

TEST REPORT

No.I22N01710-RF-UMTS

for

Guangdong OPPO Mobile Telecommunications Corp., Ltd.

Mobile Phone

Model Name: CPH2483

FCC ID: R9C-CPH2483

with

Hardware Version: 11

Software Version: ColorOS V13.0

Issued Date: 2022-11-04

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.
Tel:+86(0)755-33322000, Fax:+86(0)755-33322001
Email: yewu@caict.ac.cn. www.saict.ac.cn

ii. yewu@calct.ac.cn. www.salct.ac.ch

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22N01710-RF-UMTS	Rev.0	1st edition	2022-11-04

CONTENTS

1.	SUMMARY OF TEST REPORT4
1.1.	TEST ITEMS4
1.2.	TEST STANDARDS4
1.3.	TEST RESULT4
1.4.	TESTING LOCATION4
1.5.	PROJECT DATA4
1.6.	SIGNATURE4
2.	CLIENT INFORMATION
2.1.	APPLICANT INFORMATION5
2.2.	MANUFACTURER INFORMATION5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)6
3.1.	ABOUT EUT
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST
3.4.	GENERAL DESCRIPTION
4.	REFERENCE DOCUMENTS
5.	LABORATORY ENVIRONMENT9
6.	SUMMARY OF TEST RESULTS10
7.	STATEMENT12
8.	TEST EQUIPMENTS UTILIZED
ANN	IEX A: MEASUREMENT RESULTS14
A	.1 OUTPUT POWER
А	.2 FIELD STRENGTH OF SPURIOUS RADIATION
A	.3 FREQUENCY STABILITY
	.4 OCCUPIED BANDWIDTH
	.5 EMISSION BANDWIDTH
	.6 BAND EDGE COMPLIANCE
	.7 CONDUCTED SPURIOUS EMISSION
A	.8 PEAK-TO-AVERAGE POWER RATIO

1. SUMMARY OF TEST REPORT

1.1. Test Items

Description	Mobile Phone
Model Name	CPH2483
Brand Name	OPPO
Applicant's name	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Manufacturer's Name	Guangdong OPPO Mobile Telecommunications Corp., Ltd.

1.2. Test Standards

FCC Part 2/22/24/27	10-1-20 Edition
ANSI C63.26	2015
KDB971168 D01	v03r01

1.3. Test Result

All test items are pass. Please refer to "6 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project Data

Testing Start Date: 2022-09-13

1.6. Signature

Wang Ping (Prepared this test report)

Zhang Hao (Approved this test report)

Testing End Date: 2022-10-30

黄秋欲

Huang Qiuqin (Reviewed this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: Guangdong OPPO Mobile Telecommunications Corp., Ltd.

Address /Post:NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,
Guangdong, ChinaContact Person:Mei XiLiContact Emailmeixili@oppo.comTelephone:(86)76986076999

Fax: meixili@oppo.com

2.2. Manufacturer Information

Company Name:Guangdong OPPO Mobile Telecommunications Corp., Ltd.Address /Post:NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City,
Guangdong, ChinaContact Person:Mei XiLiContact Emailmeixili@oppo.comTelephone:(86)76986076999Fax:meixili@oppo.com

3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT

<u>(AE)</u>

3.1. <u>About EUT</u>

Description	Mobile Phone
Model Name	CPH2483
FCC ID	R9C-CPH2483
Frequency Bands	WCDMA Band 2,4,5
Antenna	Integrated
Extreme vol. Limits	3.60V to 4.45V (nominal: 3.87V)
	Nie else enseith die ense ense

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of SAICT.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT06aa	869062060031010 869062060031002	11	ColorOS 13.0	2022-09-08
UT08aa	869062060033859 869062060033842	11	ColorOS 13.0	2022-09-13

*EUT ID: is used to identify the test sample in the lab internally.

UT06aa are used for conduction test, UT08aa is used for radiation test.

3.3. Internal Identification of AE used during the test

	Dee	arintian
AE ID*	Des	cription
AE1	Batter	у
AE2	Charg	er
AE3	USB (Cable
AE1		
Model		BLP923
Manufactu	urer	Chongqing Cosmx Battery Co., Ltd.
Capacity		4880mAh
Nominal V	/oltage	3.87 V
AE2		
Model		VCB3HDUH
Manufactu	urer	SHENZHEN HUNTKEY ELECTRIC CO., LTD.
Specificat	ion	American Standard Charger
AE3		
Model		DL150
Manufactu	urer	1

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment Under Test (EUT) is a model Mobile Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

4. <u>REFERENCE DOCUMENTS</u>

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-20
		Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	10-1-20
	MATTERS; GENERAL RULES AND REGULATIONS	Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-20
FGG Fall 24	I EROUNAL COMMUNICATIONS SERVICES	Edition
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS	10-1-20
FUC Fall 27	SERVICES	Edition
ANSI C63.26	American National Standard for Compliance Testing of	2015
71101 000.20	Transmitters Used in Licensed Radio Services	2013
KDB971168 D01	Power Meas License Digital Systems	v03r01

5. LABORATORY ENVIRONMENT

Shielded room did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	>2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Verdict Column	Р	Pass
	F	Fail
	NA	Not applicable
	NM	Not measured

WCDMA Band II

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/24.232	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/24.238	A.2	Р
3	Frequency Stability	2.1055/24.235	A.3	Р
4	Occupied Bandwidth	2.1049/24.238	A.4	Р
5	Emission Bandwidth	2.1049/24.238	A.5	Р
6	Band Edge Compliance	2.1051/24.238	A.6	Р
7	Conducted Spurious Emission	2.1051/24.238	A.7	Р
8	Peak-to-Average Power Ratio	24.232/KDB971168 D01	A.8	Р

WCDMA Band V

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/22.913	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/22.917	A.2	Р
3	Frequency Stability	2.1055/22.355	A.3	Р
4	Occupied Bandwidth	2.1049/22.917	A.4	Р
5	Emission Bandwidth	2.1049/22.917	A.5	Р
6	Band Edge Compliance	2.1051/22.917	A.6	Р
7	Conducted Spurious Emission	2.1051/22.917	A.7	Р
8	Peak-to-Average Power Ratio	KDB971168 D01	A.8	Р

WCDMA Band IV

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/27.50(d)	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/27.53(h)	A.2	Р
3	Frequency Stability	2.1055/27.54	A.3	Р
4	Occupied Bandwidth	2.1049/27.53(g)	A.4	Р
5	Emission Bandwidth	2.1049/27.53(g)	A.5	Р
6	Band Edge Compliance	2.1051/27.53(h)	A.6	Р
7	Conducted Spurious Emission	2.1051/27.53(h)	A.7	Р
8	Peak-to-Average Power Ratio	27.50(d) /KDB971168 D01	A.8	Р

7. STATEMENT

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conlusion meets the limit requirements.

8. TEST EQUIPMENTS UTILIZED

NO.	Description	ТҮРЕ	Manufacture	series number	CAL DUE DATE
1	Test Receiver	ESR7	R&S	101676	2022-11-24
2	BiLog Antenna 3142E		ETS-Lindgren	0224831	2024-05-27
3	Horn Antenna	3117	ETS-Lindgren	00066577	2025-04-17
4	Horn Antenna	QSH-SL-18-26- S-20	Q-par	17013	2023-01-06
5	Antenna	BBHA 9120D	Schwarzbeck	1593	2022-12-05
6	Antenna	VUBA 9117	Schwarzbeck	207	2023-07-15
7	Antenna	QWH-SL-18-40 -K-SG	Q-par	15979	2023-01-06
8	preamplifier	83017A	Agilent	MY39501110	/
9	Signal Generator	SMB100A	R&S	179725	2022-11-24
10	Fully Anechoic Chamber	FACT3-2.0	ETS-Lindgren	1285	2023-05-29
11	Spectrum Analyzer	FSV40	R&S	101192	2023-01-12
12	Universal Radio Communication Tester	CMU200	R&S	114545	2023-01-12
13	Universal Radio Communication Tester	CMW500	R&S	152499	2023-07-14
14	Universal Radio Communication Tester	E7515B	Keysight	MY59322022	2023-04-14
15	Universal Radio Communication Tester	MT8821C	Anritsu	6262025268	2023-03-29
16	Universal Radio Communication Tester	MT8000A	Anritsu	6261987936	2023-03-29
17	Universal Radio Communication Tester	CMW500	R&S	129146	2023-04-24
18	Spectrum Analyzer	FSU	R&S	101506	2022-12-13
19	Temperature Chamber	SH-241	ESPEC	92007516	2023-10-15
20	DC Power Supply	U3606A	Agilent Technologies	MY50450012	2022-11-13
21	Spectrum Analyzer	FSW26	R&S	102197	2022-11-24

Test software

ltem	Name	Vesion
Radiated	EMC32	V10.50.40

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference

FCC: CFR Part 2.1046, 22.913, 24.232, 27.50(d)

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains max output power and EIRP measurements for the EUT. In all cases, output

power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II;826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V and 1712.4MHz, 1732.4MHz and 1752.6MHz for WCDMA Band IV (bottom, middle and top of operational frequency range).

Limit

According to FCC Part 2.1046

WCDMA Band II

A.1.2.2 Measurement result

QPSK

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	22.9
(Band II)	9400	1880.0	22.7
	9538	1907.6	22.9

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	22.3
(Band II)	9400	1880.0	22.1
	9538	1907.6	22.2

WCDMA Band V

Measurement result

QPSK

	СН	Frequency(MHz)	output power(dBm)
WCDMA	4132	826.4	23.5
(Band V)	4183	836.6	23.4
	4233	846.6	23.4

16QAM

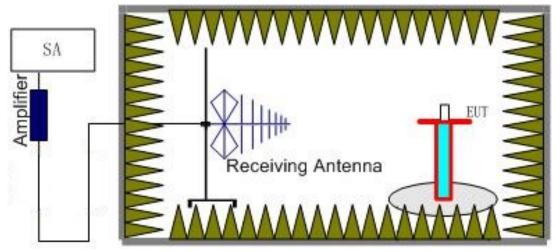
	СН	Frequency(MHz)	output power(dBm)
WCDMA	4132	826.4	22.8
(Band V)	4183	836.6	22.7
	4233	846.6	22.7

WCDMA Band IV Measurement result QPSK

СН	Frequency(MHz)	output power(dBm)	
1312	1712.4	22.8	
1412	1732.4	22.8	
1513	1752.6	22.9	
16QAM			
СН	Frequency(MHz)	output power(dBm)	
1312	1712.4	22.1	
1412	1732.4	22.2	
1513	1752.6	22.2	
	1312 1412 1513 CH 1312 1412	1312 1712.4 1412 1732.4 1513 1752.6 CH Frequency(MHz) 1312 1712.4 1412 1732.4	

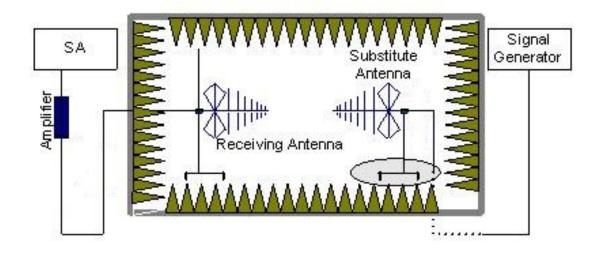
Note: Expanded measurement uncertainty is U = 0.49 dB, k = 1.96

A.1.3 Radiated


A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.3.2 Method of Measurement

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{Ag} - P_{cl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

WCDMA Band II-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band II	≤33dBm (2W)

Measurement result

Antenna Up

WCDMA Band II QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1852.40	-16.13	-29.30	8.10	21.27	33.00	н
1880.00	-16.65	-29.40	8.10	20.85	33.00	н
1907.60	-15.95	-29.30	8.10	21.45	33.00	н

WCDMA Band II 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1852.40	-16.24	-29.30	8.10	21.16	33.00	н
1880.00	-16.72	-29.40	8.10	20.78	33.00	н
1907.60	-16.12	-29.30	8.10	21.28	33.00	Н

Frequency: 1907.60MHz

Peak EIRP(dBm)= PMea(-15.95dBm)-(Pcl+PAg)(-29.30dB)+Ga (8.10dB) =21.45dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

Antenna Down

WCDMA Band II QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1852.40	-16.27	-29.30	8.10	21.13	33.00	V
1880.00	-15.83	-29.40	8.10	21.67	33.00	V
1907.60	-15.21	-29.30	8.10	22.19	33.00	v

WCDMA Band II 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	FUIdHZatiOH
1852.40	-16.44	-29.30	8.10	20.96	33.00	Н
1880.00	-15.95	-29.40	8.10	21.55	33.00	н
1907.60	-15.31	-29.30	8.10	22.09	33.00	Н

Frequency: 1907.60MHz

Peak EIRP(dBm)= PMea(-15.21dBm)-(Pcl+PAg)(-29.30dB)+Ga (8.10dB) =22.19dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA Band V-ERP

Limits

	Burst Peak ERP (dBm)
WCDMA Band V	≤38.45dBm

Measurement result

Antenna Up

WCDMA Band V QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.11	-33.60	-0.84	2.15	21.50	38.45	V
836.60	-8.90	-33.50	-0.74	2.15	21.72	38.45	V
846.60	-8.24	-33.50	-0.73	2.15	22.38	38.45	v

WCDMA Band V 16QAM

Frequency	P_{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.18	-33.60	-0.84	2.15	21.43	38.45	V
836.60	-8.98	-33.50	-0.74	2.15	21.63	38.45	V
846.60	-8.51	-33.50	-0.73	2.15	22.10	38.45	V

Frequency: 846.60MHz

Peak ERP(dBm)= PMea(-8.24dBm)-(Pcl+PAg)(-33.50dB)+Ga (-0.73dB)-2.15dB=22.38dBm ANALYZER SETTINGS: RBW = VBW = 5MHz

Antenna Down

WCDMA Band V QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.71	-33.60	-0.84	2.15	20.90	38.45	v
836.60	-10.05	-33.50	-0.74	2.15	20.56	38.45	V
846.60	-9.99	-33.50	-0.73	2.15	20.63	38.45	V

WCDMA Band V 16QAM

Frequency	P_{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polanzation
826.40	-9.87	-33.60	-0.84	2.15	20.74	38.45	V
836.60	-10.18	-33.50	-0.74	2.15	20.43	38.45	V
846.60	-10.12	-33.50	-0.73	2.15	20.50	38.45	V

Frequency: 826.40MHz

Peak ERP(dBm)= PMea(-9.71dBm)-(Pcl+PAg)(-33.60dB)+Ga (-0.84dB)-2.15dB=20.90dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA Band IV-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band IV	≤30.00dBm

Measurement result

Antenna Up

WCDMA Band IV QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-15.86	-29.60	8.10	21.84	30.00	н
1732.60	-15.58	-29.50	8.10	22.02	30.00	н
1752.60	-15.45	-29.50	8.10	22.15	30.00	н

WCDMA Band IV 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-16.02	-29.60	8.10	21.68	30.00	Н
1732.60	-15.71	-29.50	8.10	21.89	30.00	н
1752.60	-15.52	-29.50	8.10	22.08	30.00	Н

Frequency: 1752.60 MHz

Peak EIRP(dBm)= PMea(-15.45dBm)-(Pcl+PAg)(-29.50dB)+Ga (8.10dB)=22.15dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

Antenna Down

WCDMA Band IV QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-16.44	-29.60	8.10	21.26	30.00	Н
1732.60	-15.35	-29.50	8.10	22.25	30.00	Н
1752.60	-14.94	-29.50	8.10	22.66	30.00	Н

WCDMA Band IV 16QAM

Frequency	P_{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-16.54	-29.60	8.10	21.16	30.00	Н
1732.60	-15.40	-29.50	8.10	22.20	30.00	н
1752.60	-14.96	-29.50	8.10	22.64	30.00	Н

Frequency: 1752.60 MHz

Peak EIRP(dBm)= PMea(-14.94dBm)-(Pcl+PAg)(-29.50dB)+Ga (8.10dB)=22.66dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

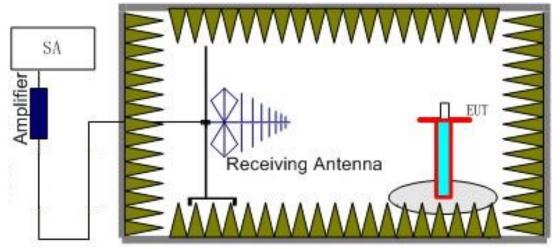
Note: The maximum value of expanded measurement uncertainty for this test item is

U = 2.87dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-40GHz), k = 2

Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

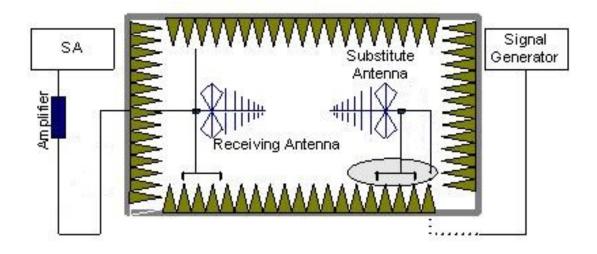
A.2 FIELD STRENGTH OF SPURIOUS RADIATION

Reference


FCC: CFR 2.1053, 22.917, 24.238, 27.53(h).

A.2.1 Measurement Method

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238, Part 22.917 and Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V and WCDMA Band IV.


The procedure of radiated spurious emissions is as follows:

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test.
 A amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier. The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{pl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 24.238 , Part 22.917 and Part 27.50 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz), WCDMA Band V(826.4MHz, 836.6MHz and 846.6MHz) and WCDMA Band IV (1712.4MHz, 1732.4MHz and 1752.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II,WCDMA Band V and WCDMA Band IV into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
WCDMA Band V	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA Band II	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA Band IV	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working	Subrange (GHz)	RBW	VBW	Sweep time (s)
Frequency	0.00.4	4001411	0001/11	10
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
WCDMA Band V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
WCDMA Band II	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
WCDMA Band IV	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	3

Antenna Up

WCDMA BAND II Mode Channel 9662/1932.4MHz(QPSK)

	D (dDma)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
17009.38	-43.96	2.90	14.50	-34.51	-13.00	Н
17190.62	-44.34	2.90	14.50	-34.89	-13.00	Н
17360.00	-43.49	3.20	14.50	-34.34	-13.00	Н
17508.12	-40.57	2.90	12.80	-32.82	-13.00	Н
17566.25	-40.44	3.30	12.80	-33.09	-13.00	Н
17825.00	-39.91	3.60	12.80	-32.86	-13.00	Н

WCDMA BAND II Mode Channel 9800/1960MHz(QPSK)

Eroquopov(MUz)	B. (dBm)	Path	Antenna	Peak	Limit	Delorization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16999.38	-45.97	2.90	16.50	-34.52	-13.00	Н
17133.12	-43.76	2.90	14.50	-34.31	-13.00	н
17282.50	-43.01	3.20	14.50	-33.86	-13.00	н
17439.38	-42.27	2.90	14.50	-32.82	-13.00	н
17595.00	-38.70	3.30	12.80	-31.35	-13.00	Н
17811.25	-40.10	3.60	12.80	-33.05	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(QPSK)

(dRm)	Path	Antenna	Peak	Limit	Polarization
	loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIAIIZALIUTI
-45.10	2.90	16.50	-33.65	-13.00	н
-43.86	2.90	14.50	-34.41	-13.00	н
-43.13	3.20	14.50	-33.98	-13.00	н
-41.57	2.90	14.50	-32.12	-13.00	н
-39.95	3.30	12.80	-32.60	-13.00	н
-40.61	3.60	12.80	-33.56	-13.00	Н
	-43.86 -43.13 -41.57 -39.95	Z) P _{Mea} (dBm) loss -45.10 2.90 -43.86 2.90 -43.13 3.20 -41.57 2.90 -39.95 3.30	Z) P _{Mea} (dBm) loss Gain(dBi) -45.10 2.90 16.50 -43.86 2.90 14.50 -43.13 3.20 14.50 -41.57 2.90 14.50 -39.95 3.30 12.80	z) $P_{Mea}(dBm)$ lossGain(dBi)EIRP(dBm)-45.102.9016.50-33.65-43.862.9014.50-34.41-43.133.2014.50-33.98-41.572.9014.50-32.12-39.953.3012.80-32.60	Z) P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) (dBm) -45.10 2.90 16.50 -33.65 -13.00 -43.86 2.90 14.50 -34.41 -13.00 -43.13 3.20 14.50 -33.98 -13.00 -41.57 2.90 14.50 -32.12 -13.00 -39.95 3.30 12.80 -32.60 -13.00

Eroquopov(MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16944.38	-44.91	2.90	16.50	-33.46	-13.00	н
17164.38	-43.17	2.90	14.50	-33.72	-13.00	н
17301.88	-43.42	3.20	14.50	-34.27	-13.00	н
17443.12	-42.71	2.90	14.50	-33.26	-13.00	н
17595.62	-40.03	3.30	12.80	-32.68	-13.00	н
17806.25	-40.16	3.60	12.80	-33.11	-13.00	н

WCDMA BAND II Mode Channel 9662/1932.4MHz(16QAM)

WCDMA BAND II Mode Channel 9800/1960MHz(16QAM)

	P., (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16983.12	-45.60	2.90	16.50	-34.15	-13.00	Н
17141.88	-43.57	2.90	14.50	-34.12	-13.00	Н
17301.88	-43.14	3.20	14.50	-33.99	-13.00	Н
17431.25	-41.76	2.90	14.50	-32.31	-13.00	Н
17615.62	-39.88	3.30	12.80	-32.53	-13.00	Н
17829.38	-40.17	3.60	12.80	-33.12	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(16QAM)

Eroquopov(MUz)	B. (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIAIIZALIUII
16980.00	-45.36	2.90	16.50	-33.91	-13.00	Н
17128.12	-43.65	2.90	14.50	-34.20	-13.00	Н
17348.75	-42.43	3.20	14.50	-33.28	-13.00	Н
17457.50	-41.87	2.90	14.50	-32.42	-13.00	Н
17568.75	-40.08	3.30	12.80	-32.73	-13.00	Н
17833.75	-39.91	3.60	12.80	-32.86	-13.00	Н

	P. (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3423.00	-41.20	1.20	11.50	-33.05	-13.00	V
17001.88	-43.83	2.90	14.50	-34.38	-13.00	Н
17190.62	-44.02	2.90	14.50	-34.57	-13.00	Н
17510.62	-40.67	2.90	12.80	-32.92	-13.00	Н
17525.62	-40.60	2.90	12.80	-32.85	-13.00	Н
17833.12	-40.49	3.60	12.80	-33.44	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(QPSK)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(QPSK)

Eroguopov(MUz)	P., (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3462.75	-42.35	1.10	11.50	-34.10	-13.00	V
16947.50	-45.74	2.90	16.50	-34.29	-13.00	Н
17113.12	-43.65	2.90	14.50	-34.20	-13.00	Н
17510.62	-40.54	2.90	12.80	-32.79	-13.00	Н
17638.12	-40.53	3.30	12.80	-33.18	-13.00	Н
17831.25	-40.67	3.60	12.80	-33.62	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(QPSK)

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIAIIZALIUIT
3503.62	-43.55	1.10	12.20	-34.60	-13.00	V
16876.25	-46.21	2.90	16.50	-34.76	-13.00	Н
16958.12	-45.68	2.90	16.50	-34.23	-13.00	н
17493.12	-42.24	2.90	14.50	-32.79	-13.00	н
17626.25	-40.08	3.30	12.80	-32.73	-13.00	н
17816.25	-39.86	3.60	12.80	-32.81	-13.00	Н
17816.25	-39.86	3.60	12.80	-32.81	-13.00	Н

	D (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
3427.12	-40.75	1.20	11.50	-32.60	-13.00	V
16999.38	-45.25	2.90	16.50	-33.80	-13.00	Н
17291.88	-43.44	3.20	14.50	-34.29	-13.00	Н
17431.25	-42.43	2.90	14.50	-32.98	-13.00	Н
17608.75	-39.74	3.30	12.80	-32.39	-13.00	Н
17691.25	-40.41	3.30	12.80	-33.06	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(16QAM)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(16QAM)

	D (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3462.75	-42.02	1.10	11.50	-33.77	-13.00	V
16945.62	-45.78	2.90	16.50	-34.33	-13.00	Н
17119.38	-43.76	2.90	14.50	-34.31	-13.00	Н
17499.38	-42.51	2.90	14.50	-33.06	-13.00	Н
17616.88	-40.29	3.30	12.80	-32.94	-13.00	Н
17838.75	-40.42	3.60	12.80	-33.37	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(16QAM)

D (dPm)	Path	Antenna	Peak	Limit	Polarization
r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
-41.79	1.10	12.20	-32.84	-13.00	V
-45.32	2.90	16.50	-33.87	-13.00	Н
-43.63	3.20	14.50	-34.48	-13.00	Н
-39.23	2.90	12.80	-31.48	-13.00	Н
-40.39	3.30	12.80	-33.04	-13.00	Н
-40.00	3.60	12.80	-32.95	-13.00	Н
	-45.32 -43.63 -39.23 -40.39	P _{Mea} (dBm) loss -41.79 1.10 -45.32 2.90 -43.63 3.20 -39.23 2.90 -40.39 3.30	P _{Mea} (dBm) loss Gain(dBi) -41.79 1.10 12.20 -45.32 2.90 16.50 -43.63 3.20 14.50 -39.23 2.90 12.80 -40.39 3.30 12.80	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) -41.79 1.10 12.20 -32.84 -45.32 2.90 16.50 -33.87 -43.63 3.20 14.50 -34.48 -39.23 2.90 12.80 -31.48 -40.39 3.30 12.80 -33.04	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) (dBm) -41.79 1.10 12.20 -32.84 -13.00 -45.32 2.90 16.50 -33.87 -13.00 -43.63 3.20 14.50 -34.48 -13.00 -39.23 2.90 12.80 -31.48 -13.00 -40.39 3.30 12.80 -33.04 -13.00

WCDMA BAND V Mode Channel 4357/871.4MHz(QPSK)

Frequency(MHz)	D (dBm)	Path	Antenna	Peak	Limit	Polarization
	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7197.38	-53.28	1.80	12.00	-45.23	-13.00	V
7897.50	-52.71	1.70	11.30	-45.26	-13.00	Н
9101.88	-51.89	2.20	11.60	-44.64	-13.00	Н
9306.62	-50.72	2.00	11.60	-43.27	-13.00	Н
9475.62	-51.29	2.10	11.60	-43.94	-13.00	V
9735.00	-50.88	2.20	11.20	-44.03	-13.00	н

WCDMA BAND V Mode Channel 4408/881.6MHz(QPSK)

	D (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8838.00	-52.90	1.90	12.00	-44.95	-13.00	Н
9099.50	-51.82	2.20	11.60	-44.57	-13.00	Н
9221.62	-50.57	2.10	11.60	-43.22	-13.00	Н
9476.12	-50.32	2.10	11.60	-42.97	-13.00	V
9742.50	-51.17	2.20	11.20	-44.32	-13.00	Н
9791.12	-51.50	2.30	11.20	-44.75	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(QPSK)

Eroguopov(MUz)	D (dPm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7209.38	-53.04	1.80	12.00	-44.99	-13.00	Н
8365.12	-51.64	1.80	11.30	-44.29	-13.00	Н
9099.25	-51.08	2.20	11.60	-43.83	-13.00	Н
9303.75	-50.99	2.00	11.60	-43.54	-13.00	Н
9425.38	-50.49	2.10	11.60	-43.14	-13.00	Н
9742.50	-50.76	2.20	11.20	-43.91	-13.00	Н

Peak Limit Path Antenna

WCDMA BAND V Mode Channel 4357/871.4MHz(16QAM)

Frequency(MHz)	D (dBm)	Fau	Antenna	reak	LITTIL	Polarization
	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	FUIAIIZALIUII
8456.25	-52.13	1.80	11.30	-44.78	-13.00	Н
9098.00	-52.01	2.20	11.60	-44.76	-13.00	Н
9300.25	-50.45	2.00	11.60	-43.00	-13.00	Н
9474.25	-50.51	2.10	11.60	-43.16	-13.00	V
9746.12	-50.00	2.20	11.20	-43.15	-13.00	Н
9789.12	-50.97	2.30	11.20	-44.22	-13.00	Н

WCDMA BAND V Mode Channel 4408/881.6MHz(16QAM)

	D (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7326.75	-52.73	1.70	12.00	-44.58	-13.00	V
8448.00	-52.03	1.80	11.30	-44.68	-13.00	Н
9101.50	-51.11	2.20	11.60	-43.86	-13.00	н
9297.25	-50.68	2.00	11.60	-43.23	-13.00	н
9474.00	-51.22	2.10	11.60	-43.87	-13.00	V
9720.75	-51.13	2.20	11.20	-44.28	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(16QAM)

	D (dBm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7323.00	-53.14	1.70	12.00	-44.99	-13.00	V
9098.38	-51.80	2.20	11.60	-44.55	-13.00	Н
9300.00	-51.03	2.00	11.60	-43.58	-13.00	Н
9473.75	-51.42	2.10	11.60	-44.07	-13.00	V
9717.12	-50.98	2.20	11.20	-44.13	-13.00	Н
9787.38	-51.25	2.30	11.20	-44.50	-13.00	Н

Antenna Down

WCDMA BAND II Mode Channel 9662/1932.4MHz(QPSK)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	EIRP(dBm)	(dBm)	1 oldrization
16971.25	-44.91	2.90	16.50	-33.46	-13.00	н
17193.75	-43.86	2.90	14.50	-34.41	-13.00	н
17341.25	-42.90	3.20	14.50	-33.75	-13.00	н
17440.62	-42.21	2.90	14.50	-32.76	-13.00	н
17548.12	-40.30	2.90	12.80	-32.55	-13.00	н
17768.12	-39.96	3.60	12.80	-32.91	-13.00	Н

WCDMA BAND II Mode Channel 9800/1960MHz(QPSK)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	loss	Gain(dBi)	EIRP(dBm)	(dBm)	
17001.25	-42.56	2.90	14.50	-33.11	-13.00	н
17163.75	-43.79	2.90	14.50	-34.34	-13.00	Н
17223.75	-43.51	3.20	14.50	-34.36	-13.00	Н
17456.25	-42.24	2.90	14.50	-32.79	-13.00	н
17610.62	-38.92	3.30	12.80	-31.57	-13.00	н
17824.38	-40.31	3.60	12.80	-33.26	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(QPSK)

	D (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16968.12	-45.09	2.90	16.50	-33.64	-13.00	н
17128.12	-44.44	2.90	14.50	-34.99	-13.00	н
17296.88	-42.19	3.20	14.50	-33.04	-13.00	н
17523.12	-40.19	2.90	12.80	-32.44	-13.00	н
17627.50	-39.82	3.30	12.80	-32.47	-13.00	н
17774.38	-40.41	3.60	12.80	-33.36	-13.00	Н

Frequency(MHz)		Path	Antenna	Peak	Limit	Delerization
) P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16982.50	-45.85	2.90	16.50	-34.40	-13.00	н
17167.50	-43.74	2.90	14.50	-34.29	-13.00	н
17221.88	-43.89	3.20	14.50	-34.74	-13.00	н
17447.50	-42.32	2.90	14.50	-32.87	-13.00	н
17626.88	-40.26	3.30	12.80	-32.91	-13.00	н
17820.62	-40.83	3.60	12.80	-33.78	-13.00	Н

WCDMA BAND II Mode Channel 9662/1932.4MHz(16QAM)

WCDMA BAND II Mode Channel 9800/1960MHz(16QAM)

	equency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16942.50	-44.92	2.90	16.50	-33.47	-13.00	Н
17153.75	-44.34	2.90	14.50	-34.89	-13.00	Н
17357.50	-43.21	3.20	14.50	-34.06	-13.00	Н
17507.50	-40.34	2.90	12.80	-32.59	-13.00	Н
17622.50	-39.90	3.30	12.80	-32.55	-13.00	Н
17700.00	-40.41	3.30	12.80	-33.06	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(16QAM)

_									
		P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization		
	Frequency(MHz)	r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIAIIZALIUII		
	16978.75	-45.87	2.90	16.50	-34.42	-13.00	Н		
	17103.75	-44.17	2.90	14.50	-34.72	-13.00	Н		
	17303.12	-42.80	3.20	14.50	-33.65	-13.00	Н		
	17510.00	-40.31	2.90	12.80	-32.56	-13.00	Н		
	17564.38	-39.99	3.30	12.80	-32.64	-13.00	Н		
	17820.00	-40.70	3.60	12.80	-33.65	-13.00	Н		

	D (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16984.38	-43.76	2.90	16.50	-32.31	-13.00	Н
17204.38	-43.99	2.90	14.50	-34.54	-13.00	Н
17321.88	-42.23	3.20	14.50	-33.08	-13.00	Н
17490.00	-41.74	2.90	14.50	-32.29	-13.00	Н
17565.00	-39.60	3.30	12.80	-32.25	-13.00	Н
17818.12	-39.54	3.60	12.80	-32.49	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(QPSK)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(QPSK)

	cy(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16967.50	-44.30	2.90	16.50	-32.85	-13.00	Н
17128.12	-42.59	2.90	14.50	-33.14	-13.00	Н
17275.62	-42.07	3.20	14.50	-32.92	-13.00	Н
17525.00	-39.05	2.90	12.80	-31.30	-13.00	Н
17613.12	-38.25	3.30	12.80	-30.90	-13.00	Н
17819.38	-38.82	3.60	12.80	-31.77	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(QPSK)

D (dDm)	Path	Antenna	Peak	Limit	Polarization
r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
-45.35	2.90	16.50	-33.90	-13.00	н
-44.18	2.90	14.50	-34.73	-13.00	н
-43.00	3.20	14.50	-33.85	-13.00	н
-42.13	2.90	14.50	-32.68	-13.00	Н
-39.29	3.30	12.80	-31.94	-13.00	Н
-39.64	3.60	12.80	-32.59	-13.00	Н
	-44.18 -43.00 -42.13 -39.29	P _{Mea} (dBm) loss -45.35 2.90 -44.18 2.90 -43.00 3.20 -42.13 2.90 -39.29 3.30	P _{Mea} (dBm) loss Gain(dBi) -45.35 2.90 16.50 -44.18 2.90 14.50 -43.00 3.20 14.50 -42.13 2.90 14.50 -39.29 3.30 12.80	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) -45.35 2.90 16.50 -33.90 -44.18 2.90 14.50 -34.73 -43.00 3.20 14.50 -33.85 -42.13 2.90 14.50 -32.68 -39.29 3.30 12.80 -31.94	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) (dBm) -45.35 2.90 16.50 -33.90 -13.00 -44.18 2.90 14.50 -34.73 -13.00 -43.00 3.20 14.50 -33.85 -13.00 -42.13 2.90 14.50 -32.68 -13.00 -39.29 3.30 12.80 -31.94 -13.00

Eroquepov(MHz)	Frequency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3422.25	-39.77	1.20	11.50	-31.62	-13.00	V
17000.62	-42.61	2.90	14.50	-33.16	-13.00	Н
17294.38	-43.54	3.20	14.50	-34.39	-13.00	Н
17447.50	-42.01	2.90	14.50	-32.56	-13.00	Н
17580.00	-39.83	3.30	12.80	-32.48	-13.00	Н
17839.38	-39.53	3.60	12.80	-32.48	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(16QAM)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(16QAM)

	D (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
3463.12	-41.20	1.10	11.50	-32.95	-13.00	V
16944.38	-45.14	2.90	16.50	-33.69	-13.00	Н
17298.75	-42.74	3.20	14.50	-33.59	-13.00	Н
17452.50	-42.15	2.90	14.50	-32.70	-13.00	Н
17618.75	-39.38	3.30	12.80	-32.03	-13.00	Н
17799.38	-40.32	3.60	12.80	-33.27	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(16QAM)

D (dBm)	Path	Antenna	Peak	Limit	Polarization
r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
-42.22	1.10	12.20	-33.27	-13.00	V
-45.34	2.90	16.50	-33.89	-13.00	н
-43.44	3.20	14.50	-34.29	-13.00	н
-41.60	2.90	14.50	-32.15	-13.00	н
-39.93	3.30	12.80	-32.58	-13.00	н
-40.20	3.30	12.80	-32.85	-13.00	Н
	-45.34 -43.44 -41.60 -39.93	P _{Mea} (dBm) loss -42.22 1.10 -45.34 2.90 -43.44 3.20 -41.60 2.90 -39.93 3.30	P _{Mea} (dBm) loss Gain(dBi) -42.22 1.10 12.20 -45.34 2.90 16.50 -43.44 3.20 14.50 -41.60 2.90 14.50 -39.93 3.30 12.80	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) -42.22 1.10 12.20 -33.27 -45.34 2.90 16.50 -33.89 -43.44 3.20 14.50 -34.29 -41.60 2.90 14.50 -32.15 -39.93 3.30 12.80 -32.58	P _{Mea} (dBm) loss Gain(dBi) EIRP(dBm) (dBm) -42.22 1.10 12.20 -33.27 -13.00 -45.34 2.90 16.50 -33.89 -13.00 -43.44 3.20 14.50 -34.29 -13.00 -41.60 2.90 14.50 -32.15 -13.00 -39.93 3.30 12.80 -32.58 -13.00

WCDMA BAND V Mode Channel 4357/871.4MHz(QPSK) Т

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization			
Frequency(MHz)	r _{Mea} (ubiii)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization			
7278.00	-52.67	1.90	12.00	-44.72	-13.00	Н			
9102.12	-52.01	2.20	11.60	-44.76	-13.00	Н			
9304.88	-51.15	2.00	11.60	-43.70	-13.00	Н			
9473.38	-51.17	2.10	11.60	-43.82	-13.00	V			
9740.25	-50.94	2.20	11.20	-44.09	-13.00	Н			
9800.00	-50.60	2.30	11.20	-43.85	-13.00	Н			

WCDMA BAND V Mode Channel 4408/881.6MHz(QPSK)

	D (dPm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7331.62	-53.14	1.70	12.00	-44.99	-13.00	Н
9091.75	-51.82	2.20	11.60	-44.57	-13.00	Н
9301.12	-50.73	2.00	11.60	-43.28	-13.00	Н
9468.38	-51.36	2.10	11.60	-44.01	-13.00	V
9716.38	-50.72	2.20	11.20	-43.87	-13.00	Н
9802.50	-51.02	2.30	11.20	-44.27	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(QPSK)

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)		loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8428.12	-52.23	1.80	11.30	-44.88	-13.00	н
9095.62	-51.64	2.20	11.60	-44.39	-13.00	н
9299.25	-50.67	2.00	11.60	-43.22	-13.00	н
9475.12	-51.18	2.10	11.60	-43.83	-13.00	V
9734.38	-50.87	2.20	11.20	-44.02	-13.00	н
9788.12	-51.35	2.30	11.20	-44.60	-13.00	Н

	D (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polanzation
8430.00	-52.38	1.80	11.30	-45.03	-13.00	Н
9096.25	-51.31	2.20	11.60	-44.06	-13.00	Н
9228.88	-50.30	2.10	11.60	-42.95	-13.00	Н
9475.38	-49.89	2.10	11.60	-42.54	-13.00	V
9744.88	-50.40	2.20	11.20	-43.55	-13.00	Н
9797.88	-51.27	2.30	11.20	-44.52	-13.00	Н

WCDMA BAND V Mode Channel 4357/871.4MHz(16QAM)

WCDMA BAND V Mode Channel 4408/881.6MHz(16QAM)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	ERP(dBm)	(dBm)	
8428.88	-52.28	1.80	11.30	-44.93	-13.00	н
9099.75	-51.41	2.20	11.60	-44.16	-13.00	н
9227.00	-50.63	2.10	11.60	-43.28	-13.00	н
9418.12	-51.28	2.10	11.60	-43.93	-13.00	н
9725.00	-51.05	2.20	11.20	-44.20	-13.00	н
9791.75	-51.20	2.30	11.20	-44.45	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(16QAM)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	ERP(dBm)	(dBm)	
8471.25	-52.38	1.80	11.30	-45.03	-13.00	Н
9100.88	-51.64	2.20	11.60	-44.39	-13.00	Н
9294.62	-50.22	2.00	11.60	-42.77	-13.00	н
9478.50	-51.29	2.10	11.60	-43.94	-13.00	V
9749.62	-50.95	2.20	11.20	-44.10	-13.00	Н
9791.38	-51.33	2.30	11.20	-44.58	-13.00	Н

Note: The maximum value of expanded measurement uncertainty for this test item is

 ${\sf U}=2.87d{\sf B}(30{\sf MHz}\text{-}3{\sf GHz})/3.35d{\sf B}(3{\sf GHz}\text{-}18{\sf GHz})/2.68d{\sf B}(18{\sf GHz}\text{-}40{\sf GHz}),\,{\sf k}=2$

A.3 FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 22.355, 24.235, 27.54

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30° C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on mid channel of each band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10[°]C increments from +50[°]C to -30[°]C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results WCDMA Band II

Frequency Error vs Voltage

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
20				1.29	0.0014
50				1.22	0.0013
40				-1.85	0.0020
30				-0.25	0.0003
10	3.87	1850.050	1909.950	-0.32	0.0003
0				-2.10	0.0022
-10				-1.30	0.0014
-20				-2.03	0.0022
-30				-2.68	0.0028

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	1950 050	1000.050	-0.22	0.0002
4.45	20	1850.050	1909.950	-0.12	0.0001

WCDMA Band IV

Frequency Error vs Voltage-QPSK

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
20				-0.17	0.0002
50				-2.73	0.0031
40				-5.04	0.0058
30				-3.53	0.0041
10	3.87	1710.060	1754.930	-2.17	0.0025
0				-1.50	0.0017
-10				-1.34	0.0015
-20				0.44	0.0005
-30				-3.44	0.0040

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	1710.060	1754.930	-0.39	0.0004
4.45	20	1710.000	1754.950	-1.63	0.0019

WCDMA Band V

Frequency Error vs Voltage-QPSK

Temperature(℃)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
20				0.19	0.0005
50				-0.04	0.0001
40				-0.82	0.0020
30				0.76	0.0018
10	3.87	824.050	848.930	0.01	0.0000
0				-0.70	0.0017
-10				-0.14	0.0003
-20				-1.53	0.0037
-30				0.24	0.0006

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	924.050	848.930	0.78	0.0019
4.45	20	824.050	040.930	0.24	0.0006

Expanded measurement uncertainty is 10Hz, k = 2

A.4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

e) Set the detection mode to peak, and the trace mode to max hold.

d) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

WCDMA Band II (99% BW)-QPSK


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.154
1880.0	4.149
1907.6	4.156

WCDMA Band ${ m I\hspace{-0.5mm}I}$

Channel 9262-Occupied Bandwidth (99% BW)

Channel 9400-Occupied Bandwidth (99% BW)

Channel 9538-Occupied Bandwidth (99% BW)

Ref Level 25	Spectrum	et 1.0	00 dB = RBW 5						•
Att TDF "1"	30 dB SWT	83.68 µs (~7.1	. ms) 🖷 VBW 20	00 kHz Mode /	Auto FFT				
1 Occupied Ba	andwidth					1			●1Pk View
20 dBm					M1			M1[1]	18.67 dBm
			mm	mm	mon	mm.		1	.90817900 GHz
10 dBm		T1				- vy	T2		
10 0.0							1		
0 dBm							1		
U dBm									
							$ \rangle$		
-10 dBm									
	Aman	Im /							
-20 dBm								how	month
r									month
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-00 0811									
-70 dBm									
CF 1.9076 GH	Z	1	1001 pt	s	1	.0 MHz/			Span 10.0 MHz
2 Marker Tab	le								
Type Re		X-Value		Y-Value		Function		Function R	
M1	1	1.908179 G		L8.67 dBm	Occ Bw			4.1564897	
T1 T2	1	1.9055102 0 1.9096666 0		9.81 dBm 9.34 dBm	Occ Bw Ce Occ Bw Fre			1.90758 -11.59581	8404 GHz
L 14	T	1.5050000 0	JI 16	9.04 UDIN	OCC DW THE				01.10.2022
							 Measuring 		02:56:10

WCDMA Band II (99% BW)-16QAM


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.148
1880.0	4.158
1907.6	4.153

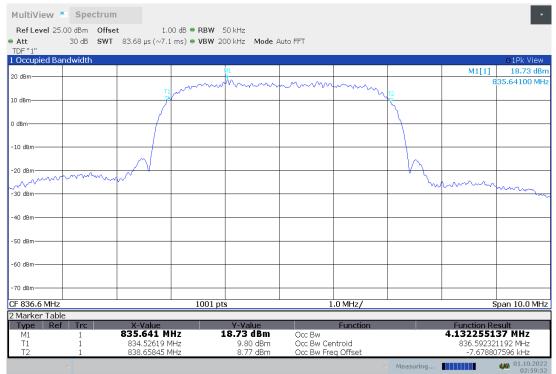
WCDMA Band ${ m I\hspace{-0.1em}I}$

Channel 9262-Occupied Bandwidth (99% BW)

Channel 9400-Occupied Bandwidth (99% BW)

Channel 9538-Occupied Bandwidth (99% BW)

WCDMA Band V(99% BW)-QPSK


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.146
836.6	4.132
846.6	4.134

WCDMA Band V

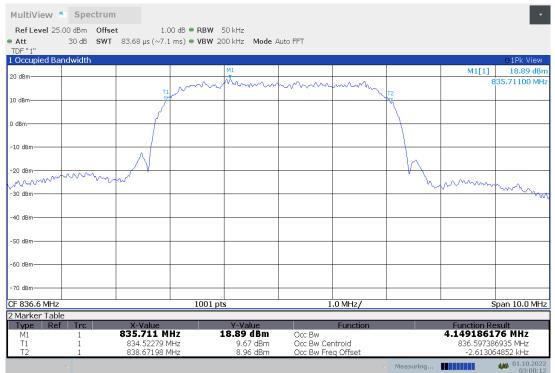
Channel 4132-Occupied Bandwidth (99% BW)

Channel 4183-Occupied Bandwidth (99% BW)

Channel 4233-Occupied Bandwidth (99% BW)



WCDMA Band V(99% BW)-16QAM

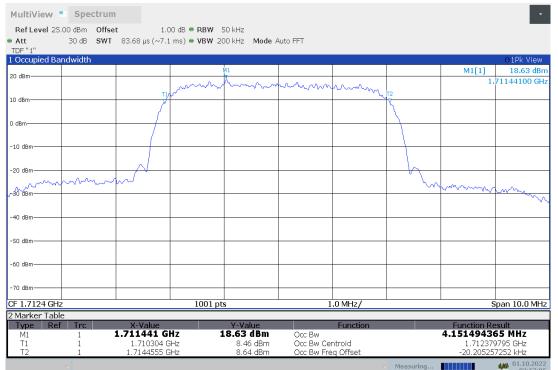

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.167
836.6	4.149
846.6	4.155

WCDMA Band V

Channel 4132-Occupied Bandwidth (99% BW)

Channel 4183-Occupied Bandwidth (99% BW)

Channel 4233-Occupied Bandwidth (99% BW)

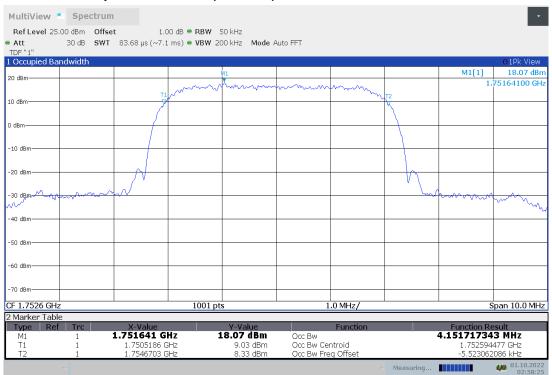


WCDMA Band IV(99% BW)-QPSK

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1712.4	4.151
1732.4	4.143
1752.6	4.152

WCDMA Band IV

Channel 1312-Occupied Bandwidth (99% BW)



Channel 1412-Occupied Bandwidth (99% BW)

Channel 1513-Occupied Bandwidth (99% BW)

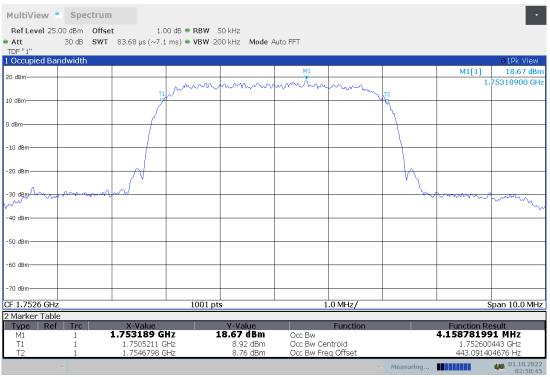


WCDMA Band IV(99% BW)-16QAM

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1712.4	4.147
1732.4	4.142
1752.6	4.159

WCDMA Band IV

Channel 1312-Occupied Bandwidth (99% BW)



Channel 1412-Occupied Bandwidth (99% BW)

Channel 1513-Occupied Bandwidth (99% BW)

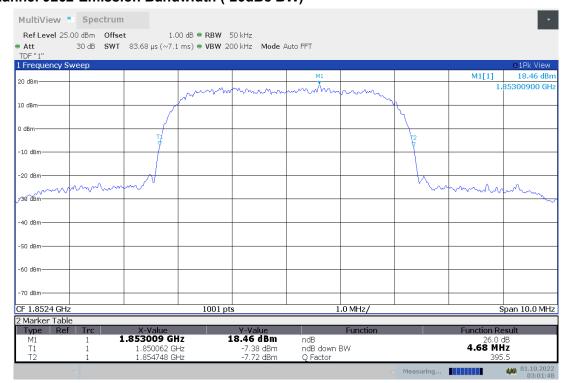
Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.5.1Emission Bandwidth Results


The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

WCDMA Band II (-26dBc BW)-QPSK

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)				
1852.4	4.68				
1880.0	4.71				
1907.6	4.74				

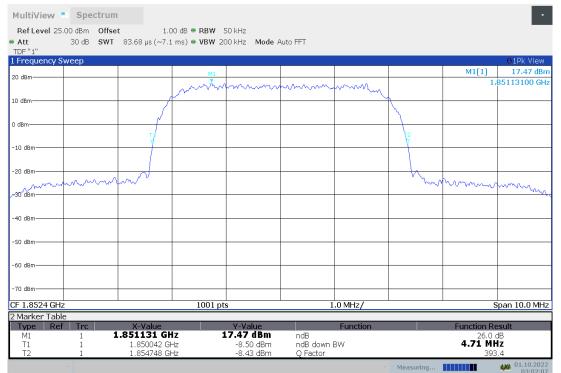
WCDMA Band II Channel 9262-Emission Bandwidth (-26dBc BW)

Channel 9400-Emission Bandwidth (-26dBc BW)

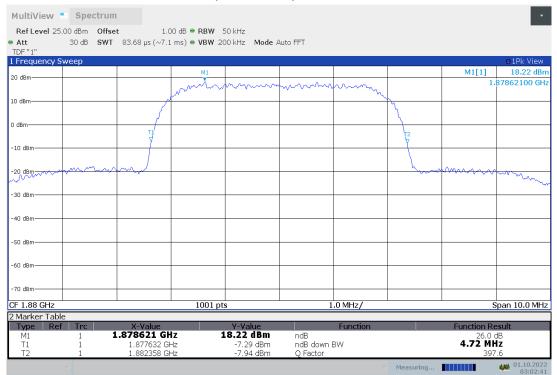
MultiView	Spectru	n							•
Ref Level 2.	5.00 dBm Offs 30 dB SWI	et 1.0 ΄ 83.68 μs (~7.1	0 dB • RBW 5		auto FET				
TDF "1"		00.00 μ3 ().1	. 1113) © VD17 20	JOINIZ MOUC					
1 Frequency	Sweep			1		1			o1Pk View
20 dBm				11				M1[1]	18.77 dBm
			m	mon	mm	mm		1.	87904100 GHz
10 dBm)	<u></u>		
							\mathbf{h}		
0 dBm		т1					T2		
		₹					4		
-10 dBm									
-20 dBm	$, \dots, \dots,$	france					- norman	man and and	mon
and the									m
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm						-			
-70 dBm									
CF 1.88 GHz			1001 pt	s	1	.0 MHz/		5	Span 10.0 MHz
2 Marker Tab	le		1001 pt	-					
Type Re	ef Trc	X-Value		Y-Value		Function		Function Re	
M1	1	1.879041 GH		.8.77 dBm	ndB			26.0 (
T1 T2	1	1.877642 Gł 1.882358 Gł		-6.79 dBm -7.06 dBm	ndB down Q Factor	BW		4.71 MH 398	
14		1.002550 G	16	7.00 GDH	Q I GOOD		Measuring		01.10.2022
							measaring		03:02:25

Channel 9538-Emission Bandwidth (-26dBc BW)

MultiView	Spectr	um							•
Ref Level 25	.00 dBm 01	ffset 1	.00 dB 🖷 RBW	50 kHz					
 Att 	30 dB 🛛 SN	∀T 83.68 µs (~7	.1 ms) 🖷 VBW 2	00 kHz Mode A	Auto FFT				
TDF "1"									o tob Utau
1 Frequency S	weep							M1[1]	01Pk View 18.32 dBm
20 dBm				M1				M1[1]	90663100 GHz
			mun	a norman	m	mmy			50003100 012
10 dBm			A~				<u>h</u>		
							γ		
0 dBm									
		<u>1</u> /					72		
-10 dBm		Y					7		
-20,dBm	m	v v v v v v v v v v v v v v v v v v v					hum	mma_n_	
Mar A.									mm
-30 dBm									
30 0011									
-40 dBm									
-40 UBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 1.9076 GH:	Z		1001 pt	ts	1	.0 MHz/		5	pan 10.0 MHz
2 Marker Tabl	е								-
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	
M1	1	1.906631 G		18.32 dBm	ndB			26.0 d 4.74 MH	
T1 T2	1	1.905222 1.909958		-7.62 dBm -8.42 dBm	ndB down Q Factor	BW		4.74 MF 402	
<u> </u>	1	1.202930		0.42 0011	Q TOCOL				01.10.2022
	Υ						Measuring		03:03:01

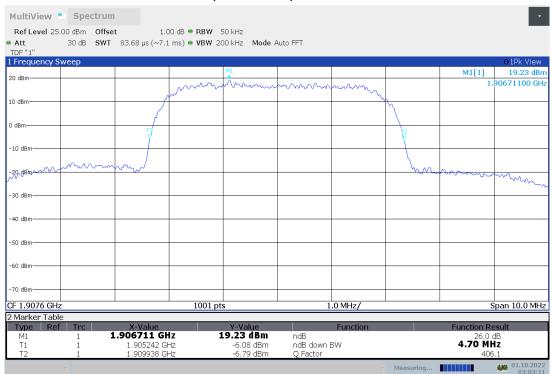


WCDMA Band II (-26dBc BW)-16QAM


Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)				
1852.4	4.71				
1880.0	4.72				
1907.6	4.70				

WCDMA Band II

Channel 9262-Emission Bandwidth (-26dBc BW)



Channel 9400-Emission Bandwidth (-26dBc BW)

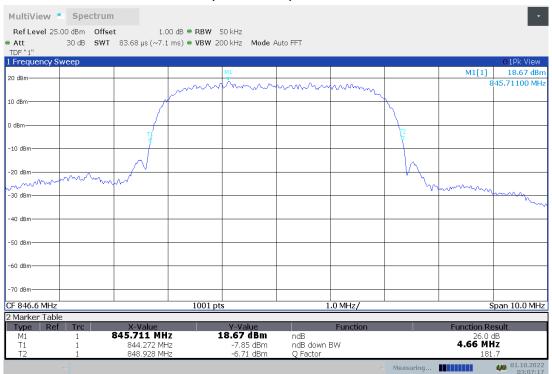
Channel 9538-Emission Bandwidth (-26dBc BW)

WCDMA Band V(-26dBc BW)-QPSK

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
826.4	4.67
836.6	4.64
846.6	4.66

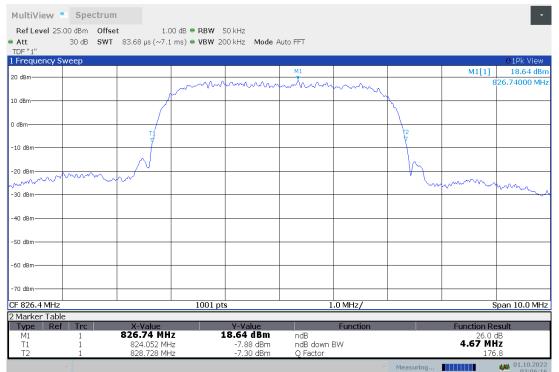
WCDMA Band V

Channel 4132-Emission Bandwidth (-26dBc BW)

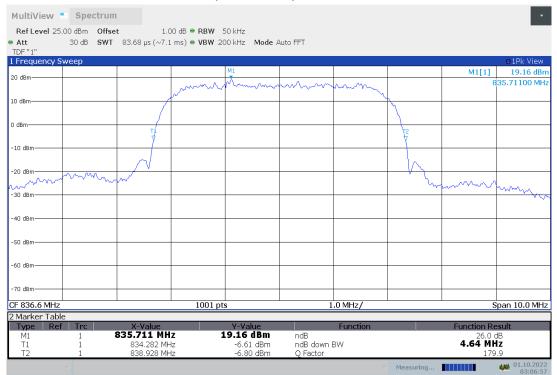


Channel 4183-Emission Bandwidth (-26dBc BW)

Channel 4233-Emission Bandwidth (-26dBc BW)



WCDMA Band V(-26dBc BW)-16QAM


Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
826.4	4.67
836.6	4.64
846.6	4.67

WCDMA Band V

Channel 4132-Emission Bandwidth (-26dBc BW)

Channel 4183-Emission Bandwidth (-26dBc BW)

Channel 4233-Emission Bandwidth (-26dBc BW)

WCDMA Band IV(-26dBc BW)-QPSK

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
1712.4	4.68
1732.4	4.67
1752.6	4.68

WCDMA Band IV

Channel 1312-Emission Bandwidth (-26dBc BW)

Channel 1412-Emission Bandwidth (-26dBc BW)

Channel 1513-Emission Bandwidth (-26dBc BW)

WCDMA Band IV(-26dBc BW)-16QAM

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)				
1712.4	4.67				
1732.4	4.67				
1752.6	4.67				

WCDMA Band IV

Channel 1312-Emission Bandwidth (-26dBc BW)

Channel 1412-Emission Bandwidth (-26dBc BW)

Channel 1513-Emission Bandwidth (-26dBc BW)

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

A.6.1 Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

A.6.2 Measurement result

Only worst case result is given below WCDMA Band II LOW BAND EDGE BLOCK-A-Channel 9262

1 Frequency Sw	veep							o1Rm View
20 dBm							M1[1] 1	-20.75 dE .85000000 G
							human	mar an
0 dBm								man - 1 - m
dBm					- A			
10 dBm					/			
hit1_for_trace1				Ν	1			
20 dBm				~/				-
30 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second	and the second					
40 dBm								
50 dBm								
60 dBm								
00 000				9				
70 dBm					-			

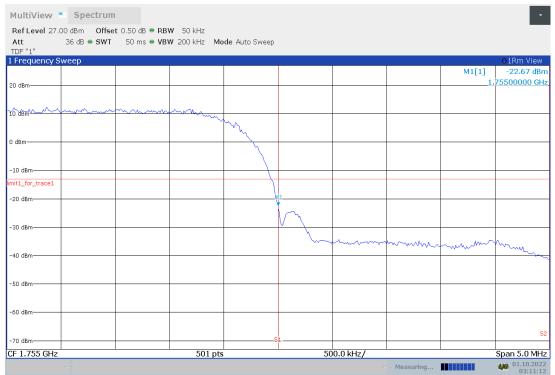
HIGH BAND EDGE BLOCK-C–Channel 9538

MultiView Spectrum							-
Ref Level 27.00 dBm Offset 0.	.50 dB 🖷 RBW 50 kHz						
Att 36 dB ● SWT 5 TDF "1"	50 ms 🖷 VBW 200 kHz 🛛 Moo	de Auto Sweep					
1 Frequency Sweep							01Rm View
						M1[1]	-18.27 dBm
20 dBm						1	91000000 GHz
10 dBm	month						
	7	m V					
0 dBm		<u> </u>					
		$\langle \rangle$					
-10 dBm							
limit1_for_trace1		\sim	1				
-20 dBm							
			humm	mhumm	mm_n		
-30 dBm						mmm	munda
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm		c					S2
CF 1.91 GHz	501 pts		50	0.0 kHz/			Span 5.0 MHz
GI 1.91 GHZ	501 pts				Measuring		01.10.2022 03:09:40

WCDMA Band V LOW BAND EDGE BLOCK-A-Channel 4132

MultiView 📒 S	Spectrum							•
Ref Level 27.00 dB Att 36		V 50 kHz V 200 kHz Mo	de Auto Sweep					
1 Frequency Swee	:p							01Rm View
							M1[1]	-18.71 dBm
20 dBm							8	23.87000 MHz
10 dBm					monum	mmm	momment	mmm
TO UBIN				M	~~~			
				λ.				
0 dBm								
				1				
-10 dBm								
limit1_for_trace1			M1	/				
-20 dBm			<u>Å</u>	(
730.dBm	mm	 mun	mart					
A & &								
-40 dBm								
-50 dBm								
-60 dBm								
			_					
570 dBm								
CF 824.0 MHz		501 pts		50	0.0 kHz/	I	1	Span 5.0 MHz
~					~	Measuring		01.10.2022 03:11:59

HIGH BAND EDGE BLOCK-C–Channel 4233



WCDMA Band IV LOW BAND EDGE BLOCK-A -Channel 1312

MultiView S	pectrum							•
	n Offset 0.50 dB 🖷 RB							
Att 36 d TDF "1"	B • SWT 50 ms • VB	W 200 kHz Mo	de Auto Sweep					
1 Frequency Sweep								●1Rm View
							M1[1]	-21.51 dBm
20 dBm							1.	71000000 GHz
10 dBm					- marine Ma Marine Marine Mari	m	man	mmm
				and the second s				
0 dBm								
-10 dBm								
limit1_for_trace1				1				
			M	4				
-20 dBm								
-30 dBm	and the second way	han	inn -					
, , , , , , , , , , , , , , , , , , ,								
-40 dBm								
-50 dBm								
-60 dBm								
-00 0811								
			s	2				
5.170 dBm								
CF 1.71 GHz		501 pts		50	0.0 kHz/			Span 5.0 MHz
						Measuring		01.10.2022 03:10:27

HIGH BAND EDGE BLOCK-C–Channel 1513

Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96

A.7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

WCDMA Band II Transmitter

Channel	Frequency (MHz)
9262	1852.4
9400	1880.0
9538	1907.6

WCDMA Band VTransmitter

Channel	Frequency (MHz)
4132	826.4
4183	836.6
4233	846.6

WCDMA Band IV Transmitter

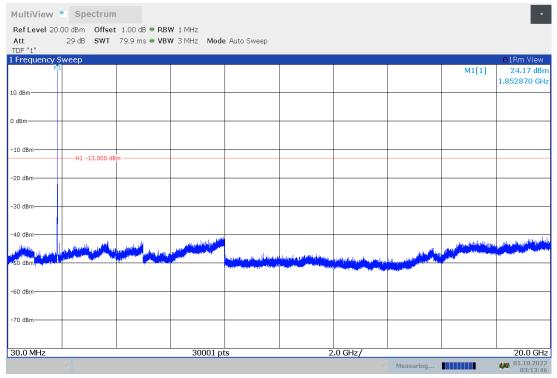
Channel	Frequency (MHz)
1312	1712.4
1412	1732.4
1513	1752.6

A.7.2 Measurement Limit

Part 24.238, Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized

operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

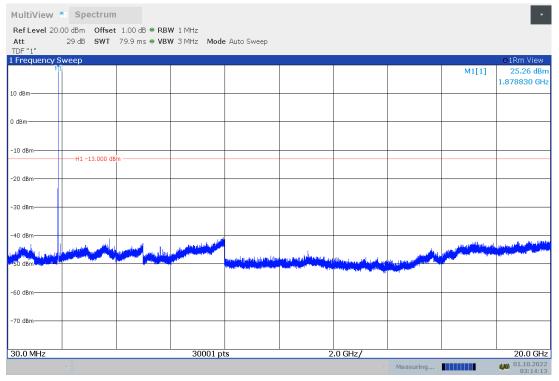

A.7.3 Measurement result

Only worst case result is given below

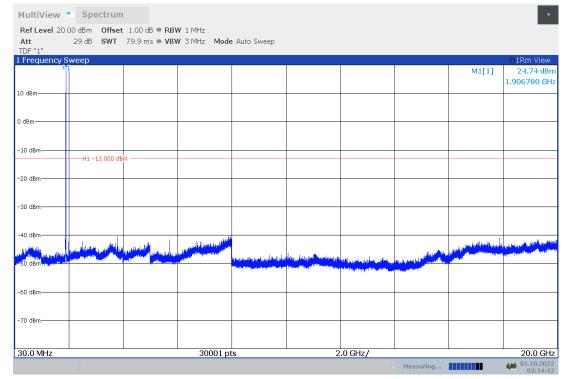
WCDMA Band II

Channel 9262: 30MHz –19.1GHz

Spurious emission limit –13dBm.



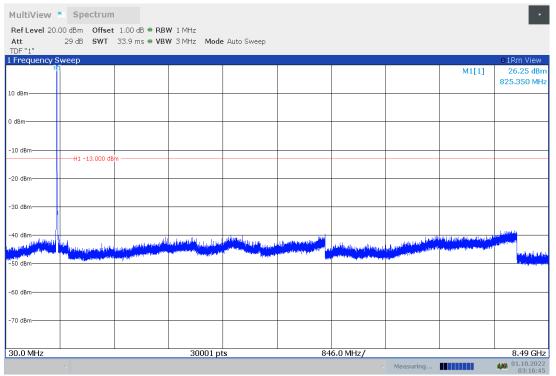
Channel 9400: 30MHz –19.1GHz


Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Channel 9538: 30MHz –19.1GHz

Spurious emission limit –13dBm.



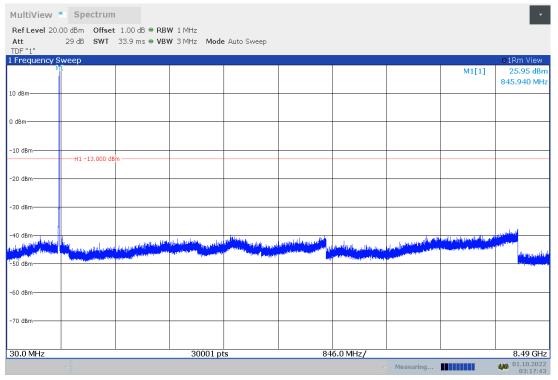
$\textbf{WCDMA Band} \ V$

Channel 4132: 30MHz –8.49GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

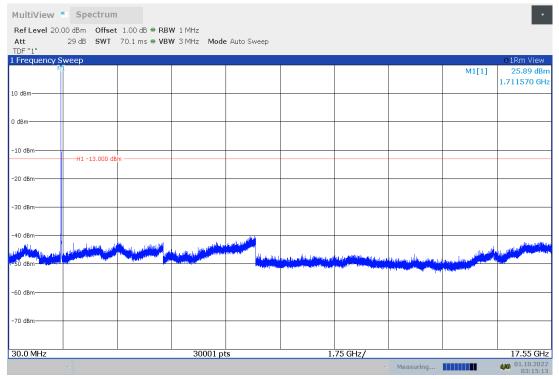
Channel 4183: 30MHz - 8.49GHz


Spurious emission limit –13dBm.

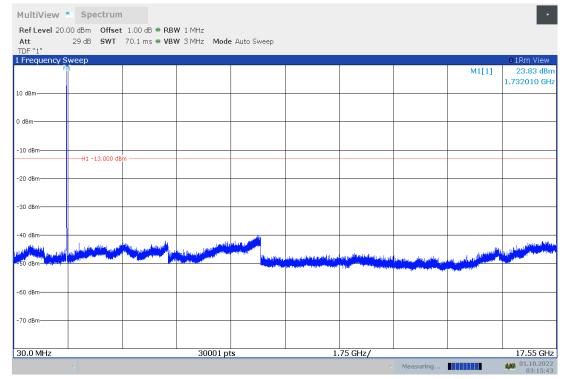
Ref Level 20	.00 dBm Offset	: 1.00 dB • RB	V 1 MHz						
Att	29 dB SWT	33.9 ms 🖷 VBV	V 3 MHz Mode	Auto Sweep					
TDF "1" Frequency S	Sween								01Rm Viev
l loquonoy (M1[1]	25.93 dE
									835.510 M
0 dBm									
) dBm									
10 dBm									
10 0810	H1 -13.000 dB	m							
20 dBm									
30 dBm									
40 dBm									
and the state of the state of the	hand a second state	and a standard being the	al fail a count of the start of	فالما بالدر أحاله الملي أخابا العرب	ganderellere dere stand	Jantan	and the state of the second	ا المريح المالية المريحة من والتريح (من المريح) معاد المريح من من من المريح المريح المريح المريح المريح)	and a second
and the second second	Annale granter printer	installed the last sector party with	and the second second second	and the state of the strength	A A REPORT OF A	ورودها والمروور والمعاقلات	and the second		an Unitaria
50 dBm									
60 dBm									
70 dBm									
30.0 MHz		-	30001 pt	s	84	6.0 MHz/	-	-	8.49 G

Channel 4233: 30MHz -8.49GHz

Spurious emission limit -13dBm.



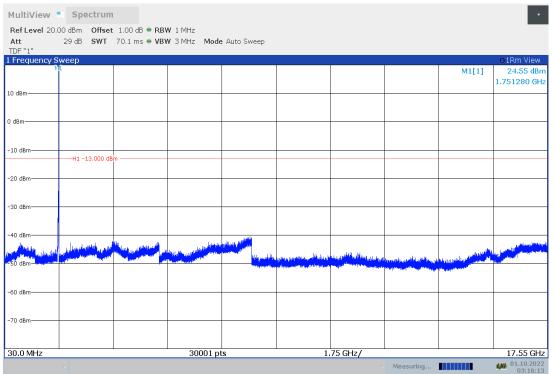
WCDMA Band IV


Channel 1312: 30MHz –17.55GHz

Spurious emission limit –13dBm.

Channel 1412: 30MHz –17.55GHz

Spurious emission limit –13dBm.



Channel 1513: 30MHz –17.55GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96

A.8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232, 27.50(d), KDB971168 D01.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms

e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

not exceed 13 dB

A.8.2 Measurement results

Only worst case result is given below

WCDMA Band II (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1880.0	2.36

WCDMA Band II

Channel 9400- Peak-To-Average Power Ratio(PAPR)-QPSK

WCDMA Band II (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1880.0	3.66

WCDMA Band II

Channel 9400- Peak-To-Average Power Ratio(PAPR)-16QAM

WCDMA Band V (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
836.6	3.16

WCDMA Band V

Channel 4183- Peak-To-Average Power Ratio(PAPR)-QPSK

WCDMA Band V (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
836.6	4.76

WCDMA Band V

Channel 4183- Peak-To-Average Power Ratio(PAPR)-16QAM

WCDMA Band IV (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)		
1732.4	3.08		

WCDMA Band IV

Channel 1412- Peak-To-Average Power Ratio(PAPR)-QPSK

WCDMA Band IV (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1732.4	4.26

WCDMA Band IV

Channel 1412- Peak-To-Average Power Ratio(PAPR)-16QAM

Note: Expanded measurement uncertainty is U = 0.48 dB, k = 2

END OF REPORT