

TEST REPORT

.....

APPLICANT	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
PRODUCT NAME	:	Mobile Phone
MODEL NAME	:	CPH2641, CPH2669, CPH3669
BRAND NAME	:	OPPO
FCC ID	:	R9C-OP23318
STANDARD(S)	:	47 CFR Part 15 Subpart C
RECEIPT DATE	:	2024-05-07
TEST DATE	:	2024-05-11 to 2024-05-30
ISSUE DATE	:	2024-06-06

Edited by:

Yong Mi

Http://www.morlab.cn

Peng Mi (Rapporteur)

Approved by: -

hen Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525

DIRECTORY

1. S	Summary of Test Result ·······4
1.1.	Testing Applied Standards5
1.2.	Test Equipment List ······6
1.3.	Measurement Uncertainty8
1.4.	Testing Laboratory
2. G	Seneral Description ······9
2.1.	Information of Applicant and Manufacturer ······9
2.2.	Information of EUT······9
2.3.	Channel List of EUT ·······11
2.4.	Test Configuration of EUT ······12
	Test Conditions12
2.6.	Test Setup Layout Diagram ······12
3. T	est Results ·······15
3.1.	Antenna Requirement ······15
3.2.	Hopping Mechanism ······15
3.3.	Number of Hopping Frequency 16
3.4.	Duty Cycle of Test Signal17
3.5.	Maximum Peak Conducted Output Power ······18
3.6.	Maximum Average Conducted Output Power ······19
3.7.	20 dB Bandwidth ······20
3.8.	Carried Frequency Separation21
3.9.	Time of Occupancy (Dwell time)22
3.10.	Conducted Spurious Emissions and Band Edge23
3.11.	Conducted Emission ······24
3.12.	Restricted Frequency Bands25
3.13.	Radiated Emission

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa

Fax: 86-755-36698525

E-mail: service@morlab.cn

Http://www.morlab.cn

Change History				
Version	Date	Reason for change		
1.0	2024-06-06	First edition		

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.247(a) 15.247(h)	Hopping Mechanism	N/A	N/A	PASS	No deviation
3	15.247(a)	Number of Hopping Frequency	May 13, 2024	He Yuyang	PASS	No deviation
4	ANSI C63.10	Duty Cycle	May 13, 2024	He Yuyang	PASS	No deviation
5	15.247(b)	Maximum Peak Conducted Output Power	May 13, 2024	He Yuyang	PASS	No deviation
6	15.247(b)	Maximum Average Conducted Output Power	May 13, 2024	He Yuyang	PASS	No deviation
7	15.247(a)	20dB Bandwidth	May 13, 2024	He Yuyang	PASS	No deviation
8	15.247(a)	Carrier Frequency Separation	May 13, 2024	He Yuyang	PASS	No deviation
9	15.247(a)	Time of Occupancy (Dwell time)	May 13, 2024	He Yuyang	PASS	No deviation
10	15.247(d)	Conducted Spurious Emission	May 13, 2024	He Yuyang	PASS	No deviation
11	15.207	Conducted Emission	May 22 to 23, 2024	Wang Deyong	PASS	No deviation
12	15.247(d)	Restricted Frequency Bands	May 21 to 30, 2024	Li Hanbin	PASS	No deviation
13	15.209,	Radiated	May 29 to 30,	Li Hanbin	PASS	No deviation

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

Page 4 of 111

15.247(d) Emission 2024

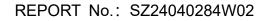
Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013, KDB 558074 D01 v05r02 and DA 00-075.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 3: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:


• 47 CFR Part 15 Subpart C Radio Frequency Devices

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1.2. Test Equipment List

1.2.1 Conducted Test Equipment

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal	MY53470836	N9010A	Agilent	2024.02.19	2025.02.18
Analyzer					
RF Cable	CB01	RF01	Morlab	N/A	N/A
(30MHz-26GHz)	CBUT	NFU I	IVIOLIAD	IN/A	IN/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector		RF03	HUBER-		NI/A
SMA Connector	CN01	RFU3	SUHNER	N/A	N/A

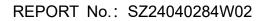
1.2.2 Conducted Emission Test Equipment

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2024.01.25	2025.01.24
LISN	8127449	NSLK 8127	Schwarzbeck	2024.02.02	2025.02.01
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561-F	Schwarzbeck	2023.06.27	2024.06.26
RF Coaxial Cable (DC-100MHz)	BNC	MRE04	Qualwave	N/A	N/A

1.2.3 List of Software Used

Description	Manufacturer	Software Version
Test System	MaiWei	2.0.0.0
Morlab EMCR	Morlab	V1.2
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

1.2.4 Radiated Test Equipment


Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2023.06.21	2024.06.20
Test Antenna - Bi- Log	9163-519	VULB 9163	Schwarzbeck	2023.07.01	2024.06.30
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2023.06.26	2024.06.25
Test Antenna – Horn	01774	BBHA 9120D	Schwarzbeck	2023.07.01	2024.06.30
Test Antenna – Horn	BBHA9170 #773	BBHA9170	Schwarzbeck	2023.07.01	2024.06.30
Preamplifier (10MHz-6GHz)	46732	S10M100L38 02	LUCIX CORP.	2023.06.27	2024.06.26
Preamplifier (2GHz-18GHz)	61171/61172	S020180L32 03	LUCIX CORP.	2023.06.27	2024.06.26
Preamplifier (18GHz-40GHz)	DS77209	DCLNA0118- 40C-S	Decentest	2023.07.04	2024.07.03
RF Coaxial Cable (DC-18GHz)	MRE001	PE330	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-18GHz)	MRE002	CLU18	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-18GHz)	MRE003	CLU18	Pasternack	2023.06.27	2024.06.26
RF Coaxial Cable (DC-40GHz)	22290045	QA360-40- KK-0.5	Qualwave	2023.07.04	2024.07.03
RF Coaxial Cable (DC-40GHz)	22290046	QA360-40- KKF-2	Qualwave	2023.07.04	2024.07.03
RF Coaxial Cable (DC-18GHz)	22120181	QA500-18- NN-5	Qualwave	2023.07.04	2024.07.03
Notch Filter	N/A	WRCG-2400- 2483.5-60SS	Wainwright	N/A	N/A
Anechoic Chamber	N/A	9m*6m*6m	CRT	2022.05.10	2025.05.09

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Fax: 86-755-36698525

Http://www.morlab.cn

1.3. Measurement Uncertainty

Test Items	Uncertainty	Remark
Number of Hopping Frequency	±5%	Confidence levels of 95%
Peak Output Power	±2.22dB	Confidence levels of 95%
Bandwidth	±5%	Confidence levels of 95%
Carrier Frequency Separation	±5%	Confidence levels of 95%
Time of Occupancy (Dwell time)	±5%	Confidence levels of 95%
Conducted Spurious Emission	±2.77dB	Confidence levels of 95%
Restricted Frequency Bands	±5%	Confidence levels of 95%
Radiated Emission	±2.95dB	Confidence levels of 95%
Conducted Emission	±2.44dB	Confidence levels of 95%

1.4. Testing Laboratory

Laboratory Name	Shenzhen Morlab Communications Technology Co., Ltd.
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Laboratory Address	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Telephone	+86 755 36698555
Facsimile	+86 755 36698525
FCC Designation Number	CN1192
FCC Test Firm	226174
Registration Number	220174

Fax: 86-755-36698525

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	Guangdong OPPO Mobile Telecommunications Corp., Ltd.	
Applicant Address	NO.18 HaiBin Road, Wusha Village, Chang'an Town, Dongguan	
Applicant Address	City, Guangdong, China	
Manufacturer	Guangdong OPPO Mobile Telecommunications Corp., Ltd.	
	NO.18 HaiBin Road, Wusha Village, Chang'an Town, Dongguan	
Manufacturer Address	City, Guangdong, China	

2.2. Information of EUT

Product Name:	Mobile Phone				
Sample No.:	1#				
Hardware Version:	11				
Software Version:	ColorOS 14.0				
Equipment Type:	Bluetooth classic				
Bluetooth Version:	5.0				
Modulation Type:		FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps), 8-DPSK(EDR 3Mbps))			
Operating Frequency Range:	2402MHz-2480MHz				
Antenna Type:	IFA Antenna				
Antenna Gain:	2.10dBi				
	Battery 1				
	Brand Name:	SUPERVOOC			
	Model No.:	BLPA77			
Accessory Information	Serial No.:	N/A			
Accessory Information:	Capacity:	Typical: 5100mAh, Rated: 4970mAh			
	Rated Voltage:	3.91V			
	Charge Limit:	4.5V			
	Manufacturer:	SUNWODA Electronic Co., Ltd.			

	Battery 2	
	Brand Name:	SUPERVOOC
	Model No.:	BLPA77
	Serial No.:	N/A
	Capacity:	Typical: 5100mAh, Rated: 4970mAh
	Rated Voltage:	3.91V
	Charge Limit:	4.5V
	Manufacturer:	Dongguan NVT Technology Co., Ltd.
	AC Adapter 1	
	Brand Name:	SUPERVOOC
	Model No.:	VCB4JAUH
Accessory Information:	Serial No.:	N/A
Accessory mormation.	Rated Output:	5V=2A or 5V-11V=4.1A
	Rated Input:	100-240V~50/60Hz, 1.5A
	Manufacturer:	Jiangsu Chenyang Electron Co.,Ltd.
	AC Adapter 2	
	Brand Name:	SUPERVOOC
	Model No.:	VCB4JAUH
	Serial No.:	N/A
	Rated Output:	5V==2A or 5V-11V==4.1A
	Rated Input:	100-240V~50/60Hz, 1.5A
	Manufacturer:	Huizhou Golden Lake Industrial Co., Ltd.
	USB Cable	
	Model No.:	DL154

Note 1: According to the certificate holder, they declared that t product have three models as below:

Model Name	CPH2641	CPH2669	CPH3669
Memory	4G+128G	4G+256G	8G+256G
Camera	Back:8M, Front:5M	Back:50M, Front:5M	Back:50M, Front:5M

Their are accordant in both hardware and software versions, only the memory and the rear camera are different. The other are the same. The main measuring model is CPH2669, only the results for CPH2669 were recorded in this report.

Note 2: We use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2.3. Channel List of EUT

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

Note 1: The black bold channels were selected for test.

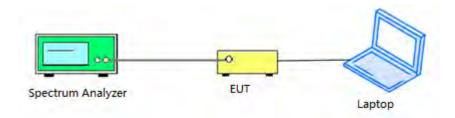
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

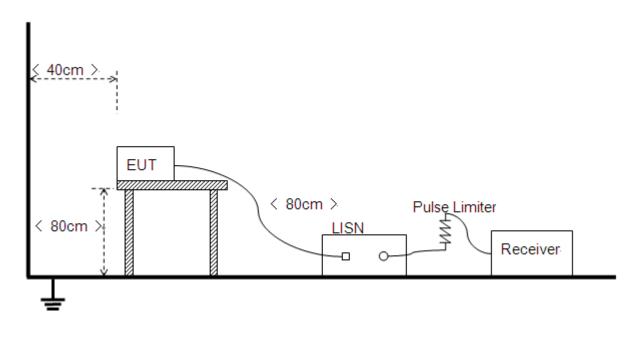
Fax: 86-755-36698525

Http://www.morlab.cn

2.4. Test Configuration of EUT


Test mode is used to control the EUT under the maximum power level during test.

2.5. Test Conditions

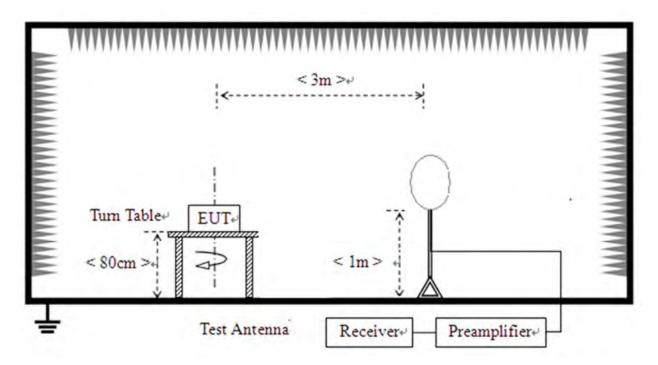

Temperature (°C)	15–35
Relative Humidity (%)	30–60
Atmospheric Pressure (kPa)	86–106

2.6. Test Setup Layout Diagram

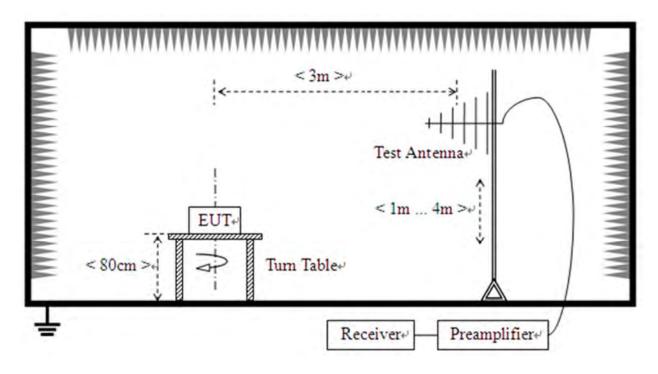
2.6.1.Conducted Measurement

2.6.2.Conducted Emission Measurement

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


 Tel: 86-755-36698555
 Fax: 86-755-36698525

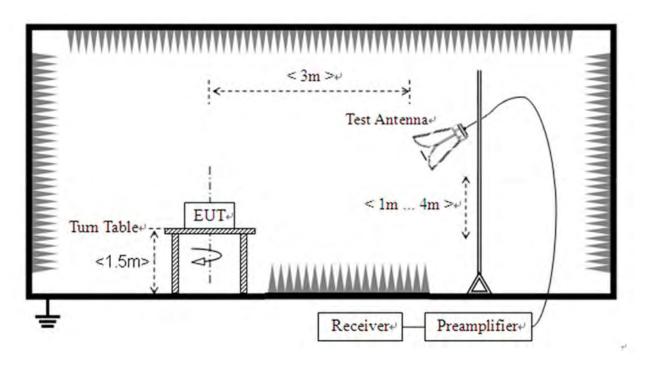
 Http://www.morlab.cn
 E-mail: service@morlab.cn



2.6.3.Radiation Measurement

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.1. Antenna Requirement

3.1.1.Requirement

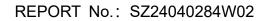
According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Result

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

3.2. Hopping Mechanism

3.2.1.Requirement


According to FCC section 15.247(a)(1), a frequency hopping spread spectrum system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to FCC section 15.247(h), the incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2.2.Test Result

The hopping mechanism of the EUT is in compliance with the document "*Bluetooth core specification v5.1*".

3.3. Number of Hopping Frequency

3.3.1.Requirement

According to FCC section 15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

3.3.2.Test Procedures

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

3.3.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.3.4.Test Result

Refer to Annex A.1 in this report.

3.4. Duty Cycle of Test Signal

3.4.1.Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%).When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration(T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be non constant.

3.4.2.Test Result

Refer to Annex A.2 in this report.

3.5. Maximum Peak Conducted Output Power

3.5.1.Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.5.2.Test Procedures

KDB 558074 Section 8.3.1 was used in order to prove compliance.

3.5.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.5.4.Test Result

Refer to Annex A.3 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.6. Maximum Average Conducted Output Power

3.6.1.Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.6.2.Test Procedures

KDB 558074 Section 8.3.2 was used in order to prove compliance.

3.6.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.6.4.Test Result

Refer to Annex A.4 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.7.1.Requirement

According to FCC section 15.247(a)(1), the 20 dB bandwidth is known as the 99% emission bandwidth, or 20 dB bandwidth ($10*\log 1\% = 20$ dB) taking the total RF output power.

3.7.1.Test Procedures

Use the following spectrum analyzer settings: Span = between 2 to 5 times the OBW, centered on the test channel RBW= 1% to 5% of the OBW VBW \geq 3 x RBW Sweep = auto Detector function = peak Trace = max hold

3.7.2.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.7.3.Test Result

Refer to Annex A.5 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

3.8. Carried Frequency Separation

3.8.1.Requirement

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

3.8.2.Test Procedures

The EUT must have its hopping function enabled. According to DA 00-705, use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) \geq 1% of the span Video (or Average) Bandwidth (VBW) \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

3.8.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.8.4.Test Result

Refer to Annex A.6 in this report.

3.9. Time of Occupancy (Dwell time)

3.9.1.Requirement

According to FCC section 15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

3.9.2.Test Procedures

Normal Mode:

DH1: Dwell time equal to Pulse time (ms) *(1600 / 2 /79)*31.6 Millisecond DH3: Dwell time equal to Pulse time (ms) * (1600 /4 /79) *31.6 Millisecond DH5: Dwell time equal to Pulse Time (ms)* (1600 / 6 /79) *31.6 Millisecond

AFH Mode:

DH1: Dwell time equal to Pulse time (ms) (800 / 2 / 20)(0.4 + 20) Millisecond DH3: Dwell time equal to Pulse time (ms) (800 / 4 / 20)(0.4 + 20) Millisecond DH5: Dwell time equal to Pulse Time (ms) (800 / 6 / 20)(0.4 + 20) Millisecond.

3.9.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.9.4.Test Result

Refer to Annex A.7 in this report.

3.10. Conducted Spurious Emissions and Band Edge

3.10.1.Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.10.2.Test Procedures

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz \lor BW \ge RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

3.10.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.10.4.Test Result

Refer to Annex A.8 and A.9 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525

Http://www.morlab.cn

3.11. Conducted Emission

3.11.1.Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Fraguanay Panga (MHz)	Conducted Limit (dBµV)				
Frequency Range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

Note:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

3.11.2.Test Procedures

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

3.11.3.Test Setup Layout

Refer to chapter 2.6.2 in this report.

3.11.4.Test Result

Refer to Annex A.10 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

3.12. Restricted Frequency Bands

3.12.1.Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

3.12.2.Test Procedures

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1GHz

VBW = 3 MHz Sweep = auto Detector function = peak/average

Trace = max hold

Allow the trace to stabilize

3.12.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.12.4.Test Result

Refer to Annex A.11 in this report.

3.13. Radiated Emission

3.13.1.Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note1: For above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. **Note2:**For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morla

3.13.2.Test Procedures

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz.The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

3.13.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.13.4.Test Result

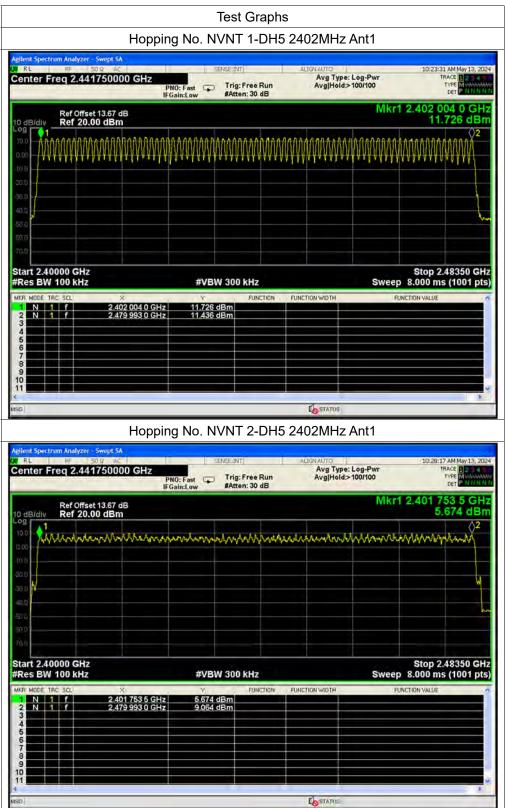
Refer to Annex A.12 in this report.

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Annex A Test Data and Result

A.1. Number of Hopping Frequency

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Trig: Free Run Avg Hold>100/100 TVPE		Hopping	No. NVN	T 3-DH5	5 2402MH	z Ant1		
Children Consert 13.57 db 5.674 cc Consert 13.57 db 5.674 cc 5.674 cc Start 2.40000 GHz \$.674 cc \$.674 cc Start 2.40000 GHz \$.674 cd \$.674 cd MAR MODE TRC ScL X Y Function width N 1 f 2.479 993 0 GHz 9.064 dBm 3 1 1 1 Function value 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 4 1 1 1 1 4 1 <th>RL RF</th> <th>50 R AC 41750000 GHz PNO:</th> <th>Fast 😱 Trig</th> <th>Free Run</th> <th>Avg Typ</th> <th></th> <th>TRJ T</th> <th></th>	RL RF	50 R AC 41750000 GHz PNO:	Fast 😱 Trig	Free Run	Avg Typ		TRJ T	
1000 1000	0 dB/div Ref 20					Mkr		
Stop 2.48350 Stop 2.48350 Res BW 100 kHz #VBW 300 kHz Stop 2.48350 Sweep 8.000 ms (1001 RM MODE TRC: SQL X Y Function width N 1 f 2.401753 5 GHz 5.674 dBm 3 1 f 2.479 993 0 GHz 9.064 dBm 3 4 6 6 7 8 9 0 1 f 2.479 993 0 GHz 9.064 dBm	10.0 Junin	www.	whenman	mmm	white	hhadrown	www.	hanty
Stop 2.48350 Kart 2.40000 GHz Stop 2.48350 Res BW 100 kHz #VBW 300 kHz Stop 2.48350 Sweep 8.000 ms (1001 Sweep 8.000 ms (1001 KA MODE TRC SOL X Y Function Function width Function value N 1 f 2.479 993 0 GHz 9.064 dBm 3 4 5 Stap 2 N 1 f 2.479 993 0 GHz 9.064 dBm 3 Stap 3 1 f 2.479 993 0 GHz 9.064 dBm 3 4 Stap 3 1 f 2.479 993 0 GHz 9.064 dBm 3 4 Stap 3 1 f 2.479 993 0 GHz 9.064 dBm 3 4 5 Stap 3 1 f 2.479 993 0 GHz 9.064 dBm 4 5 Stap 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1</th1<>								
Stop 2.48350 Res BW 100 KHz #VBW 300 KHz Stop 2.48350 Sweep 8.000 ms (1001 GR Mode TRC SQL X Y Function Function width Function value N 1 f 2.401 753 5 GHz Sold B Sold A 1 f 2 N 1 7 2.479 993 0 GHz 8 3 9 0	o.p.N							'n
Stop Stop 2.48350 Res BW 100 KHz #VBW 300 KHz Stop 2.48350 Sweep 8.000 ms (1001 #VBW 300 KHz Sweep 8.000 ms (1001 Stop 1.401763 5 GHz 5.674 dBm Function width Function value N 1 f 2.401763 5 GHz 5.674 dBm Stop 2.48350 N 1 f 2.401763 5 GHz 5.674 dBm Stop 2.48350 N 1 f 2.401763 5 GHz 5.674 dBm Stop 2.48350 N 1 f 2.479 9930 GHz 9.064 dBm Stop 2.48350 Stop 2.48350 Stop 2.48350 Stop 2.48350 Stop 2.48350 Stop 2.48350 N 1 f 2.401763 5 GHz 5.674 dBm Stop 2.48350 Stop 2 N 1 f 2.479 9930 GHz 9.064 dBm Stop 2.479 Stop 2								
Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1001 KR MODE TRC SQL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 2.401 753 5 GHz 5.674 dBm FUNCTION VALUE 2 N 1 f 2.479 993 0 GHz 9.064 dBm FUNCTION VALUE 3 1 5 5 5 6 5 5 6 5 5 5 6 5 5 5 9 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 7 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Image: TRE_SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 f 2.401 753 5.674 dBm 1 2 N 1 f 2.401 753 5.674 dBm 1 3 1 f 2.479 993 0 GHz 9.064 dBm 1 3 1 f 2.479 993 0 GHz 9.064 1			#VBW 30	0 kHz		Sweer		
2 N 1 f 2.479 993 0 GHz 9.064 dBm 3 4				FUNCTION	FUNCTION WIDTH			
		2.479 993 0 GHz	9.064 dBm					
G G STATUS					(Learning)			×

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

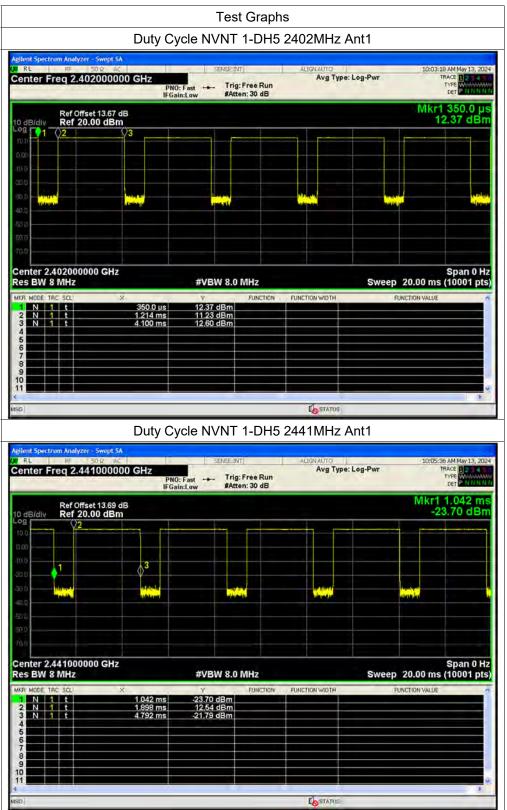
Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.2. Duty Cycle of Test Signal

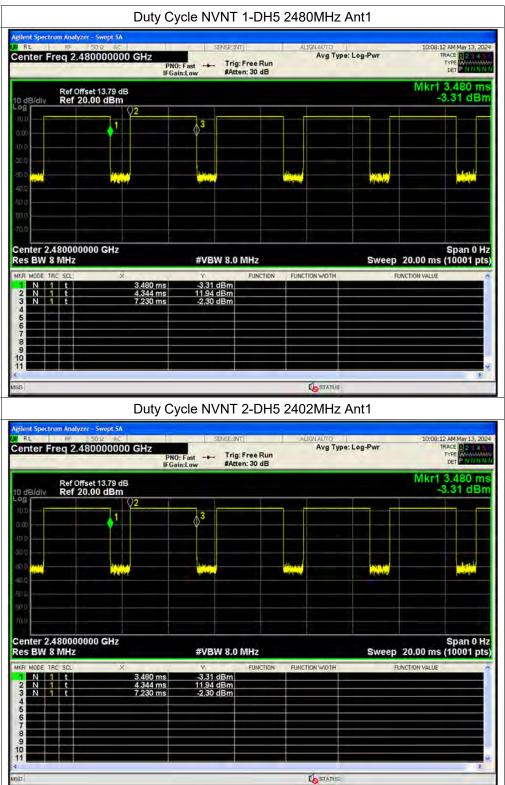
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	1-DH5	2402	Ant1	76.96	1.14	0.35
NVNT	1-DH5	2441	Ant1	77.17	1.13	0.35
NVNT	1-DH5	2480	Ant1	76.96	1.14	0.35
NVNT	2-DH5	2402	Ant1	77.01	1.13	0.35
NVNT	2-DH5	2441	Ant1	77.03	1.13	0.35
NVNT	2-DH5	2480	Ant1	77.01	1.13	0.35
NVNT	3-DH5	2402	Ant1	77.07	1.13	0.35
NVNT	3-DH5	2441	Ant1	77.07	1.13	0.35
NVNT	3-DH5	2480	Ant1	77.07	1.13	0.35


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

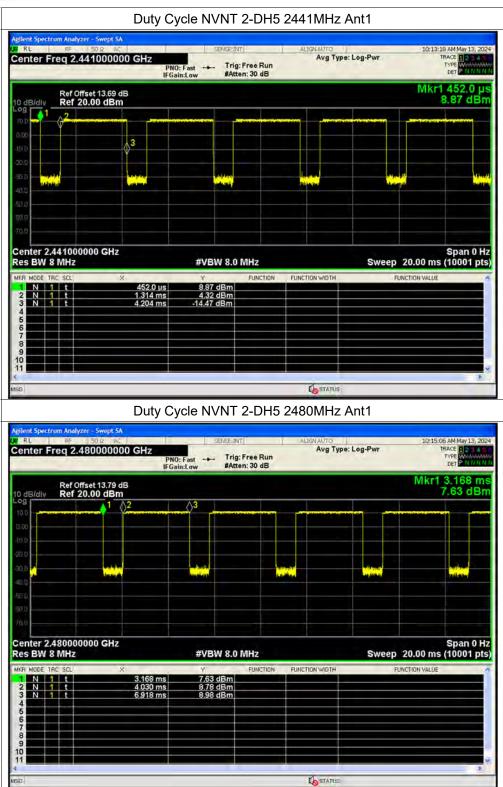
Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn



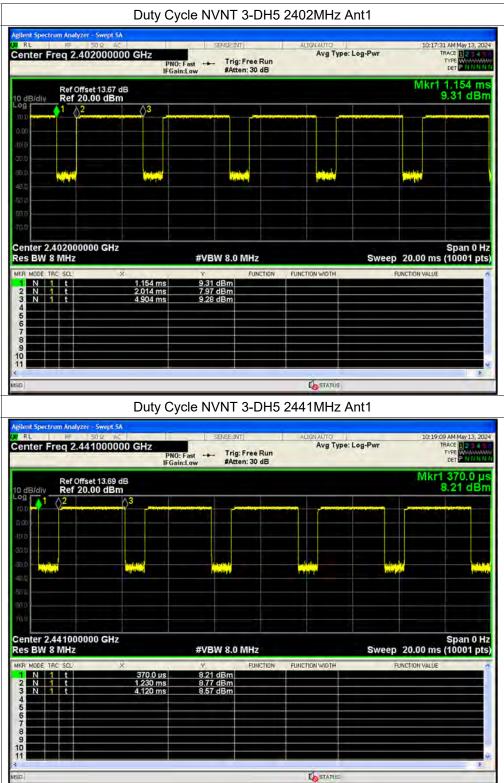
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

R		Fre	RF 19 2.	50 Q AC	0 GHz		g:FreeRun ten:30 dB	LA.	Avg Type:	Log-Pwr		7 AM May 13, 202 RACE 1234 TVPE WAAAAAA DET P N N N N
	B/di			Offset 13.79 c 20.00 dBm								1.159 m 1.94 dBn
og				1	2		3					
		-					Ŷ				ك فتصنع	النار الكر
30.0				Mark parlos but			Anyperson					State of
	-											
			3000 VIHz	0000 GHz		#VBW 8.0	MHz			Sweep	10.00 ms	Span 0 H
	MODE		_		(Ŷ	FUNCTION	DUNCT	ION WIDTH		UNCTION VALUE	(1999) Pr
1	N	1	t		1.159 ms	1.94 dBm	1 One light	T.SHUT		T.	ALL THE THE PERSON	
23		1			2.019 ms	5.65 dBm 3.33 dBm						
4					4,5105,41151	0.00 0.511						
5												
7 8												
9												

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

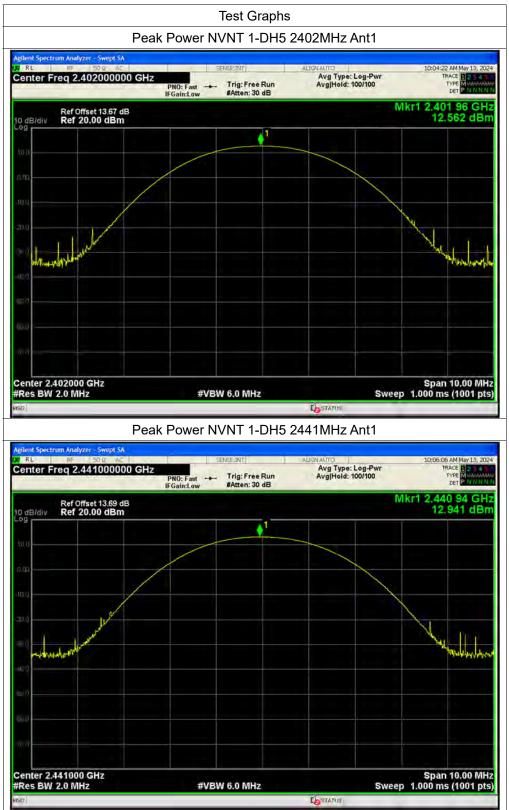
Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

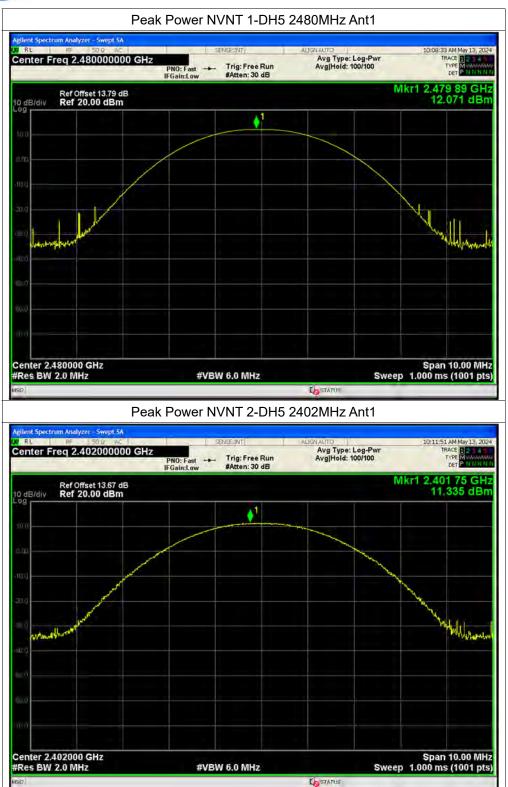
A.3. Maximum Peak Conducted Output Power

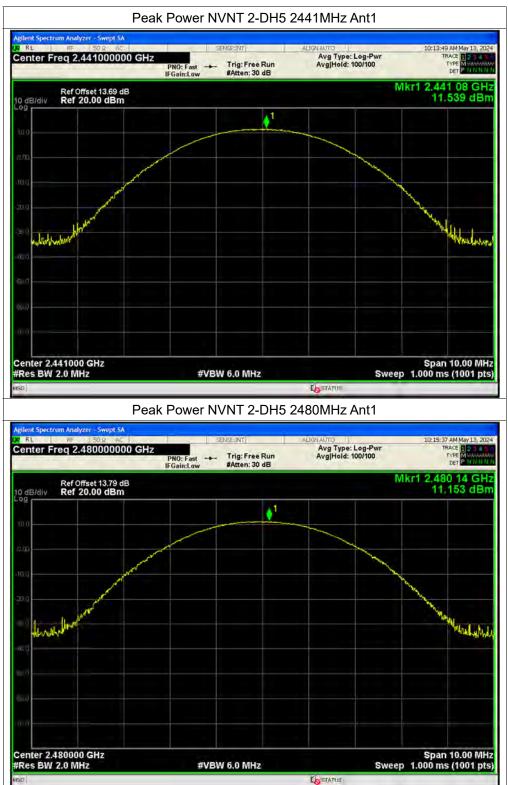
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Conducted Power (dBm)	Total Conducted Power (W)	Limit Conducted (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	12.56	0	12.56	0.01803	30	Pass
NVNT	1-DH5	2441	Ant1	12.94	0	12.94	0.01968	30	Pass
NVNT	1-DH5	2480	Ant1	12.07	0	12.07	0.01611	30	Pass
NVNT	2-DH5	2402	Ant1	11.34	0	11.34	0.01361	30	Pass
NVNT	2-DH5	2441	Ant1	11.54	0	11.54	0.01426	30	Pass
NVNT	2-DH5	2480	Ant1	11.15	0	11.15	0.01303	30	Pass
NVNT	3-DH5	2402	Ant1	11.44	0	11.44	0.01393	30	Pass
NVNT	3-DH5	2441	Ant1	11.63	0	11.63	0.01455	30	Pass
NVNT	3-DH5	2480	Ant1	11.28	0	11.28	0.01343	30	Pass


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

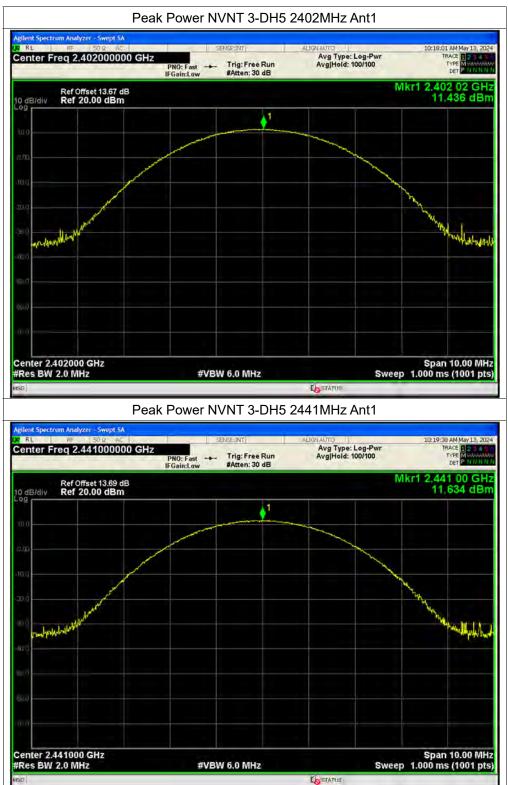
Fax: 86-755-36698525


Http://www.morlab.cn



MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



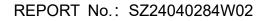
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.4. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Conducted Power (dBm)	Total Conducted Power (W)	Limit Conducted (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	11.11	1.14	12.25	0.01679	30	Pass
NVNT	1-DH5	2441	Ant1	11.49	1.13	12.62	0.01828	30	Pass
NVNT	1-DH5	2480	Ant1	10.16	1.14	11.3	0.01349	30	Pass
NVNT	2-DH5	2402	Ant1	7.65	1.13	8.78	0.00755	30	Pass
NVNT	2-DH5	2441	Ant1	7.8	1.13	8.93	0.00782	30	Pass
NVNT	2-DH5	2480	Ant1	7.74	1.13	8.87	0.00771	30	Pass
NVNT	3-DH5	2402	Ant1	7.68	1.13	8.81	0.0076	30	Pass
NVNT	3-DH5	2441	Ant1	7.92	1.13	9.05	0.00804	30	Pass
NVNT	3-DH5	2480	Ant1	7.74	1.13	8.87	0.00771	30	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

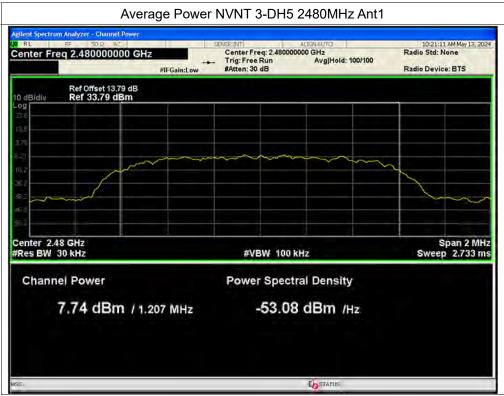
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn



MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

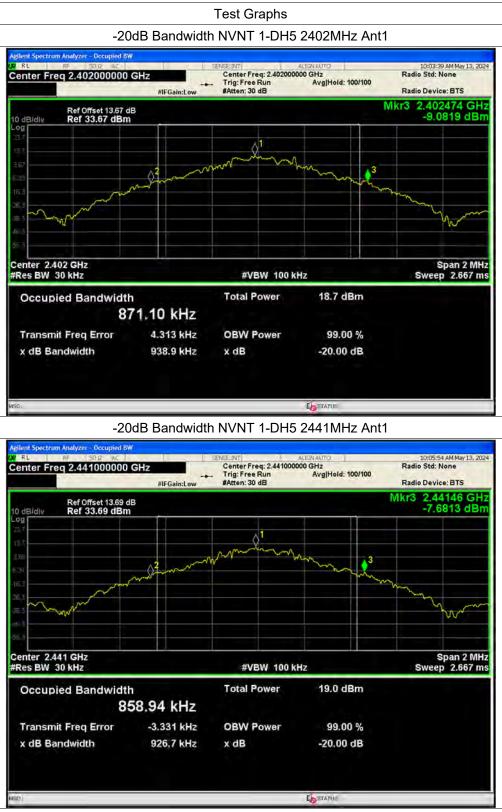
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.5. 20 dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)
NVNT	1-DH5	2402	Ant1	0.939
NVNT	1-DH5	2441	Ant1	0.927
NVNT	1-DH5	2480	Ant1	0.939
NVNT	2-DH5	2402	Ant1	1.323
NVNT	2-DH5	2441	Ant1	1.321
NVNT	2-DH5	2480	Ant1	1.334
NVNT	3-DH5	2402	Ant1	1.29
NVNT	3-DH5	2441	Ant1	1.297
NVNT	3-DH5	2480	Ant1	1.295


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa

Fax: 86-755-36698525 E-mail: service@morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.6. Carried Frequency Separation

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.9	2402.916	1.016	0.626	Pass
NVNT	2-DH5	Ant1	2401.982	2402.978	0.996	0.882	Pass
NVNT	3-DH5	Ant1	2402.008	2402.912	0.904	0.86	Pass

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

RL RF 5		SENSEINT	ALIGN AUTO	10:27:18)	AM May 13, 20
enter Freq 2.402	P	NO: Wide 😱 Trig: Free Ru Gain:Low #Atten: 30 dB		100	
Ref Offse	t 13.67 dB			Mkr1 2.401 9	982 GH
dB/div Ref 20.0					
a mont	mon mon	mon	mon man	Mannin	mon
0					
р. 					
(j)					
enter 2.402500 Gl Res BW 30 kHz	HZ	#VBW 100 kHz		Span 2 Sweep 2.133 ms	2.000 Mi (1001 pt
N MODE TRC SCL	× 2.401 982 GHz	Y FUNCT	ION FUNCTION WIDTH	FUNCTION VALUE	
N 1 f	2.402 978 GHz	6.798 dBm			
المركز التركيم المركز المركز التركيم المركز المركز					
					¥
1			Los STATUS		
	CF	S NVNT 3-DH5			
ient Spectrum Analyzer -	Swept SA		2402MHz Ant1		
ent Spectrum Analyzer R L RF 5	Swept 5A 0 92 #C 2500000 GHz	SENSEINT	2402MHz Ant1 Aug Type: Log un Avg Holds 100/	Pwr TR/	
ent Spectrum Analyzer RL PF 5 Inter Freq 2.402	Swept 5A D 2 PC 2500000 GHz IFI	SENSELINT	2402MHz Ant1 Aug Type: Log un Avg Holds 100/	I-Pwr TRA M00 T	ACE 1234 YPE MULLOW DET PINNN
ent Spectrum Analyzer RL PF S Inter Freq 2.402 Ref Offset	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SENSEINT NO: Wide 😱 Trig: Free Ru	2402MHz Ant1 Avg Type: Log Avg Hold>100/ B	Pwr 1100 T Mkr1 2.402 (4.3	
ent Spectrum Analyzer RL PF S Inter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	NO: Wide Trig: Free Ro #Atten: 30 de	2402MHz Ant1 Aug Type: Log un Avg Holds 100/	Pwr 1100 T Mkr1 2.402 (4.3	
ent Spectrum Analyzer RL PF S enter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SENSEINT NO: Wide 😱 Trig: Free Ru	2402MHz Ant1 Avg Type: Log Avg Hold>100/ B	Pwr 1100 T Mkr1 2.402 (4.3	
Ref Offsed	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Pwr 1100 T Mkr1 2.402 (4.3	NPE MULTURE ODB GH
ent Spectrum Ahalyzer RL PF S enter Freq 2.402 Ref Offsel dB/div Ref 20.0	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Pwr 1100 T Mkr1 2.402 (4.3	008 GH
Ref Offsed	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Pwr 1100 T Mkr1 2.402 (4.3	ACE 12 3 4 VPE MULTURE CET P NUMU 008 GH
ent Spectrum Ahalyzer RL PF S enter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept 5A 19:2 AC 2500000 GHz PI IFI t 13:67 dB	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Pwr 1100 T Mkr1 2.402 (4.3	NPE MULTURE ODB GH
Ref Offset dB/dlv Ref 2.402	Swept 5A 02 AC 2500000 GHz F 13.67 dB 10 dBm	NO: Wide Trig: Free Ro Baint.ow Free Ro	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 MH
ent Spectrom Analyzer RL PF 5 enter Freq 2.402 Ref Offset dB/div Ref 20.0 P enter 2.402500 Gl tes BW 30 kHz	Swept 5A 02 AC 2500000 GHz P 13.67 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 MH
RE PF 2402 RE PF 2500 Ref Offset dB/div Ref 20.0 Ref 20.0	Swept 5A 02 AC 2500000 GHz F 13.67 dB 10 dBm	SERRELINT NO: Wide Trig: Free Ru #Atten: 30 df	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 MH
Ref Offset BL/C/S C/S C/S C/S C/S C/S C/S C/S C/S C/S	Swept 5A 02 2500000 GHz PI 13.67 dB 00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I SERCELINT NO: Wilde Trig: Free Ri #Atten: 30 de #Atten: 30 de #VBW 100 kHz Y FUNCT 4.354 dBm	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 MH
Ref Offset dB/div Ref 2.402	Swept 5A 02 2500000 GHz PI 13.67 dB 00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I SERCELINT NO: Wilde Trig: Free Ri #Atten: 30 de #Atten: 30 de #VBW 100 kHz Y FUNCT 4.354 dBm	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 Mł
ent Spectrom Analyzer RL PF 5 enter Freq 2.402 Ref Offset dB/div Ref 20.0 a enter 2.402500 Gl enter 2.402500 Gl es BW 30 kHz A MODE TRC SCL N 1 f	Swept 5A 02 2500000 GHz PI 13.67 dB 00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I SEREEJINT NO: Wilde Trig: Free Ri #Atten: 30 dE	2402MHz Ant1	Mkr1 2.402 (4.3	2.000 Mł

MORLAB

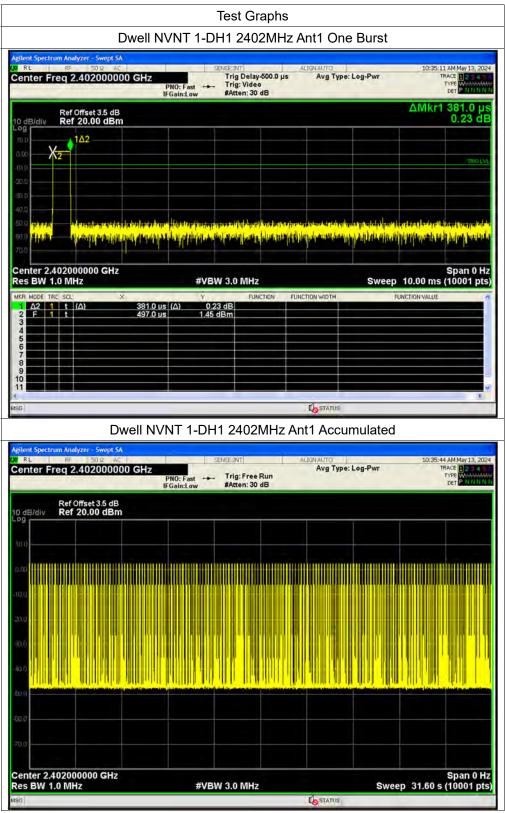
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

A.7. Time of Occupancy (Dwell time)

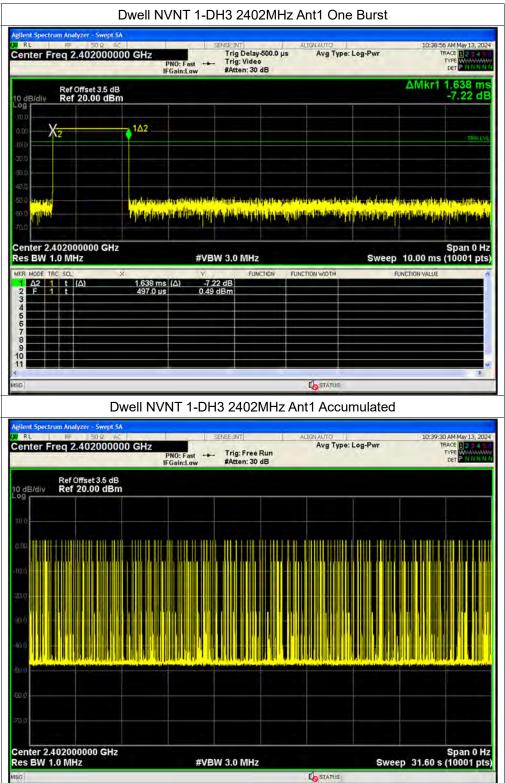
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	Ant1	0.381	118.491	311	31600	400	Pass
NVNT	1-DH3	2402	Ant1	1.638	262.08	160	31600	400	Pass
NVNT	1-DH5	2402	Ant1	2.885	274.075	95	31600	400	Pass
NVNT	2-DH1	2402	Ant1	0.387	117.648	304	31600	400	Pass
NVNT	2-DH3	2402	Ant1	1.64	244.36	149	31600	400	Pass
NVNT	2-DH5	2402	Ant1	2.887	294.474	102	31600	400	Pass
NVNT	3-DH1	2402	Ant1	0.388	117.176	302	31600	400	Pass
NVNT	3-DH3	2402	Ant1	1.638	245.7	150	31600	400	Pass
NVNT	3-DH5	2402	Ant1	2.889	294.678	102	31600	400	Pass


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

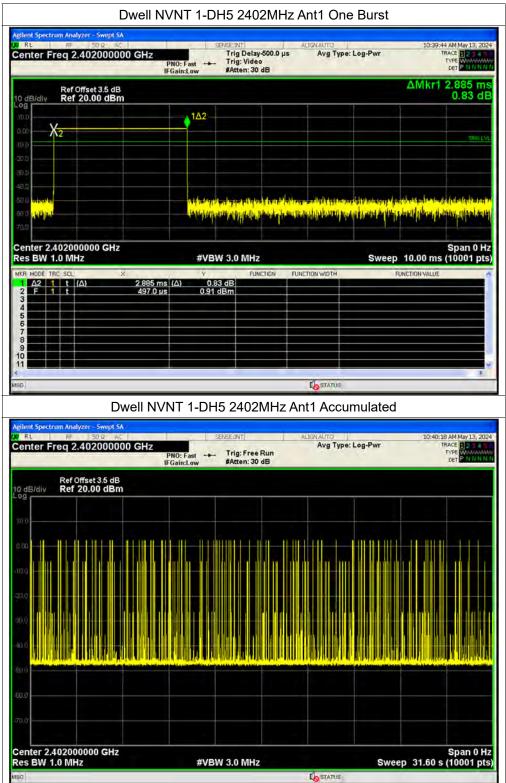
Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn



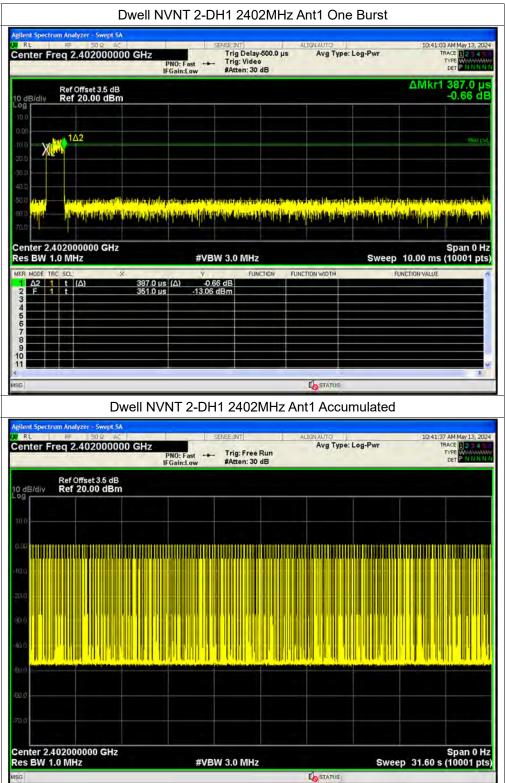
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



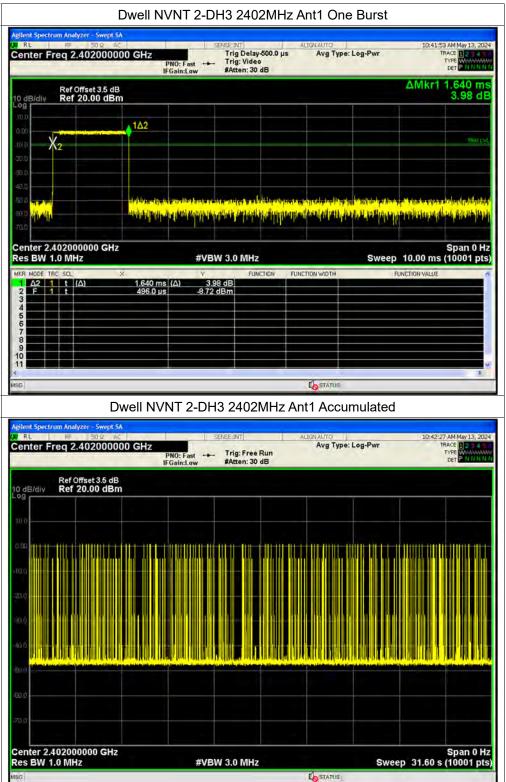
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

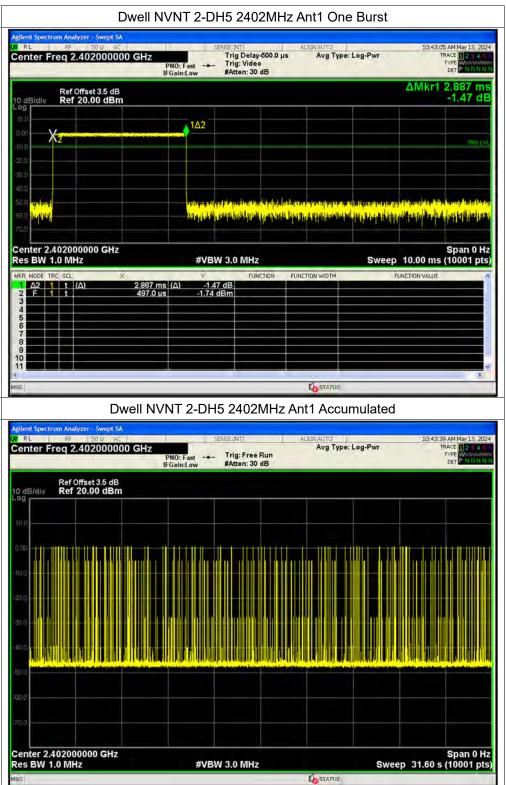
Fax: 86-755-36698525



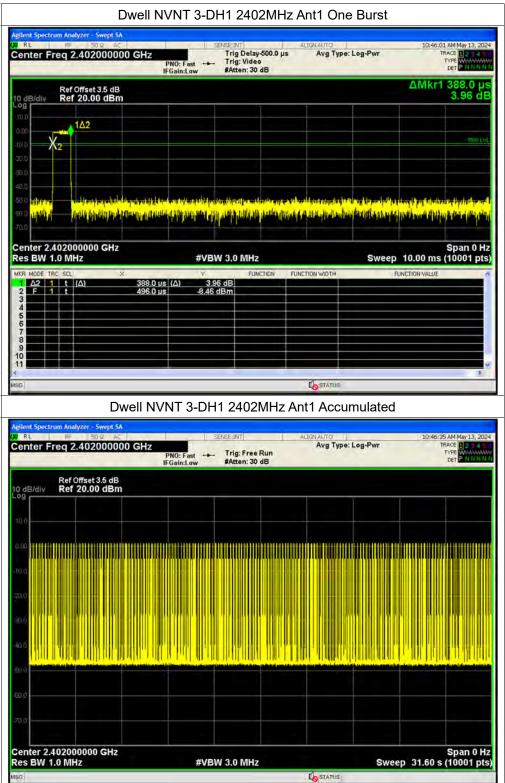
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



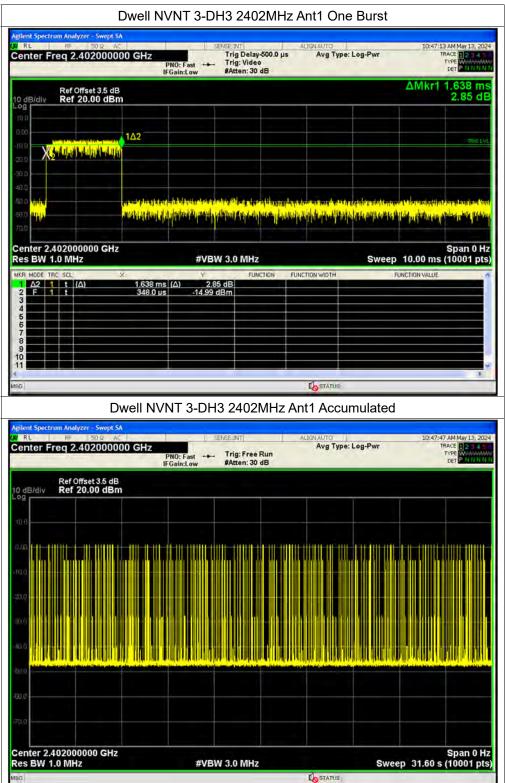
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



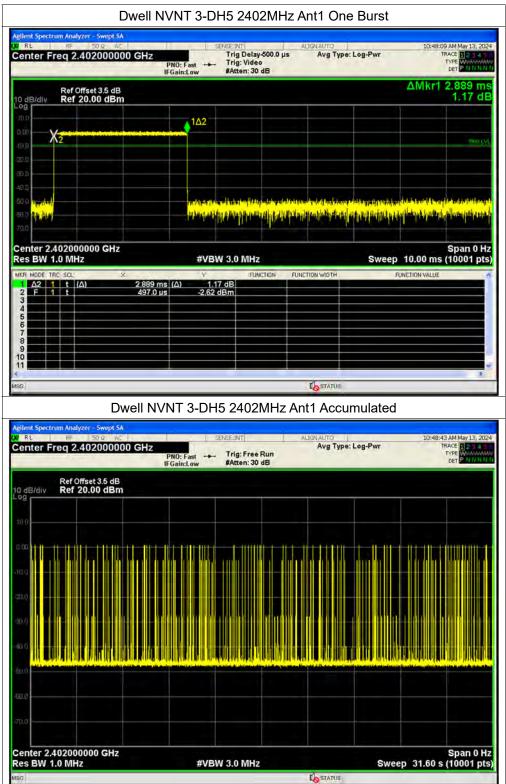
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China



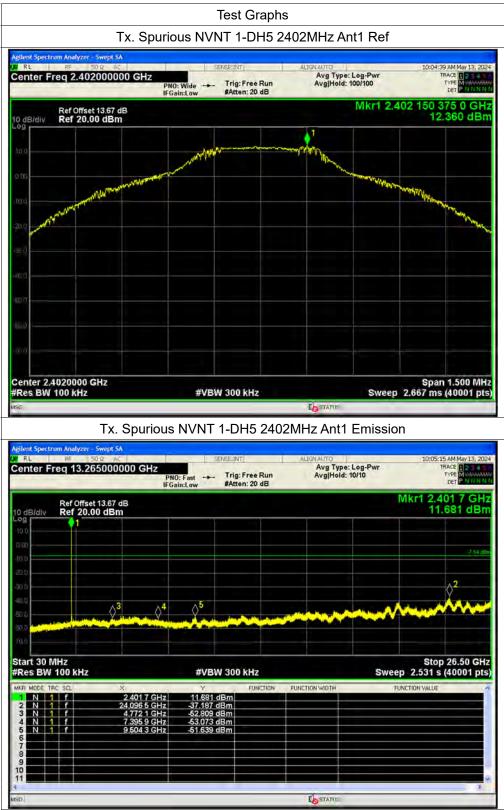
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

A.8. Conducted Spurious Emissions

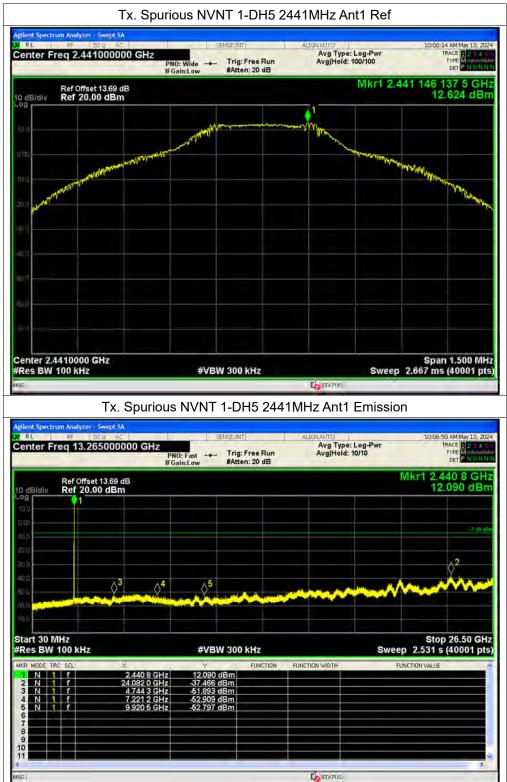
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-49.54	-20	Pass
NVNT	1-DH5	2441	Ant1	-50.08	-20	Pass
NVNT	1-DH5	2480	Ant1	-49.44	-20	Pass
NVNT	2-DH5	2402	Ant1	-47.17	-20	Pass
NVNT	2-DH5	2441	Ant1	-47.9	-20	Pass
NVNT	2-DH5	2480	Ant1	-47.65	-20	Pass
NVNT	3-DH5	2402	Ant1	-47.99	-20	Pass
NVNT	3-DH5	2441	Ant1	-48.17	-20	Pass
NVNT	3-DH5	2480	Ant1	-47.28	-20	Pass


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

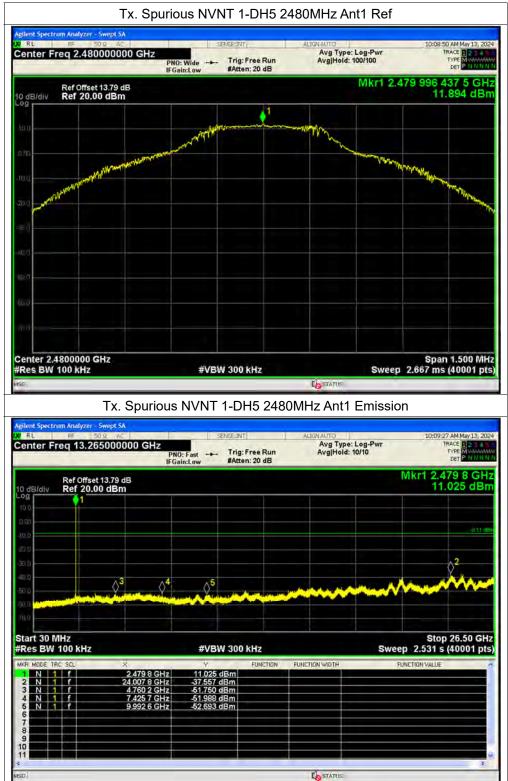
Http://www.morlab.cn



MORLAB

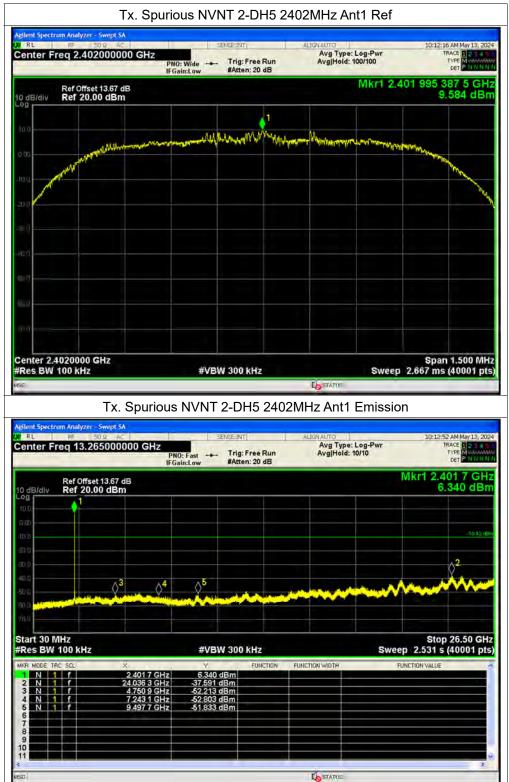
Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

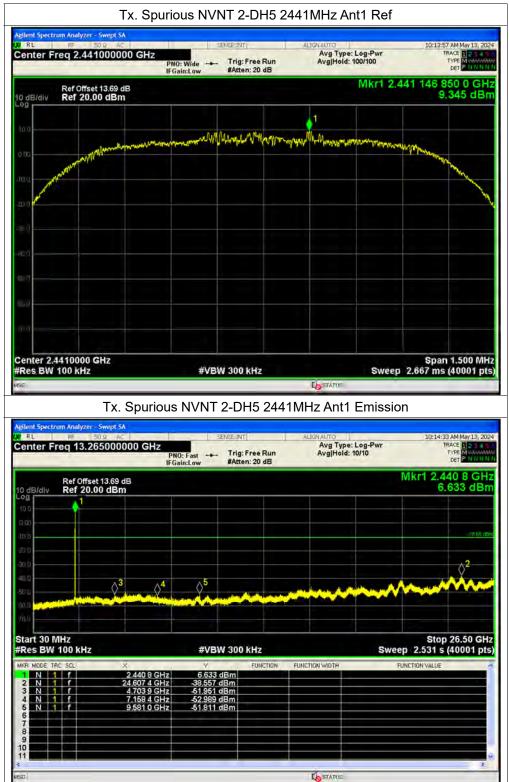
Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

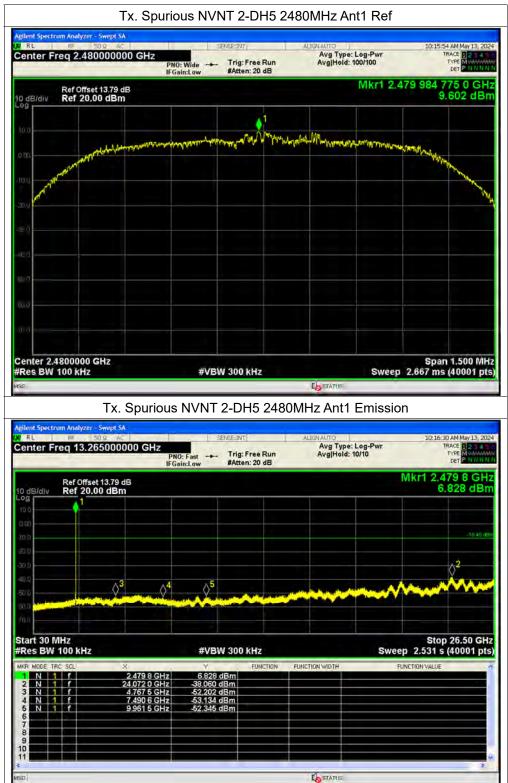


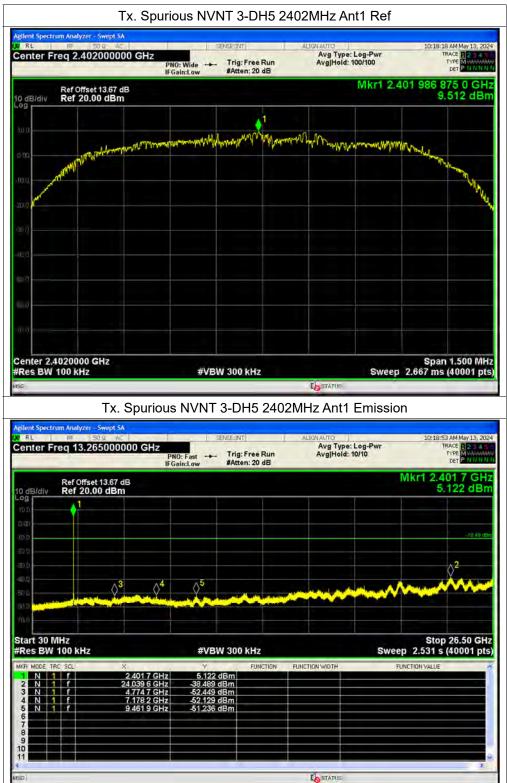
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn

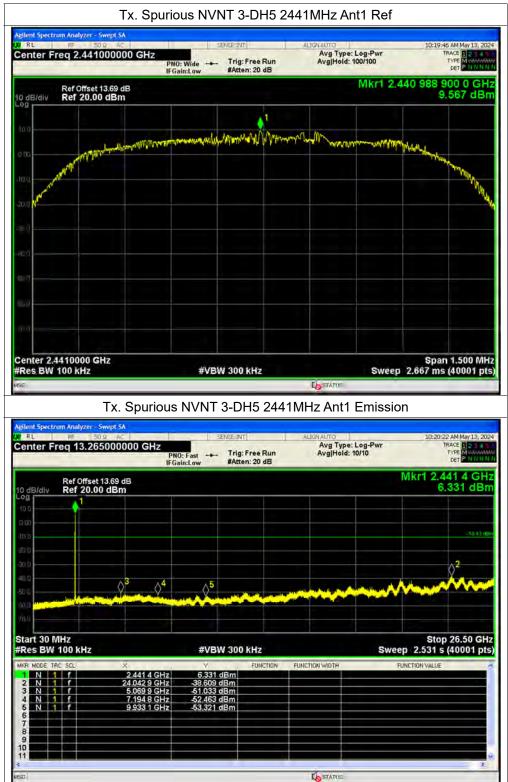


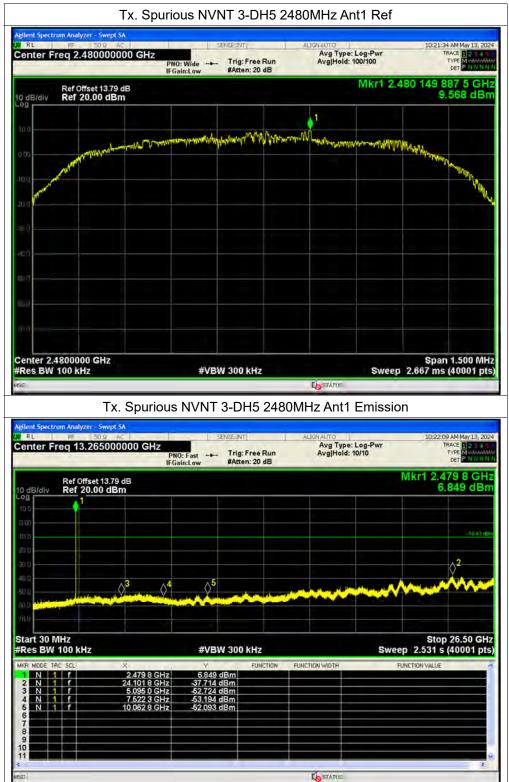




MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn



MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

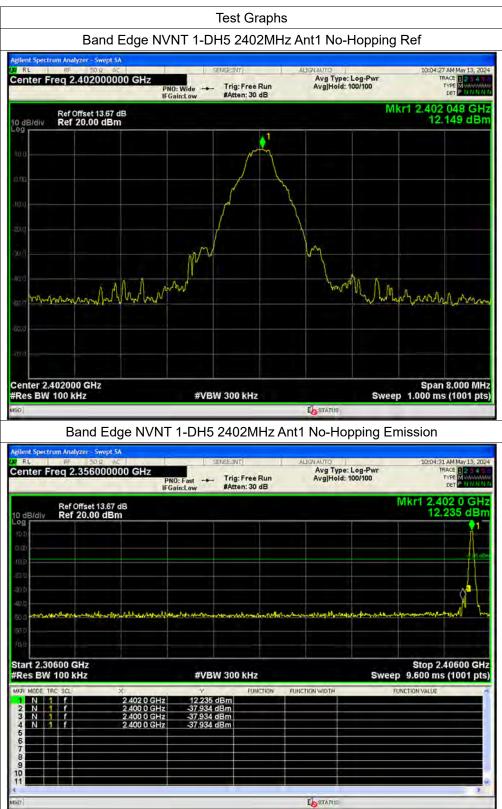
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

A.9. Band Edge

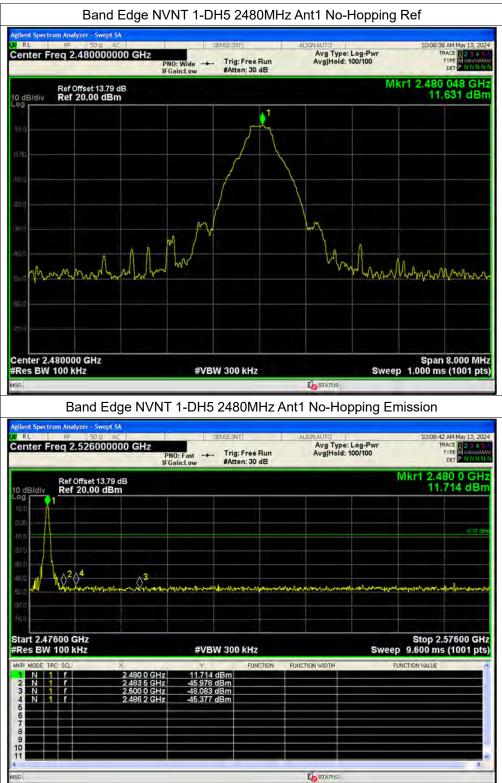
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-50.08	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-57	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-54.45	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-52.98	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-54.16	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-53.42	-20	Pass
NVNT	1-DH5	2402	Ant1	Hopping	-56.86	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-56.28	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-53.99	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-53.36	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-52.88	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-53.53	-20	Pass


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

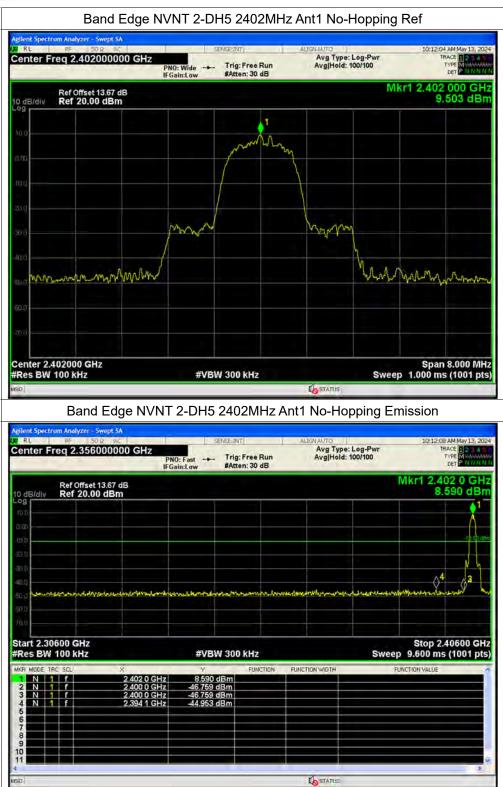
Fax: 86-755-36698525

Http://www.morlab.cn

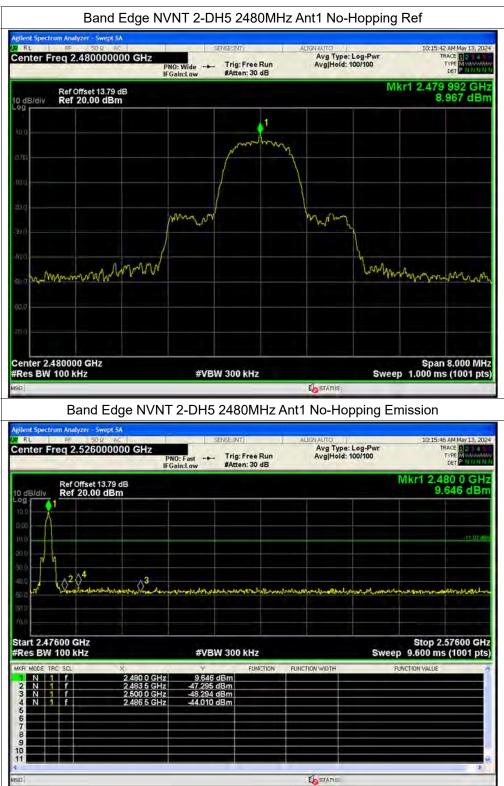


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

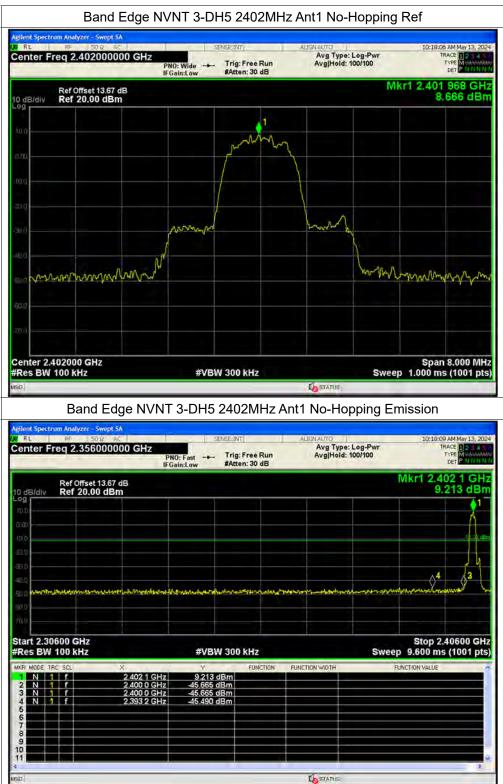

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Fax: 86-755-36698525



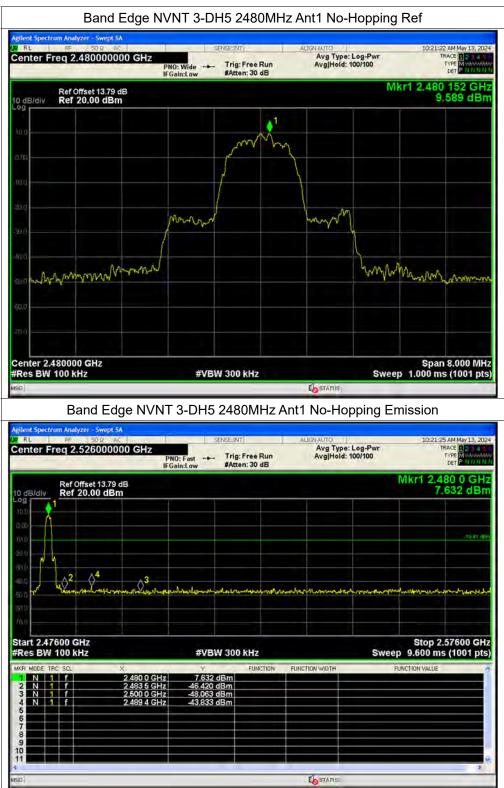
FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

MORLAB


Shenzhen Morlab Communications Technology Co., Ltd.

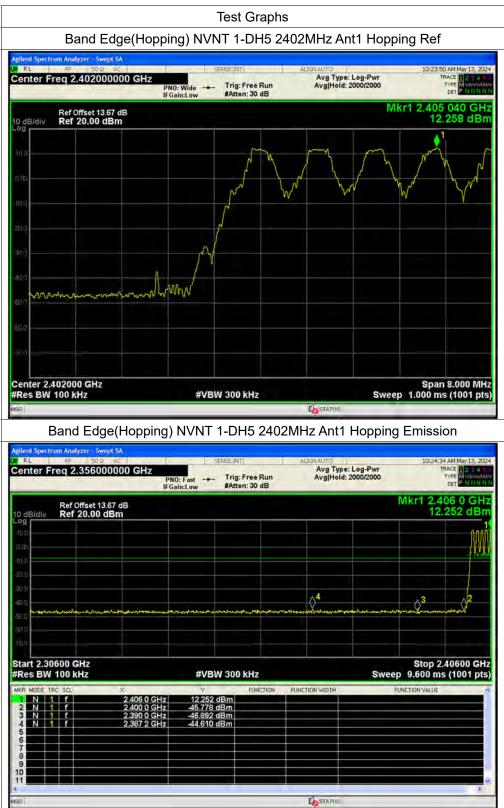
Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

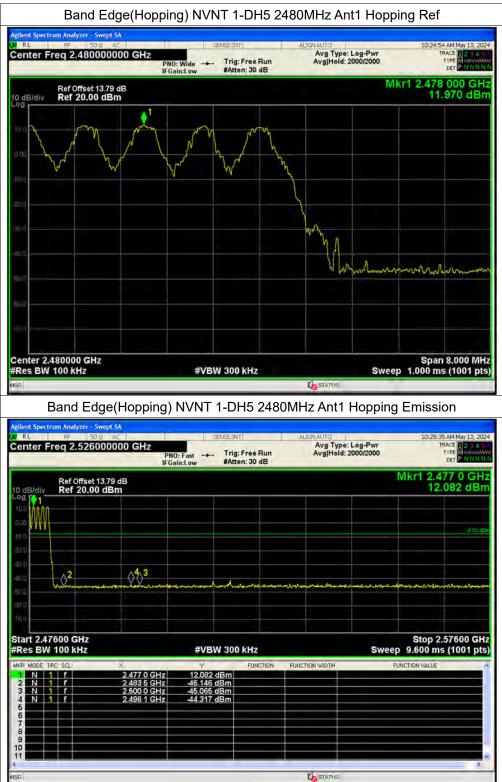
MORLAB


Shenzhen Morlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

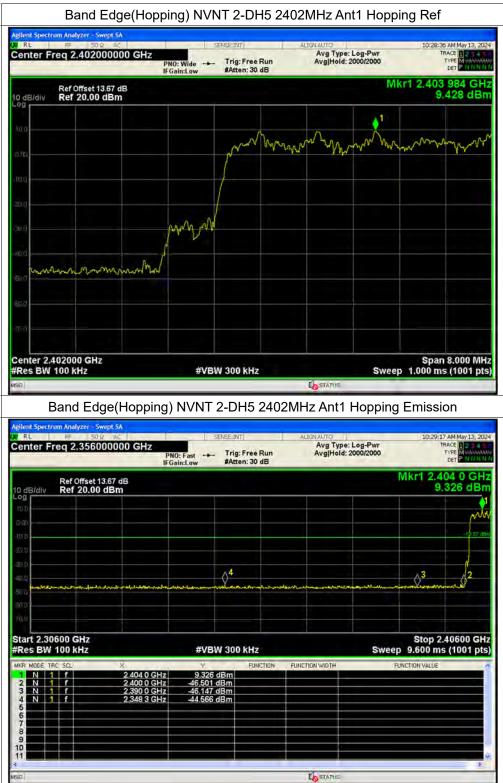
Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


Page 82 of 111



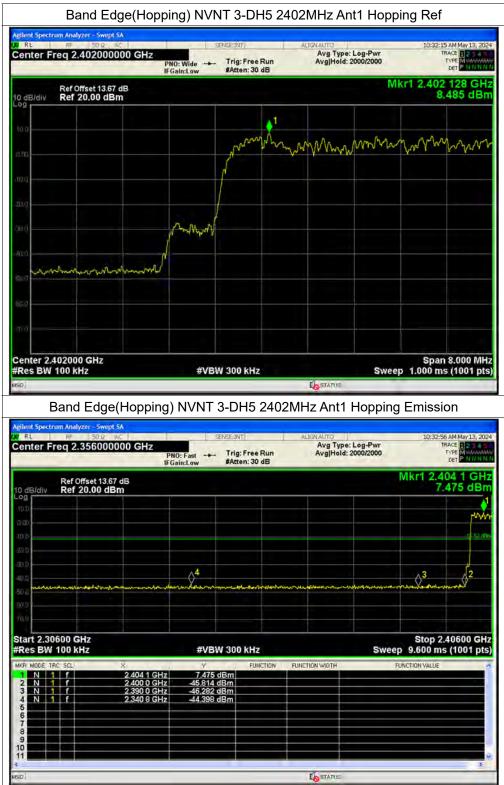
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Fax: 86-755-36698525 Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

MORLAB

MORLAB

MORLAB

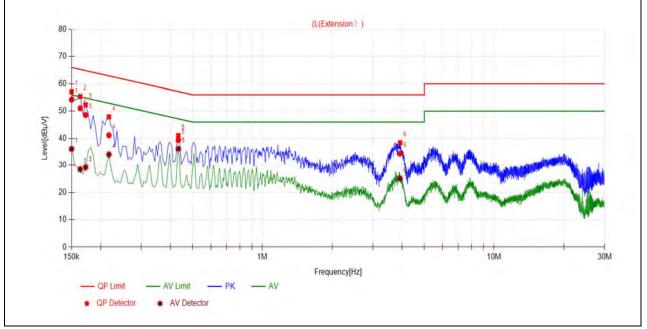
A.10. Conducted Emission

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be remeasured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test Setup:

Test Mode: <u>EUT + Adapter + USB Cable + BT TX</u> Test voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

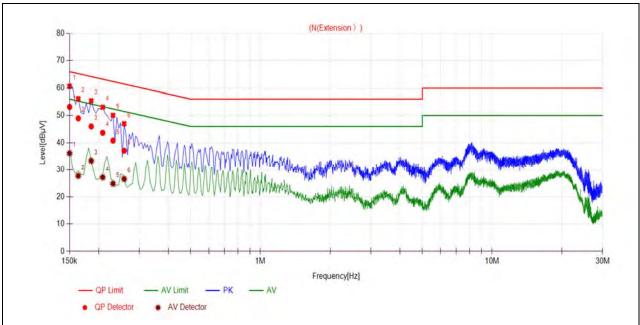
Fax: 86-755-36698525

Http://www.morlab.cn

B. Test Plot:

(L Phase)

No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1500	54.28	36.10	66.00	56.00		PASS
2	0.1635	51.09	28.46	65.28	55.28		PASS
3	0.1725	48.58	29.20	64.84	54.84	Line	PASS
4	0.2175	41.15	34.07	62.91	52.91	Line	PASS
5	0.4335	39.38	36.15	57.19	47.19		PASS
6	3.9298	34.40	24.99	56.00	46.00		PASS


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

(N	Phase)	
----	--------	--

No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1500	53.17	36.15	66.00	56.00		PASS
2	0.1635	48.98	27.69	65.28	55.28		PASS
3	0.1860	46.02	33.35	64.21	54.21	Neutral	PASS
4	0.2085	43.69	27.16	63.26	53.26	Neutral	PASS
5	0.2310	40.81	24.83	62.41	52.41		PASS
6	0.2580	37.11	26.56	61.50	51.50		PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.11. Restricted Frequency Bands

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

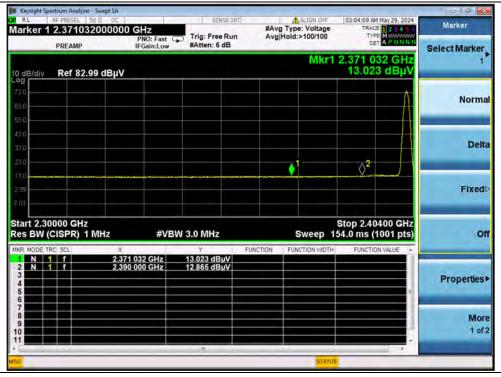
A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

GFSK Mode

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBµV)	A⊤ (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
			(uDµv)			(uphaun)		
0	2377.69	PK	25.17	6.74	27.20	59.11	74	PASS
0	2371.03	AV	13.02	6.74	27.20	46.96	54	PASS
78	2483.50	PK	31.35	6.74	27.20	65.29	74	PASS
78	2489.51	AV	15.97	6.74	27.20	49.91	54	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

Http://www.morlab.cn

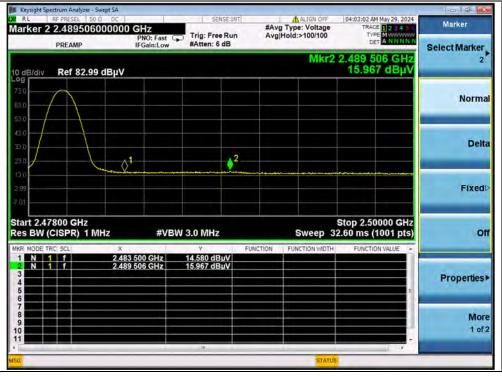
Marker	03:03:37 AM May 29, 2024 TRACE 2 3 4 5 0	ALIGN OFF	Avg	SENSE:IN		zer - Swept SA 50 Ω DC 880000000	F PRESEL	F	RL
Select Marker	TYPE MWWWW DET P P NNN N 2.377 688 GHz	Hold:>100/100	Avg	Trig: Free Run #Atten: 6 dB	PNO: Fast 😱 IFGain:Low		PREAMP		
Norma	25.165 dBµV					2.99 dBµV	Ref 82	div	0 dB og 73 0 -
Delt		• ¹	ور جرمی وجر ہے	مرم الاست. مرجع المرية	actual decaminants	المراجع		acier	53 D - 43 D - 33 D -
Fixed									13.0 + 2.99 + 7.01 -
0	top 2.40400 GHz 00 ms (1001 pts)	Sweep 1.	FUNCTION	3.0 MHz	#VBW		ISPR)		Res
Properties	E		Porchor	25.165 dBµV 23.746 dBµV		2.377	f	1	1 2 3 4 5
Mor 1 of									6 7 8 9 10
		STATUS							50

(PEAK, Channel 0, GFSK)

(AVERAGE, Channel 0, GFSK)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

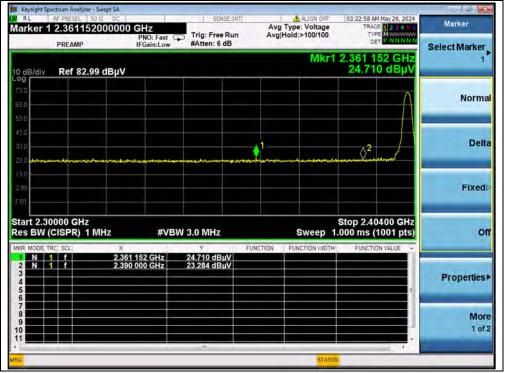
	59:19 AM May 29, 2024	ALIGN OFF	T	SENSE:IN	1 - 1	SEL 50 Ω DC	RF PRESE	L
Marker	TRACE 2 3 4 5 0 TYPE MWWWW	Type: Voltage Hold:>100/100	Avg	Trig: Free Run	PNO: Fast	367600000	2 2.483	ker 2
Select Marker	DET PNNNN			#Atten: 6 dB	IFGain:Low	MP	PREAM	_
2	83 676 GHz 0.494 dBμV	Mkr2 2				82.99 dBµV	Ref 8	B/dív
Norm							\land	
Del					2	Land		/
Fixed								
							7800 G	t 2.4
c	p 2.50000 GHz ms (1001 pts)	Sweep 1.0		N 3.0 MHz	#VB	R) 1 MHz	(CISPR	BW
C	p 2.50000 GHz ms (1001 pts)	Sweep 1.0	FUNCTION	Y		X	TRC SCL	MODE
	ms (1001 pts)	Sweep 1.0	FUNCTION	V 3.0 MHz 31.347 dBµV 30.494 dBµV		× 2.48		MODE 1
Properties Mo 1 o	ms (1001 pts)	Sweep 1.0	FUNCTION	ې 31.347 dBµV	83 500 GHz	× 2.48	TRC SCL	MODE 1

(PEAK, Channel 78, GFSK)

(AVERAGE, Channel 78, GFSK)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Fax: 86-755-36698525 E-mail: service@morlab.cn

π/4-DQPSK Mode

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBµV)	A⊤ (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
			(uphr)					
0	2361.15	PK	24.71	6.74	27.20	58.65	74	PASS
0	2387.15	AV	13.16	6.74	27.20	47.10	54	PASS
78	2483.57	PK	29.11	6.74	27.20	63.05	74	PASS
78	2483.76	AV	15.04	6.74	27.20	48.98	54	PASS

(PEAK, Channel 0,π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Marker	2345	03:23:25 AM Ma TRACE TYPE	ALIGN OFF Type: Voltage Hold:>100/100	#Avg	SENSE:IN	GHz PNO: Fast	50 Ω DC 152000000		ker 1
Select Marker 1	2 GHz	2.387 152	Mkr1		#Atten: 6 dB	IFGain:Low	P	PREAMP	_
	dBµV	13.161					2.99 dBµV	Ref 82	B/div
Norma	A								
Delt									
_		↓ ¹ √ ²							
Fixed									
o		Stop 2.4040 54.0 ms (10			3.0 MHz	#VBW		000 GH CISPR)	
_	/ALUE ·	FUNCTION	FUNCTION WIDTH	FUNCTION	9 13.161 dBµV 12.966 dBµV	152 GHz 000 GHz	× 2.387 2.390	f	
Properties									
Mor 1 of									
								_	

(AVERAGE, Channel 0, π/4-DQPSK)

(PEAK, Channel 78, π/4-DQPSK)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

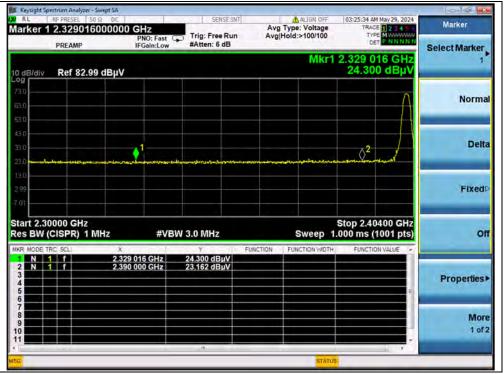
Fax: 86-755-36698525 E-mail: service@morlab.cn

Marker	04:04:33 AM May 29, 2024	ALIGN OFF		SENSE: IN			ESEL 50 Q	
Select Marker	TRACE 1 2 3 4 5 6 TYPE M	Type: Voltage Hold:>100/100		Trig: Free Run #Atten: 6 dB	NO: Fast 😱 Gain:Low	1	8376400 AMP	
2	2.483 764 GHz 15.044 dBμV	Mkr2				dBµV	ef 82.99 d	v Re
Norm								1
Delt						" <u>1</u> 2		/
Fixed		d						
0	Stop 2.50000 GHz 2.60 ms (1001 pts)	Sweep 32		3.0 MHz	#VBW	łz	GHz PR) 1 MH	.47800 V (CISI
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y 14.448 dBµV 15.044 dBµV	0 GHz	× 2,483 5 2,483 7		E TRC SC
Properties	E .							
Mor 1 of								
	7							

(AVERAGE, Channel 78, π/4-DQPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

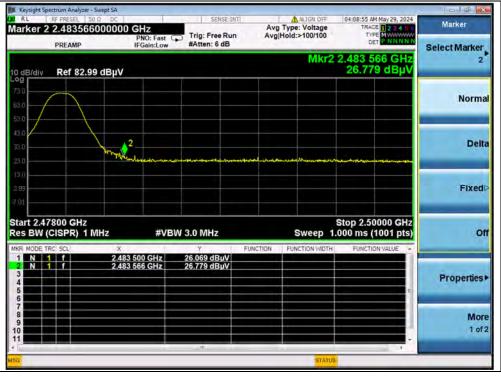

Fax: 86-755-36698525

Http://www.morlab.cn

8-DPSK Mode

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E	Limit (dBµV/m)	Verdict
		Pr/AV	(dBµV)			(dBµV/m)		
0	2329.02	PK	24.30	6.74	27.20	58.24	74	PASS
0	2390.00	AV	13.37	6.74	27.20	47.31	54	PASS
78	2483.57	PK	26.78	6.74	27.20	60.72	74	PASS
78	2484.23	AV	15.06	6.74	27.20	49.00	54	PASS

(PEAK, Channel 0, 8-DPSK)



Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn

Marker	M May 29, 2024 CE 1 2 3 4 5 4 PE M	TRACE	Type: Voltage Hold:>100/100	-	SENSE:11 Trig: Free Ru #Atten: 6 dB	GHz PNO: Fast	000000	rum Analyzer - 5 PRESEL 50 .356576	er 1 2	RL
Select Marker 1	576 GHz 5 dBμV	2.356 5 12.99	Mkr1			I Guilleon		Ref 82.99		o dB/
Norma	Λ									30- 30-
Delt										130 - 130 - 130 -
Fixed		\$ ²		♦ '		•	******			3.0 :99 :01 -
o	0400 GHz (1001 pts)	Stop 2.40 54.0 ms (1	Sweep 1	FUNCTIO	3.0 MHz	#VBW	ИНZ ×	00 GHz ISPR) 1 N		es E
Properties		- Tone bo			12.995 dBµV 13.367 dBµV		2.356	f	1	1 2 3 4 5
Mor 1 of										6 7 8 9 0
			STATUS							a a

(AVERAGE, Channel 0, 8-DPSK)

(PEAK, Channel 78, 8-DPSK)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

Marker Select Marke	04:09:28 AM May 29, 2024 TRACE 2 3 4 5 6 TYPE M WWWWAY DET A N N N N N	ALIGN OFF Type: Voltage Hold:>100/100	#Av	Trig: Free Run #Atten: 6 dB	0 GHz PNO: Fast C IFGain:Low	E 50 0 DC 22600000		er 2 2	RL ark
	2.484 226 GHz 15.057 dBµV	Mkr2				82.99 dBµ\	Ref 8	div	dB) g r
Norn							~	1	10
De					×1_2			/	0.0
Fixe					2 7 				3.0 99 -
	Stop 2.50000 GHz 2.60 ms (1001 pts)	Sweep 32		V 3.0 MHz	#VB) 1 MHz	SPR)		s
Propertie	FUNCTION VALUE	FUNCTION WOTH	FUNCTION	14.557 dBµV 15.057 dBµV	83 500 GHz 84 226 GHz		f		
Ma 1 a							ی وی و وی و وی و وی		
				m					_

(AVERAGE, Channel 78, 8-DPSK)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

A.12. Radiated Emission

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $\mathsf{E} \ [\mathsf{dB}\mu\mathsf{V}/\mathsf{m}] = \mathsf{U}_\mathsf{R} + \mathsf{A}_\mathsf{T} + \mathsf{A}_\mathsf{Factor} \ [\mathsf{dB}]; \ \mathsf{A}_\mathsf{T} = \mathsf{L}_\mathsf{Cable \ loss} \ [\mathsf{dB}] - \mathsf{G}_\mathsf{preamp} \ [\mathsf{dB}]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

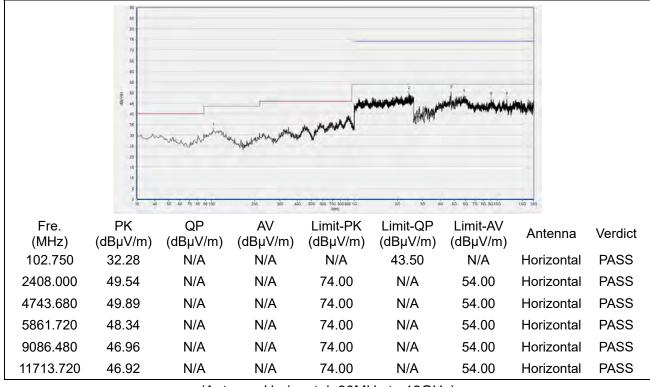
Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

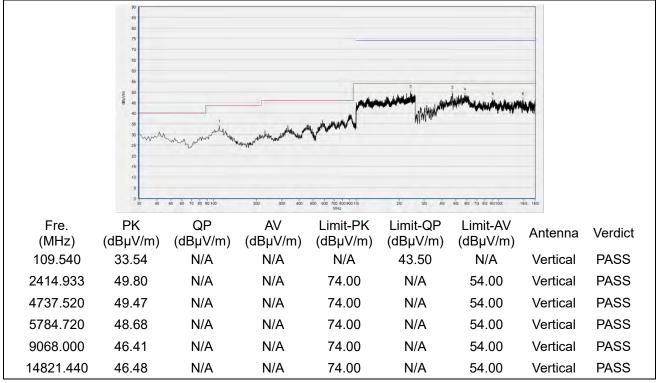
Note2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note3: For the frequency, which started from 18GHz to 10th harmonic of the highest frequency, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Field strength of fundamental:

Frequency	Reading_Peak	Antenna	Path Loss	Final_Peak	Antenna
(MHz)	(dBµV/m)	Factor (dB)	(dB)	(dBµV/m)	Polarity
2401.81	74.59	27.20	6.74	108.53	Horizontal

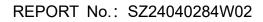

The field strength (the lowest) of fundamenta is more than 20dB higher than the unwanted emissions, in accordance with FCC part 15.215(b).



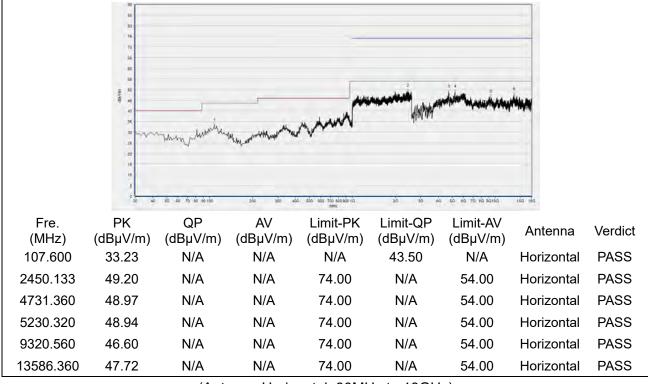
GFSK Mode

Plots for Channel 0

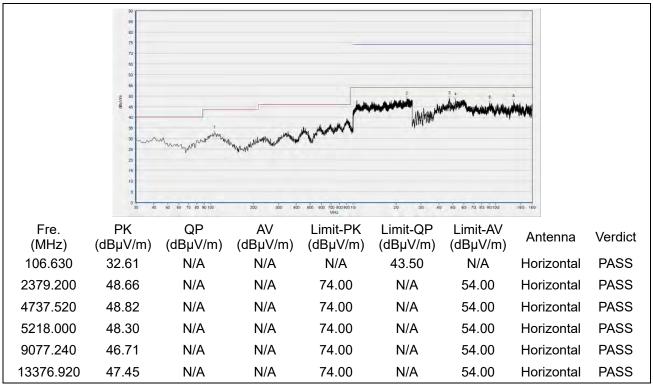
(Antenna Horizontal, 30MHz to 18GHz)



(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

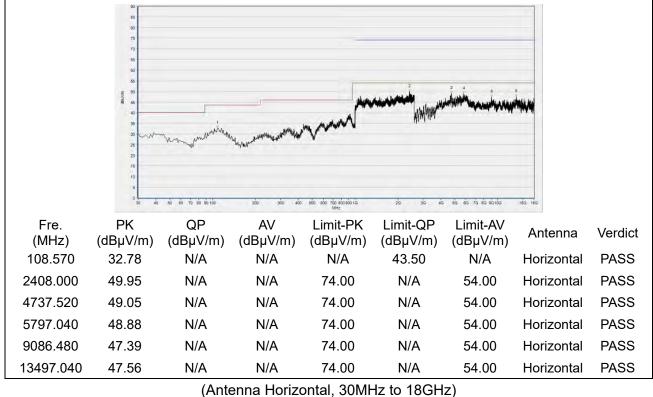


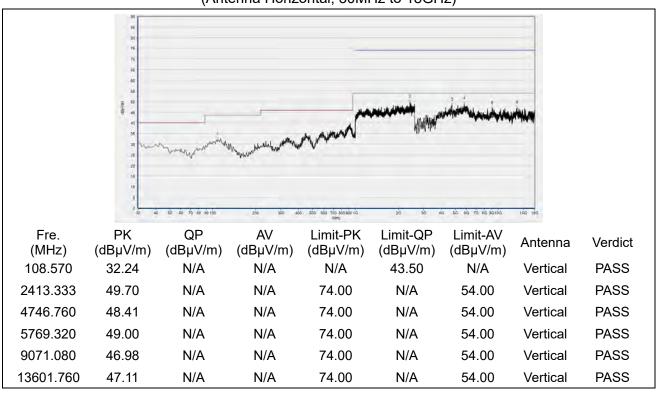
Plot for Channel 39

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

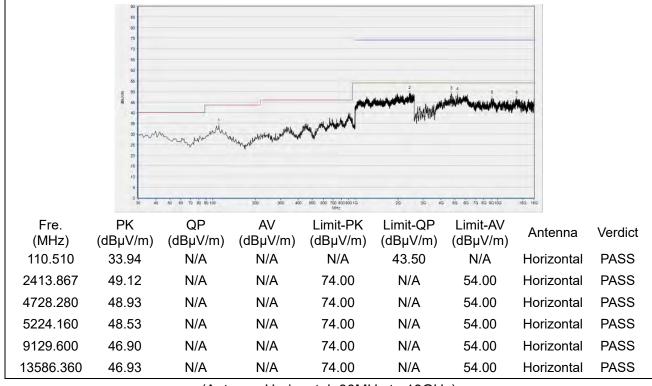

Tel: 86-755-36698555

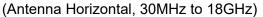

Fax: 86-755-36698525 E-mail: service@morlab.cn

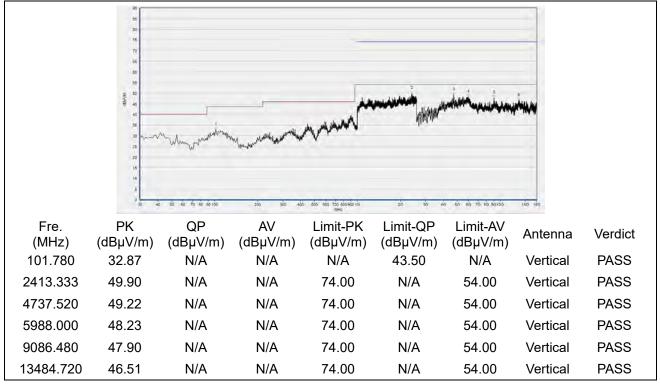
Plot for Channel 78

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

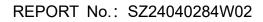

Fax: 86-755-36698525 E-mail: service@morlab.cn



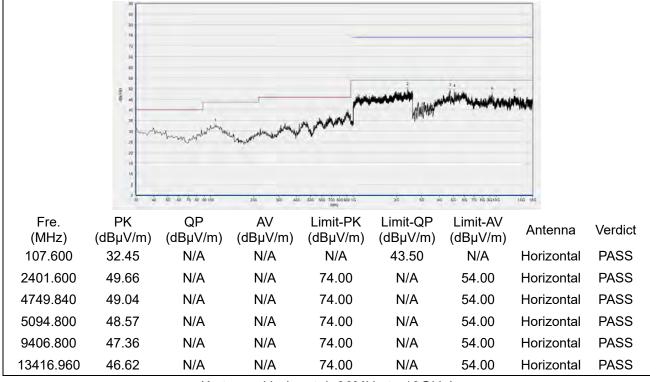


π/4-DQPSK Mode

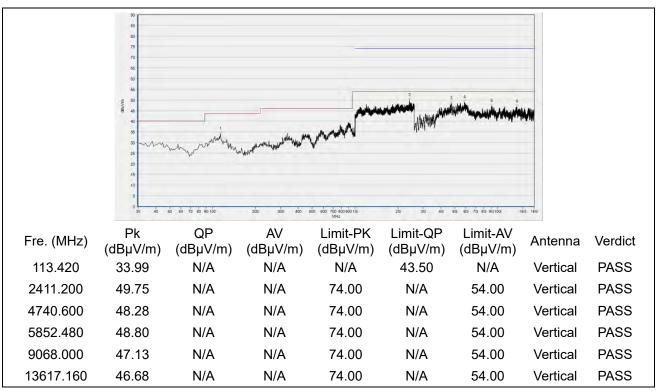
Plots for Channel 0


(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

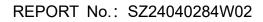

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

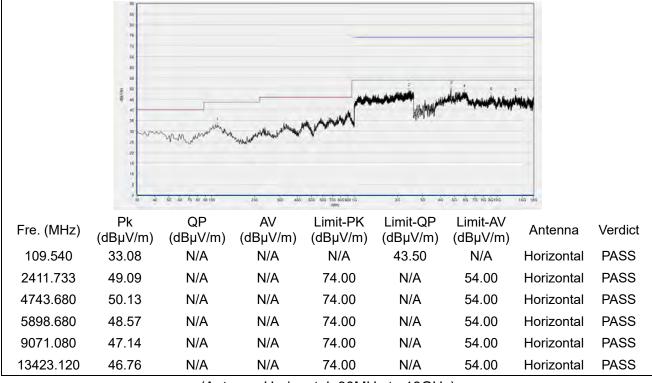


Plot for Channel 39

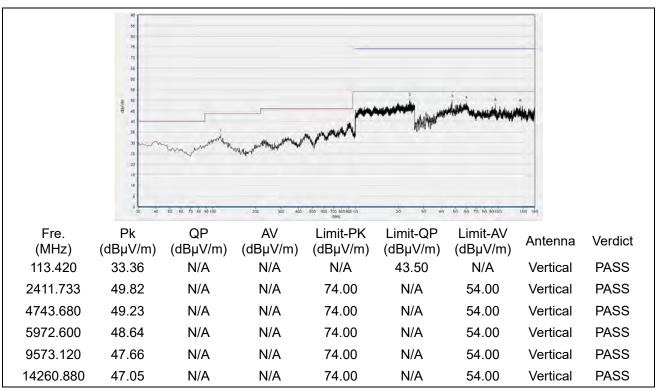
(Antenna Horizontal, 30MHz to 18GHz)



(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

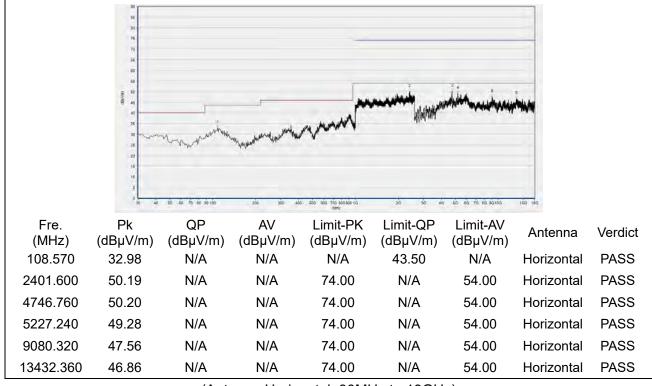
Fax: 86-755-36698525 E-mail: service@morlab.cn

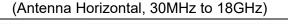


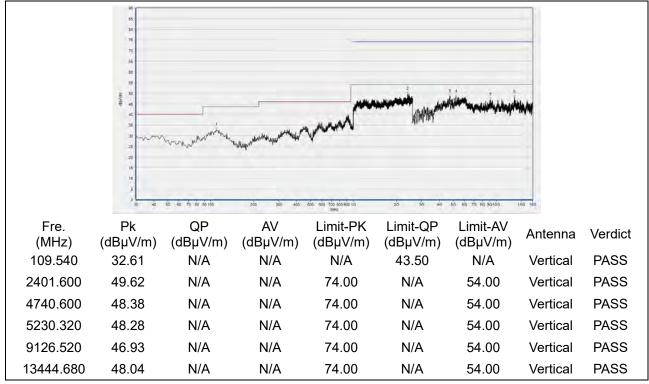
Plot for Channel 78

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

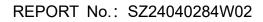

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525 E-mail: service@morlab.cn

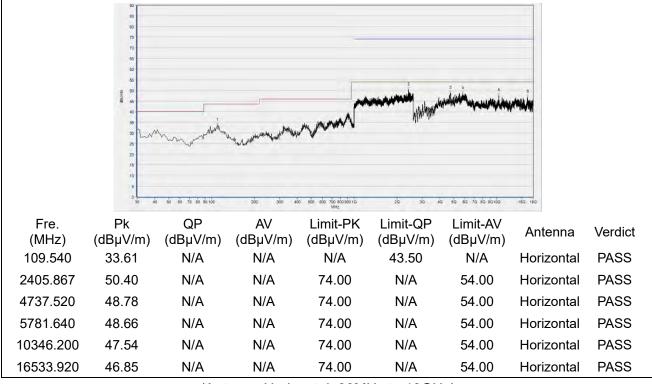


8-DPSK Mode

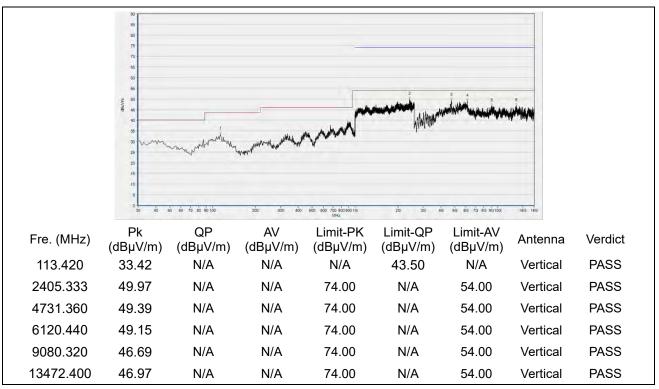
Plots for Channel 0



(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn



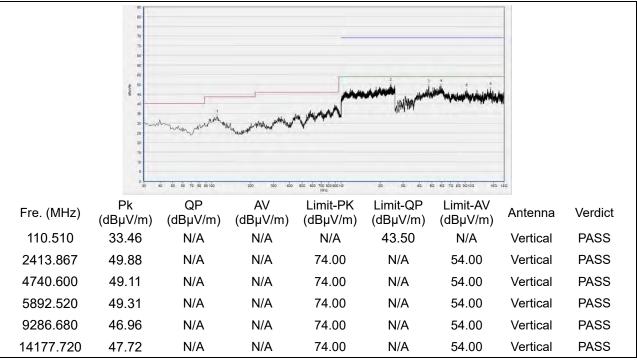
Plot for Channel 39

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn



Plot for Channel 78

	40 85 80 75 70 80 80 80 80 80 80 80 80 80 8	n so so to so so to	newler.					
Fre. (MHz)	Pk (dBµV/m)	QP (dBµV/m)	AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-QP (dBµV/m)	Limit-AV (dBµV/m)	Antenna	Verdict
111.480	33.28	N/A	N/A	N/A	43.50	N/A	Horizontal	PASS
2450.667	49.99	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
4737.520	49.37	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
4959.280	49.74	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
9074.160	47.56	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
14793.720	46.87	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

- END OF REPORT -

Shenzhen Morlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn