FCC EMC Test Report

Project No. Equipment	:	2108C136 Mobile Phone
Brand Name	:	OPPO
Test Model	:	CPH2365
Series Model	:	N/A
Applicant	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City, Guangdong, China
Manufacturer	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City, Guangdong, China
Factory	:	
Address	:	NO.18 Haibin Road, Wusha Village, Chang'an Town, Dongguan City, Guangdong, China
Date of Receipt	:	Dec. 23, 2020 Aug. 22, 2021
Date of Test	:	Dec. 26, 2020 Aug. 26, 2021 ~ Aug. 28, 2021
Issued Date	:	Aug. 30, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG2020122311, DG2021082457
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart B

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Detek . Tong

Prepared by : Derek Tong

BL

kevn li

Approved by : Kevin Li

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000

Web: www.newbtl.com

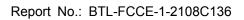
Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.


BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 EUT OPERATING CONDITIONS	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.5 DESCRIPTION OF SUPPORT UNITS	12
3 . EMC EMISSION TEST	13
3.1 AC POWER LINE CONDUCTED EMISSIONS TEST	13
3.1.1 LIMIT	13
3.1.2 MEASUREMENT INSTRUMENTS LIST 3.1.3 TEST PROCEDURE	13 14
3.1.4 DEVIATION FROM TEST STANDARD	14
3.1.5 TEST SETUP	14
3.1.6 TEST RESULTS	14
3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ	17
3.2.1 LIMIT	17
3.2.2 MEASUREMENT INSTRUMENTS LIST 3.2.3 TEST PROCEDURE	17 18
3.2.4 DEVIATION FROM TEST STANDARD	18
3.2.5 TEST SETUP	18
3.2.6 TEST RESULTS	18
3.3 RADIATED EMISSIONS ABOVE 1 GHZ	21
3.3.1 LIMIT	21
3.3.2 MEASUREMENT INSTRUMENTS LIST	22
3.3.3 TEST PROCEDURE 3.3.4 DEVIATION FROM TEST STANDARD	23 24
3.3.4 DEVIATION FROM TEST STANDARD 3.3.5 TEST SETUP	24 24
3.3.6 TEST RESULTS	25
4 . EUT TEST PHOTO	34

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Aug. 30, 2021

1. SUMMARY OF TEST RESULTS

Emission			
Ref Standard(s) Test Item Ref			
FCC CFR Title 47,Part 15,Subpart B ANSI C63.4-2014	AC Power Line Conducted Emissions	PASS	
	Radiated Emissions 30 MHz to 1 GHz	PASS	
ANOI 003.4-2014	Radiated Emissions Above 1 GHz	PASS	

1.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Method Measurement Frequency Range	
DG-C01	CISPR	150kHz ~ 30MHz	3.18

B. Radiated emissions test:

Test Site	Method Measurement Frequency Range		Ant. H / V	U,(dB)
DG-CB02 (3m)	CISPR	30MHz ~ 200MHz	V	4.34
		30MHz ~ 200MHz	Н	4.00
		200MHz ~ 1,000MHz	V	4.50
		200MHz ~ 1,000MHz	Н	4.26

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB02		1GHz ~ 6GHz	4.04
(3m)	CISPR	6GHz ~ 18GHz	5.10

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB02	CISPR	18 ~ 26.5 GHz	3.62
(1m)	CISPR	26.5 ~ 40 GHz	4.00

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Tested By
AC Power Line Conducted Emissions	25°C	53%	Lea Lu
Radiated emissions 30 MHz to 1 GHz	25°C	60%	Eli Chen
Radiated emissions above 1 GHz	25°C	60%	Eli Chen

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone
Brand Name	OPPO
Test Model	CPH2365
Series Model	N/A
Model Difference(s)	N/A
Power Source	 DC Voltage supplied from AC/DC adapter. Model: VCB3HAUH Supplied from Li-ion Polymer battery. 1# Manufacturer / Model: Sunwoda / BLP851 2# Manufacturer / Model: TWS / BLP851 Supplied from USB port.
Power Rating	1. I/P:100-240V~ 50/60Hz 1.2A O/P:5V2A or 5-11V3A MAX 2. 3.87Vdc, 4880mAh 3. DC 5V
Connecting I/O Port(s)	1* Earphone port 1* Micro USB port
Classification of EUT	Class B
Highest Internal Frequency(Fx)	5850 MHz

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Adapter+ Idle+Playing+Speaker
Mode 2	Adapter+ Idle+Playing+earphone
Mode 3	Adapter+Idle+2.4G WIFI+BT+GNSS+Camera on(Front)
Mode 4	Adapter+Idle+5G WIFI+BT+GNSS+Camera on(Rear)
Mode 5	Adapter+Traffic(GSM)(850/1900)
Mode 6	Adapter+Traffic(WCDMA)(B2/4/5)
Mode 7	Adapter+Traffic(LTE)(BAND2/4/5/7/12/17/26/38/41/66)
Mode 8	Adapter+Traffic (LTE)(BAND1)+5G WIFI+BT+GNSS+Camera on(Front)
Mode 9	FM 88MHz
Mode 10	FM 98MHz
Mode 11	FM 108MHz
Mode 12	USB Copy + Idle

AC Power Line Conducted Emissions test		
Final Test Mode Description		
Mode 8	Adapter+Traffic (LTE)(BAND1)+5G WIFI+BT+GNSS+Camera on)(Front)	

Radiated Emissions 30 MHz to 1 GHz test				
Final Test Mode	Description			
Mode 8	Adapter+Traffic (LTE)(BAND1)+5G WIFI+BT+GNSS+Camera on)(Front)			

Radiated emissions above 1 GHz test				
Final Test Mode	Description			
Mode 8	Adapter+Traffic (LTE)(BAND1)+5G WIFI+BT+GNSS+Camera on)(Front)			

Item	Model	Factory	config1	config2
Adapter	VCB3HAUH	/	V	V
USB Cable	DL143	/	V	V
Patton	BLP851	Sunwoda	V	
Battery	DLF001	TWS		V
Earphone	/	1	V	V

Evaluation description:

1. Mode 1: Tested config1-2. Config 1 is the worst case and tested Mode 2-12. Config1 with Mode 8 is the worst case and recorded in this report.

Note:

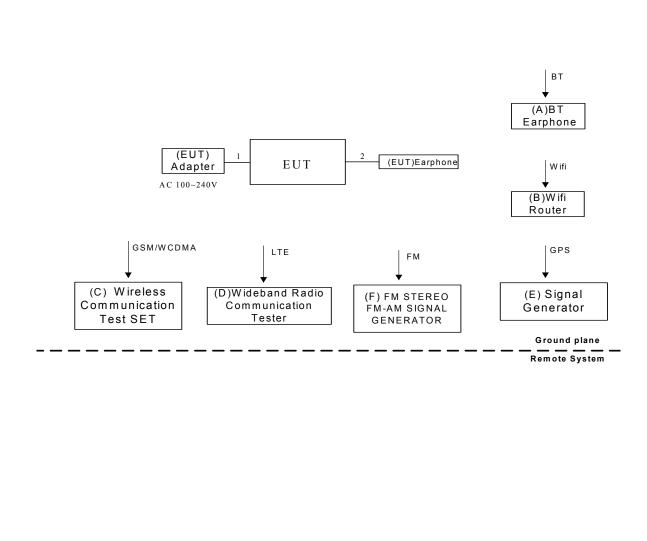
- 1. The frequency of BT&2.4G WIFI exemption is 2400-2483.5MHz.
- 2. The frequency of 5G WIFI exemption is 5150-5250MHz, 5250-5350MHz, 5470-5725MHz, 5725-5850MHz.

Radiated emission above 1GHz tested with 2.4G&5G filter.

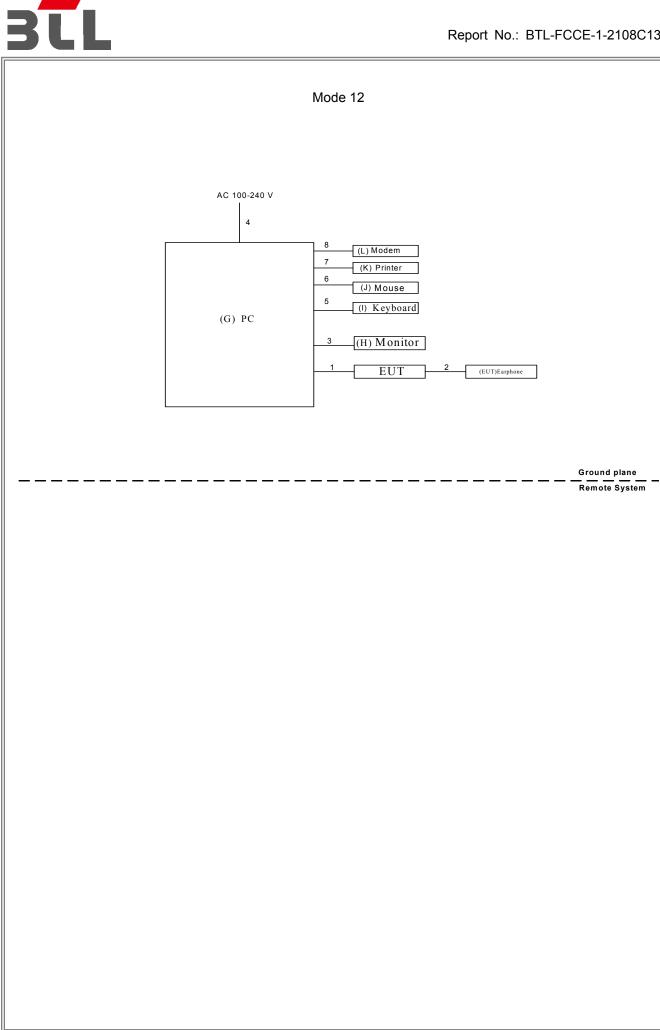
2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

Mode 1-11:


- 1. EUT connected to Earphone via Earphone cable.
- 2. EUT connected to Adapter via USB cable.
- 3. EUT connected to Wifi Router via WIFI function.
- 4. EUT connected to BT Earphone via BT function.
- 5. EUT connected to Wireless Communication Test SET via GSM/WCDMA function.
- 6. EUT connected to Wideband Radio Communication Tester via LTE function.
- 7. EUT connected to FM STEREO FM-AM signal generator via FM function.
- 8. EUT connected to Signal Generator via GPS function.

Mode 12:


- 1. EUT connected to PC via USB cable.
- 2. Keyboard and mouse connected to PC via USB cable.
- 3. PC connected to monitor via D-SUB cable.
- 4. PC connected to printer via parallel cable.
- 5. PC connected to modem via RS232 cable.
- 6. EUT connected to Earphone via Earphone cable.

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Mode 1-11

Report No.: BTL-FCCE-1-2108C136

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
А	BT Earphone	MICROKIA	M9	N/A
В	Wifi Router	ASUS	RT-AC66U	E8ICGG000138
С	Wireless Communication Test SET	Agilent	(8960 Series) E5515C	MY48364183
D	Wideband Radio Communication Tester	RS	CMW500	122125
Е	Signal Generator	Agilent	E4438C	MY49071316
F	FM STEREO FM-AM SIGNAL GENERATOR	KENWOOD	SG-5110	HR1010099
G	PC	Dell	DCSM	G7K832X
Н	Monitor	PHILIPS	241P6V	824266A2D010R
I	Keyboard	Dell	L100	CNORH6596589071T08NE
J	Mouse	Dell	MO56UOA	FQJ000BS
К	Printer	SII	DPU-414	0603002131
L	Modem	ACEEX	DM-1414V	3018507 B

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	USB Cable	YES	NO	1m
2	Earphone Cable	NO	NO	1m
3	HDMI Cable	YES	NO	1.8m
4	AC Cable	NO	NO	1.8m
5	USB Cable	YES	NO	1.8m
6	USB Cable	YES	NO	1.8m
7	Parallel Cable	YES	NO	1.8m
8	RS232 Cable	YES	NO	1.8m

3. EMC EMISSION TEST

3.1 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1.1 LIMIT

Frequency of Emission (MHz)	Class B (dBuV)			
Frequency of Emission (Minz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56 *	56 - 46 *		
0.5 - 5.0	56.00	46.00		
5.0 - 30.0	60.00	50.00		

Note:

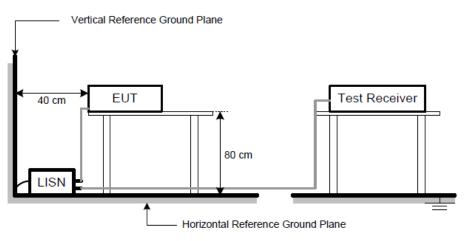
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

3.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 01, 2021
2	EMI Test Receiver	R&S	ESR3	101862	Jul. 25, 2021
3	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Mar. 01, 2021
4	Cable	N/A	RG400	N/A(12m)	Mar. 10, 2021
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

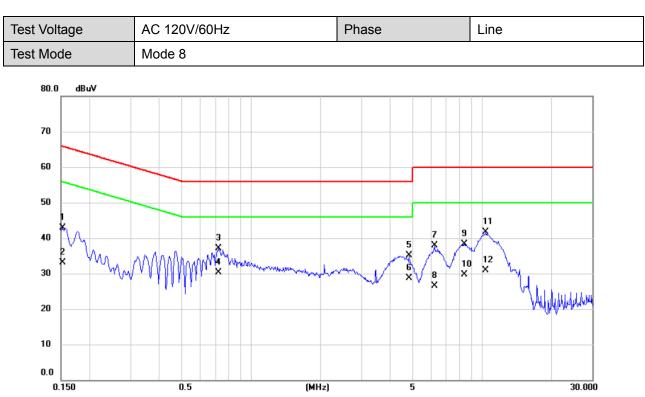

3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. Measuring frequency range from 150KHz to 30MHz.

3.1.4 DEVIATION FROM TEST STANDARD

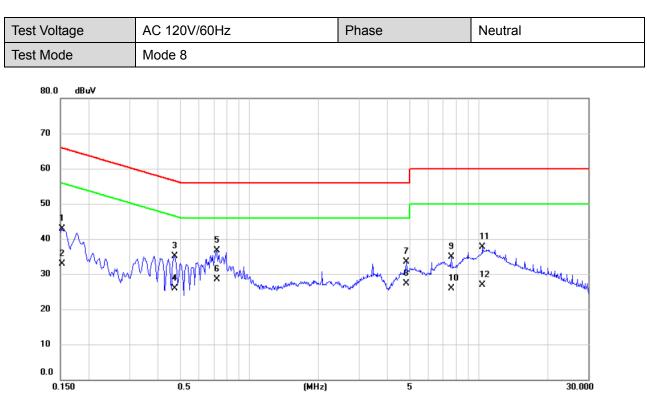
No deviation

3.1.5 TEST SETUP



3.1.6 TEST RESULTS

Remark:


- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	33.27	9.65	42.92	65.88	-22.96	QP	
2		0.1522	23.40	9.65	33.05	55.88	-22.83	AVG	
3		0.7215	27.47	9.70	37.17	56.00	-18.83	QP	
4	*	0.7215	20.60	9.70	30.30	46.00	-15.70	AVG	
5		4.8390	25.04	9.98	35.02	56.00	-20.98	QP	
6		4.8390	18.70	9.98	28.68	46.00	-17.32	AVG	
7		6.2183	27.93	10.05	37.98	60.00	-22.02	QP	
8		6.2183	16.40	10.05	26.45	50.00	-23.55	AVG	
9		8.3918	28.21	10.14	38.35	60.00	-21.65	QP	
10		8.3918	19.60	10.14	29.74	50.00	-20.26	AVG	
11		10.3673	31.39	10.23	41.62	60.00	-18.38	QP	
12		10.3673	20.60	10.23	30.83	50.00	-19.17	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	33.15	9.66	42.81	65.88	-23.07	QP	
2		0.1522	23.30	9.66	32.96	55.88	-22.92	AVG	
3		0.4717	25.35	9.68	35.03	56.48	-21.45	QP	
4		0.4717	16.30	9.68	25.98	46.48	-20.50	AVG	
5		0.7215	26.92	9.70	36.62	56.00	-19.38	QP	
6	*	0.7215	18.90	9.70	28.60	46.00	-17.40	AVG	
7		4.8323	23.55	9.98	33.53	56.00	-22.47	QP	
8		4.8323	17.40	9.98	27.38	46.00	-18.62	AVG	
9		7.5953	24.86	10.12	34.98	60.00	-25.02	QP	
10		7.5953	15.80	10.12	25.92	50.00	-24.08	AVG	
11		10.3515	27.39	10.26	37.65	60.00	-22.35	QP	
12		10.3515	16.60	10.26	26.86	50.00	-23.14	AVG	

3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ

3.2.1 LIMIT

	Class B (at 3m)				
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

NOTE:

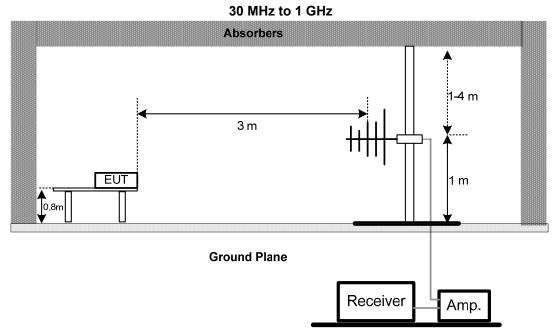
- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m). 3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

3.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Amplifier	HP	8447D	1937A02847	Feb. 28, 2022
2	Cable	emci	LMR-400(30MHz-1GHz) (10m+2.5m)	N/A	Jun. 01, 2022
3	Cable	mitron	RWLP50-4.0A-KJ-SMSM- 12M	N/A	Nov. 23, 2021
4	Controller	MF	MF-7802BS	N/A	N/A
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
6	EMI Test Receiver	Keysight	N9038A	MY56400060	Feb. 28, 2022
7	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	9168-806	Aug. 28, 2021

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

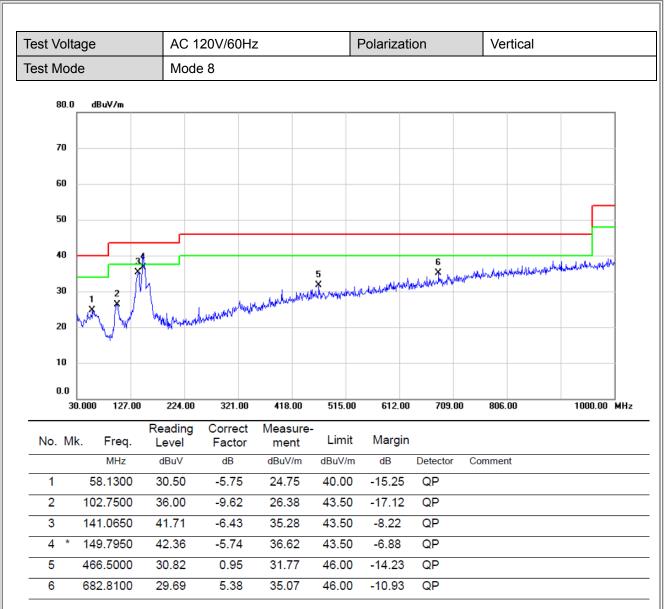

3.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- f. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

3.2.4 DEVIATION FROM TEST STANDARD

No deviation

3.2.5 TEST SETUP



3.2.6 TEST RESULTS

Remark:

- (1) Measuring frequency range from 30 MHz to 1000 MHz
- (2) If the peak scan value lower limit more than 20 dB, then this signal data does not show in table.

5

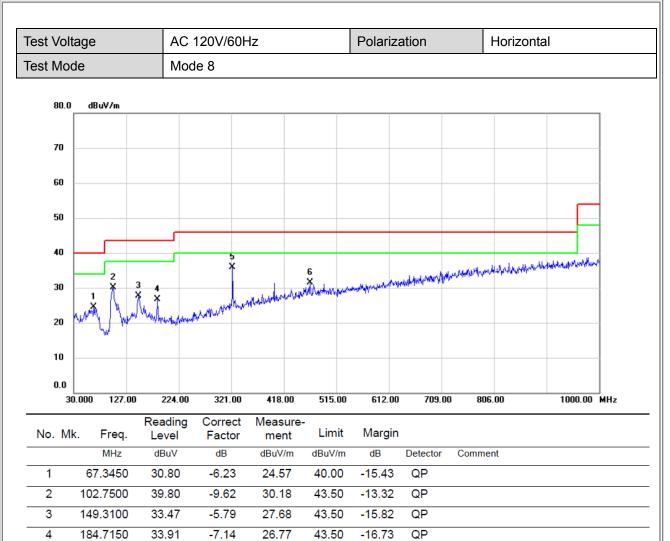
6

*

322.9400

466.5000

39.56


30.63

-3.56

0.95

36.00

31.58

-10.00

-14.42

QP

QP

46.00

46.00

3.3 RADIATED EMISSIONS ABOVE 1 GHZ

3.3.1 LIMIT

Class B		
(dBuV/m) (at 3m)		
Peak	Average	
74	54	
	(dBuV/r Peak	

Fraguanay	Cla	iss B
Frequency (MHz)	(dBuV/n	n) (at 1m)
	Peak	Average
Above 18000	83.5	63.5

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

3.3.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022
2	Amplifier	Agilent	8449B	3008A02334	Feb. 27, 2022
3	Cable	emci LMR-400(30MHz-1GHz) 0m+2.5m)		N/A	Jun. 01, 2022
4	Cable	mitron	RWLP50-4.0A-KJ-SMSM- 12M	N/A	Nov. 23, 2021
5	Controller	MF	MF-7802BS	N/A	N/A
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
7	EMI Test Receiver	Keysight	N9038A	MY56400060	Feb. 28, 2022
8	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022
9	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022
10	MXE EMI Receiver	Agilent	N9038A	MY53220133	Feb. 28, 2022
11	Cable	emci	SUCOFLEX 102_8m(0.01GHz- 40GHz)	N/A	Mar. 23, 2022
12	Band Reject Filter	Wairrwright Instruments Gmbh	WRCG 2400/2483-2375/2505-50/ 10SS	16	Feb. 28, 2022
13	Band Reject Filter	Micro-Tronics	BRC50704-01	8	Feb. 27, 2022
14	Band Reject Filter	Micro-Tronics	BRC50703-01	7	Feb. 27, 2022
15	Band Reject Filter	Micro-Tronics	BRC50705-01	10	Feb. 27, 2022

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

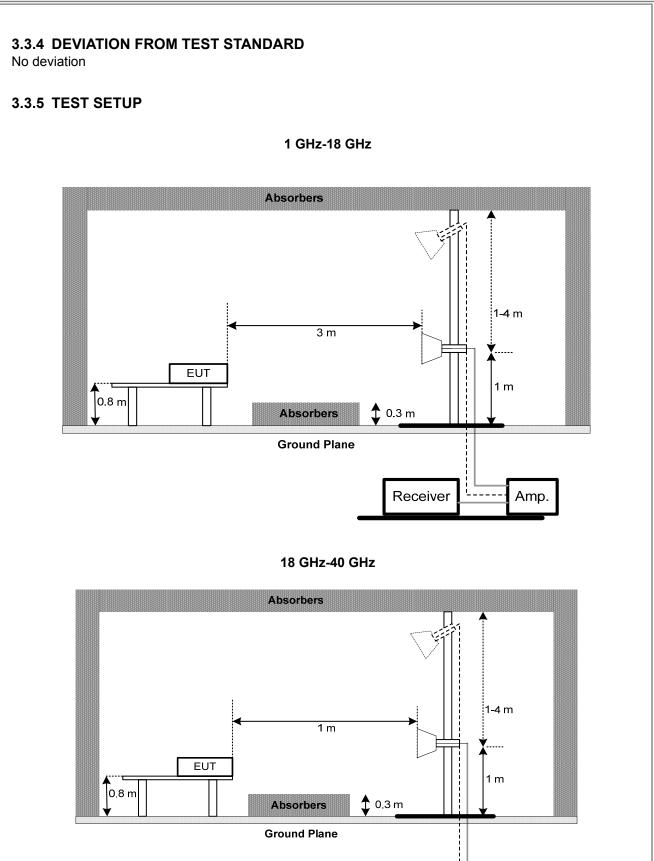
3.3.3 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Note:

For measurement of frequency 1GHz -18GHz, the EUT was set 3 meters away from the receiver antenna. For 18G – 40GHz, the EUT was set 1 meter.

Emission level (dBuV/m)=20log Emission level (uV/m).

The limits above 18GHz shall be extrapolated to the specified distance using an


extrapolation factor of 20dB/decade from 3m to 1m

Distance extrapolation factor = 20 log (3m/1m) dB ;

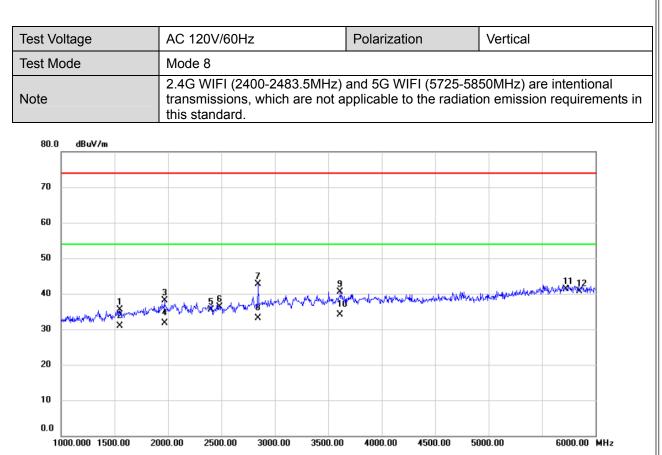
Limit line = specific limits (dBuV) + 9.5 dB.

- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

Receiver

i_____

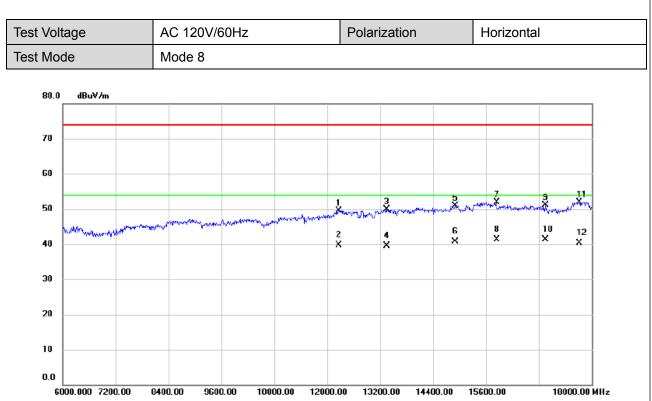
Amp.


3.3.6 TEST RESULTS

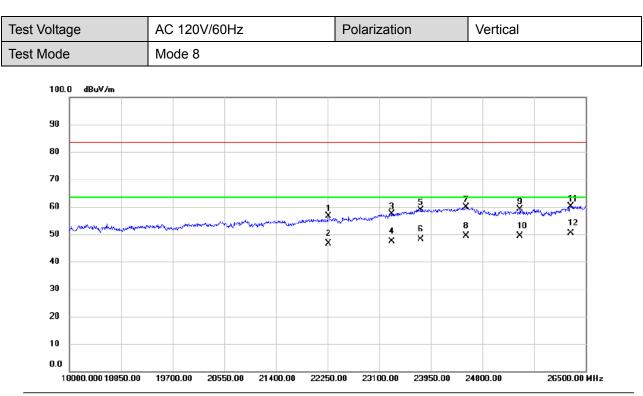
Remark:

- (1) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (2) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

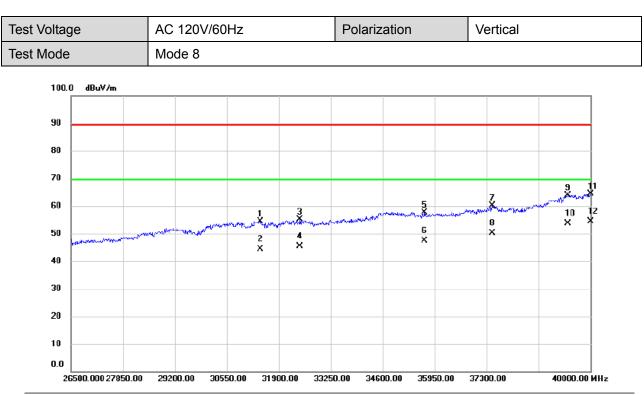
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1547.500	38.44	-3.03	35.41	74.00	-38.59	peak	
2		1547.500	33.88	-3.03	30.85	54.00	-23.15	AVG	
3		1967.500	38.52	-0.39	38.13	74.00	-35.87	peak	
4		1967.500	32.11	-0.39	31.72	54.00	-22.28	AVG	
5		2400.000	35.50	-0.02	35.48	74.00	-38.52	peak	add filter
6		2483.500	36.27	0.02	36.29	74.00	-37.71	peak	add filter
7		2842.500	41.14	1.55	42.69	74.00	-31.31	peak	
8		2842.500	31.54	1.55	33.09	54.00	-20.91	AVG	
9		3612.500	36.58	3.91	40.49	74.00	-33.51	peak	
10	*	3612.500	30.25	3.91	34.16	54.00	-19.84	AVG	
11		5725.000	31.75	9.60	41.35	74.00	-32.65	peak	add filter
12		5850.000	30.80	9.96	40.76	74.00	-33.24	peak	add filter


5		AC 1	20V/60H	z		Polariza	ation		Horizonta	al
st Mod	de	Mod	e 8							
ote		trans								e intentional n requirement
80.0	dBu∀/m		i	i						
70										
60										
50										
40	North Martin Martin		Uning to me	5 1,41,141,141 6 X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	× X	twontherest	vare have the
30		×								
20										
10										
0.0 10	000.000 1500.00	2000.00	2500.00		3500.00					6000.00 MHz
		2000.00	2500.00	3000.00	3300.00	4000.00	D 4500.	.00 500	JU. UU	0000.00 0112
No. M		Reading Level	Correct Factor	Measure- ment	Limit	4000.00 Margin	0 4500.	.00 500	10.00	
No. M	k. Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Margin dB	Detector	.00 500 Comme		0000.00 MH2
1	k. Freq. MHz 1965.000	Reading Level dBuV 37.56	Correct Factor dB -0.41	Measure- ment dBuV/m 37.15	Limit dBuV/m 74.00	Margin dB -36.85	Detector peak			
1 2	k. Freq. MHz 1965.000 1965.000	Reading Level dBuV 37.56 32.00	Correct Factor dB -0.41 -0.41	Measure- ment dBuV/m 37.15 31.59	Limit dBuV/m 74.00 54.00	Margin dB -36.85 -22.41	Detector peak AVG	Comme		
1 2 3	k. Freq. MHz 1965.000 1965.000 2400.000	Reading Level dBuV 37.56 32.00 35.46	Correct Factor dB -0.41 -0.41 -0.02	Measure- ment dBuV/m 37.15 31.59 35.44	Limit dBuV/m 74.00 54.00 74.00	Margin dB -36.85 -22.41 -38.56	Detector peak AVG peak	Comme		
1 2 3 4	k. Freq. MHz 1965.000 1965.000 2400.000 2483.500	Reading Level 37.56 32.00 35.46 35.82	Correct Factor dB -0.41 -0.41 -0.02 0.02	Measure- ment dBuV/m 37.15 31.59 35.44 35.84	Limit dBuV/m 74.00 54.00 74.00 74.00	Margin dB -36.85 -22.41 -38.56 -38.16	Detector peak AVG peak peak	Comme		
1 2 3 4 5	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000	Reading Level 37.56 32.00 35.46 35.82 36.89	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43	Limit dBuV/m 74.00 54.00 74.00 74.00 74.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57	Detector peak AVG peak peak peak	Comme		
1 2 3 4 5 6	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000 3105.000	Reading Level 37.56 32.00 35.46 35.82 36.89 30.54	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54 2.54	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43 33.08	Limit dBuV/m 74.00 54.00 74.00 74.00 74.00 54.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57 -20.92	Detector peak AVG peak peak peak AVG	Comme		
1 2 3 4 5 6 7	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000 3105.000 3622.500	Reading Level 37.56 32.00 35.46 35.82 36.89 30.54 36.39	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54 2.54 3.94	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43 33.08 40.33	Limit dBuV/m 74.00 54.00 74.00 74.00 74.00 54.00 74.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57 -20.92 -33.67	Detector peak AVG peak peak peak AVG	Comme		
1 2 3 4 5 6 7 8	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000 3622.500 3622.500	Reading Level 37.56 32.00 35.46 35.82 36.89 30.54 36.39 30.84	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54 2.54 3.94	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43 33.08 40.33 34.78	Limit dBuV/m 74.00 54.00 74.00 74.00 74.00 54.00 54.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57 -20.92 -33.67 -19.22	Detector peak AVG peak peak AVG peak AVG	Comme		
1 2 3 4 5 6 7 8 9	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000 3105.000 3622.500 3622.500 4625.000	Reading Level 37.56 32.00 35.46 35.82 36.89 30.54 36.39 30.84 35.06	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54 2.54 3.94 3.94 5.76	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43 33.08 40.33 34.78 40.82	Limit dBuV/m 74.00 54.00 74.00 74.00 54.00 74.00 54.00 54.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57 -20.92 -33.67 -19.22 -33.18	Detector peak AVG peak peak AVG peak AVG	Comme		
2 3 4 5 6 7 8	k. Freq. MHz 1965.000 2400.000 2483.500 3105.000 3622.500 3622.500	Reading Level 37.56 32.00 35.46 35.82 36.89 30.54 36.39 30.84	Correct Factor dB -0.41 -0.41 -0.02 0.02 2.54 2.54 3.94	Measure- ment dBuV/m 37.15 31.59 35.44 35.84 39.43 33.08 40.33 34.78	Limit dBuV/m 74.00 54.00 74.00 74.00 74.00 54.00 54.00	Margin dB -36.85 -22.41 -38.56 -38.16 -34.57 -20.92 -33.67 -19.22	Detector peak AVG peak peak AVG peak AVG	Comme	ent	

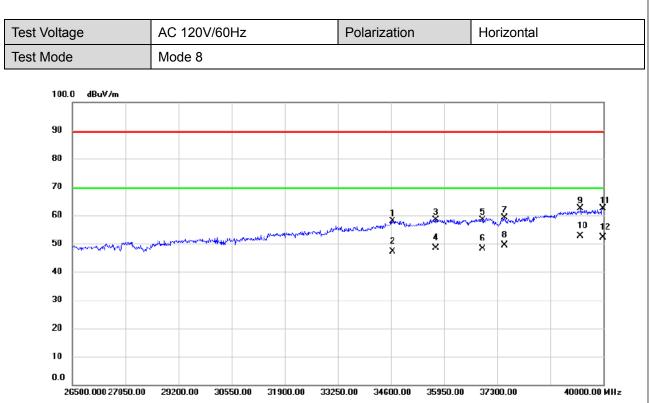
st Voltage	A	C 120V/6	0Hz		Polar	ization		Vertical		
st Mode	Ν	/lode 8								
80.0 dBuV/m										1
70										
60										
50			anton Mar atter	and the second second	1	3 marine	5 Antonia Marina	Z	3 1	
40	appointer and its	an a			2 X	4 ×	6 X	8	10 1 × ×	2
30										
20										
10										
0.0 6000.000 7200.	00 840	00.00 960	0.00 10	800.00 120	00.00 132	200.00 1	4400.00	15600.00	18000.00	 MHz
No. Mk. Freq.	Readi Leve			sure- ent Lir	nit Mar	ain				


No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		12252.00	30.71	17.69	48.40	74.00	-25.60	peak	
2		12252.00	20.56	17.69	38.25	54.00	-15.75	AVG	
3		13488.00	30.70	18.73	49.43	74.00	-24.57	peak	
4		13488.00	20.59	18.73	39.32	54.00	-14.68	AVG	
5		14736.00	29.07	20.52	49.59	74.00	-24.41	peak	
6		14736.00	19.10	20.52	39.62	54.00	-14.38	AVG	
7		15900.00	32.35	17.70	50.05	74.00	-23.95	peak	
8		15900.00	22.56	17.70	40.26	54.00	-13.74	AVG	
9		16920.00	31.91	19.61	51.52	74.00	-22.48	peak	
10		16920.00	21.65	19.61	41.26	54.00	-12.74	AVG	
11		17964.00	29.62	22.75	52.37	74.00	-21.63	peak	
12	*	17964.00	19.57	22.75	42.32	54.00	-11.68	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		12264.00	31.88	17.67	49.55	74.00	-24.45	peak	
2		12264.00	21.95	17.67	39.62	54.00	-14.38	AVG	
3		13344.00	31.13	18.75	49.88	74.00	-24.12	peak	
4		13344.00	20.77	18.75	39.52	54.00	-14.48	AVG	
5		14904.00	30.74	20.24	50.98	74.00	-23.02	peak	
6		14904.00	20.38	20.24	40.62	54.00	-13.38	AVG	
7		15840.00	34.23	17.67	51.90	74.00	-22.10	peak	
8	*	15840.00	23.59	17.67	41.26	54.00	-12.74	AVG	
9		16944.00	31.45	19.67	51.12	74.00	-22.88	peak	
10		16944.00	21.58	19.67	41.25	54.00	-12.75	AVG	
11		17724.00	30.01	21.93	51.94	74.00	-22.06	peak	
12		17724.00	18.39	21.93	40.32	54.00	-13.68	AVG	



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		22267.00	31.23	25.39	56.62	83.50	-26.88	peak	
2		22267.00	21.23	25.39	46.62	63.50	-16.88	AVG	
3		23312.50	28.35	29.10	57.45	83.50	-26.05	peak	
4		23312.50	18.16	29.10	47.26	63.50	-16.24	AVG	
5		23788.50	30.60	28.35	58.95	83.50	-24.55	peak	
6		23788.50	19.90	28.35	48.25	63.50	-15.25	AVG	
7		24528.00	32.43	27.52	59.95	83.50	-23.55	peak	
8		24528.00	21.80	27.52	49.32	63.50	-14.18	AVG	
9		25420.50	32.07	26.99	59.06	83.50	-24.44	peak	
10		25420.50	22.33	26.99	49.32	63.50	-14.18	AVG	
11		26253.50	32.55	27.66	60.21	83.50	-23.29	peak	
12	*	26253.50	22.60	27.66	50.26	63.50	-13.24	AVG	


est V	oltage	AC	120V/60H	Hz		Polariza	ation		Horizonta	al
est M	lode	Мо	de 8							
100	.0 dBuV/m									
90										
80										
70										
60					¦	3	warne and		Will Common	
50	Mun market and the second	markine	Share and the	And a state of the	2	4		6 X	8 X	10 12 × ×
40					x	Î		0		
30										
20										
10										
0.0										
1	8000.000 18850.00	19700.0	0 20550.00	0 21400.00 Measure-	22250.00) 23100.0)0 23950.0	JU 248	00.00	26500.00 MI
No. M		Reading Level	Factor	ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt	
1	21833.50	31.08	26.14	57.22	83.50	00.00	maale			
·)	04000 50					-26.28	peak			
2	21833.50	20.86	26.14	47.00	63.50	-16.50	AVG			
3	23066.00	20.86 29.48	26.14 28.97	47.00 58.45	63.50 83.50	-16.50 -25.05	AVG peak			
3	0	20.86	26.14	47.00	63.50	-16.50	AVG			
3 4	23066.00 23066.00	20.86 29.48 19.35	26.14 28.97 28.97	47.00 58.45 48.32	63.50 83.50 63.50	-16.50 -25.05 -15.18	AVG peak AVG			
3 4 5	23066.00 23066.00 24494.00 24494.00	20.86 29.48 19.35 32.30	26.14 28.97 28.97 27.57	47.00 58.45 48.32 59.87	63.50 83.50 63.50 83.50	-16.50 -25.05 -15.18 -23.63	AVG peak AVG peak			
3 4 5 6 7 8	23066.00 23066.00 24494.00 24494.00 25055.00 25055.00	20.86 29.48 19.35 32.30 21.68 33.80 23.46	26.14 28.97 28.97 27.57 27.57 26.69 26.69	47.00 58.45 48.32 59.87 49.25 60.49 50.15	63.50 83.50 63.50 83.50 63.50 83.50 63.50	-16.50 -25.05 -15.18 -23.63 -14.25 -23.01 -13.35	AVG peak AVG peak AVG			
3 4 5 6 7 8 9	23066.00 23066.00 24494.00 24494.00 25055.00 25055.00 26177.00	20.86 29.48 19.35 32.30 21.68 33.80 23.46 32.62	26.14 28.97 27.57 27.57 26.69 26.69 28.07	47.00 58.45 48.32 59.87 49.25 60.49 50.15 60.69	63.50 83.50 63.50 63.50 63.50 83.50 63.50 83.50	-16.50 -25.05 -15.18 -23.63 -14.25 -23.01 -13.35 -22.81	AVG peak AVG peak AVG peak AVG peak			
3 4 5 6 7 8 9	23066.00 23066.00 24494.00 24494.00 25055.00 25055.00 26177.00 26177.00	20.86 29.48 19.35 32.30 21.68 33.80 23.46 32.62 22.25	26.14 28.97 27.57 27.57 26.69 26.69 28.07 28.07	47.00 58.45 48.32 59.87 49.25 60.49 50.15 60.69 50.32	63.50 83.50 63.50 63.50 63.50 63.50 83.50 83.50 63.50	-16.50 -25.05 -15.18 -23.63 -14.25 -23.01 -13.35 -22.81 -13.18	AVG peak AVG peak AVG peak AVG peak AVG			
3 4 5 6 7 8 9	23066.00 23066.00 24494.00 24494.00 25055.00 25055.00 26177.00 26177.00 26474.50	20.86 29.48 19.35 32.30 21.68 33.80 23.46 32.62	26.14 28.97 27.57 27.57 26.69 26.69 28.07	47.00 58.45 48.32 59.87 49.25 60.49 50.15 60.69	63.50 83.50 63.50 63.50 63.50 83.50 63.50 83.50	-16.50 -25.05 -15.18 -23.63 -14.25 -23.01 -13.35 -22.81	AVG peak AVG peak AVG peak AVG peak			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		31414.00	45.49	9.00	54.49	89.50	-35.01	peak	
2		31414.00	35.26	9.00	44.26	69.50	-25.24	AVG	
3		32453.50	45.81	9.20	55.01	89.50	-34.49	peak	
4		32453.50	36.12	9.20	45.32	69.50	-24.18	AVG	
5		35693.50	46.55	11.20	57.75	89.50	-31.75	peak	
6		35693.50	36.06	11.20	47.26	69.50	-22.24	AVG	
7		37448.50	49.23	10.95	60.18	89.50	-29.32	peak	
8		37448.50	39.20	10.95	50.15	69.50	-19.35	AVG	
9		39419.50	47.76	16.13	63.89	89.50	-25.61	peak	
10		39419.50	37.49	16.13	53.62	69.50	-15.88	AVG	
11		40000.00	46.78	17.60	64.38	89.50	-25.12	peak	
12	*	40000.00	36.72	17.60	54.32	69.50	-15.18	AVG	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		34640.50	46.86	11.08	57.94	89.50	-31.56	peak	
2		34640.50	36.17	11.08	47.25	69.50	-22.25	AVG	
3		35734.00	47.29	11.20	58.49	89.50	-31.01	peak	
4		35734.00	37.12	11.20	48.32	69.50	-21.18	AVG	
5		36922.00	47.54	10.86	58.40	89.50	-31.10	peak	
6		36922.00	37.39	10.86	48.25	69.50	-21.25	AVG	
7		37489.00	48.14	10.95	59.09	89.50	-30.41	peak	
8		37489.00	38.37	10.95	49.32	69.50	-20.18	AVG	
9		39419.50	46.25	16.13	62.38	89.50	-27.12	peak	
10	*	39419.50	36.49	16.13	52.62	69.50	-16.88	AVG	
11		39986.50	44.91	17.56	62.47	89.50	-27.03	peak	
12		39986.50	34.59	17.56	52.15	69.50	-17.35	AVG	