n41,70MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	67.130	67.130

n41,70MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n41,70MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n41,80MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	82.240	82.480

n41,80MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n41,80MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n41,90MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	90.900	91.170

n41,90MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n41,90MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n41,100MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
2592.99	101.900	101.900

n41,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n41,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

DC_5A-n66A
DC_5A-n66A,5MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745	4.870	4.900

DC_5A-n66A,5MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

DC_5A-n66A,5MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

DC_5A-n66A,10MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745	9.530	9.530

DC_5A-n66A,10MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

DC_5A-n66A,10MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

DC_5A-n66A,15MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745	14.251	14.296

DC_5A-n66A,15MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

DC_5A-n66A,15MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

DC_5A-n66A,20MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
1745	19.241	19.241

DC_5A-n66A,20MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

DC_5A-n66A,20MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

A. 6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53.

A.5.1 Measurement limit

Part 22.917 For operations in the $824-849 \mathrm{MHz}$ band, the FCC limit is $43+10 \log (\mathrm{P}) \mathrm{dB}$ below the transmitter power (P) in a 100 kHz bandwidth.However, in the 1 MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10 \log (P) d B$.
Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40+ $10 \log (P) d B$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43+10 \log (P) d B$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55+10 \log (P) d B$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph $(m)(6)$ of this section. In addition, the attenuation factor shall not be less that $43+10 \log (P) \mathrm{dB}$ on all frequencies between 2490.5 MHz and 2496 MHz and $55+10 \mathrm{log}$ (P) dB at or below 2490.5 MHz . Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.
Part $27.53(\mathrm{~g})$ states for operations in the 600 MHz band and the $698-746 \mathrm{MHz}$ band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43+10 \log (P) d B$. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

A.5.2Measurement Procedure

The testing follows ANSI C63.26
a) The EUT was connected to spectrum analyzer and system simulator via a power divider.
b) The band edges of low and high channels for the highest RF powers were measured.
c) Set RBW $>=1 \%$ EBW in the 1 MHz band immediately outside and adjacent to the band edge.
d) Set spectrum analyzer with RMS detector.
e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
f) Checked that all the results comply with the emission limit line.

A.5.3 Measurement result

Only worst case result is given below

n2

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100\%RB

HIGH BAND EDGE BLOCK-20M-100\%RB

DC_7A-n5A

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100\%RB

HIGH BAND EDGE BLOCK-20M-100\%RB

n7

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

Channal Power

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Channal Power

LOW BAND EDGE BLOCK-20M-100\%RB

Channal Power

LOW BAND EDGE BLOCK-20M-100\%RB

HIGH BAND EDGE BLOCK-20M-100\%RB

HIGH BAND EDGE BLOCK-20M-100\%RB

n12

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-15M-100\%RB

HIGH BAND EDGE BLOCK-15M-100\%RB

n25

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100\%RB

HIGH BAND EDGE BLOCK-20M-100\%RB

n38

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-40M-100\%RB

LOW BAND EDGE BLOCK-40M-100\%RB

HIGH BAND EDGE BLOCK-40M-100\%RB

HIGH BAND EDGE BLOCK-40M-100\%RB

n41

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-100M-100\%RB

LOW BAND EDGE BLOCK-100M-100\%RB

HIGH BAND EDGE BLOCK-100M-100\%RB

HIGH BAND EDGE BLOCK-100M-100\%RB

DC_5A-n66A

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

