Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the
 certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned
 under the liquid filled phantom. The impedance stated is transformed from the measurement at the
 SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty
 required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1059_Dec21	Page 2 of 6	

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	5 mm	with Spacer	
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction	
Frequency	6500 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	6.13 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	289 W/kg ± 24.7 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg ± 24.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 6.2 jΩ		
Return Loss	- 23.5 dB		

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	289 W/m ²
APD measured	normalized to 1W	2890 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	130 W/m ²
APD measured	normalized to 1W	1300 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D6.5GHzV2-1059_Dec21

Page 4 of 6

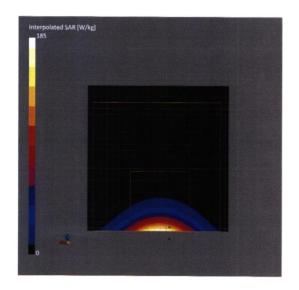
DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0MHz)

Device	under	Test	Pro	perties
--------	-------	------	-----	---------

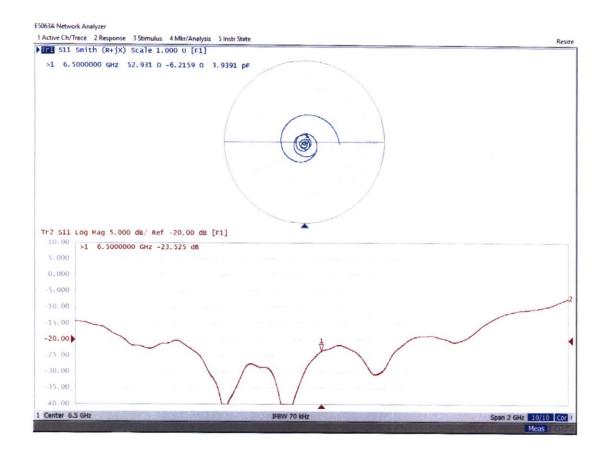
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1059	

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.13	34.3

Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2020-12-30	DAE4 Sn908, 2021-06-24


Scan Setup

Scan Setup		Measurement Results	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2021-12-01, 13:15
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	29.0
Sensor Surface [mm]	1.4	psSAR10g [W/Kg]	5.33
Graded Grid	Yes	Power Drift [dB]	-0.00
Grading Ratio	1.4	Power Scaling	Disabled
MAIA	N/A	Scaling Factor [dB]	
Surface Detection	VMS + 6p	TSL Correction	No correction
Scan Method	Measured	M2/M1 [%]	51.1
		Dist 3dB Peak [mm]	4.8

Certificate No: D6.5GHzV2-1059_Dec21

Impedance Measurement Plot for Head TSL

13 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Certificate No. CLA13-1009_May24

Object	CLA13 - SN: 1009	9	
Calibration procedure(s)	QA CAL-15.v11	dure for SAR Validation Sources	helow 700 MHz
	Calibration Froce	dure for SAM validation Sources	DOIOW 700 WII 12
Calibration date:	May 21, 2024		
All calibrations have been conducte		y facility: environment temperature $(22 \pm 3)^{\circ}$ C	and humidity < 70%.
,	l ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	ID #	Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037)	Scheduled Calibration
Primary Standards Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	
Primary Standards Power meter NRP2 Power sensor NRP-Z91		26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036)	Mar-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	26-Mar-24 (No. 217-04036/04037)	Mar-25 Mar-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037)	Mar-25 Mar-25 Mar-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046)	Mar-25 Mar-25 Mar-25 Mar-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Pope-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Jan-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Perference 20 dB Attenuator Proper N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Jan-24
Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477	26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04047) 26-Mar-24 (No. 217-04047) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Jun-24 In house check: Oct-24

Certificate No: CLA13-1009_May24

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA13-1009_May24 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
EUT Positioning	Touch Position		
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	13 MHz ± 1 MHz		

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.553 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.565 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.340 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.348 W/kg ± 18.0 % (k=2)

Certificate No: CLA13-1009_May24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 1.8 jΩ	
Return Loss	- 34.8 dB	

Additional EUT Data

Manufactured by	SPEAG

Certificate No: CLA13-1009_May24

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 21.05.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1009

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 10.01.2024

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 15.01.2024

Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 31.57 V/m; Power Drift = -0.00 dB

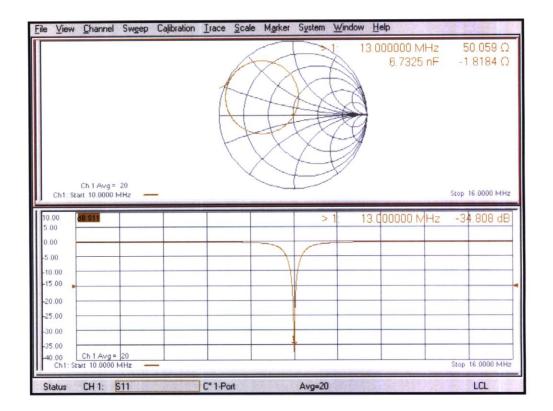
Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.340 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 77.1%

Maximum value of SAR (measured) = 0.832 W/kg



0 dB = 0.832 W/kg = -0.80 dBW/kg

Certificate No: CLA13-1009_May24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: CLA13-1009_May24

Page 6 of 6

10 GHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing

Certificate No. 5G-Veri10-1005_Jan24

CALIBRATION CERTIFICATE

5G Verification Source 10 GHz - SN: 1005 Object **QA CAL-45.v4** Calibration procedure(s) Calibration procedure for sources in air above 6 GHz January 18, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration ID# Primary Standards 04-Dec-23 (No. EUmm-9374_Dec23) Dec-24 Reference Probe EUmmWV3 SN: 9374 SN: 1215 29-Jun-23 (No. DAE4-1215_Jun23) Jun-24 ID# Check Date (in house) Scheduled Check Secondary Standards 29-Nov-23 (in house check Nov-23) In house check: Nov-24 RF generator R&S SMF100A SN: 100184 Power sensor R&S NRP18S-10 SN: 101258 29-Nov-23 (in house check Nov-23) In house check: Nov-24 SN: MY54504221 31-Oct-19 (in house check Oct-22) In house check: Oct-25 Network Analyzer Keysight E5063A Signature Name Function Calibrated by: Joanna Lleshaj Laboratory Technician Sven Kühn Technical Manager Approved by: Issued: January 19, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1005_Jan24

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn
 antenna minus ohmic and mismatch loss. The forward power is measured prior and after
 the measurement with a power sensor. During the measurements, the horn is directly
 connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for
 at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize
 reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the
coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1005_Jan24

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Circular Averag	Jing					
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+)		Uncertainty (k = 2)
Aperture to	(mW)	(V/m)	(k = 2)			
Measured Plane	sured Plane		(W/m²)			
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.4	55.5	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.2, 59.4, 59.6	55.2, 55.5, 55.7	1.28 dB

Square Averaging

Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psP (W/		(k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.4	55.4	1.28 dB

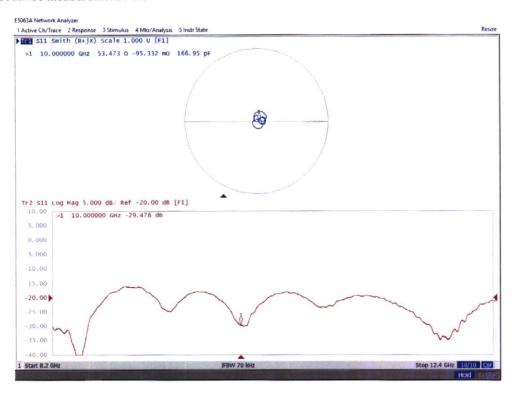
Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	151	1.27 dB	59.1, 59.4, 59.6	55.1, 55.4, 55.7	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	93.3	151	1.27 dB	60.5, 60.7, 60.9	1.28 dB

Certificate No: 5G-Veri10-1005_Jan24

Page 3 of 8


 $^{^{\}rm l}$ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	53.5 Ω - 0.1 jΩ	
Return Loss	- 29.5 dB	

Impedance Measurement Plot

Certificate No: 5G-Veri10-1005_Jan24

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

perior anaci icari inheim			
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

Scan Setup		Measurement Results	
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm²]	1.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	59.2
		psPDtot+ [W/m ²]	59.4
		psPDmod+ [W/m²]	59.6
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

- Control annual Control per non						
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type			
5G Verification Source 10 GHz	100 0 x 100 0 x 172 0	SN: 1005	-			

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

Scan Setup

	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm²]	4.00
		Avg. Type	Circular Averaging
		psPDn+ [W/m²]	55.2
		psPDtot+ [W/m ²]	55.5
		psPDmod+ [W/m ²]	55.7
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m ²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Measurement Results

Certificate No: 5G-Veri10-1005_Jan24

Page 6 of 8

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 100E	DOT Type

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0,	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215.
		2023-12-04	2023-06-29

Scan Setup

Scan Setup		Measurement Results	
Sensor Surface [mm] MAIA	5G Scan 10.0 MAIA not used	Date Avg. Area [cm²] Avg. Type psPDn+ [W/m²] psPDtot+ [W/m²] psPDmod+ [W/m²] Max(Sn) [W/m²] Max(Stot) [W/m²] Emax [V/m] Power Drift [dB]	5G Scan 2024-01-18, 15:51 1.00 Square Averaging 59.1 59.6 60.5 60.7 60.9 151

Certificate No: 5G-Veri10-1005_Jan24

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	1,-1

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4 Sn1215,
		2023-12-04	2023-06-29

Scan Setup	Measurement Results		
	5G Scan		5G Scan
Sensor Surface [mm]	10.0	Date	2024-01-18, 15:51
MAIA	MAIA not used	Avg. Area [cm²]	4.00
		Avg. Type	Square Averaging
		psPDn+ [W/m ²]	55.1
		psPDtot+ [W/m²]	55.4
		psPDmod+ [W/m²]	55.7
		Max(Sn) [W/m ²]	60.5
		Max(Stot) [W/m ²]	60.7
		Max(Stot) [W/m ²]	60.9
		E _{max} [V/m]	151
		Power Drift [dB]	-0.01

Certificate No: 5G-Veri10-1005_Jan24

Page 8 of 8

ANNEX I Accreditation Certificate

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049,01 Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.