B	10150	300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro	1.00	2007	300001109
Oszilloscope	Tektronix	7633	2007	300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300002308
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001202
Signal Generator	R&S	SMPC	882416/019	300001162
	HP	5340A	2116A08138	300001102
Frequency counter			2031U01461	
Power Meter	HP	436A	2031001461	300001105
Powersensor	HP	8482A		300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A	0750 101011	300001108
Powersupply	HP	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001132
Signal Generator NF	R&S	SPN	880139/068	300001142
Trenntrafo	Erfi	MPL	91350	300001151
Attenuator	JFW	30 db	1350h/104	300001703
Attenuator	JFW	10 db	1350h/103	300001704
Attenuator	JFW	20 db	1350h/106	300001705
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755		300001791
Powersensor	HP	8484A	2237A10494	300001666

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 2-4020-01-01/05

Date: 2005-08-10

Page 58 of 58

	-		2222 4 222 4 2	200001660
Powersensor	HP	8485A	2238A00849	300001668
Bandfilter	Telonic	TTF7255EE	20293-11	300001300
Bandfilter	Telonic	TTF12555EE	20292-6	300001302
Bandfilter	Telonic	TTF25055EE	20291-8	300001304
Bandfilter	Telonic	TTF50055EE	20290-7	300001305
Bandfilter	Telonic	TTF100055EE	20289-7	300001307
Bandfilter	Telonic	TTA300055EESN	20370-2	300001312
Bandstop	Telonic	TTR3753EE1	30013-1	300001314
Bandstop	Telonic	TTR723EE	20417-2	300001316
Bandstop	Telonic	TTR95-3EE	20372-4	300001318
Bandstop	Telonic	TTR1903EE	30036-4	300001320
Bandstop	Telonic	TTR3753EE	20369-5	300001321
Bandstop	Telonic	TTR750-3EE1	90177-1	300002387
Highpass	Pro Nova	HDP120-6GG	ohne	300001348
Highpass	Pro Nova	HMC500-6AA	HJ67-01?	300001350
Highpass	Narda	NHP 9000	0004	300001362
Highpass	Narda	HDP16-6GH	JV70-01	300001364
Highpass	RSD	HDP50-6GH,		300001371
		HDP200-6GG		
Highpass	RSD	2099-02-01		300000370
Signal Generator 0.1-2060 MHz	HP	8657A	2838U00736	300001009
Radio Code Analyzer	Schlumberger	SL4922		300001038
Signal Analyzer	B&K	2033		300001047
Frequency counter	HP	5386A	2704A01243	300000998
Laufzeitelement	WR-Elektronik			300001036
Powersupply Stromversorgung	Systron	M5P 40/15A	828233	300001291
Powersupply	Heiden	1108-32	1701	300001392
Powersupply	Heiden	1108-32	1802	300001383
Powersupply	Heiden	1108-32	003202	300001187
Powersupply	Zentro	LA 2x30/5GB1	2011	300001276
Powersupply	Zentro	LA 2x30/5GB2	2012	300001275
Powersupply	Zentro	LA 30/5GA	2041,2042	300001287
Trenntrafo	Grundig	RT5A	8781	300001277
Trenntrafo	Grundig	RT5A	9242	300001263
Multimeter	Goerz Elektro	Unigor 6e P	911 355	300001625
Multimeter	Goerz Elektro	Unigor 6e P	911 391	300001281
Climatic Box	Heraeus Voetsch	VUK04/500	32679	30000299
Powersensor + Att.	HP	8482B	2703A02586	300001492
Attenuator 30 dB	HP	8498A	1801A02445	300001475
Signal Generator NF	HP		2822A01203	300001004
Attenuator	Spinner	BN 534171 D	51881	300001516
Attenuator coaxial	Bird	8325	2429	300001513
Impulsbegrenzer	R&S	ESH 3 Z2		300001313
4Port Box	R&S	4Port Box	860457/005	300001400
Signal Generator 0.1-4200 MHz	HP	8665A	2833A0011	300001472
NF-Spektrumanalyzer	B&K	2033A	2033/10011	300002299
Swissphone Freifeld-Messbox	Swissphone Schweiz	20336		300002302
Trenntrafo regelbar	Grundig	RT5H	9242	300002302
Signal Generator	HP	8111A	2215G00867	300001028
Signal Generator	111	0111A	2213000807	500001117