

Configuration	Doriodicity	Subframe number										
Configuration	Periodicity	0	1	2	3	4	5	6	7	8	9	
0	5 ms	D	S	U	U	U	D	S	U	U	U	
1	5 ms	D	S	U	U	D	D	S	U	U	D	
2	5 ms	D	S	U	D	D	D	S	U	D	D	
3	10 ms	D	S	U	U	U	D	D	D	D	D	
4	10 ms	D	S	U	U	D	D	D	D	D	D	
5	10 ms	D	S	U	D	D	D	D	D	D	D	
6	5 ms	D	S	U	U	U	D	S	U	U	D	

Table K.2-2: Uplink-downlink configurations

According to Figure G.2-1, one radio frame is configured by 10 subframes, which consist of

Uplink-subframe, Downlink-subframe and Special subframe. For TDD-LTE, the Duty Cycle should be calculated on Uplink-subframes and Special subframes, due to Special subframe containing both Uplink transmissions. So for one radio frame, Duty Cycle can be calculated with formula as below. The count of Uplink subframes are according to Table G.2-2:

Duty cycle = (30720Ts*Ups+Uplink Component*Specials)/ (307200Ts)

About the uplink component of Special subframes, we can figure out by Table G.2-1:

Uplink Component=UpPTS

In conclusion, for the TDD LTE Band, Duty Cycle can be calculated with formula as below all these sets are ok when we test, or we can set as below.

Duty cycle = [(30720Ts*Ups) + UpPTS *Specials]/ (307200Ts)

						Con	figuration of	special subfr	rame				
Uplink-	s	ubfrar	ne	Nor	mal cyclice p	prefix in dowr	nlink	Exte	Extended cyclice prefix in downlink				
Downlink configura	number			Normal cyclice prefix in uplink		Extended cyclice prefix in uplink		Normal cyclice prefix in uplink		Extended cyclice prefix in uplink			
tion	D	s	U	configura tion 0~4	configura tion 5~9	configura tion 0~4	configura tion 5~9	configura tion 0~3	configura tion 4~7	configura tion 0~3	configura tion 4~7		
0	2	2	6	61.43%	62.85%	61.67%	63.33%	61.43%	62.85%	61.67%	63.33%		
1	4	2	4	41.43%	42.85%	41.67%	43.33%	41.43%	42.85%	41.67%	43.33%		
2	6	2	2	21.43%	22.85%	21.67%	23.33%	21.43%	22.85%	21.67%	23.33%		
3	6	1	3	30.71%	31.43%	30.83%	31.67%	30.71%	31.43%	30.83%	31.67%		
4	7	1	2	20.71%	21.43%	20.83%	21.67%	20.71%	21.43%	20.83%	21.67%		
5	8	1	1	10.71%	11.43%	10.83%	11.67%	10.71%	11.43%	10.83%	11.67%		
6	3	2	5	51.43%	52.85%	51.67%	53.33%	51.43%	52.85%	51.67%	53.33%		

And we can get different Duty cycles under different configurations:

For LTE TDD test, power class using uplink-downlink configuration 0 and special subframe configuration 7 for frome structure type to perform SAR with the highest Pcmax frame-average configuration, and UL duty cycle =63.3%.

K.3. SAR test Plan

For each band, the SAR evaluation uses the highest P_{cmax} frame-average configuration.

(1) For 5G NR test, using factory test mode to perform SAR with the highest P_{cmax} frame-average configuration, and UL duty cycle =100%.

(2) For LTE TDD test, power class using uplink-downlink configuration 0 and special subframe configuration 7 for frame structure type to perform SAR with the highest P_{cmax} frame-average configuration, and UL duty cycle =63.3%.

K.4. SAR Comparative measurements for all configurations

(1) SAR Comparative measurements for 9 sets UL duty cycle configuration of n41:

Test No.	Ant	Band	Test Position	Mode	Bandwidth	scs (KHz)	Channel	RB	offset	UL duty cycle	Duty cycle division factor	P _{cmax} (Tune- up) (dBm)	P _{cmax} (Meas.) (dBm)	P _{cmax} frame- average (dBm)	Scaling Factor	1g (W/kg)	Reported 1g SAR (W/kg)	Drift (dB)	Date
T51	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	10%	-10.00	24.50	24.48	14.50	1.00	0.467	0.469	-0.047	2/15
T52	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	20%	-6.99	24.50	24.49	17.51	1.00	0.522	0.523	0.000	2/15
T53	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	30%	-5.23	23.50	23.10	18.27	1.10	0.553	0.606	0.094	2/15
T54	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	40%	-3.98	22.00	21.70	18.02	1.07	0.586	0.628	-0.069	2/15
T55	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	50%	-3.01	21.50	21.40	18.49	1.02	0.621	0.635	-0.090	2/15
T56	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	60%	-2.22	20.50	20.04	18.28	1.11	0.604	0.671	0.002	2/15
T57	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	70%	-1.55	20.00	19.61	18.45	1.09	0.613	0.671	0.013	2/15
T58	1	n41		DFT-s-OFDM QPSK	100M	30	518598	135	67	80%	-0.97	19.00	18.62	18.03	1.09	0.590	0.644	0.101	2/15
T59	1	n41	Right Cheek	DFT-s-OFDM QPSK	100M	30	518598	135	67	100%	0.00	18.50	17.59	18.50	1.23	0.626	0.772	0.086	2/15

When the UL duty cycle is 10%, 20%, 30%, 40%, 50%, 60%, and 70%, we use the radio communication tester to establish the connection;

When the UL duty cycle is 80% and 100%, we use the factory test mode.

The results show that the highest P_{cmax} frame-average configuration (UL duty cycle = 100%) has the highest SAR value.

(2) SAR Comparative measurements for 6 sets UL duty cycle configuration of LTE B38:

Test No.	Ant	Band	Test Position	Mode	Bandwidth	Channel	RB	Offset	UL duty cycle	Duty cycle division factor	P _{omax} (Tune-up) (dBm)	P _{omax} (Meas.) (dBm)	P _{cmax} frame- average (dBm)	SAR 1g (W/kg)	Scaling Factor	Reported 1g SAR (W/kg)	Drift (dB)	Date
T41	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	11.7%	-9.32	23.00	22.70	13.68	0.364	1.07	0.390	0.005	2/15
T42	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	23.3%	-6.33	23.00	22.60	16.67	0.505	1.10	0.554	-0.007	2/15
T43	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	31.7%	-4.99	22.50	22.20	17.51	0.493	1.07	0.528	0.078	2/15
T44	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	43.3%	-3.64	22.00	21.70	18.36	0.554	1.07	0.594	-0.005	2/15
T45	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	53.3%	-2.73	21.00	20.70	18.27	0.527	1.07	0.565	0.072	2/15
T46	1	LTE B38	Right Cheek	QPSK	20M	38000	1	0	63.3%	-1.99	20.50	20.20	18.51	0.580	1.07	0.621	0.083	2/15

Uplink-downlink configuration 0,1,2,3,4,5,6 respectively and special subframe configuration 7.

The results show that the highest P_{cmax} frame-average configuration (uplink-downlink configuration 0 and special subframe configuration 7, and UL duty cycle =63.3%) has the highest SAR value.

K.5. Power measurements for SAR test mode

(1) Power Measurement Overview

Table K.5-1: n41											
UL duty cycle	Max UL duty cycle	Max UL duty cycle factor	Poffset	Pcmax (dBm)	Pcmax frame-average (dBm)	Power measurement (dBm)	SAR test?	Highest SAR?			
0%≤ K1 ≤10%	10%	-10.00	10.00	24.50	14.50	24.48	/	/			
10%< K2 ≤20%	20%	-6.99	6.50	24.50	17.51	24.49	/	/			
20%< K3≤ 30%	30%	-5.23	5.00	23.50	18.27	23.10	/	/			
30%< K4 ≤40%	40%	-3.98	3.50	22.00	18.02	21.70	/	/			
40%< K5 ≤50%	50%	-3.01	3.00	21.50	18.49	21.40	/	/			
50%< K6 ≤60%	60%	-2.22	2.00	20.50	18.28	20.04	/	/			
60%< K7 ≤70%	70%	-1.55	1.50	20.00	18.45	19.61	/	/			
70%< K8 ≤80%	80%	-0.97	0.50	19.00	18.03	18.62	/	/			
80% <k9 td="" ≤100%<=""><td>100%</td><td>0.00</td><td>0.00</td><td>18.50</td><td>18.50</td><td>17.59</td><td>yes</td><td>yes</td></k9>	100%	0.00	0.00	18.50	18.50	17.59	yes	yes			
			44 D	- 04 50		0.00 (10)	e				

Note : We set the P_{max} and P_{SAR} parameters of n41 as P_{max} = 24.50 (dBm) and P_{SAR} = 6.00 (dB) respectively,

according to $P_{cmax} = P_{max} - Max(P_{SAR} - P_{offset} @kn, 0)$

and P_{cmax} frame-average = P_{cmax} + Max UL duty cycle factor,

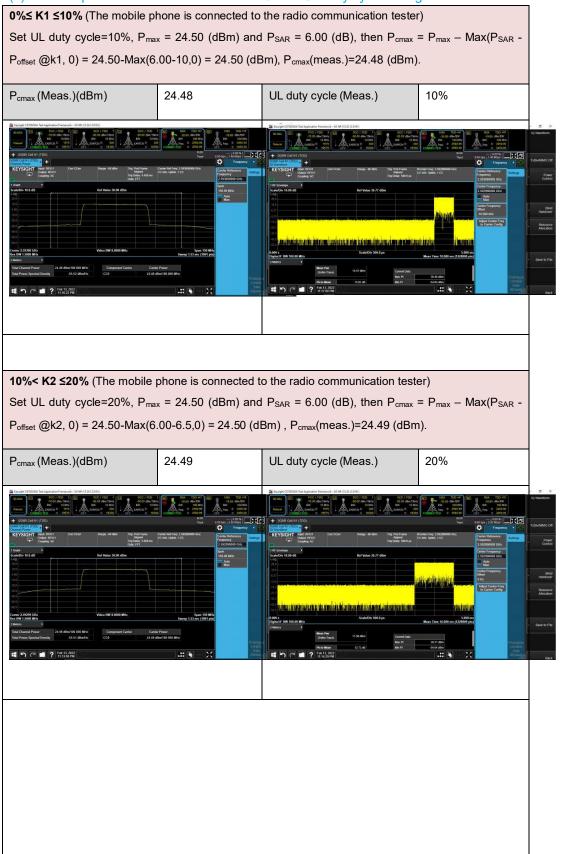
The calculation results of P_{cmax} and P_{cmax} frame-average for each UL duty cycle are shown in the table K.2.

					0 000				
UL duty cycle	Max UL duty cycle	Max UL duty cycle factor	P _{offset}	P _{cmax} (dBm)	P _{cmax} frame-average (dBm)	Power measurement (dBm)	SAR test?	Highest SAR?	
0%< K1 ≤20%	11.7%	-9.32	5.00	23.00	13.68	22.70	/	/	
20%< K2≤ 30%	23.3%	-6.33	3.50	23.00	16.67	22.60	/	/	
30%< K3 ≤40%	31.7%	-4.99	2.00	22.50	17.51	22.20	/	/	
40%< K4 ≤50%	43.3%	-3.64	1.50	22.00	18.36	21.70	/	/	
50%< K5 ≤60%	53.3%	-2.73	0.50	21.00	18.27	20.70	/	/	
60%< K6 ≤63.3%	63.3%	-1.99	0.00	20.50	18.51	20.20	yes	yes	
Noto : We set the	$r_{\rm res}$ we get the P and P parameters of P29 as P = 22.00 (dPm) and P = 2.50 (dP) respectively								

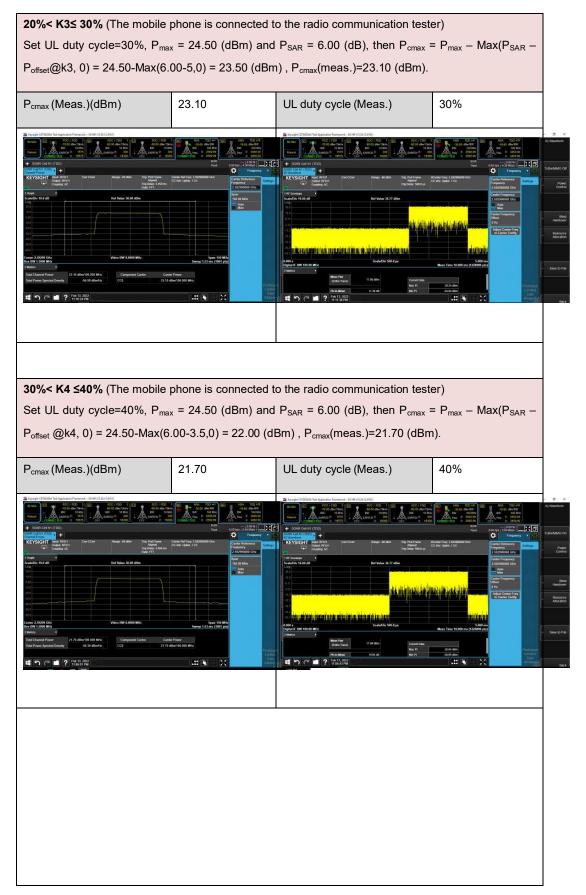
Table G.5-2: LTE TDD B38

Note : We set the P_{max} and P_{SAR} parameters of B38 as P_{max} = 23.00 (dBm) and P_{SAR} = 2.50 (dB) respectively,

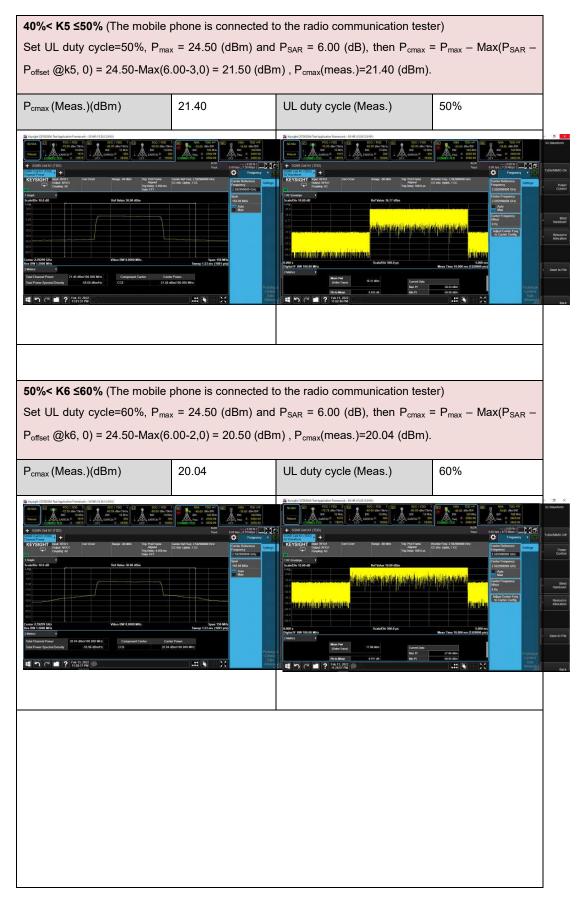
according to $P_{cmax} = P_{max} - Max(P_{SAR} - P_{offset} @kn, 0)$

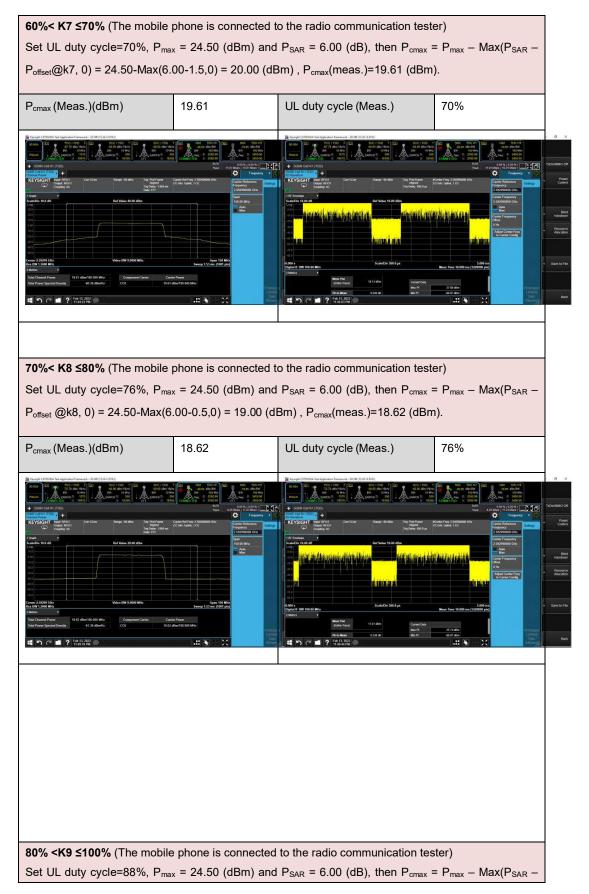

and P_{cmax} frame-average = P_{cmax} + Max UL duty cycle factor,

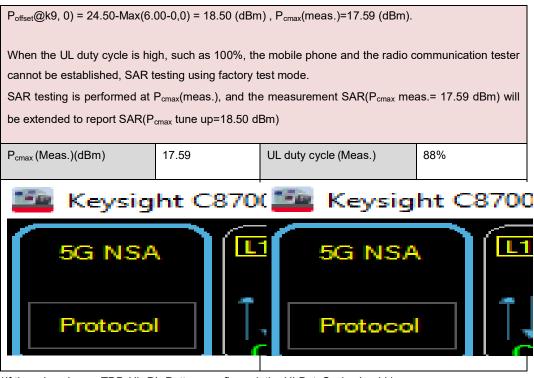
The calculation results of P_{cmax} and P_{cmax} frame-average for each UL duty cycle are shown in the table K.3.



(2) Detailed power measurement results of 9 sets UL duty cycle configuration for n41:







©Copyright. All rights reserved by CTTL.

*If there is only one TDD-UL-DL-Pattern configured, the ULDutyCycle should be:

ULDutyCycle = UL symbols / Total symbols

= (nrofUplinkSymbols + 14 * nrofUplinkSlots) / 14 * Number of Slots via 38.213 v16.5 -11.1

*If there is more than one TDD-UL-DL-Pattern configured, the ULDutyCycle should be:

ULDutyCycle = (UL symbols(pattern 1) + UL symbols(pattern 2) [+ ...]) / 14 * (Number of Slots in pattern1 + pattern2 [+ ...])

*If dI-UL-TransmissionPeriodicity-v1530 is conifgured, the UL Duty Cycle should follow dI-UL-TransmissionPeriodicity-v1530 instead.

Note: FDD NR has the same characteristics as TDD NR.

(3) Detailed power measurement results of 6 sets UL duty cycle configuration for B38: **0%< K1 ≤20%** (Config5) P_{cmax} (Meas.)(dBm) 22.70 UL duty cycle (Meas.) 10.71%~11.67% Set UL duty cycle=10.71% (uplink-downlink configuration 5 and special subframe configuration 4), P_{max} = 23.00 (dBm) and P_{SAR} = 2.50 (dB), then P_{cmax} = P_{max} - $Max(P_{SAR}$ - P_{offset} @k1, 0) = 23.00-Max(2.50-5,0) = 23.00 (dBm) , P_{cmax}(meas.)=22.70 (dBm). 46 LTE 40.105#044 ation 🕃 TDDULDLCONF TDD - Uplink Do ink Co idth Output Le 0 UE Power : 22.7 dBm Signaling Measurement 😔 Level Physical Channel Power Mo Main Ut 0 Ts -27.09 dB 4.0 dB (dBm) 40 < Preset 30 Bb 0.0 ge Mod Signal UL RMC •---> Single DL RMC Subframe 0 😔 төр Subfran Uplink Downlink Configuratio -60 -70 -80 Start Call [subframe] End Cal On Pc Off Power (Before) Off Power (After) < Menu

20%< K2≤ 30% (Config4)	P _{cmax} (Meas.)(dBm)	22.60	UL duty cycle (Meas.)	20.71%~21.67%
Set UL duty cycle=20.71% (P _{max} = 23.00 (dBm) and 23.00-Max(2.50-3.5,0) = 23.0	P _{SAR} = 2.50 (dB), the	en P _{cmax}	= P_{max} – $Max(P_{SAR}$ -	
46 LTE 40.105#044 PCC SCC1 SCC2 SCC3 U SCC4 SCC5 SCC6 SCC7 C Common ● ■ ★ Q	L Channel 1PC Pattern Auto Input L 10000 ch Auto 2004 peration Band Channel Bandwidth Output Measurement Signali Power Monitor (dBm) ↓ 0 1s 1-27.03 dBm 0 10 -10 -20 -30 -40 -50 -50 -50 -50 -50 -50 -50 -5	Level 1500 dBm Tris dona 1500 dB	Definit Downlink Configuration () TDULDEC parameter is determined by the TDD Uplink/Dow I configuration: UE Power : 22 Main Screen Rower Monit View Positie Subframe	RF Output : On 2.6 dBm inter an All Ford

20%< K2≤ 30% (Config2)	P _{cmax} (Meas.)(dBm)	22.60 UL c	duty cycle (Meas.)	21.43%~23.33%
Set UL duty cycle=21.43% (uplink-downlink configu	ration 2 and sp	pecial subframe con	figuration 4),
P_{max} = 23.00 (dBm) and				$- P_{offset}$ @k2, 0) =
23.00-Max(2.50-3.5,0) = 23.0	00 (dBm) , P _{cmax} (meas.)	=22.60 (dBm).		
PCC SCC1 SCC2 SCC3	L Channel TPC Pattern Input I 38000 ch Auto Operation Band Channel Bandwidth Outpu	26.0 dBm This parameter	: Downlink Configuration (3 TDDULDLC) er is determined by the TDD Uplink/Dow aration.	
scc4 scc5 scc6 scc7 €	18 20 MPE Measurement Signali	<50.0 dBm	UE Power : 22	.6 dBm
	Power Monitor		Main Screen	
Call Processing Main DL 8.0 dB	[dBm] 0 Ts 40 -27.10 dBm	Meas. Cou		< Preset
TX AUX1 0.0 dB	30 20 Mildride	felt-yest	View Positio	M
RX Signal	10 0		Subframe	Ave Tx
Fundamental Measurement DL RMC	-10		Subframe	10. Single
Struct	-30		-> Subframe <-	Continuous
Uplink Downlink Configuration 2 : (5ms) D S U D D D S U D D Test Special Subframe Configuration	-50			Connected
Parameter 4	-70			Connected
Band		subframe] Max. Min.	10	Start Call
Definition	On Power Off Power (Before)	dBm dBm		End Call
Loss System	Off Power (After)	dBm		< Menu
Config				

30%< K3 ≤40% (Config3)	P _{cmax} (Meas.)(dBm)	22.20	UL duty cycle (Meas.)	30.71%~31.67%
Set UL duty cycle=30.71% (P _{max} = 23.00 (dBm) and 23.00-Max(2.50-2,0) = 22.50	P _{SAR} = 2.50 (dB), th	en P _{cmax}	= P_{max} - Max(P_{SAR} ·	
scc4 scc5 scc6 scc7 ⁽ common ② ≣▶ ★ Q	30000 ch Aute Dependion Band 36 Channel Bandwidth Output 38 Output Measurement Signal Power Monitor (dBm) 40 50 10 -27.04 dBm 40 -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -27.04 dBm -20 -20 -20 -20 -20 -20 -20 -20	(subframe) Max.	DD - Uplink Downlink Configuration (2) TDDUD has acconfiguration. UE Power : Mease Count : 1/ 1 Gover M Subfram Subfram Subfram Subfram Subfram Subfram Subfram Subfram Subfram Subfram	Average 2022/02/11 18:09 RF Output: On RF Output: On 22.2 dBm Image: California for the second secon

40%< K4 ≤50% (Config1)	P _{cmax} (Meas.)(dBm)	21.70 UL duty cycle (M	eas.) 41.43%~43.33%
Set UL duty cycle=41.43% (t P _{max} = 23.00 (dBm) and 23.00-Max(2.50-1.5,0) = 22.0	P_{SAR} = 2.50 (dB), the	en P _{cmax} = P _{max} – Max(
46 LTE 40,105#044 PCC SCC1 SCC2 SCC3 U SCC4 SCC5 SCC6 SCC7 C Common ● ■> ★ Q	L Channel 30000 ch Aute Aute 10put apperation Band Channel Bandwidth Output 33 Channel Bandwidth Output 34 Channel Bandwidth Signal Measurement Signal Power Monitor (dBm) 0 15 -27.06 dBm -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	Level 26.0 dBm -50.0 dBm -50.0 dBm	Image Double Count Image D

50%< K5 ≤60% (Config6)	P _{cmax} (Meas.)(dBm)	20.70	UL duty cycle (Meas.)	51.43%~53.33%
Set UL duty cycle=51.43% (u P _{max} = 23.00 (dBm) and 1 23.00-Max(2.50-0.5,0) = 21.0	P_{SAR} = 2.50 (dB), the	en P _{cmax}	= $P_{max} - Max(P_{SAR})$	
46 LTE 40,105#044 PCC SCC1 SCC2 SCC3 U SCC4 SCC5 SCC6 SCC7 C Common ● ■> ★ Q	L Channel 30000 ch Auto 4000 Output 30000 ch Channel Bandwidth Output 38 Output 30 Mize 10 Miz	Level 260 dBm 260 dBm ing	P - Uplink Downlink Configuration (2) TDDUL is parameter is determined by the TDD Uplink meas. Count : 1/ 1 Wees. Count : 1/ 1 Wees. Count : 1/ 1 Meas. Count : 1/ 1	Downlink 2022/02/11 18:11 RF Coutput: On 20.7 dBm ● Rend Call reen Acoutor attion Au Mode Arg. 10, 10, 10, 10, 10, 10, 10, 10,

60%< K6 ≤63.3% (Config0) P _{cmax} (Meas.)((dBm) 20.2	0 UL duty	/ cycle (Meas.)	s.) 61.43%~63.33	
Set UL duty cycle=61.43%	(uplink-downlink	configuration	0 and spec	ial subframe cor	nfiguration 4),	
P _{max} = 23.00 (dBm) and	$P_{SAR} = 2.50$	(dB), then P	_{cmax} = P _{ma}	_ Max(P _{SAR}	- P _{offset} @k6, 0)	
23.00-Max(2.50-0,0) = 20.5	0 (dBm) Pamar(l	meas)=20.20	(dBm)			
10.00 max(2.00 0,0) 20.		1000.) 20.20	(abiii).			
		.				
SAR testing is perfo		<i>,.</i>		nt SAR(P _{cmax} m	eas.= 20.20 dBm	
will be extended to	eport SAR(P _{cmax}	tune up=20.5	0 dBm).			
46 LTE 40.105#044		01. NS307/92226	TOD Hallah Dav	mlink Configuration (2) TDDUL(
PCC SCC1 SCC2 SCC3	UL Channel TPC Patte 30000 ch	Auto 23.0 d8		determined by the TDD Uplink/I	Downlink: 2022/02/11 18:17	
SCC4 SCC5 SCC6 SCC7	Operation Band Channel B 38	andwidth Output Level			RF Output : On	
Common 🕥 🌗 🛨 🔍	Measurement	Signaling		UE Power :	20.2 dBm Band Cal	
Physical 😔 Level	Power Monitor			Main Sci	reen	
Channel Main UL 4.0 dB	[dBm] 0 Ts		W-2-8	Power N	tonitor	
Call Main DL 8.0 dB	40 1 -21.30 dBm		Meas. Count :	1/ 1 View Por	< Preset	
TX AUX1 0.0 dB	30 20			and ball have seen	All	
RX Signal	10			Storage	Avg. Tx	
Measurement 🕥 UL RMC	-10			Subfram	40 Rx →	
Fundamental Measurement DL RMC	-20			Subfram ->		
S TDD	-30			Subfram	e Continuous	
Uplink Downlink Configuration 0 : (5ms) D S U U U D S U U U	-50			-		
Test Special Subframe Configuration	-60				Connected	
	-70					
	.0	[subframe]		10	Start Call	
Band Definition	On Power	Avg. Max.	Min. dBm		~	
External	Off Power (Before) Off Power (After)		dBm dBm		End Call	
Loss System					< Menu	
Config						

Duty cycle = (30720Ts*Ups+Uplink Component*Specials)/ (307200Ts)

Uplink Component=UpPTS

Duty cycle = [(30720Ts*Ups) + UpPTS *Specials]/ (307200Ts)

Different Duty cycles under different configurations:

Uplink- Downlink configura tion					Configuration of special subframe							
	Subframe number		Normal cyclice prefix in downlink				Extended cyclice prefix in downlink					
			Normal cyclice prefix in uplink		Extended cyclice prefix in uplink		Normal cyclice prefix in uplink		Extended cyclice prefix in uplink			
	D	s	U	configura tion 0~4	configura tion 5~9	configura tion 0~4	configura tion 5~9	configura tion 0~3	configura tion 4~7	configura tion 0~3	configura tion 4~7	
0	2	2	6	61.43%	62.85%	61.67%	63.33%	61.43%	62.85%	61.67%	63.33%	
1	4	2	4	41.43%	42.85%	41.67%	43.33%	41.43%	42.85%	41.67%	43.33%	
2	6	2	2	21.43%	22.85%	21.67%	23.33%	21.43%	22.85%	21.67%	23.33%	
3	6	1	3	30.71%	31.43%	30.83%	31.67%	30.71%	31.43%	30.83%	31.67%	
4	7	1	2	20.71%	21.43%	20.83%	21.67%	20.71%	21.43%	20.83%	21.67%	
5	8	1	1	10.71%	11.43%	10.83%	11.67%	10.71%	11.43%	10.83%	11.67%	
6	3	2	5	51.43%	52.85%	51.67%	53.33%	51.43%	52.85%	51.67%	53.33%	

Note: FDD LTE does not support UL duty cycle detection mechanism.

ANNEX L: Accreditation Certificate

END OF REPORT