

Appendix for the Report

Dosimetric Assessment of the Alcatel OT-C651 (FCC ID: RAD012)

According to the FCC Requirements

Calibration Data

February 16, 2005 IMST GmbH Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort

> Customer 7layers AG Borsigstrasse 11

40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Client IMST

Certificate No:	D1900	V2-535	Nov04

Object	D1900V2 - SN: 5	35	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	November 12, 20	004	
Condition of the calibrated item	In Tolerance		
The measurements and the unce	artainties with confidence p	ional standards, which realize the physical units of robability are given on the following pages and an ry facility: environment temperature $(22 \pm 3)^{\circ}$ C and	e part of the certificate.
	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-601_Jul04)	Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05
Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-601_Jul04)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05
Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05
Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 100698 US37390585 S4206	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-03)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov 04
Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 100698	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03)	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov 04 Signature
Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by: Approved by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 100698 US37390585 S4206 Name	12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No 251-00402) 26-Oct-04 (SPEAG, No. ET3-1507_Oct04) 22-Jul-04 (SPEAG, No. DAE4-601_Jul04) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-03) Function	Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jul-05 Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov 04

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end . of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed . point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole . positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-535 Nov04

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.4
Advanced Extrapolation	
Modular Flat Phantom V4.9	Size Statist
10 mm	with Spacer
dx, dy = 15 mm	is a superior
dx, dy, dz = 5 mm	Transfer and
1900 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom V4.9 10 mm dx, dy = 15 mm dx, dy, dz = 5 mm

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.69 mW / g
SAR normalized	normalized to 1W	38.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.5mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
CAP measured	250 mW input power	5.08 mW / a

SAR measured	250 mW input power	5.08 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.7 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-535_Nov04

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	39.8 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 250 mW input power	5.52 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		5.52 mW / g 22.1 mW / g

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-535_Nov04

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 6.6 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 7.1 jΩ
Return Loss	- 23.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.183 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2001

Certificate No: D1900V2-535_Nov04

Page 5 of 9

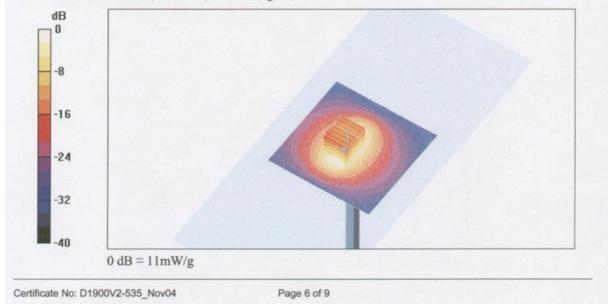
DASY4 Validation Report for Head TSL

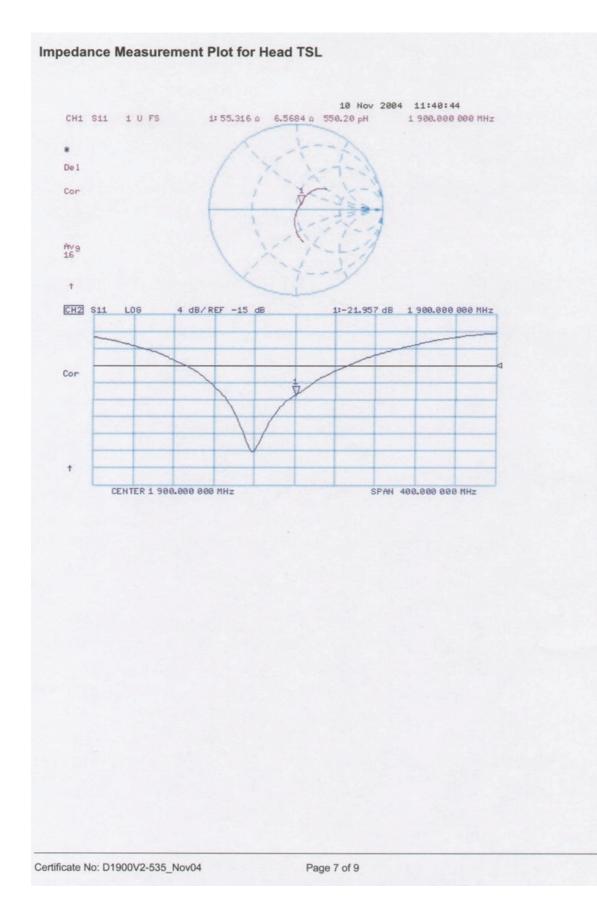
Date/Time: 11/10/04 08:23:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:535

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom quarter size -SN:1001; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.2 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.8 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.2 W/kgSAR(1 g) = 9.69 mW/g; SAR(10 g) = 5.08 mW/gMaximum value of SAR (measured) = 11 mW/g

DASY4 Validation Report for Body TSL

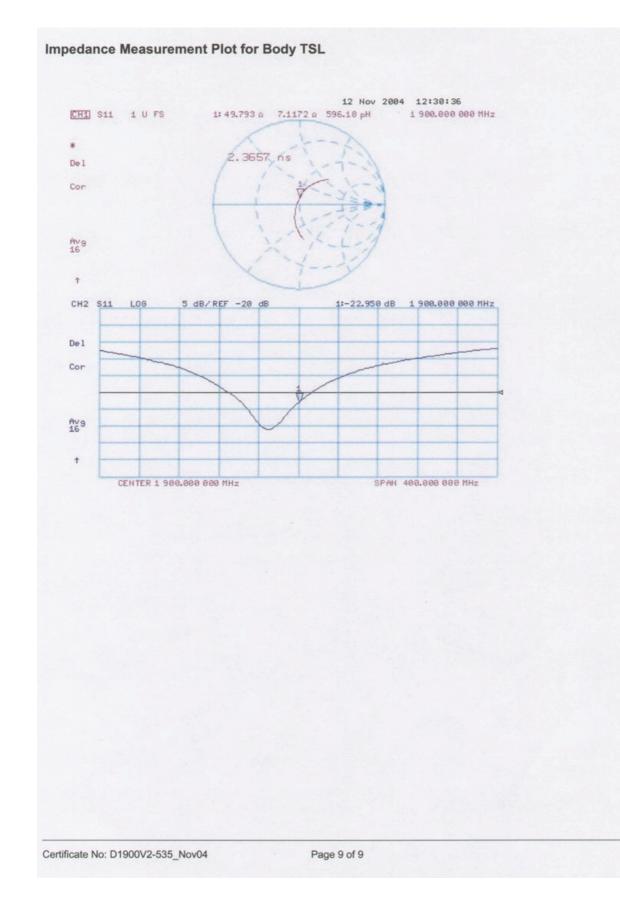
Date/Time: 11/12/04 15:23:07

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN535

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1800 MHz; Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom half size; Type: QD000P49AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.1 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.4 V/m; Power Drift = 0.1 dBPeak SAR (extrapolated) = 17.7 W/kgSAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.52 mW/gMaximum value of SAR (measured) = 11.9 mW/g

lient IMST	FREE AS DE LA COMPANY	and the second second	
inor			
CALIBRATION	CERTIFICA	TE	
Dbject(s)	D1900V2 - S	N:5d051	
Calibration procedure(s)	QA CAL-05.v Calibration p	2 rocedure for dipole validation kits	
Calibration date:	August 16, 2	004	
Condition of the calibrated item	In Tolerance	(according to the specific calibratio	on document)
nternational standard.		E used in the calibration procedures and conformity of t any facility: environment temperature 22 +/- 2 degrees C	
nternational standard. All calibrations have been conduct Calibration Equipment used (M&T Aodel Type Yower meter EPM E442	ted in the closed laborato	ny facility: environment temperature 22 +/- 2 degrees C	
nternational standard.	ted in the closed laborato TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254)	Scheduled Calibration
Iternational standard. VI calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 100698	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389)	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05
Iternational standard. VI calibrations have been conduct Calibration Equipment used (M&T Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A	ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 100698 US37390585	Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03)	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05
nternational standard. Il calibrations have been conduct calibration Equipment used (M&T Addel Type Power meter EPM E442 Power sensor HP 8481A Power senso	ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name	Ary facility: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05
Iternational standard. Il calibrations have been conduct calibration Equipment used (M&T Nodel Type ower meter EPM E442 ower sensor HP 8481A ower sensor HP 8481A F generator R&S SML-03 letwork Analyzer HP 8753E	ted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name Judith Mueller	Ary facility: environment temperature 22 +/- 2 degrees C Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function Technician	Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

s p e a g

Dipole Validation Kit

Type: D1900V2

Serial: 5d051

Manufactured: Calibrated: March 19, 2004 August 16, 2004

1. Measurement Conditions

The measurements were performed in the quarter size flat phantom filled with head simulating liquid of the following electrical parameters at 1900 MHz:

Relative Dielectricity	39.4	± 5%
Conductivity	1.44 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the quarter size flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue:

39.4 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue:

20.6 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.194 ns	(one direction)	
Transmission factor:	0.982	(voltage transmission, one direction)	

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 54.0 \Omega$
	Im $\{Z\} = 4.0 \Omega$
Return Loss at 1900 MHz	-25.4 dB

4. Measurement Conditions

The measurements were performed in the quarter size flat phantom filled with **body simulating tissue** of the following electrical parameters at 1900 MHz:

Relative Dielectricity	52.2	± 5%
Conductivity	1.58 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the quarter size flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm ³ (1 g) of tissue:	41.6 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm ³ (10 g) of tissue:	21.6 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 50.9 \Omega$
	Im $\{Z\} = 5.0 \Omega$
Return Loss at 1900 MHz	-27.2 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

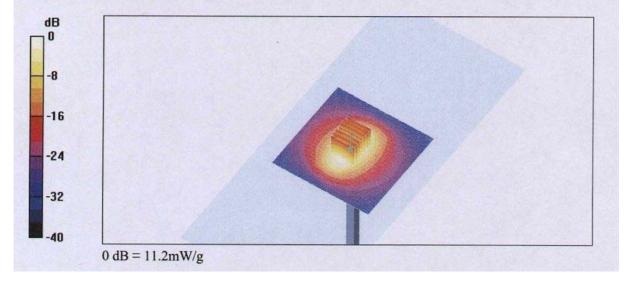
² validation uncertainty

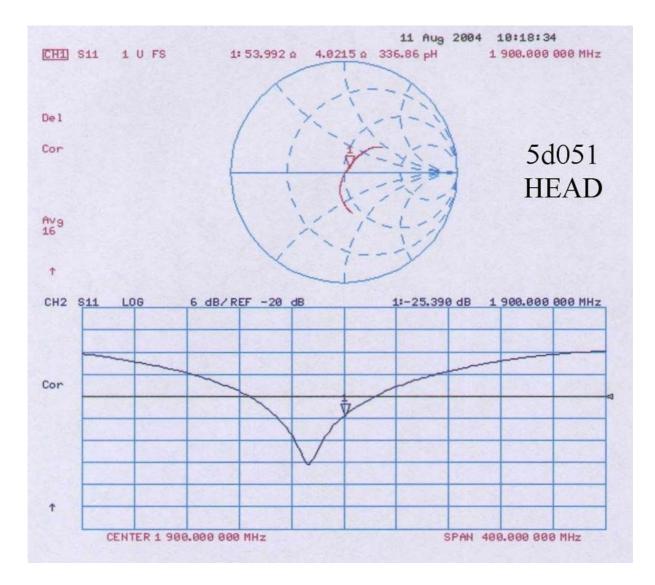
Page 1 of 1 Date/Time: 08/11/04 17:25:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d051

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 7/22/2004
- Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.3 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 123

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.1 mW/g

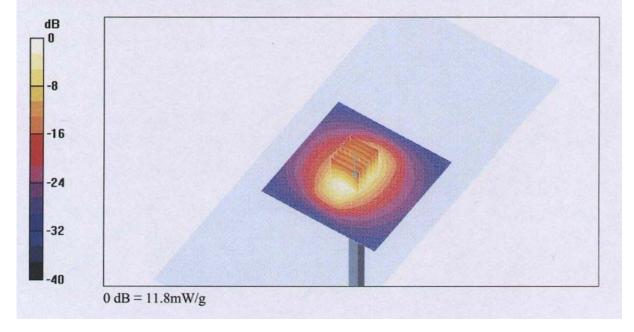
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

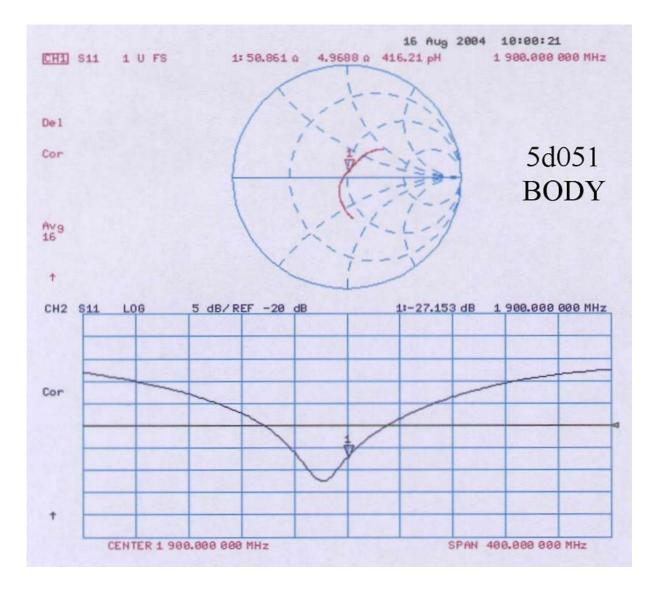
Reference Value = 90.3 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.84 mW/g; SAR(10 g) = 5.15 mW/g Maximum value of SAR (measured) = 11.2 mW/g

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d051

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 7/22/2004
- Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.3 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 123

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.9 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.41 mW/g Maximum value of SAR (measured) = 11.8 mW/g

Calibration Laboratory of Schmid & Partner

IMST

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: ET3-1579_Jan05

Object	ET3DV6R - SN:	1579	and the second second
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	January 13, 200	5	
Condition of the calibrated item	In Tolerance		
			thread the state
		ory facility: environment temperature (22 \pm 3)°C and	a numiaity < 70%.
Calibration Equipment used (M&		Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388)	Scheduled Calibration May-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388)	Scheduled Calibration May-05 May-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403)	Scheduled Calibration May-05 May-05 Aug-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	Scheduled Calibration May-05 May-05 Aug-05 May-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389)	Scheduled Calibration May-05 May-05 Aug-05 May-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house)	Scheduled Calibration May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Sep-05 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Sep-05 Scheduled Check In house check: Oct 05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03)	Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Sep-05 Scheduled Check In house check: Oct 05 In house check: Dec-05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Aug-05 Jan-06 Sep-05 Scheduled Check In house check: Oct 05
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04) Function	Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Sep-05 Scheduled Check In house check: Oct 05 In house check: Dec-05
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	TE critical for calibration) ID # GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 617 ID # MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05) 29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Nov-04)	Scheduled Calibration May-05 May-05 Aug-05 Aug-05 Jan-06 Sep-05 Scheduled Check In house check: Oct 05 In house check: Nov 05

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6R

SN:1579

Manufactured: Last calibrated: Remake to V6R: Recalibrated: May 7, 2001 September 1, 2004 December 30, 2004 January 13, 2005

Calibrated for DASY3 Systems

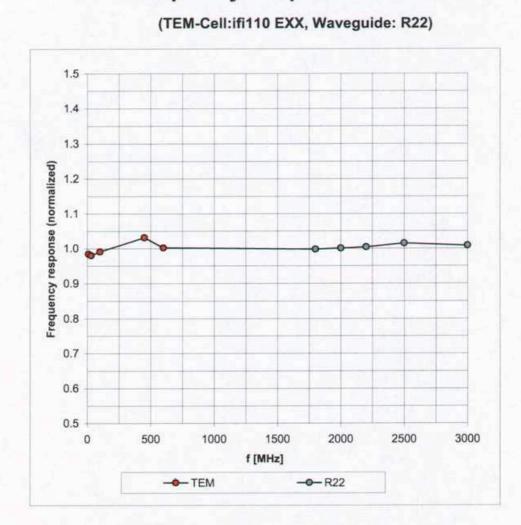
(Note: non-compatible with DASY2 system!)

ET3DV6R SN:1579

January 13, 2005

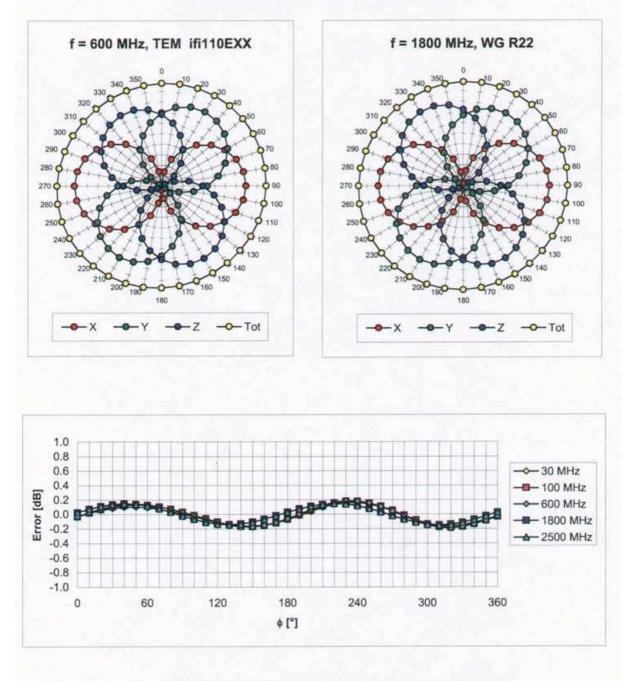
DASY3 - Parameters of Probe: ET3DV6R SN:1579

Sensitivity in Free	e Space ^A		Diode C	ompressio	n ^B
NormX	1.84 ± 10.1%	μV/(V/m) ²	DCP X	94 mV	
NormY	1.70 ± 10.1%	μV/(V/m) ²	DCP Y	94 mV	
NormZ	1.67 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV	
Sensitivity in Tiss	ue Simulating Li	quid (Convers	ion Factors)		
Please see Page 8.					

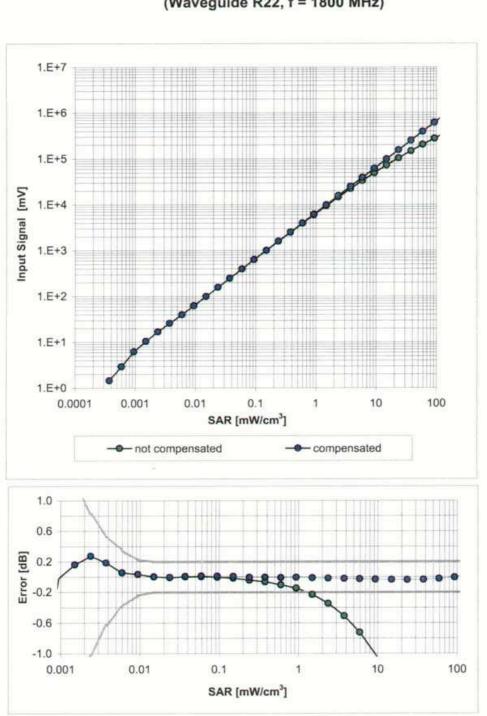

Boundary Effect

TSL	90	0 MHz	Typical SAR gradient: 5 %	per mm	
	Sensor Center	to Phante	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	8.4	4.5
	SAR _{be} [%]	With C	orrection Algorithm	0.1	0.2
TSL	1750) MHz	Typical SAR gradient: 10	% per mm	
	Sensor Center	o Phanto	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	11.5	7.7
	SAR _{be} [%]	With C	orrection Algorithm	0.7	0.1
Senso	r Offset				
	Probe Tip to Se	nsor Cer	nter	2.7 mm	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

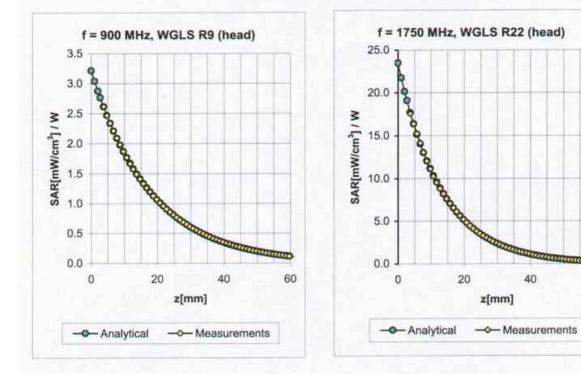
^B Numerical linearization parameter: uncertainty not required.


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

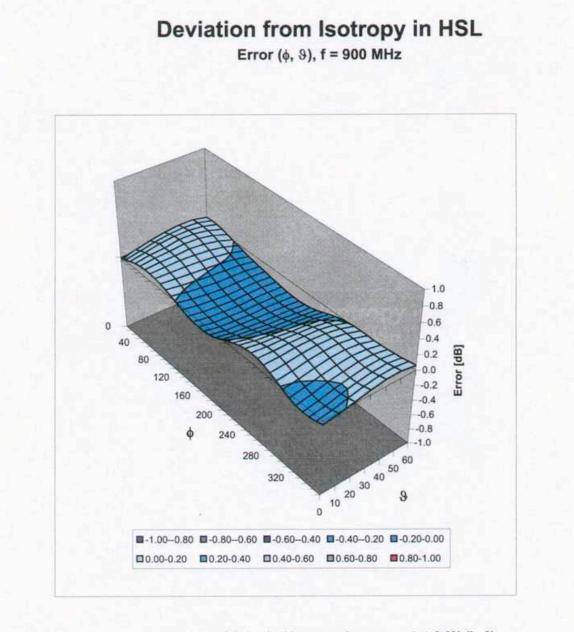


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

60

40



Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.49	2.01	6.89 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.86	6.54 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.54	2.32	5.46 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.53	5.28 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.60	2.28	4.62 ± 11.8% (k=2)
(New York	La line d'he						•
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.49	2.09	6.56 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.48	2.14	6.27 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.48	2.87	4.82 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.49	2.99	4.69 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.58	2.21	4.30 ± 11.8% (k=2)

ET3DV6R SN:1579

January 13, 2005

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner

Engineering AG

IMST

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No:	ET3-1669	_Jan05
-----------------	----------	--------

Object	ET3DV6R - SN:						
Calibration procedure(s)	QA CAL-01.v5 Calibration procedure for dosimetric E-field probes						
Calibration date:	ibration date: January 13, 2005						
Condition of the calibrated item	ondition of the calibrated item In Tolerance						
The measurements and the unce	ertainties with confidence	ational standards, which realize the physical units of probability are given on the following pages and are ory facility: environment temperature (22 ± 3)°C and	a part of the certificate.				
Primary Standards	ID # .	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration				
Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	GB41293874 MY41495277 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	5-May-04 (METAS, No. 251-00388) 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) 3-May-04 (METAS, No. 251-00389) 10-Aug-04 (METAS, No. 251-00404) 7-Jan-05 (SPEAG, No. ES3-3013_Jan05)	May-05 May-05 Aug-05 May-05 Aug-05 Jan-06 Sep-05				
Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 617	29-Sep-04 (SPEAG, No. DAE4-617_Sep04)	00p 00				
Reference Probe ES3DV2 DAE4			Scheduled Check				
Reference Probe ES3DV2	SN: 617	29-Sep-04 (SPEAG, No. DAE4-617_Sep04) Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04)	Second Contraction of				
Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	SN: 617 ID # MY41092180 US3642U01700	Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03)	Scheduled Check In house check: Oct 05 In house check: Dec-05				
Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C Network Analyzer HP 8753E	SN: 617 ID # MY41092180 US3642U01700 US37390585	Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04)	Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05				
Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator HP 8648C	SN: 617 ID # MY41092180 US3642U01700 US37390585 Name	Check Date (in house) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04) Function	Scheduled Check In house check: Oct 05 In house check: Dec-05 In house check: Nov 05				

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $9 = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1669_Jan05

January 13, 2005

Probe ET3DV6R

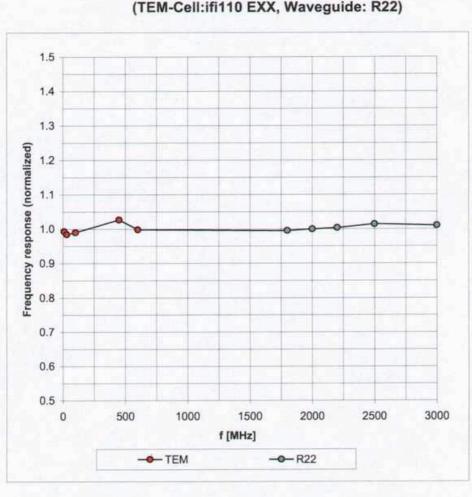
SN:1669

Manufactured: Last calibrated: Remake to V6R: Recalibrated: February 8, 2002 March 18, 2004 January 4, 2005 January 13, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

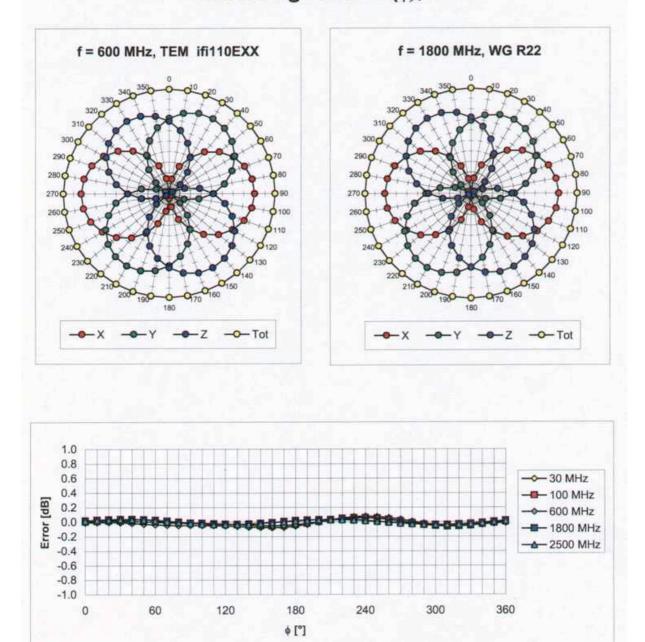
ET3DV6R SN:1669


DASY - Parameters of Probe: ET3DV6R SN:1669

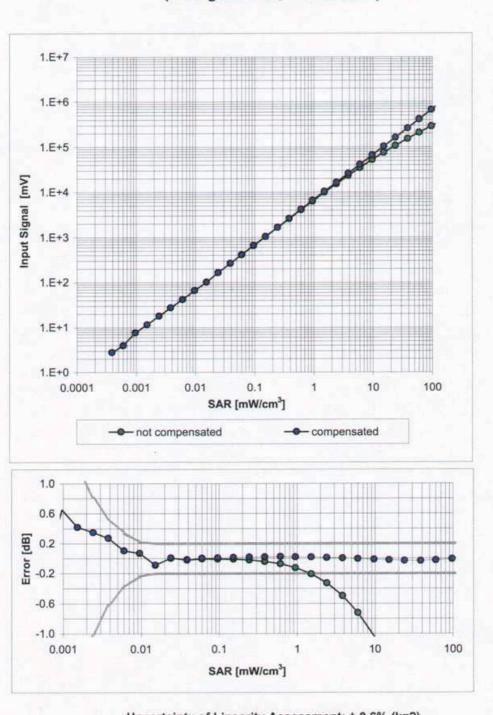
Sens	itivity in Fre	e Space ^A		Diode C	Compressio
	NormX	1.73 ± 10.1%	μ V/(V/m) ²	DCP X	95 mV
	NormY	1.88 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	95 mV
	NormZ	1.75 ± 10.1%	μ V/(V/m) ²	DCP Z	95 mV
Sens	itivity in Tise	sue Simulating L	iquid (Convers	ion Factors)	
Please	see Page 8.				
Boun	dary Effect				
TSL	90	00 MHz Typical S	AR gradient: 5 % p	er mm	
	Sensor Center	r to Phantom Surface D	Distance	3.7 mm 4	.7 mm
	SAR _{be} [%]	Without Correction	Algorithm	8.3	4.4
	SAR _{be} [%]	With Correction Alg	orithm	0.1	0.2
TSL	175	50 MHz Typical S	AR gradient: 10 %	per mm	
	Sensor Center	r to Phantom Surface D	Distance	3.7 mm 4	.7 mm
	SAR _{be} [%]	Without Correction	Algorithm	13.4	9.3
	SAR _{be} [%]	With Correction Alg	orithm	0.6	0.2
Sens	or Offset				
	Probe Tip to Sensor Center			2.7 mm	

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

corresponds to a coverage probability of approximately 95%.

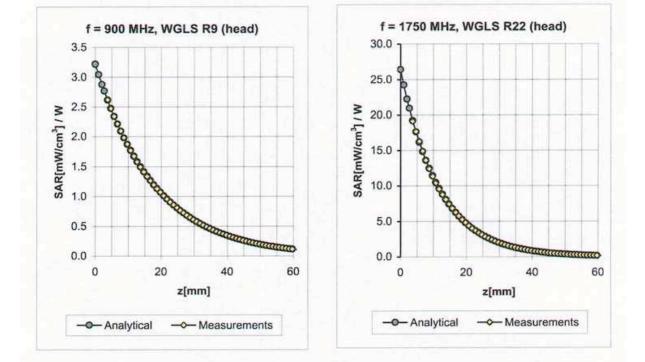

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

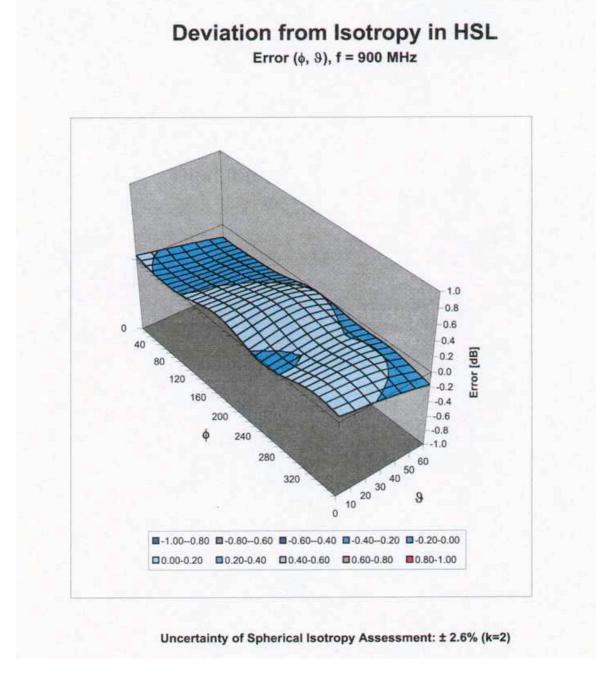
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.57	1.85	6.61 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.56	1.85	6.49 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	'40.1 ± 5%	1.37 ± 5%	0.56	2.38	5.36 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.53	2.53	5.11 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.71	4.75 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.49	2.09	6.39 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.50	2.09	6.11 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.50	2.89	4.67 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.51	3.01	4.52 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.63	4.40 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

January 13, 2005

