

Report No.: SZEM140200060301

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 96

FCC REPORT

Application No: SZEM1402000603RF

Applicant: Sunitec Enterprise Co., Ltd.

Manufacturer: Sunitec Enterprise Co., Ltd.

Factory: Sunitec Enterprise Co., Ltd.

Product Name: Bluetooth stereo speaker

Model No.(EUT): SP-ABT1

FCC ID: RA8-SPABT2

Standards: 47 CFR Part 15, Subpart C (2013)

Date of Receipt: 2014-02-24

Date of Test: 2014-03-04 to 2014-03-07

Date of Issue: 2014-03-20

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM140200060301

Page: 2 of 96

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009) DA 00-705	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009) DA 00-705	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009) DA 00-705	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section ANSI C63.10 (2009) 15.247 (b) DA 00-705		PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009) DA 00-705	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009) DA 00-705	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009) DA 00-705	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009) DA 00-705	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009) DA 00-705	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009) DA 00-705	PASS

Report No.: SZEM140200060301

Page: 3 of 96

3 Contents

1 COVER PAGE 1 2 TEST SUMMARY 2 3 CONTENTS 3 4 GENERAL INFORMATION 4 4.1 CLIENT INFORMATION 4 4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 200B OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 75 5.11.1 Radiated Emission below 1GHz 36 5.11.2 Transmitter Emission above 1GHz				Page
3 CONTENTS 3 4 GENERAL INFORMATION 4 4.1 CLIENT INFORMATION 4 4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 200B OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 Radiated Emission below 1GHz 80 5.11.2 Transmitter Emission above 1GHz 86 </th <th>1</th> <th>CO</th> <th>OVER PAGE</th> <th>1</th>	1	CO	OVER PAGE	1
3 CONTENTS 3 4 GENERAL INFORMATION 4 4.1 CLIENT INFORMATION 4 4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 200B OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 Radiated Emission below 1GHz 80 5.11.2 Transmitter Emission above 1GHz 86 </th <th>2</th> <th>TF</th> <th>STSUMMARY</th> <th>9</th>	2	TF	STSUMMARY	9
4 GENERAL INFORMATION 4 4.1 CLIENT INFORMATION 4 4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED EMISSIONS 14 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 <td< th=""><th></th><th></th><th></th><th></th></td<>				
4.1 CLIENT INFORMATION. 4 4.2 GENERAL DESCRIPTION OF EUT. 4 4.3 TEST ENVIRONMENT. 6 4.4 DESCRIPTION OF SUPPORT UNITS. 6 4.5 TEST LOCATION. 6 4.6 TEST FACILITY. 7 4.7 DEVIATION FROM STANDARDS. 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS. 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 8 4.10 EQUIPMENT LIST. 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED EMISSIONS 14 5.4 20DB OCCUPY BANDWIDTH. 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 75 5.11.1 RADIATED SPURIOUS EMISSION 80	3			
4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 RADIATED SPURIOUS EMISSION 80 5.11.2 Transmitter Emission above 1GHz 80	4	GE	NERAL INFORMATION	4
4.2 GENERAL DESCRIPTION OF EUT 4 4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 RADIATED SPURIOUS EMISSION 80 5.11.2 Transmitter Emission above 1GHz 80		4.1	CLIENT INFORMATION	4
4.3 TEST ENVIRONMENT 6 4.4 DESCRIPTION OF SUPPORT UNITS 6 4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 75 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 RADIATED SPURIOUS EMISSION 80 <th></th> <th>4.2</th> <th></th> <th></th>		4.2		
4.5 TEST LOCATION 6 4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED EMISSIONS 14 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 80 5.11.2 Transmitter Emission above 1GHz 85		4.3		
4.6 TEST FACILITY 7 4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED EMISSIONS 14 5.4 20DB Occupy BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 48 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 80 5.11.2 Transmitter Emission above 1GHz 85		4.4	DESCRIPTION OF SUPPORT UNITS	6
4.7 DEVIATION FROM STANDARDS 8 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED EMISSIONS 14 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 80 5.11.2 Transmitter Emission above 1GHz 85		4.5	TEST LOCATION	6
4.8 ABNORMALITIES FROM STANDARD CONDITIONS 8 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		4.6		
4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 8 4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85				
4.10 EQUIPMENT LIST 9 5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		_		
5 TEST RESULTS AND MEASUREMENT DATA 13 5.1 ANTENNA REQUIREMENT 13 5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		_		
5.1 Antenna Requirement 13 5.2 Conducted Emissions 14 5.3 Conducted Peak Output Power 18 5.4 20dB Occupy Bandwidth 25 5.5 Carrier Frequencies Separation 31 5.6 Hopping Channel Number 38 5.7 Dwell Time 41 5.8 Band-edge for RF Conducted Emissions 48 5.9 Spurious RF Conducted Emissions 55 5.10 Pseudorandom Frequency Hopping Sequence 79 5.11 Radiated Spurious Emission 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		_		
5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85	5	TE	ST RESULTS AND MEASUREMENT DATA	13
5.2 CONDUCTED EMISSIONS 14 5.3 CONDUCTED PEAK OUTPUT POWER 18 5.4 20DB OCCUPY BANDWIDTH 25 5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		5.1	Antenna Requirement	13
5.4 20DB OCCUPY BANDWIDTH		5.2		
5.5 CARRIER FREQUENCIES SEPARATION 31 5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		5.3	CONDUCTED PEAK OUTPUT POWER	18
5.6 HOPPING CHANNEL NUMBER 38 5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85		5.4		
5.7 DWELL TIME 41 5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85				
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS 48 5.9 SPURIOUS RF CONDUCTED EMISSIONS 55 5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 79 5.11 RADIATED SPURIOUS EMISSION 80 5.11.1 Radiated Emission below 1GHz 83 5.11.2 Transmitter Emission above 1GHz 85				
5.9SPURIOUS RF CONDUCTED EMISSIONS555.10PSEUDORANDOM FREQUENCY HOPPING SEQUENCE795.11RADIATED SPURIOUS EMISSION805.11.1Radiated Emission below 1GHz835.11.2Transmitter Emission above 1GHz85		_		
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE795.11 RADIATED SPURIOUS EMISSION805.11.1 Radiated Emission below 1GHz835.11.2 Transmitter Emission above 1GHz85				
5.11 RADIATED SPURIOUS EMISSION				
5.11.1 Radiated Emission below 1GHz835.11.2 Transmitter Emission above 1GHz85				
5.11.2 Transmitter Emission above 1GHz85				

Report No.: SZEM140200060301

Page: 4 of 96

4 General Information

4.1 Client Information

Applicant:	Sunitec Enterprise Co., Ltd.
Address of Applicant:	10F1, No.200, Jingping Rd., Jhonghe City, Taipei County 23581 Taiwan
Manufacturer:	Sunitec Enterprise Co., Ltd.
Address of Manufacturer:	No.2, Qilin Road 2, RunTang Ind, Dan-Keng Village Fu Min Community, Guan-Lan Town, BaoAn District, Shenzhen Guangdong China
Factory:	Sunitec Enterprise Co., Ltd.
Address of Factory:	No.2, Qilin Road 2, RunTang Ind, Dan-Keng Village Fu Min Community, Guan-Lan Town, BaoAn District, Shenzhen Guangdong China

4.2 General Description of EUT

Bluetooth stereo speaker
SP-ABT1
Bluetooth stereo speaker
2402MHz~2480MHz
V3.0(with EDR)
Frequency Hopping Spread Spectrum(FHSS)
GFSK, π/4DQPSK, 8DPSK
79
Adaptive Frequency Hopping systems
Portable production
100, 46 (manufacturer declare)
Blue test 3 (manufacturer declare)
Integral
0dBi
AC Adapter: Supply by SGS
Battery: DC3.7V 1500 mAh (Li-ion Rechargeable Battery)
AC 120V 60Hz
60cm (Unshielded)

Report No.: SZEM140200060301

Page: 5 of 96

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM140200060301

Page: 6 of 96

4.3 Test Environment

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	52 % RH	
Atmospheric Pressure:	1015 mbar	

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	
Adapter	Supply by SGS	Output: 5V = 1A	
iPod nano	Apple	A1446	

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663

Tel: +86 20 82155555 Fax: +86 20 82075059

Report No.: SZEM140200060301

Page: 7 of 96

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC (Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

• CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents.

Report No.: SZEM140200060301

Page: 8 of 96

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM140200060301

Page: 9 of 96

4.10 Equipment List

С	Conducted Emission							
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM- DD)	Calibration Interval		
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A		
EMC0118	Two-line v- netwok	R&S	ENV216	100359	2015-03- 03	1Y		
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2014-08- 31	1Y		
EMC2046	Artificial Mains Network (LISN)	AFJ Instruments	LT32C	S.N.32031120150	2015-03- 03	1Y		
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2015-03- 03	1Y		
EMC0107	Coaxial Cable	SGS	2m	N/A	2014-07- 25	2Y		
EMC0106	Voltage Probe	SGS	N/A	N/A	N/A	1Y		
EMC0120	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	20550	2014-08- 31	1Y		
EMC0121	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	20549	2014-08- 31	1Y		
EMC0122	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	20548	2014-08- 31	1Y		
EMC2047	CDN	Elektronik- Feinmechanik	L-801:AF2	2793	2014-11- 11	3Y		
EMC2048	CDN	Elektronik- Feinmechanik	L-801:M2/M3	2738	2014-11- 11	3Y		
EMC2062	6dB Attenuator	HP	8491A	24487	2015-01- 04	1Y		
EMC167	Conical metal housing	SGS-EMC	N/A	N/A	2016-02- 16	2Y		

Report No.: SZEM140200060301

Page: 10 of 96

R	E in Chamber					
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM- DD)	Calibration Interval
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2014-08-30	2Y
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2014-05-06	1Y
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	100236	2015-03-03	1Y
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2014-05-09	1Y
EMC2025	Trilog Broadband Antenna 30-3000MHz	SCHWARZBECK MESS- ELEKTRONIK	VULB 9163	9163-450	2016-08-31	3Y
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2016-08-31	3Y
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2014-06-02	2Y
EMC2026	Horn Antenna 1-18GHz	SCHWARZBECK MESS- ELEKTRONIK	BBHA 9120D	9120D-841	2016-08-31	3Y
EMC0518	Horn Antenna	Rohde & Schwarz	HF906	100096	2014-07-01	2Y
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2015-03-03	1Y
EMC2065	Amplifier	HP	8447F	N/A	2014-08-31	1Y
EMC2063	1-26GHz Pre Amplifier	Compliance Direction System Inc.	PAP-1G26- 48	6279.628	2014-07-29	1Y
EMC0075	310N Amplifier	Sonama	310N	272683	2015-03-03	1Y
EMC0523	Active Loop Antenna	EMCO	6502	42963	2014-04-07	2Y
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS- ELEKTRONI	BBHA 9170	9170-375	2014-06-01	3Y
EMC2069	2.4GHz filter	Micro-Tronics	BRM 50702	149	2014-06-05	1Y
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-04-27	2Y
EMC2041	Broad-Band Horn Antenna(14)15- 26.5(40)GHz	SCHWARZBECK MESS- ELEKTRONIK	BBHA 9170	9170-375	2014-06-11	3Y

Report No.: SZEM140200060301

Page: 11 of 96

	RF connected test						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Due date (YYYY-MM- DD)	Calibration Interval	
EMC0039	Temperature Chamber	GZ GongWen Co.Ltd.	GDJW-100	118	2014-08- 31	1Y	
EMC2022	DC Power Supply	KIKUSUI ELECTRONICS CORP.	PAN60-20A	HH000269	2014-05- 06	1Y	
EMC0007	DMM	Fluke	73	70671122	2014-09- 13	1Y	
EMC0006	DMM	Fluke	73	70681569	2014-09- 13	1Y	
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	N/A	N/A	
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-04- 27	2Y	
EMC0502	Biconical Antenna (Rx)	Rohde & Schwarz	HK116	100032	2014-08- 30	2Y	
EMC0503	Biconical Antenna (Tx)	Rohde & Schwarz	HK116	100033	2014-07- 01	2Y	
EMC0504	Log-Perd. Dipole Antenna (Rx)	Rohde & Schwarz	HL223	100039	2014-08- 30	2Y	
EMC0518	Horn Antenna (Rx)	Rohde & Schwarz	HF906	100096	2014-07- 01	2Y	
EMC0519	Bilog Type Antenna	Schaffner Chase	CBL6143	5070	2014-06- 02	2Y	
EMC0521	1-26.5GHz Pre Amplifier	Agilent	8449B	3008A01649	2015-03- 03	1Y	
EMC2063	1-26GHz Pre Amplifier	Compliance Direction System Inc.	PAP-1G26- 48	6279.628	2014-07- 29	1Y	
EMC0075	9KHz-1GHz Pre Amplifier	SONOMA INSTRUMENT Co.	310N	272683	2015-03- 03	1Y	
EMC0507	Antenna Mask (Tx)	HD-GmbH	AS620M	620/408	N/A	N/A	
EMC0508	Antenna Mask (Rx)	HD-GmbH	MA240	240/619	N/A	N/A	
EMC0509	Turntable	HD-GmbH	DT430	N/A	N/A	N/A	
EMC0510	Turntable & Antenna Mask Controller	HD-GmbH	HD100	N/A	N/A	N/A	
EMC0512	EMI Test Software	Rohde & Schwarz	ES-K1	N/A	N/A	N/A	
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2014-05- 06	1Y	
EMC0516	Signal Generator	Rohde & Schwarz	SMR20	100416	2014-05- 06	1Y	
EMC0032	Radio Communication Monitor	Rohde & Schwarz	CMS54	100137	2014-08- 31	1Y	
EMC0904	Power Meter	Rohde & Schwarz	NRVS	825770/074	2015-03- 03	1Y	

Report No.: SZEM140200060301

Page: 12 of 96

EMC0071	URV5-Z2 Insert. Unit	Rohde & Schwarz	URV5-Z2	100309	2015-03- 03	1Y
EMC0906	Dual Directional Coupler	Werlatone Inc.	C1795	6634	2014-08- 31	1Y
EMC2012	Power-Electronics Measurement System	Tektronix	TDS 744A	N/A	2015-03- 03	1Y
EMC0523	Active Loop Antenna	EMCO	6502	42963	2014-04- 07	2Y
EMC0069	Signal Analyzer (20Hz ~ 26.5Ghz	R&S	FSIQ26	100312	2015-03- 03	1Y
EMC2041	Broad-Band Horn Antenna(14)15- 26.5(40)GHz	SCHWARZBECK MESS-ELEKTRONI	BBHA 9170	9170-375	2014-06- 01	3Y
EMC0078	Temperature, & Humidity	Shanghai Meteorological Instrument factory Co., Ltd.	ZJ1-2B	709131	2014-09- 13	1Y

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140200060301

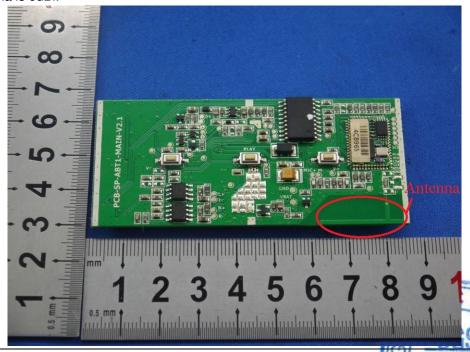
Page: 13 of 96

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

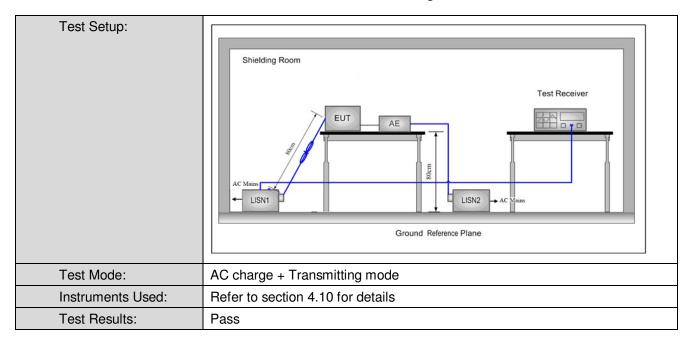
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM140200060301

Page: 14 of 96

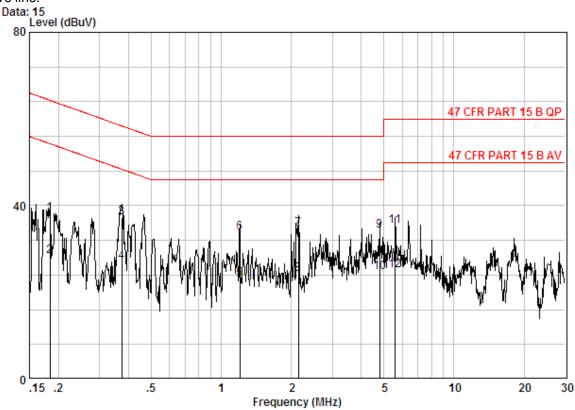

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150kHz to 30MHz			
Limit:	Fraguenov rango (MUz)	Limit (d	IBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm	n of the frequency.		•
Test Procedure:	 The mains terminal disturtions room. 	bance voltage test was	s conducted in a shie	elded
	 The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 			

Report No.: SZEM140200060301

Page: 15 of 96

Report No.: SZEM140200060301


Page: 16 of 96

Measurement Data

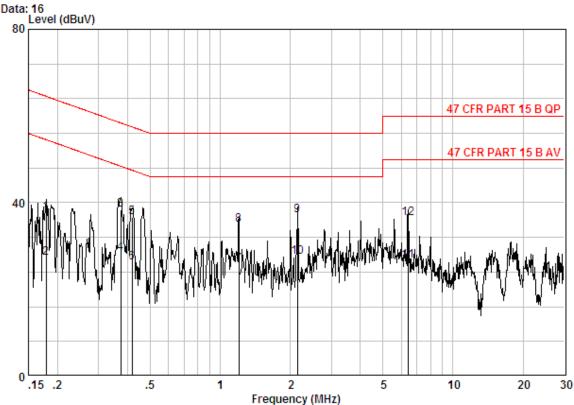
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 0603RF MODE : AC charge+TX


	Cable	LISN	Read		Limit	Over	
Freq	Loss	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB	dBuV	dBuV	dBuV	dB	
0.18346	0.02	9.70	28.52	38.24	64.33	-26.09	QP
0.18346	0.02	9.70	18.65	28.37	54.33	-25.96	Average
0.37314	0.01	9.78	27.44	37.23	58.43	-21.20	QP
0.37314	0.01	9.78	17.28	27.07	48.43	-21.37	Average
1.203	0.02	9.80	13.37	23.19	46.00	-22.81	Average
1.203	0.02	9.80	23.94	33.76	56.00	-22.24	QP
2.144	0.02	9.81	24.79	34.62	56.00	-21.38	QP
2.144	0.02	9.81	14.28	24.11	46.00	-21.89	Average
4.797	0.01	9.90	24.35	34.26	56.00	-21.74	QP
4.797	0.01	9.90	14.65	24.56	46.00	-21.44	Average
5.594	0.01	9.90	25.43	35.34	60.00	-24.66	QP
5.594	0.01	9.90	15.14	25.05	50.00	-24.95	Average
	Freq MHz 0.18346 0.18346 0.37314 0.37314 1.203 1.203 2.144 2.144 4.797 4.797 5.594	Cable Freq Loss MHz dB 0.18346 0.02 0.18346 0.02 0.37314 0.01 0.37314 0.01 1.203 0.02 1.203 0.02 2.144 0.02 2.144 0.02 4.797 0.01 4.797 0.01 5.594 0.01	Cable LISN Loss Factor MHz dB dB 0.18346 0.02 9.70 0.18346 0.02 9.70 0.37314 0.01 9.78 1.203 0.02 9.80 1.203 0.02 9.80 2.144 0.02 9.81 2.144 0.02 9.81 4.797 0.01 9.90 4.797 0.01 9.90 5.594 0.01 9.90	Cable LISN Read Loss Factor Level MHz dB dB dBuV 0.18346 0.02 9.70 28.52 0.18346 0.02 9.70 18.65 0.37314 0.01 9.78 27.44 0.37314 0.01 9.78 17.28 1.203 0.02 9.80 13.37 1.203 0.02 9.80 23.94 2.144 0.02 9.81 24.79 2.144 0.02 9.81 14.28 4.797 0.01 9.90 24.35 4.797 0.01 9.90 14.65 5.594 0.01 9.90 25.43	Cable LISN Read Level Level MHz dB dB dBuV dBuV 0.18346 0.02 9.70 28.52 38.24 0.18346 0.02 9.70 18.65 28.37 0.37314 0.01 9.78 27.44 37.23 0.37314 0.01 9.78 17.28 27.07 1.203 0.02 9.80 13.37 23.19 1.203 0.02 9.80 23.94 33.76 2.144 0.02 9.81 24.79 34.62 2.144 0.02 9.81 14.28 24.11 4.797 0.01 9.90 24.35 34.26 4.797 0.01 9.90 14.65 24.56 5.594 0.01 9.90 25.43 35.34	Cable LISN Read Limit Line MHz dB dB dBuV dBuV dBuV dBuV 0.18346 0.02 9.70 28.52 38.24 64.33 0.18346 0.02 9.70 18.65 28.37 54.33 0.37314 0.01 9.78 27.44 37.23 58.43 0.37314 0.01 9.78 17.28 27.07 48.43 1.203 0.02 9.80 13.37 23.19 46.00 1.203 0.02 9.80 23.94 33.76 56.00 2.144 0.02 9.81 24.79 34.62 56.00 2.144 0.02 9.81 14.28 24.11 46.00 4.797 0.01 9.90 24.35 34.26 56.00 4.797 0.01 9.90 25.43 35.34 60.00 5.594 0.01 9.90 25.43 35.34 60.00	Cable LISN Read Limit Over Level MHz dB dB dBuV dBuV dBuV dBuV dB dB dB dBuV dBuV dBuV dB dB

Report No.: SZEM140200060301

Page: 17 of 96

Neutral line:

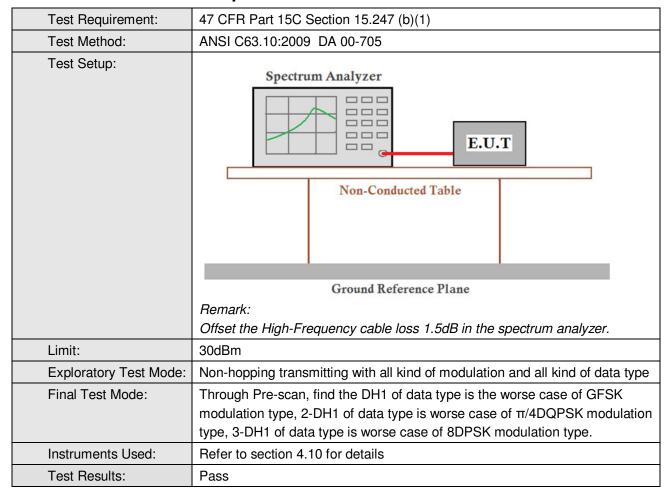
Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 0603RF MODE : AC charge+TX

		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17866	0.02	9.70	27.99	37.71	64.55	-26.83	QP
2	0.17866	0.02	9.70	17.63	27.35	54.55	-27.20	Average
3	0.37314	0.01	9.78	28.49	38.28	58.43	-20.15	QP
4	0.37314	0.01	9.78	18.65	28.44	48.43	-20.00	Average
5	0.41927	0.01	9.80	26.91	36.72	57.46	-20.74	QP
6	0.41927	0.01	9.80	16.34	26.15	47.46	-21.31	Average
7	1.203	0.02	9.80	15.82	25.64	46.00	-20.36	Average
8	1.203	0.02	9.80	25.08	34.90	56.00	-21.10	QP
9	2.144	0.02	9.81	27.24	37.07	56.00	-18.93	QP
10	2.144	0.02	9.81	17.62	27.45	46.00	-18.55	Average
11	6.420	0.01	9.97	16.65	26.63	50.00	-23.37	Average
12	6.420	0.01	9.97	26.42	36.40	60.00	-23.60	QP

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140200060301

Page: 18 of 96

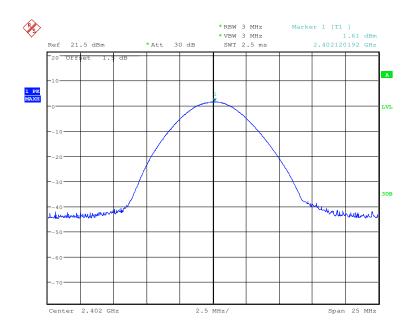
5.3 Conducted Peak Output Power

Report No.: SZEM140200060301

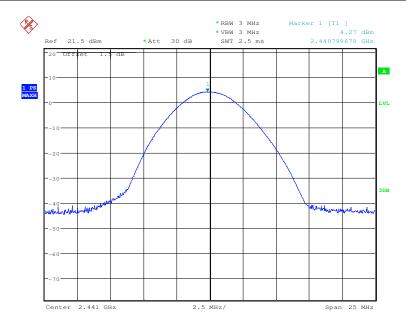
Page: 19 of 96

Measurement Data

WCasarcincin Data						
	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	1.61	30.00	Pass			
Middle	4.27	30.00	Pass			
Highest	3.92	30.00	Pass			
	π/4DQPSK m	node				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-0.07	30.00	Pass			
Middle	2.08	30.00	Pass			
Highest	1.78	30.00	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-0.06	30.00	Pass			
Middle	2.63	30.00	Pass			
Highest	2.35	30.00	Pass			

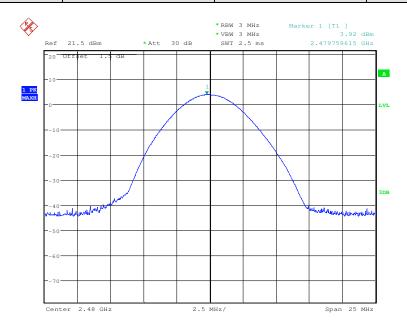


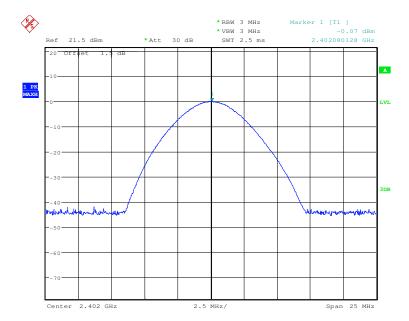
Report No.: SZEM140200060301


Page: 20 of 96

Test plot as follows:

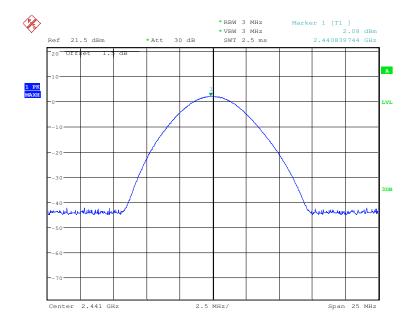
Test mode: GFSK Test channel: Lowest

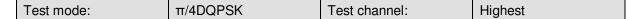


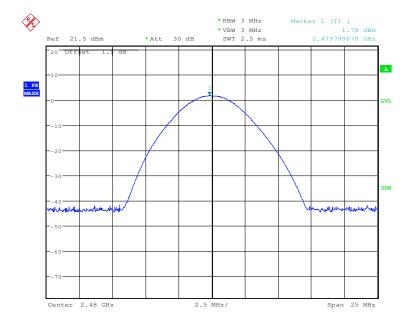

Report No.: SZEM140200060301

Page: 21 of 96

Test mode: GFSK Test channel: Highest


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

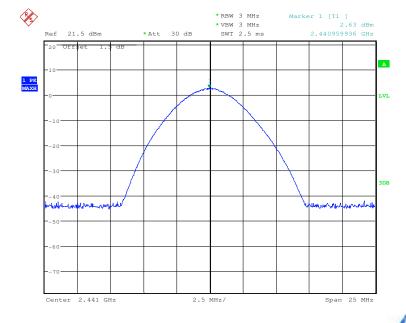



Report No.: SZEM140200060301

Page: 22 of 96

Test mode: $\pi/4DQPSK$ Test channel: Middle

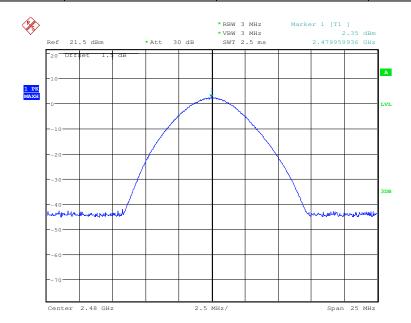
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140200060301

Page: 23 of 96

Test mode: 8DPSK Test channel: Lowest

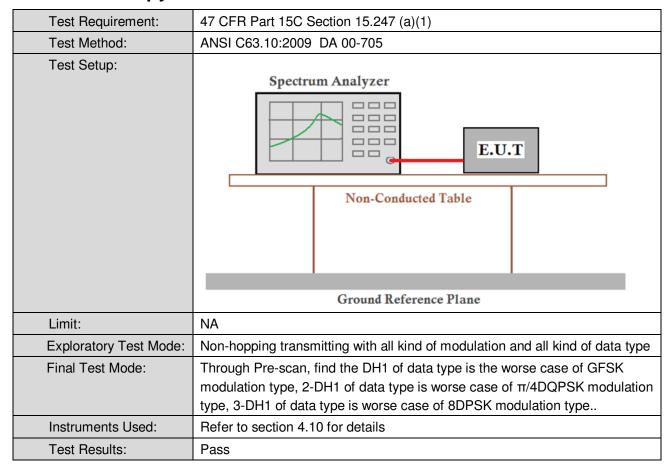
Test mode:	8DPSK	Test channel:	Middle
	051 011	1 001 0114111011	11114410



Report No.: SZEM140200060301

Page: 24 of 96

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM140200060301

Page: 25 of 96

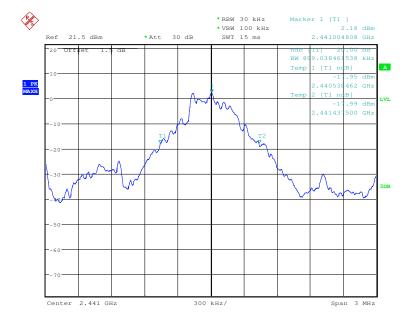
5.4 20dB Occupy Bandwidth

Measurement Data

Taskahannal	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	894.230769231	1206.730769	1216.346154	
Middle	899.038461538	1216.346154	1216.346154	
Highest	894.230769231	1216.346154	1221.153846	

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

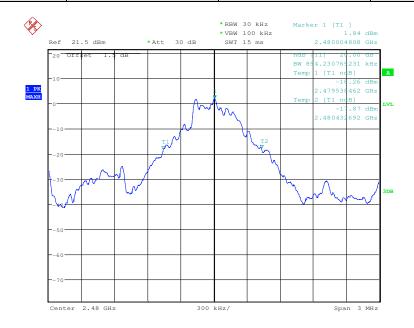
Report No.: SZEM140200060301

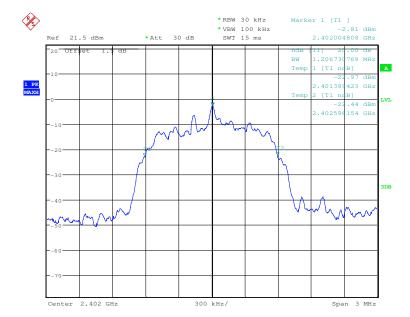

Page: 26 of 96

Test plot as follows:

Test mode: GFSK Test channel: Lowest

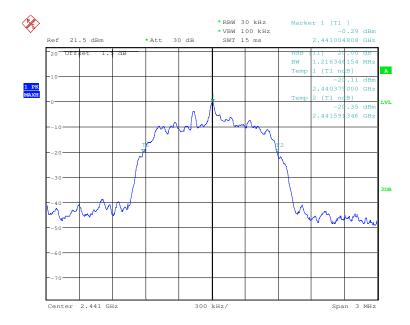
Test mode: GFSK Test channel: Middle



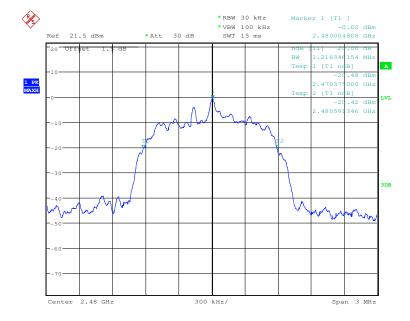

Report No.: SZEM140200060301

Page: 27 of 96

Test mode: GFSK Test channel: Highest

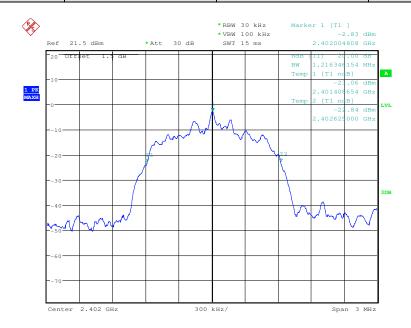


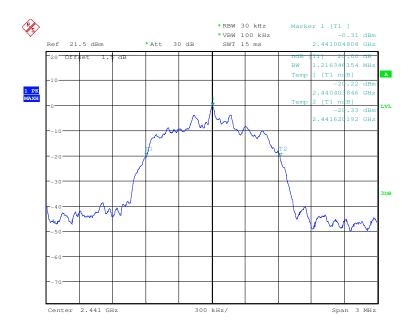



Report No.: SZEM140200060301

Page: 28 of 96

Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM140200060301

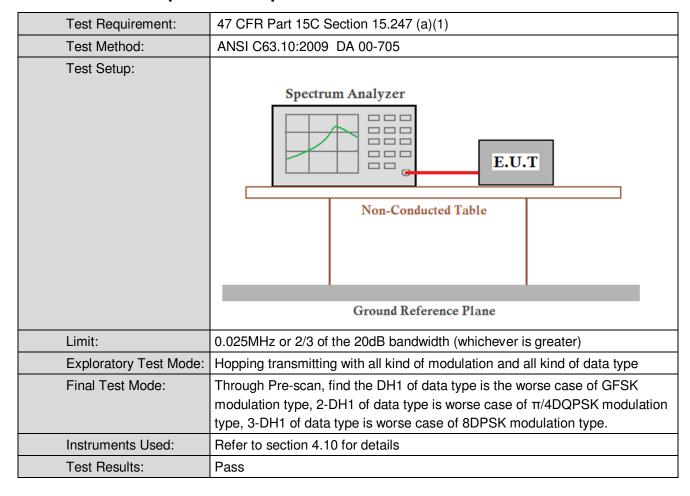
Page: 29 of 96

Test mode: 8DPSK Test channel: Lowest

Report No.: SZEM140200060301

Page: 30 of 96

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM140200060301

Page: 31 of 96

5.5 Carrier Frequencies Separation

Report No.: SZEM140200060301

Page: 32 of 96

Measurement Data

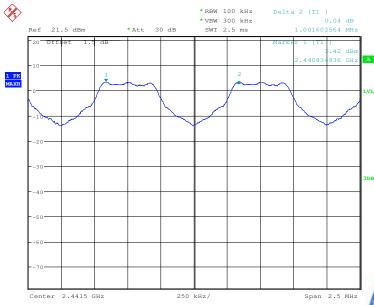
GFSK mode					
Test channel	Carrier Frequencies Separation (kHz) Limit (kHz)		Result		
Lowest	1006	≥814	Pass		
Middle	1002	≥814	Pass		
Highest	1002	≥814	Pass		
	π/4DQPSK n	node			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥814	Pass		
Middle	1002	≥814	Pass		
Highest	1002	≥814	Pass		
8DPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1002	≥814	Pass		
Middle	1006	≥814	Pass		
Highest	1002	≥814	Pass		

Note: According to section 5.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)
iviode	(worse case)	(Carrier Frequencies Separation)
GFSK	899.038461538	599
π/4DQPSK	1216.346154	811
8DPSK	1221.153846	814



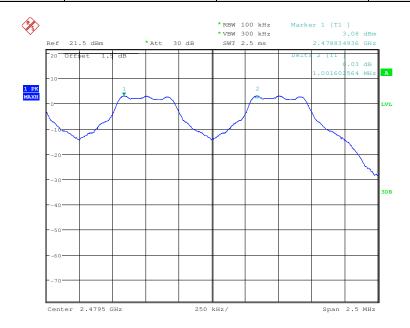
Report No.: SZEM140200060301

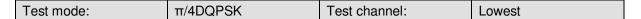

Page: 33 of 96

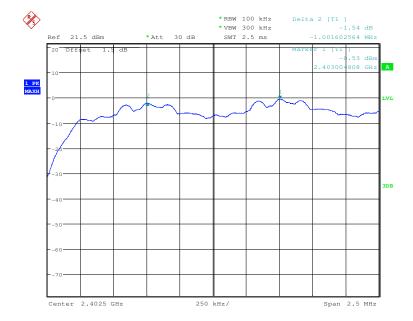
Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

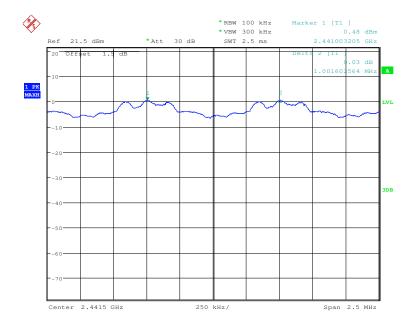


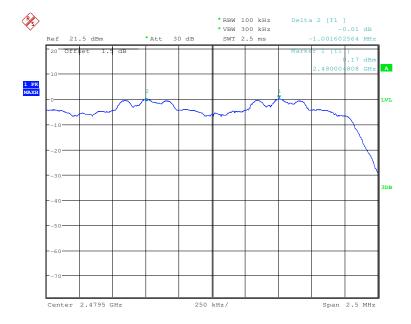



Report No.: SZEM140200060301

Page: 34 of 96

Test mode: GFSK Test channel: Highest

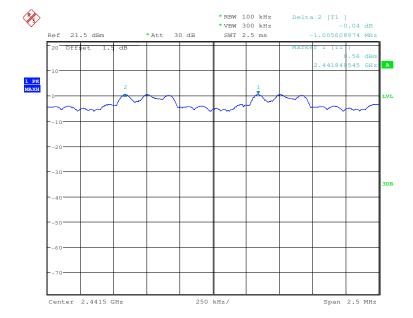

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140200060301

Page: 35 of 96

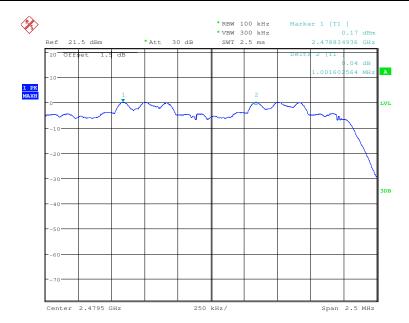
Test mode: $\pi/4DQPSK$ Test channel: Middle

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140200060301

Page: 36 of 96

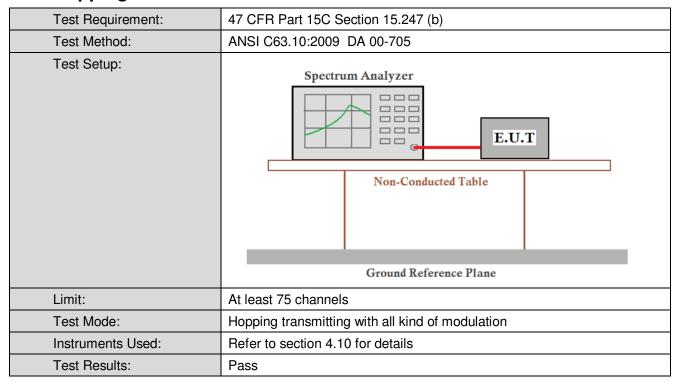
Test mode: 8DPSK Test channel: Lowest


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140200060301

Page: 37 of 96

Test mode: 8DPSK Test channel: Highest

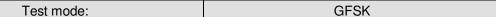


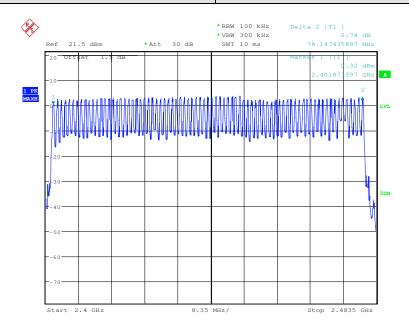
Report No.: SZEM140200060301

Page: 38 of 96

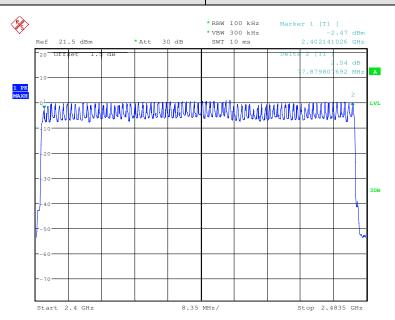
5.6 Hopping Channel Number

Measurement Data

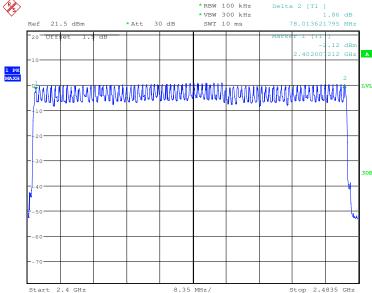

Mode	Hopping channel numbers	Limit
GFSK	79	≥75
π/4DQPSK	79	≥75
8DPSK	79	≥75




Report No.: SZEM140200060301

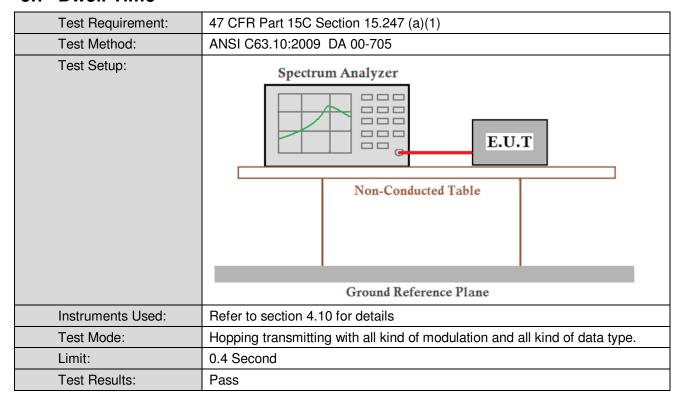

Page: 39 of 96

Test plot as follows



Report No.: SZEM140200060301

Page: 40 of 96



Report No.: SZEM140200060301

Page: 41 of 96

5.7 Dwell Time

Report No.: SZEM140200060301

Page: 42 of 96

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.12436	0.4
	DH3	0.26474	0.4
	DH5	0.30983	0.4
π/4DQPSK	2-DH1	0.12949	0.4
	2-DH3	0.26603	0.4
	2-DH5	0.18248	0.4
8DPSK	3-DH1	0.13205	0.4
	3-DH3	0.26603	0.4
	3-DH5	0.31068	0.4

Test Result:

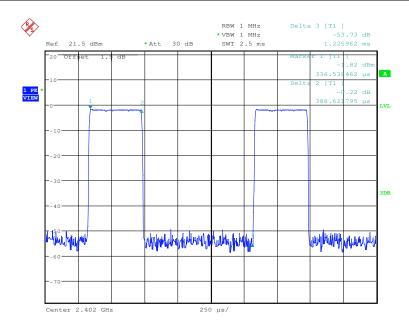
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

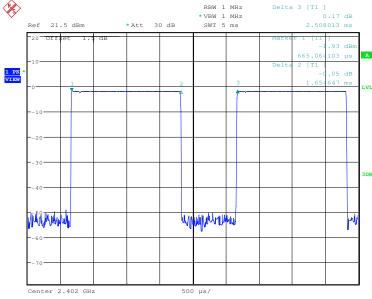
DH1 time slot=0.389(ms)*(1600/ (2*79))*31.6=124.36 ms

DH3 time slot=1.655(ms)*(1600/ (4*79))*31.6=264.74 ms

DH5 time slot=2.905(ms)*(1600/ (6*79))*31.6=309.83 ms

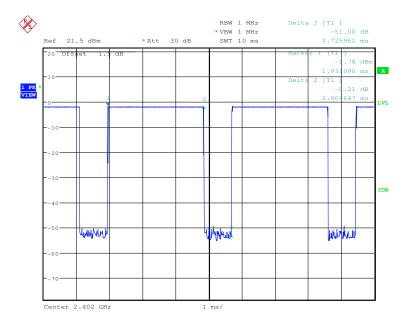


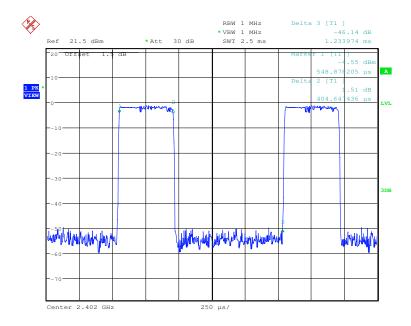
Report No.: SZEM140200060301


Page: 43 of 96

Test plot as follows:

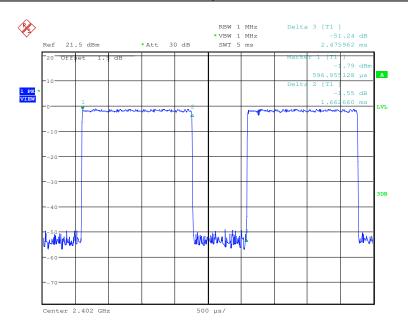
Test Packet: DH3

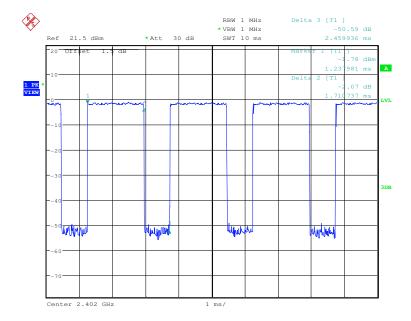



Report No.: SZEM140200060301

Page: 44 of 96

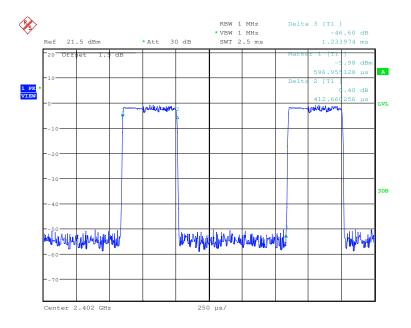
Test Packet: DH5

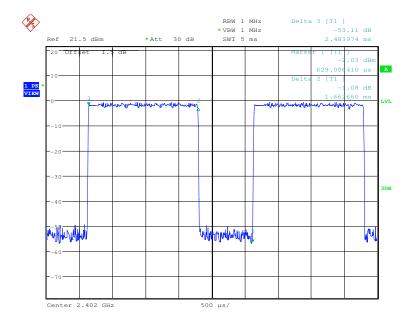

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140200060301

Page: 45 of 96

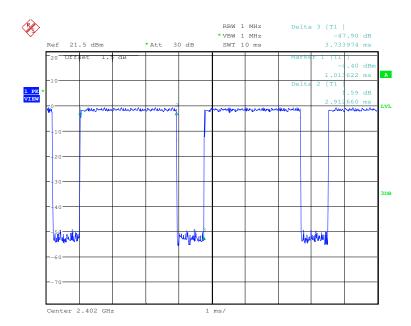
Test Packet: 2-DH3


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM140200060301

Page: 46 of 96

Test Packet: 3-DH1



Report No.: SZEM140200060301

Page: 47 of 96

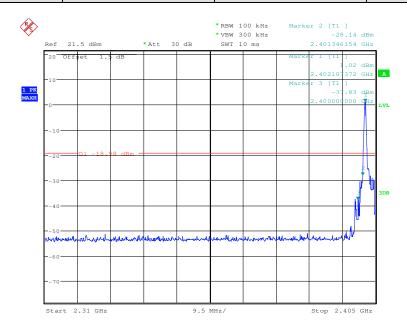
Test Packet: 3-DH5

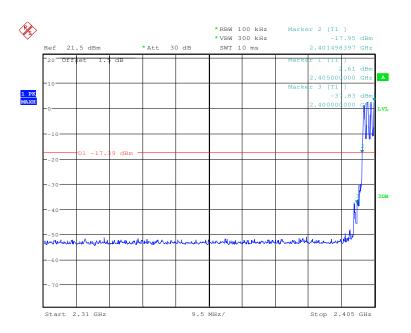
Report No.: SZEM140200060301

Page: 48 of 96

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 DA 00-705		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worse case of GFSK modulation type, 2-DH5 of data type is worse case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is worse case of 8DPSK modulation type.		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

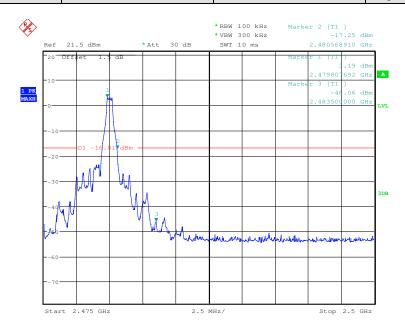


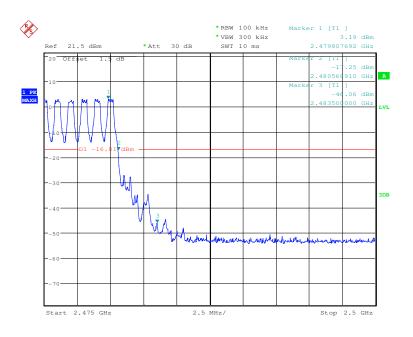

Report No.: SZEM140200060301

Page: 49 of 96

Test plot as follows:

Test mode: GFSK Test channel: Lowest

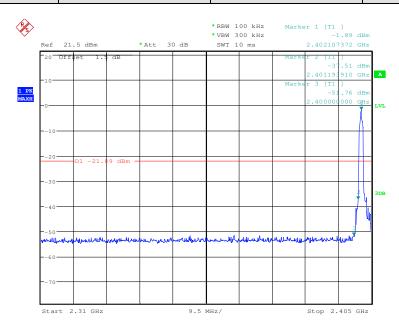


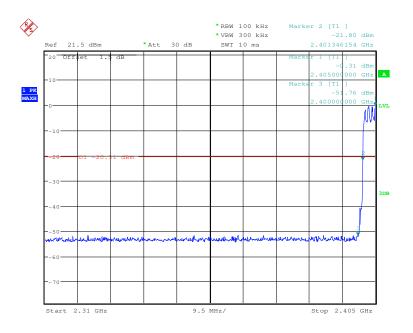


Report No.: SZEM140200060301

Page: 50 of 96

Test mode: GFSK Test channel: Highest

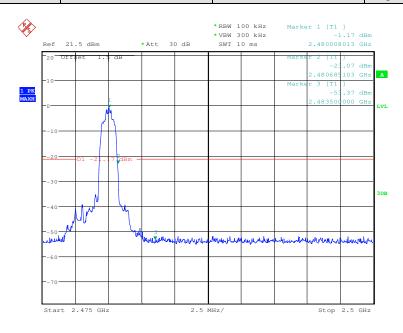


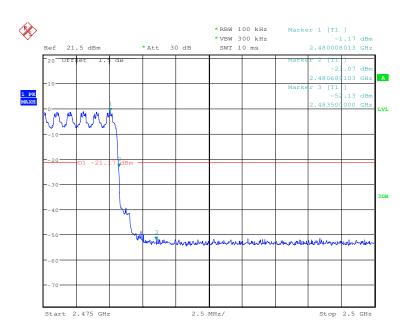


Report No.: SZEM140200060301

Page: 51 of 96

Test mode: $\pi/4DQPSK$ Test channel: Lowest

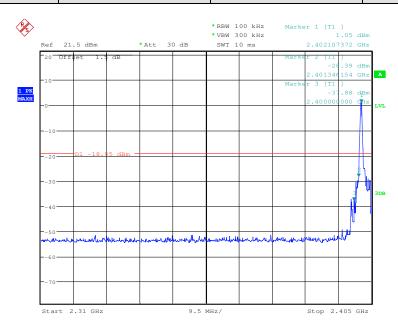


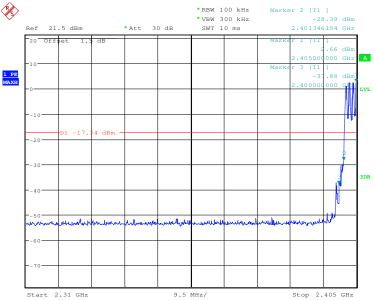


Report No.: SZEM140200060301

Page: 52 of 96

Test mode: $\pi/4DQPSK$ Test channel: Highest

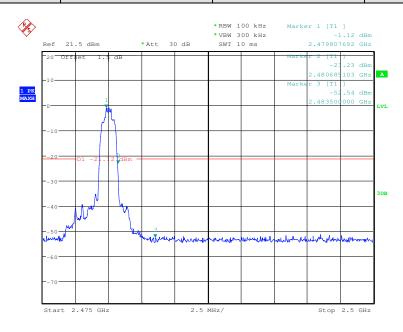


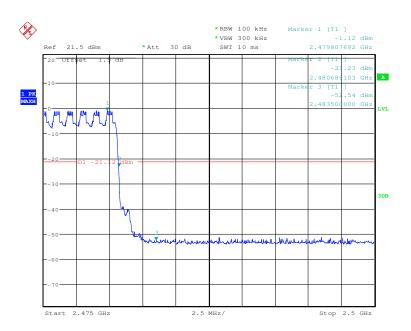


Report No.: SZEM140200060301

Page: 53 of 96

Test mode: 8DPSK Test channel: Lowest





Report No.: SZEM140200060301

Page: 54 of 96

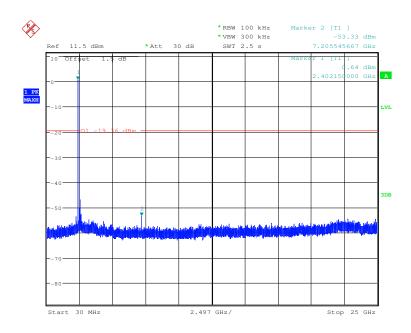
Test mode: 8DPSK Test channel: Highest

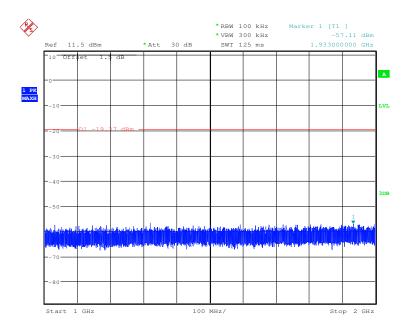
Report No.: SZEM140200060301

Page: 55 of 96

5.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 DA 00-705	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of π/4DQPSK modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type. Refer to section 4.10 for details	
Instruments Used:		
Test Results:	Pass	

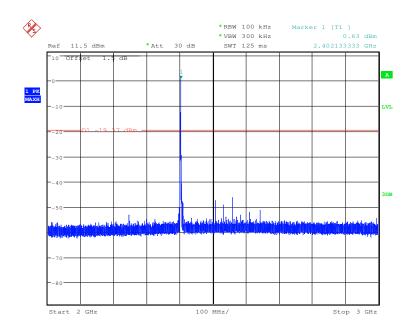


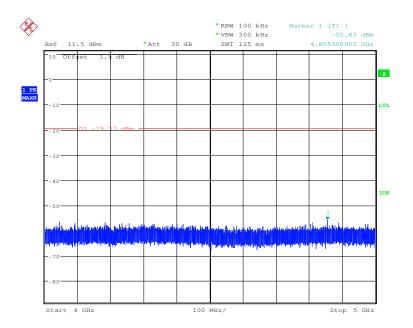

Report No.: SZEM140200060301

Page: 56 of 96

Test plot as follows:

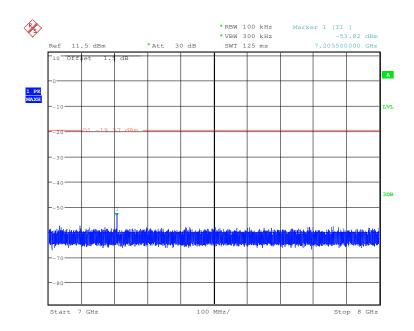
Test mode: GFSK Test channel: Lowest

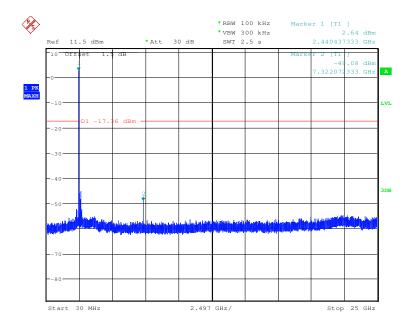




Report No.: SZEM140200060301

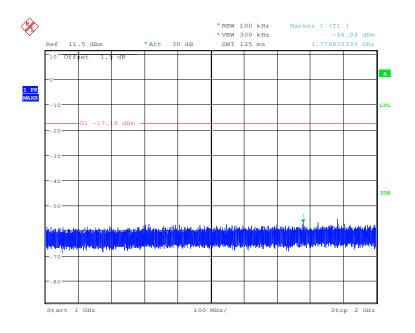
Page: 57 of 96

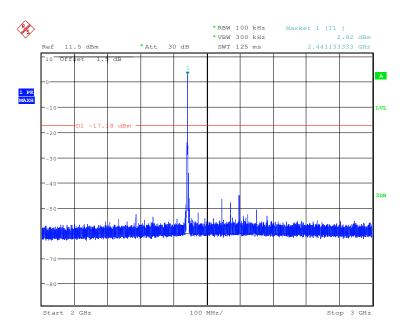




Report No.: SZEM140200060301

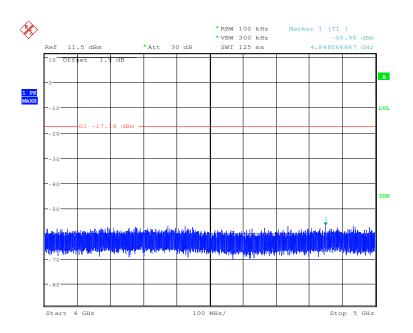
Page: 58 of 96

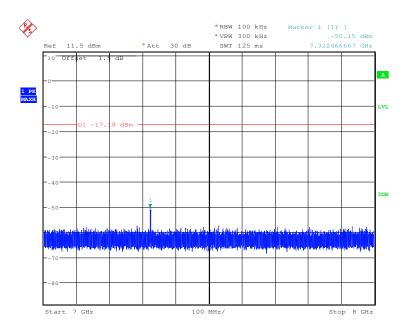

Test mode: GFSK Test channel: Middle



Report No.: SZEM140200060301

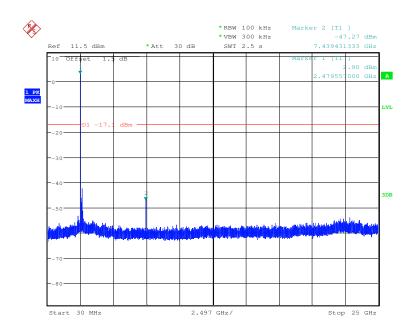
Page: 59 of 96

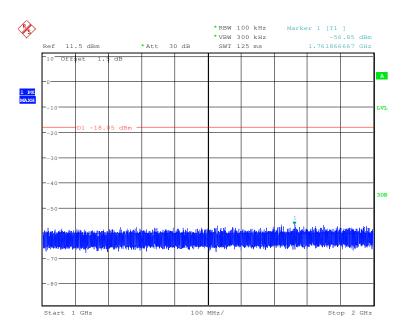




Report No.: SZEM140200060301

Page: 60 of 96

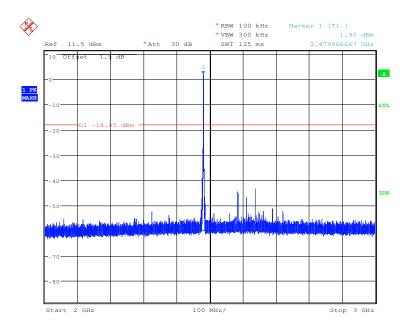


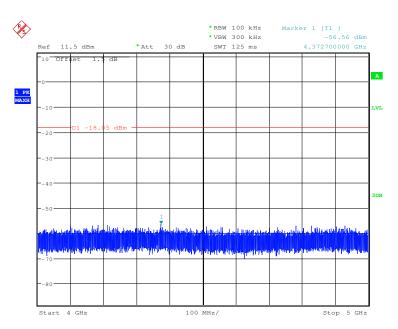


Report No.: SZEM140200060301

Page: 61 of 96

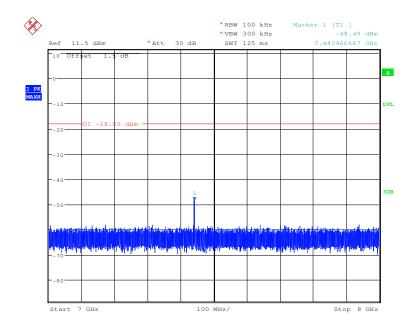
Test mode: GFSK Test channel: Highest



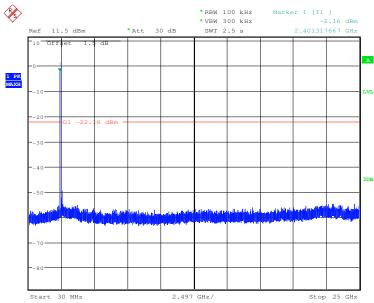


Report No.: SZEM140200060301

Page: 62 of 96



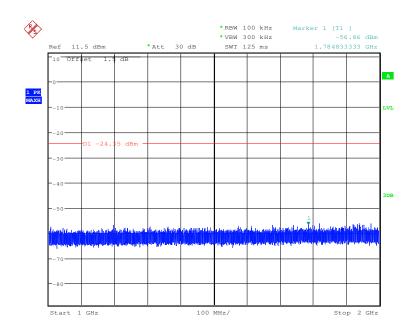
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms.e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

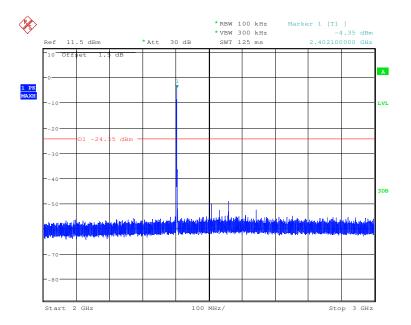


Report No.: SZEM140200060301

Page: 63 of 96

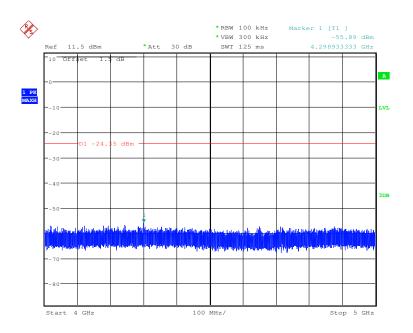
Test mode:	π/4DQPSK	Test channel:	Lowest	
TOST IIIOGO.		Tost Griatifici.	LOWCSI	

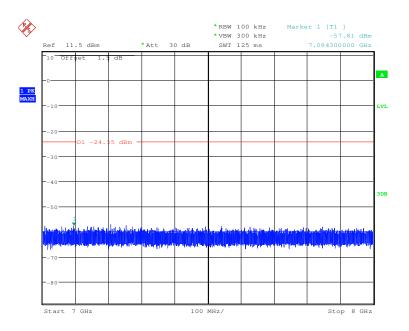




Report No.: SZEM140200060301

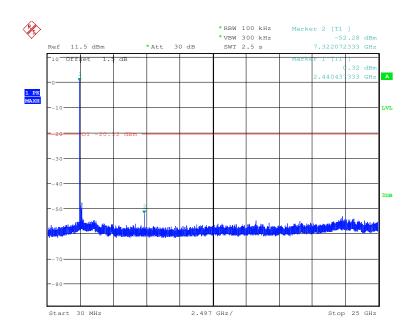
Page: 64 of 96

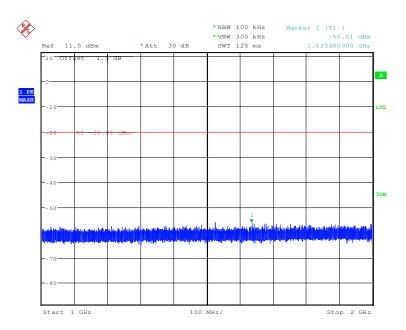




Report No.: SZEM140200060301

Page: 65 of 96

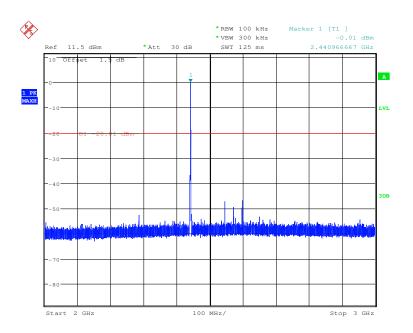


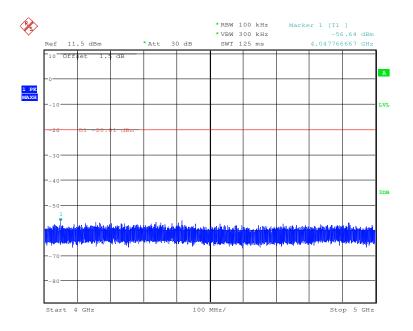


Report No.: SZEM140200060301

Page: 66 of 96

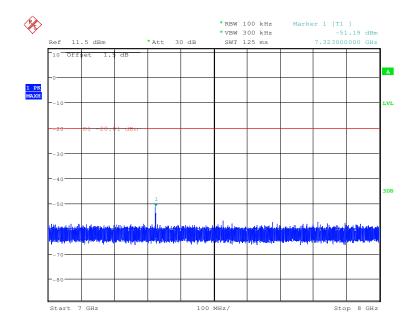
Test mode: π/4DQPSK Test channel: Middle

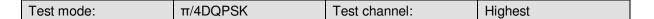


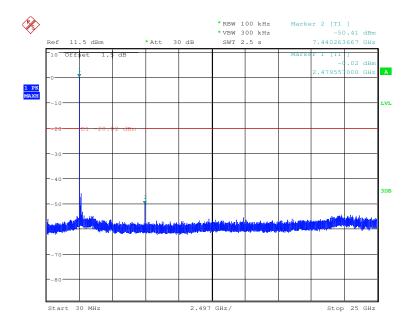

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM140200060301

Page: 67 of 96

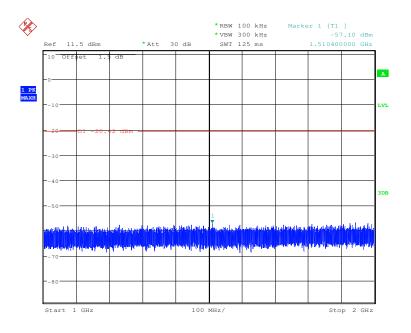


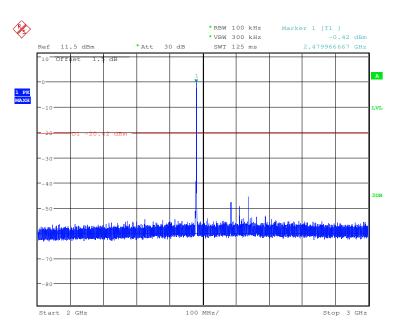




Report No.: SZEM140200060301

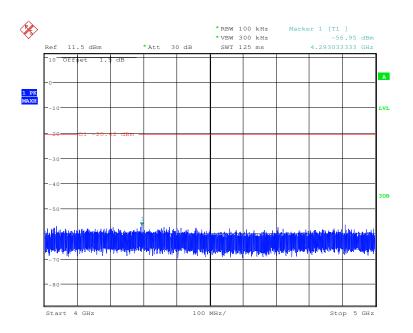
Page: 68 of 96

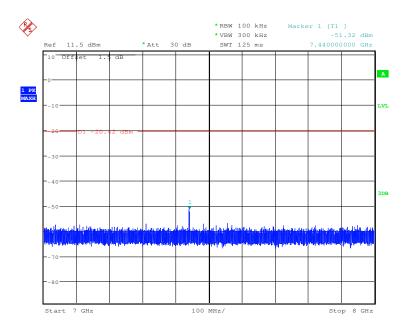




Report No.: SZEM140200060301

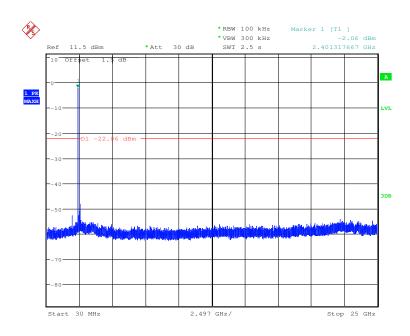
Page: 69 of 96

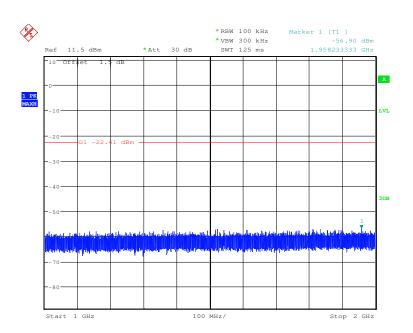




Report No.: SZEM140200060301

Page: 70 of 96

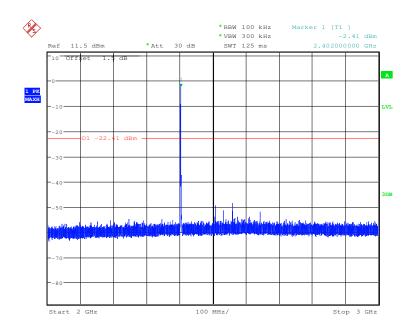


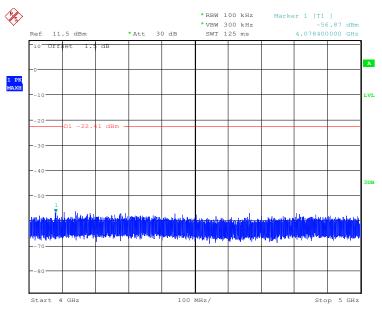


Report No.: SZEM140200060301

Page: 71 of 96

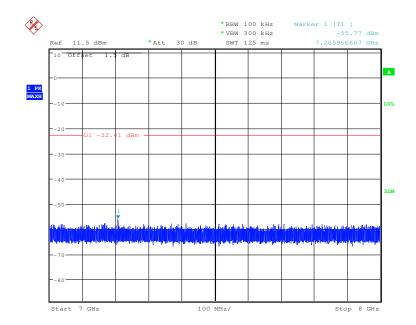
Test mode: 8DPSK Test channel: Lowest

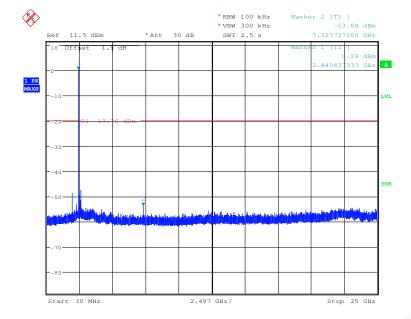


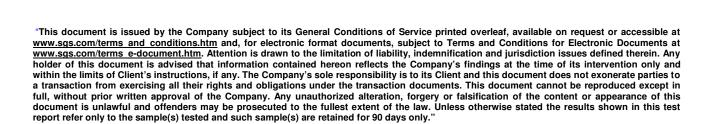


Report No.: SZEM140200060301

Page: 72 of 96

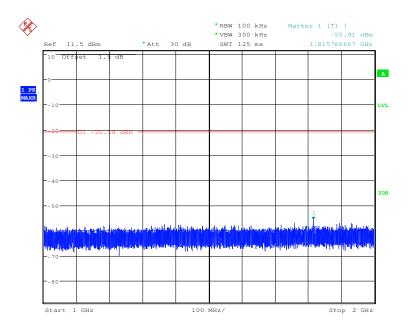


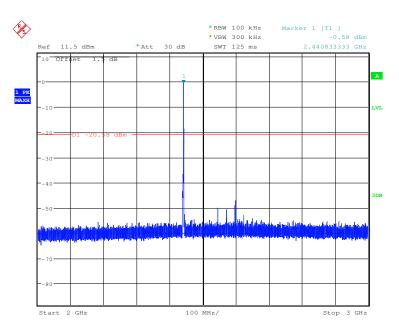



Report No.: SZEM140200060301

Page: 73 of 96

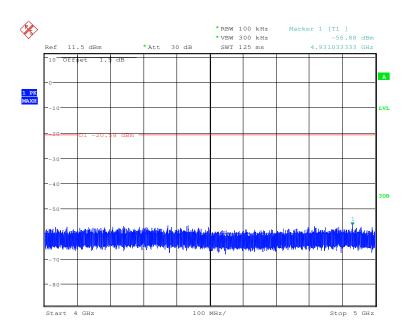
Test mode:	8DPSK	Test channel:	Middle
	02. 0		

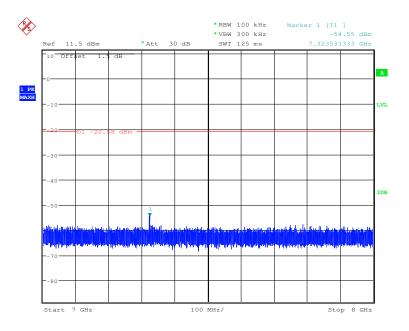




Report No.: SZEM140200060301

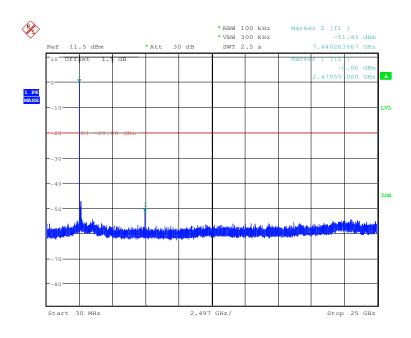
Page: 74 of 96

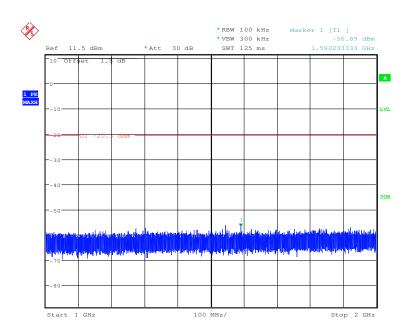




Report No.: SZEM140200060301

Page: 75 of 96

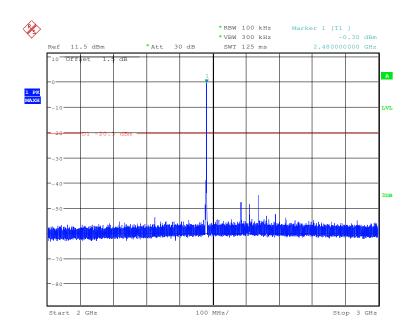


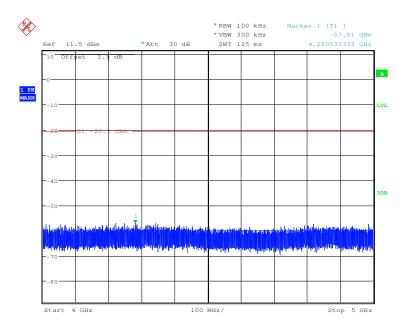


Report No.: SZEM140200060301

Page: 76 of 96

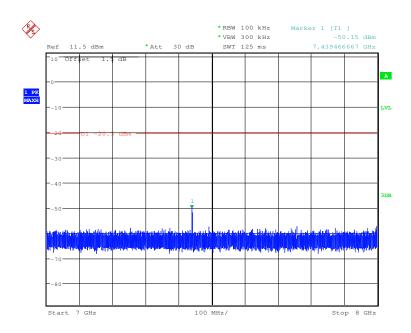
Test mode: 8DPSK Test channel: Highest





Report No.: SZEM140200060301

Page: 77 of 96



Report No.: SZEM140200060301

Page: 78 of 96

Remark:

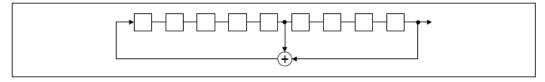
Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report.

Report No.: SZEM140200060301

Page: 79 of 96

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

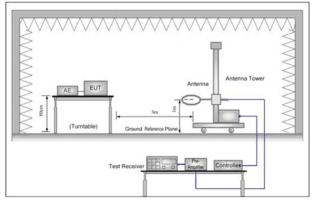
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM140200060301

Page: 80 of 96

5.11 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Secti	17 CFR Part 15C Section 15.209 and 15.205							
Test Method:	NSI C63.10: 2009 DA 00-705								
Test Site:	Measurement Distance	easurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Frequency Detector RBW VBW Remark							
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	z 3MHz	Peak			
	Above Tariz		Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxim pment under to	ium perm est. This p	itted average	emission limit			

Report No.: SZEM140200060301

Page: 81 of 96

Test Setup:

Antenna Tower

Antenna Tower

Antenna Tower

(Turntable)

Ground Reference Plane

Test Receiver

Amusikae

Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

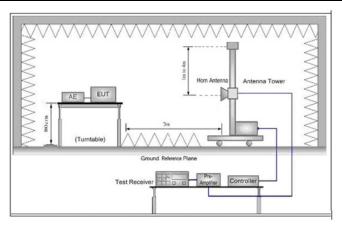


Figure 3. Above 1 GHz

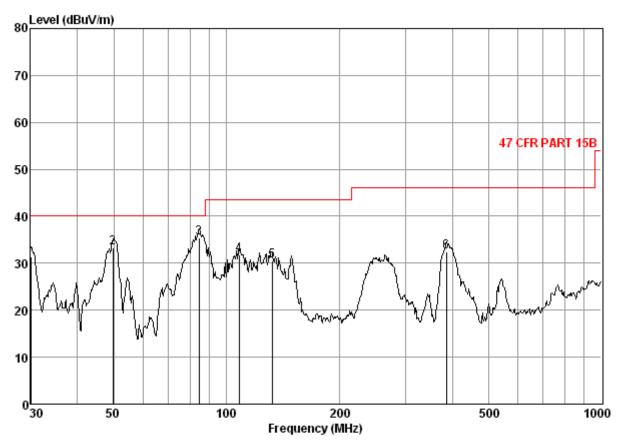
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM140200060301

Page: 82 of 96

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	Transmitting mode, AC Charge +Transmitting mode
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type
	Pretest the EUT at Transmitting mode and AC Charge +Transmitting mode, found the AC Charge +Transmitting mode which it is worse case Only the worst case is recorded in the report.
	,
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM140200060301

Page: 83 of 96

5.11.1 Radiated Emission below 1GHz

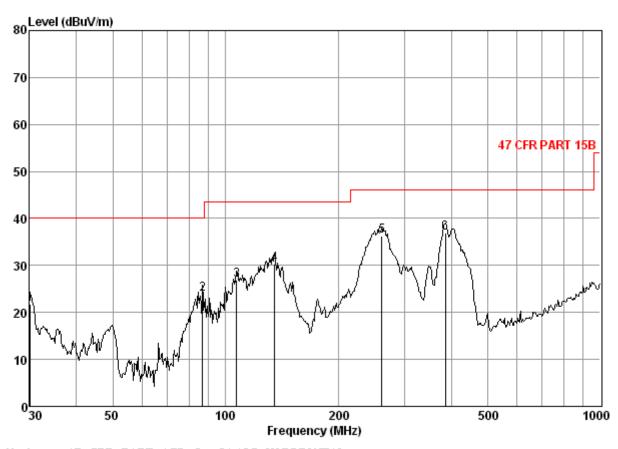
30MHz~1GHz (QP)		
Test mode:	AC Charge + Transmitting mode	Vertical

Condition: 47 CFR PART 15B 3m 3142C VERTICAL

Job No. : 0603RF

Mode : AC charge+TX

	Freq	CableAntenna l Loss Factor l		Preamp Kead Factor Level			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5 6	30.00 49.71 84.41 107.89 132.22 386.63	1.10	5. 82 7. 28 8. 25		52.31 55.66 50.35 47.99	33. 23 35. 36 31. 70 30. 52	40.00 43.50 43.50	



Report No.: SZEM140200060301

Page: 84 of 96

Test mode: AC Charge + Transmitting mode Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

Tob No. : 0603RF

Mode : AC charge+TX

	Ca Freq I			eamp R ctor Le			t Over e Limit
	MHz	dB —	dB/m —	dB d	BuV dBu	V/m dBuV/	m dB
2 3 3 10 4 13 5 20	86.81 1 07.13 1 35.03 1 61.06 1	l.10 l.22 l.29 l.73	7.17 27 8.30 26 9.00 26	7.22 43 7.15 45 5.98 47 5.50 51	.62 26.	83 40.0 86 43.5 33 43.5 20 46.0	0 -16.64

Report No.: SZEM140200060301

Page: 85 of 96

5.11.2 Transmitter Emission above 1GHz

Worse case i	mode:	GFSK(DH5)	Test	channel:	Lowest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2987.923	5.05	33.38	40.30	44.31	42.44	74	-31.56	Vertical
3709.691	6.05	33.45	40.83	44.41	43.08	74	-30.92	Vertical
4804.000	7.44	34.70	41.63	50.85	51.36	74	-22.64	Vertical
7206.000	8.72	35.88	39.87	44.73	49.46	74	-24.54	Vertical
9608.000	9.68	37.30	37.80	41.38	50.56	74	-23.44	Vertical
12178.980	11.36	39.09	38.35	40.22	52.32	74	-21.68	Vertical
2935.153	5.01	33.31	40.26	44.93	42.99	74	-31.01	Horizontal
3672.110	6.00	33.41	40.80	47.01	45.62	74	-28.38	Horizontal
4804.000	7.44	34.70	41.63	52.12	52.63	74	-21.37	Horizontal
7206.000	8.72	35.88	39.87	44.28	49.01	74	-24.99	Horizontal
9608.000	9.68	37.30	37.80	41.56	50.74	74	-23.26	Horizontal
12086.330	11.32	38.99	38.31	41.17	53.17	74	-20.83	Horizontal

Worse case	mode:	GFSK(DH5) Test	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2957.654	5.02	33.33	40.27	45.04	43.12	74	-30.88	Vertical
3625.669	5.93	33.34	40.76	45.57	44.08	74	-29.92	Vertical
4882.000	7.48	34.59	41.68	51.81	52.20	74	-21.80	Vertical
7323.000	8.87	35.93	39.77	43.78	48.81	74	-25.19	Vertical
9764.000	9.74	37.48	37.66	41.22	50.78	74	-23.22	Vertical
12086.330	11.32	38.99	38.31	40.76	52.76	74	-21.24	Vertical
2995.538	5.05	33.38	40.30	44.76	42.89	74	-31.11	Horizontal
3776.385	6.16	33.53	40.87	45.15	43.97	74	-30.03	Horizontal
4882.000	7.48	34.59	41.68	51.63	52.02	74	-21.98	Horizontal
7323.000	8.87	35.93	39.77	44.14	49.17	74	-24.83	Horizontal
9764.000	9.74	37.48	37.66	41.03	50.59	74	-23.41	Horizontal
12055.600	11.31	38.95	38.30	40.84	52.80	74	-21.20	Horizontal

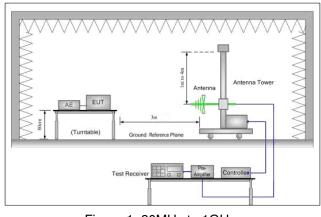
Report No.: SZEM140200060301

Page: 86 of 96

Worse case	mode:	GFSK(DH5) Tes	t channel:	Highest	Rem	Remark:	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3057.166	5.14	33.38	40.34	43.96	42.14	74	-31.86	Vertical
4107.316	6.59	34.13	41.12	45.42	45.02	74	-28.98	Vertical
4960.000	7.53	34.46	41.74	46.58	46.83	74	-27.17	Vertical
7440.000	9.01	35.98	39.67	43.48	48.80	74	-25.20	Vertical
9920.000	9.81	37.63	37.53	40.21	50.12	74	-23.88	Vertical
12461.220	11.47	39.37	38.47	40.28	52.65	74	-21.35	Vertical
3176.155	5.30	33.33	40.44	43.20	41.39	74	-32.61	Horizontal
3738.129	6.11	33.49	40.84	44.16	42.92	74	-31.08	Horizontal
4960.000	7.53	34.46	41.74	50.69	50.94	74	-23.06	Horizontal
7440.000	9.01	35.98	39.67	42.88	48.20	74	-25.80	Horizontal
9920.000	9.81	37.63	37.53	40.25	50.16	74	-23.84	Horizontal
12055.600	11.31	38.95	38.30	40.34	52.30	74	-21.70	Horizontal

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM140200060301

Page: 87 of 96

5.12 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2009 DA 00-705								
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 10Uz	54.0	Average Value						
	Above IGHZ	Above 1GHz 74.0 Peak Value							
Test Setup:									

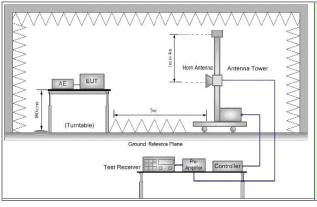


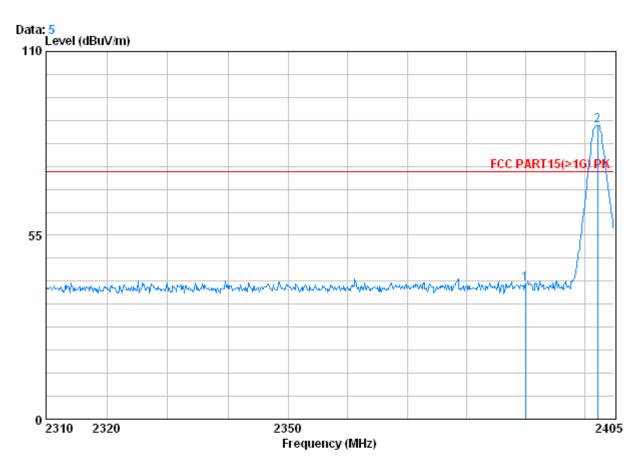
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM140200060301

Page: 88 of 96

	<u>, </u>
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the
	transmit frequency to show compliance. Also measure any
	emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis
	positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type.
	Transmitting mode,AC Charge +Transmitting mode
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worse case of GFSK
Filial Test Wode.	modulation type.
	Pretest the EUT at Transmitting mode and AC Charge +Transmitting
	mode, found the AC Charge +Transmitting mode which it is worse case.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass



Report No.: SZEM140200060301

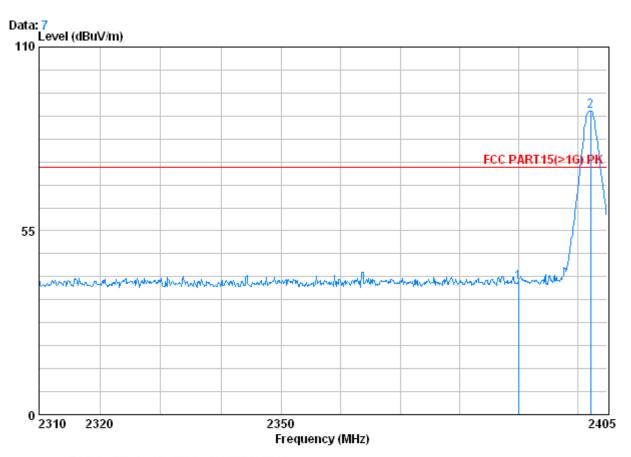
Page: 89 of 96

Test plot as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 0603RF Mode : 2402


1046	. 2402	Freq			Preamp Factor	Read Level		Limit Line	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	X	2390.000 2402.245			39.85 39.86				

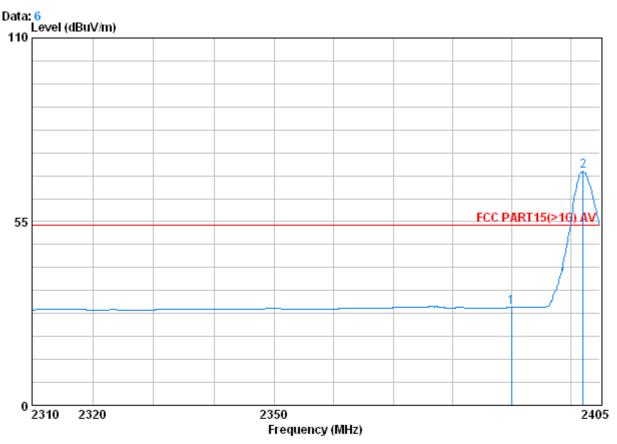
Report No.: SZEM140200060301

Page: 90 of 96

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 0603RF Mode : 2402


	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.245			39.85 39.86				

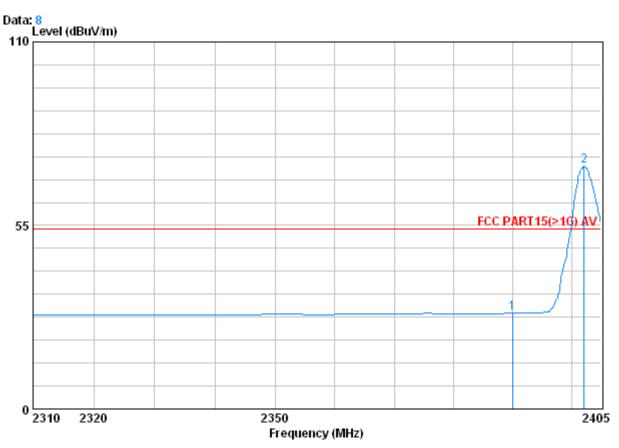
Report No.: SZEM140200060301

Page: 91 of 96

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Vertical

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 0603RF Mode : 2402


.040	. 2 102	Freq			Preamp Factor			Limit Line	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3	X	2390.000 2402.150			39.85 39.86				

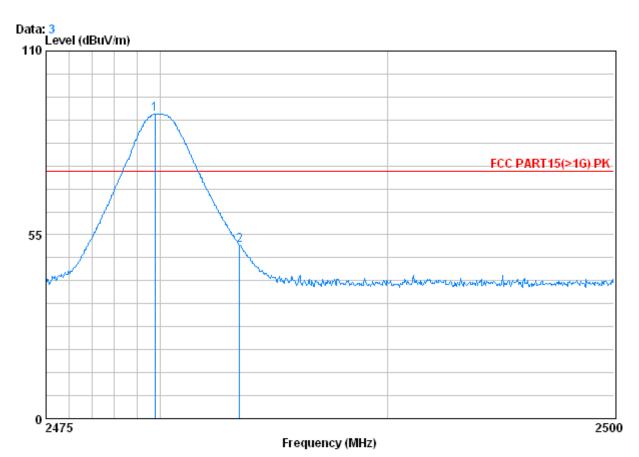
Report No.: SZEM140200060301

Page: 92 of 96

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Horizontal

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 0603RF Mode : 2402


	Freq			Preamp Factor			Limit Line	Over Limit	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 @	2390.000 2402.150			39.85 39.86					

Report No.: SZEM140200060301

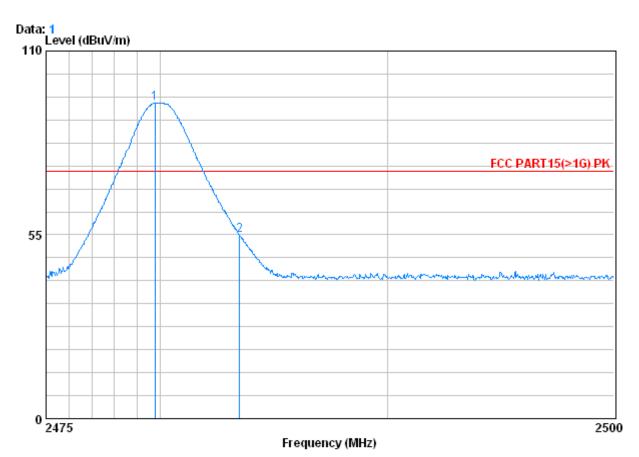
Page: 93 of 96

GFSK (DH5) Test channel: Peak Vertical Worse case mode: Highest Remark:

: FCC PART15(>1G) PK 3m VERTICAL Condition

Job No. :0603RF : 2480 Mode

		Freq			Preamp Factor				Over Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X	:	2479.775 2483.500			39.92 39.92				17.10 -22.13



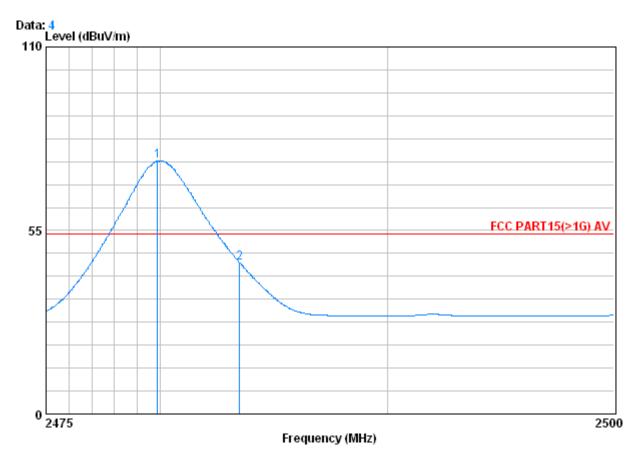
Report No.: SZEM140200060301

Page: 94 of 96

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Horizontal

Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 0603RF Mode : 2480


1040	. 2-00	Freq			Preamp Factor			Limit Line	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 (9	2479.775 2483.500			39.92 39.92				

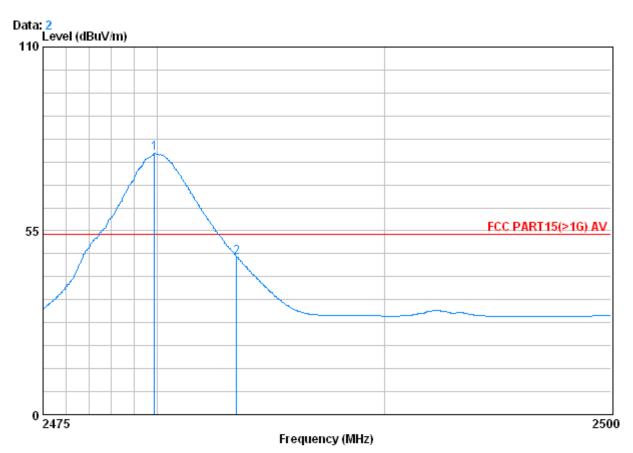
Report No.: SZEM140200060301

Page: 95 of 96

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Vertical

Condition : FCC PART15(>1G) AV 3m VERTICAL

Job No. : 0603RF Mode : 2480


	Freq	CableAntenna Pr Loss Factor Fa		•			Limit Line		
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 0	2479.875 2483.500						54.00 54.00		

Report No.: SZEM140200060301

Page: 96 of 96

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Horizontal

Condition : FCC PART15(>1G) AV 3m HORIZONTAL

Job No. : 0603RF Mode : 2480

	Freq			Preamp Factor	Read Level		Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 0 2	2479.875 2483.500			39.92 39.92				

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."