

FCC EMC Test Report

Project No.		2003C217
Equipment	÷	
• •		
Brand Name	:	
Test Model	:	CPH2083
Series Model	:	N/A
Applicant	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	:	NO. 18 HaiBin Road, Wusha village, Chang An Town, DongGuan City, Guangdong, China
Manufacturer	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	:	NO. 18 HaiBin Road, Wusha village, Chang An Town, DongGuan City, Guangdong, China
Factory	:	Guangdong OPPO Mobile Telecommunications Corp., Ltd.
Address	:	NO. 18 HaiBin Road, Wusha village, Chang An Town, DongGuan City, Guangdong, China
Date of Receipt	:	Mar. 27, 2020
Date of Test	:	Apr. 02, 2020 ~ Apr. 14, 2020
Issued Date	:	Apr. 28, 2020
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG2020032777
Standard(s)	:	FCC Part 15, Subpart B

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Kang Zhang

ferr li

Approved by : Kevin Li

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town,Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 EUT OPERATING CONDITIONS	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.5 DESCRIPTION OF SUPPORT UNITS	12
3 . EMC EMISSION TEST	13
3.1 AC POWER LINE CONDUCTED EMISSIONS TEST	13
3.1.1 LIMIT	13
3.1.2 MEASUREMENT INSTRUMENTS LIST 3.1.3 TEST PROCEDURE	13 14
3.1.4 DEVIATION FROM TEST STANDARD	14
3.1.5 TEST SETUP	14
3.1.6 TEST RESULTS	14
3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ	17
	17
3.2.2 MEASUREMENT INSTRUMENTS LIST 3.2.3 TEST PROCEDURE	17 18
3.2.4 DEVIATION FROM TEST STANDARD	18
3.2.5 TEST SETUP	18
3.2.6 TEST RESULTS	18
3.3 RADIATED EMISSIONS ABOVE 1 GHZ	21
3.3.1 LIMIT	21
3.3.2 MEASUREMENT INSTRUMENTS LIST	22
3.3.3 TEST PROCEDURE 3.3.4 DEVIATION FROM TEST STANDARD	23 23
3.3.5 TEST SETUP	23
3.3.6 TEST RESULTS	25
4 . EUT TEST PHOTO	34

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Apr. 28, 2020

1. SUMMARY OF TEST RESULTS

Emission			
Ref Standard(s)	Test Item	Result	
	AC Power Line Conducted Emissions	PASS	
ANSI C63.4-2014	Radiated Emissions 30 MHz to 1 GHz	PASS	
	Radiated Emissions Above 1 GHz	PASS	

1.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method Measurement Frequency Range		U,(dB)
DG-C01	CISPR	150kHz ~ 30MHz	2.90

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB08 (3m)	CISPR	30MHz ~ 200MHz	V	3.72
		30MHz ~ 200MHz	Н	3.02
		200MHz ~ 1,000MHz	V	4.20
		200MHz ~ 1,000MHz	Н	3.66

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB08 (3m)		1GHz ~ 6GHz	4.36
	CISPR	6GHz ~ 18GHz	5.12

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB08 (1m)	CISPR	18 ~ 26.5 GHz	3.62
		26.5 ~ 40 GHz	4.00

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Tested By
AC Power Line Conducted Emissions	25°C	53%	Gatsby Wang
Radiated emissions 30 MHz to 1 GHz	25°C	60%	Promise Yin
Radiated emissions above 1 GHz	25°C	60%	Promise Yin

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone
Brand Name	OPPO
Test Model	CPH2083
Series Model	N/A
Model Difference(s)	N/A
Hardware Version	11
Software Version	ColorOS V6.1.2
Power Source	 DC Voltage supplied from AC/DC adapter. # Model: OP52KAUH # Model: OP52JAUH # Model: OP52YAUH Supplied from Li-ion Polymer battery. Model: BLP673 Supplied from USB port.
Power Rating	1. I/P:100-240V~ 50/60Hz 0.4A O/P:5V2A 2. 3.85Vdc, 4100mAh/15.78Wh 3. DC 5V
Connecting I/O Port(s)	1* Earphone port 1* Micro USB port
Classification of EUT	Class B
Highest Internal Frequency(Fx)	5850 MHz

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Adapter+ Idle+Playing+Speaker
Mode 2	Adapter+ Idle+Playing+Earphone
Mode 3	Adapter+Idle+2.4G WIFI+BT+GPS+Camera on(Front)
Mode 4	Adapter+Idle+2.4G WIFI+BT+GPS+Camera on(Rear)
Mode 5	Adapter+Idle+5G WIFI+BT+GPS+Camera on(Front)
Mode 6	Adapter+Traffic(GSM)(GSM850.1900)
Mode 7	Adapter+Traffic(WCDMA)(BAND2.4.5)
Mode 8	Adapter+Traffic(LTE)(BAND2/4/5/7/12/26/38/41/66)
Mode 9	FM 88MHz
Mode 10	FM 98MHz
Mode 11	FM 108MHz
Mode 12	USB Copy + Idle

AC Power Line Conducted Emissions test		
Final Test Mode	Description	
Mode 1	Adapter+ Idle+Playing+Speaker	

Radiated Emissions 30 MHz to 1 GHz test				
Final Test Mode Description				
Mode 1	Adapter+ Idle+Playing+Speaker			

Radiated emissions above 1 GHz test					
Final Test Mode Description					
Mode 5 Adapter+Idle+5G WIFI+BT+GPS+Camera on(Front)					

Item	Model	Factory	config1	config2	config3
	OP52KAUH	1	V		
Adapter	OP52JAUH	1		V	
	OP52YAUH	1			V
USB Cable	/	1	V	V	V
Battery	BLP673	1	V	V	V
Earphone	/	1	V	V	V

Evaluation description:

- 1. Mode 1: Tested config1-3. Config 1 is the worst case and tested Mode 2-12.
- 2. Config1 with Mode 1 is the worst case for conducted emission, radiated emission 30 MHz to 1 GHz and recorded in this report.
- 3. Config1 with Mode 5 is the worst case for radiated emission above 1GHz and recorded in this report.

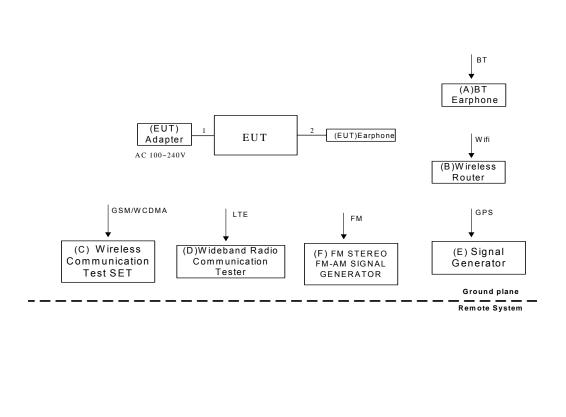
Note:

- 1. The frequency of BT exemption is 2402- 2480MHz.
- 2. The frequency of 2.4G WIFI exemption is 2400-2483.5MHz.
- 3. The frequency of 5G WIFI exemption is 5150-5250MHz, 5250-5350MHz, 5470-5725MHz, 5725-5850MHz.

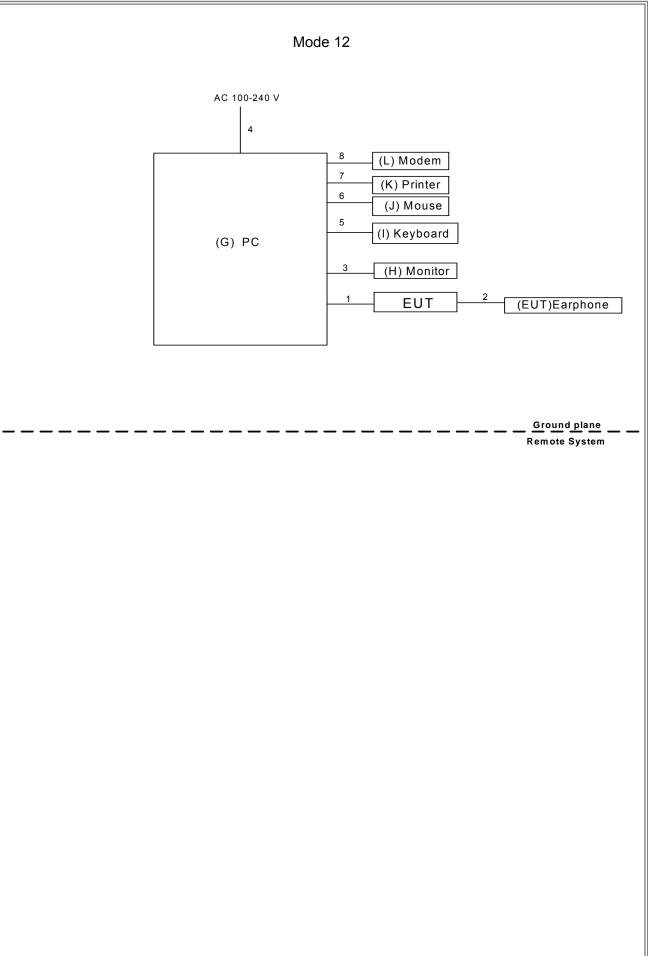
2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

Mode 1-11:


- 1. EUT connected to earphone via earphone cable.
- 2. EUT connected to adapter via USB cable.
- 3. EUT connected to wireless router via WIFI function.
- 4. EUT connected to BT earphone via BT function.
- 5. EUT connected to wireless communication test SET via radio signal.
- 6. EUT connected to signal generator via radio signal.
- 7. EUT connected to wideband radio communication tester via radio signal.
- 8. EUT connected to FM STEREO FM-AM signal generator via FM function.

Mode 12:


- 1. EUT connected to PC via USB cable.
- 2. EUT connected to earphone via earphone cable.
- 3. PC connected to keyboard and mouse via USB cable.
- 4. PC connected to monitor via HDMI cable.
- 5. PC connected to printer via parallel cable.
- 6. PC connected to modem via RS232 cable.

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Mode 1-11

BL

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
A	BT earphone	MICROKIA	M9	N/A
В	Wireless router	ASUS	RT-AC66U	E8ICGG000138
С	Wireless Communication Test SET	Agilent	(8960 Series) E5515C	MY48364183
D	Wideband Radio Communication Tester	RS	CMW500	122125
E	Signal Generator	Agilent	E4438C	MY49071316
F	FM STEREO FM-AM SIGNAL GENERATOR	KENWOOD	SG-5110	HR1010099
G	PC	Dell	DCSM	G7K832X
Н	Monitor	PHILIPS	241P6V	UHBA1633026326
I	Keyboard	Dell	L100	CNORH6596589071T08NE
J	Mouse	Dell	MO56UOA	FQJ000BS
К	Printer	SII	DPU-414	3018507 B
L	Modem	ACEEX	DM-1414V	0603002131

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	USB Cable	YES	NO	1m
2	Earphone Cable	NO	NO	1m
3	HDMI Cable	YES	NO	1.8m
4	AC Cable	NO	NO	1.8m
5	USB Cable	YES	NO	1.8m
6	USB Cable	YES	NO	1.8m
7	Parallel Cable	YES	NO	1.8m
8	RS232 Cable	YES	NO	1.8m

3. EMC EMISSION TEST

3.1 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1.1 LIMIT

Frequency of Emission (MHz)	Class B (dBuV)
Frequency of Emission (MHZ)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.5 - 5.0	56.00	46.00
5.0 - 30.0	60.00	50.00

Note:

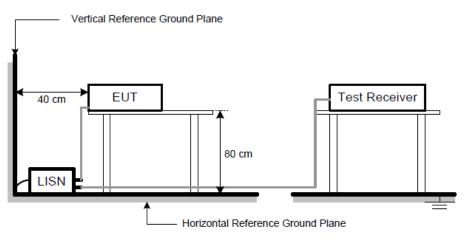
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

3.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	50Ω Terminator	SHX	TF2-3G-A	8122901	Feb. 28, 2021
2	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 01, 2021
3	EMI Test Receiver	R&S	ESR3	101862	Aug. 03, 2020
4	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Mar. 01, 2021
5	TRANSIENT LIMITER	EM	EM-7600	772	Mar. 01, 2021
6	Cable	N/A	RG400	N/A(12m)	Mar. 10, 2021
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1- 01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

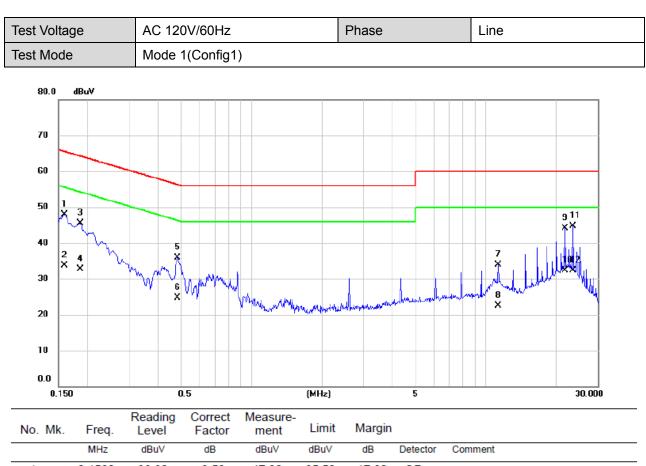

3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- f. Measuring frequency range from 150KHz to 30MHz.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation

3.1.5 TEST SETUP



3.1.6 TEST RESULTS

Remark:

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.

	-							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	38.32	9.58	47.90	65.52	-17.62	QP	
2	0.1590	24.20	9.58	33.78	55.52	-21.74	AVG	
3	0.1860	35.89	9.57	45.46	64.21	-18.75	QP	
4	0.1860	23.10	9.57	32.67	54.21	-21.54	AVG	
5	0.4830	26.24	9.59	35.83	56.29	-20.46	QP	
6	0.4830	15.20	9.59	24.79	46.29	-21.50	AVG	
7	11.3055	23.66	10.25	33.91	60.00	-26.09	QP	
8	11.3055	12.20	10.25	22.45	50.00	-27.55	AVG	
9	21.7410	33.32	10.88	44.20	60.00	-15.80	QP	
10	21.7410	21.50	10.88	32.38	50.00	-17.62	AVG	
11 *	23.4803	33.78	10.96	44.74	60.00	-15.26	QP	
12	23.4803	21.40	10.96	32.36	50.00	-17.64	AVG	

21.7995

23.5410

23.5410

10

11

12

21.90

32.66

20.20

10.95

11.04

11.04

32.85

43.70

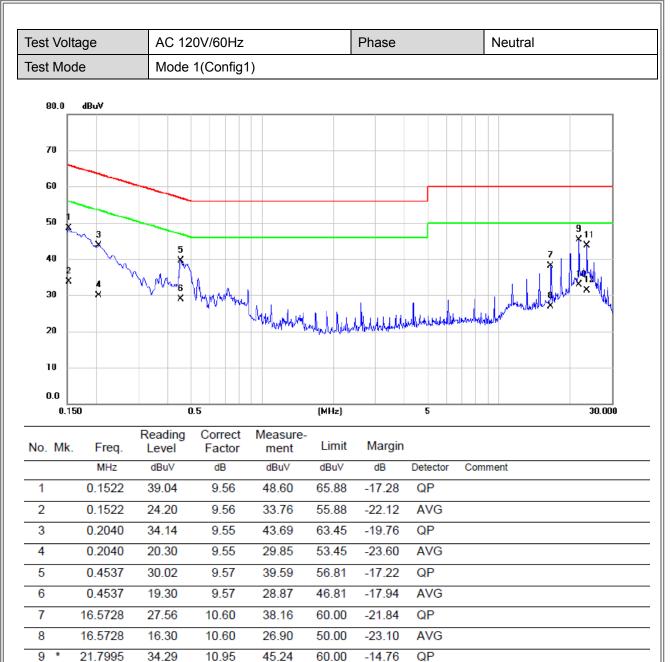
31.24

50.00

60.00

50.00

-17.15


-16.30

-18.76

AVG

QP

AVG

3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ

3.2.1 LIMIT

	Class B (at 3m)				
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

NOTE:

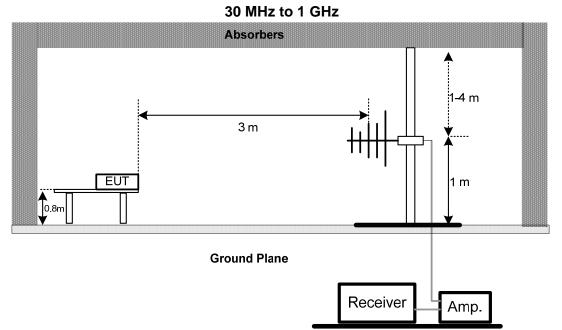
- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

3.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 03, 2020
2	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 10, 2020
3	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Oct. 26, 2020
4	Cable	emci	LMR-400(5m+11m+15m)	N/A	Aug. 06, 2020
5	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
6	Multi-Device Controller	ETS-Lindgren	Lindgren 2090		N/A
7	Attenuator	EMCI	EMCI-N-6-06	N0670	Oct. 26, 2020

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

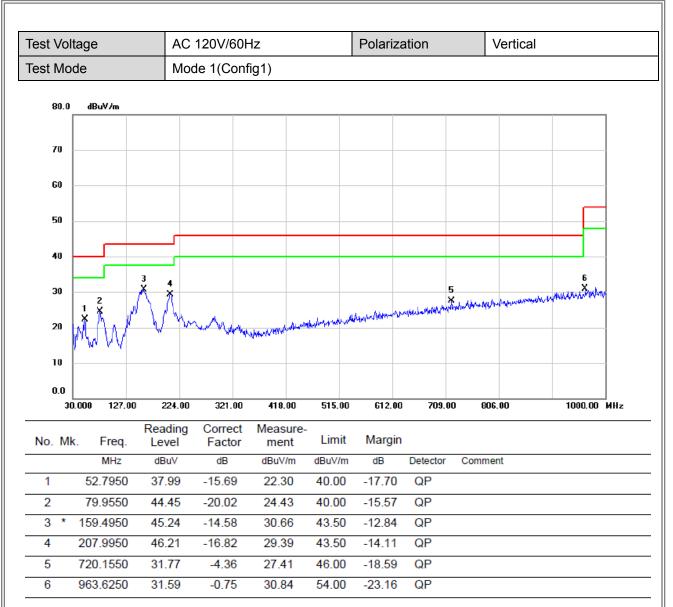

3.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- f. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

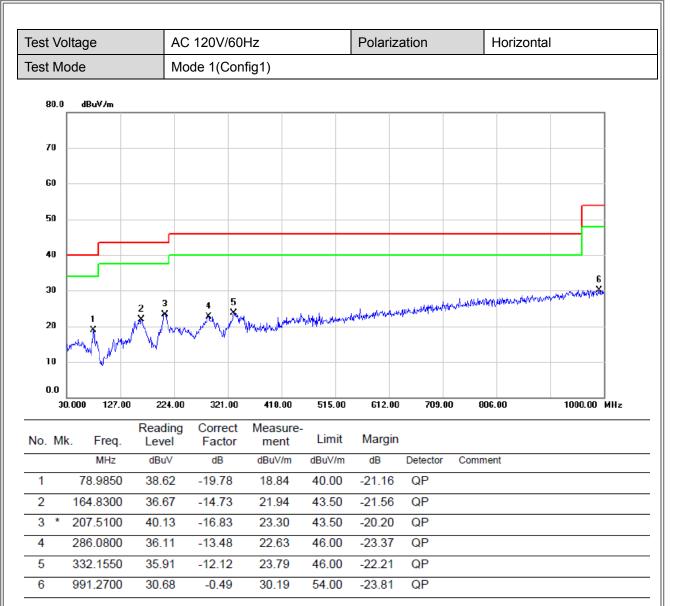
3.2.4 DEVIATION FROM TEST STANDARD

No deviation

3.2.5 TEST SETUP



3.2.6 TEST RESULTS


Remark:

- (1) Measuring frequency range from 30 MHz to 1000 MHz
- (2) If the peak scan value lower limit more than 20 dB, then this signal data does not show in table.

3.3 RADIATED EMISSIONS ABOVE 1 GHZ

3.3.1 LIMIT

Class B			
(dBuV/m) (at 3m)			
Peak	Average		
74	54		
	(dBuV/ Peak		

Frequency	Class B			
Frequency (MHz)	(dBuV/m) (at 1m)			
	Peak	Average		
Above 18000	83.5 63.5			

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

3.3.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double Ridged Guide Antenna	ETS	3115	75846	Mar. 19, 2021
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 23, 2020
3	Amplifier	Agilent	8449B	3008A02333	Mar. 01, 2021
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 07, 2021
5	MXE EMI Receiver	Agilent	N9038A	MY53220133	Feb. 28, 2021
6	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
7	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
8	Controller	MF	MF-7802	MF780208159	N/A
9	Cable	emci	SUCOFLEX 102_8m(0.01GHz- 40GHz)	N/A	Mar. 24, 2021
10	Cable	MIcable Inc.	B10-01-01-5M	18047123	Feb. 28, 2021
11	Cable	MIcable Inc.	B10-01-01-12M	18072743	Feb. 28, 2021
12	Cable	RegalWay	RWLPS50-7.9A-SMSM-1 M	20200102 001	Feb. 28, 2021
13	Band Reject Filter	Wairrwright Instruments Gmbh	WRCG 2400/2483-2375/2505-50/ 10SS	16	Feb. 28, 2021
14	Band Reject Filter	Micro-Tronics	BRC50705-01	10	Feb. 28, 2021
15	Band Reject Filter	Micro-Tronics	BRC50704-01	8	Feb. 28, 2021
16	Band Reject Filter	Micro-Tronics	BRC50703-01	7	Feb. 28, 2021

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

3.3.3 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Note:

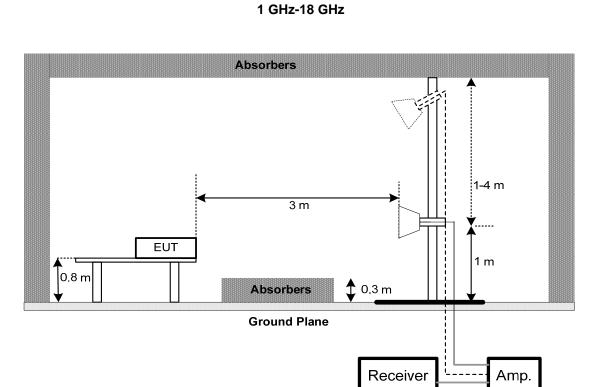
For measurement of frequency 1GHz -18GHz, the EUT was set 3 meters away from the receiver antenna. For 18G – 40GHz, the EUT was set 1 meter.

Emission level (dBuV/m)=20log Emission level (uV/m).

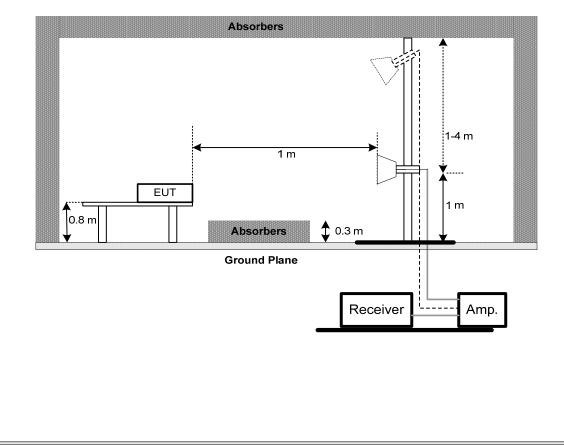
The limits above 18GHz shall be extrapolated to the specified distance using an

extrapolation factor of 20dB/decade from 3m to 1m

Distance extrapolation factor = 20 log (3m/1m) dB ;

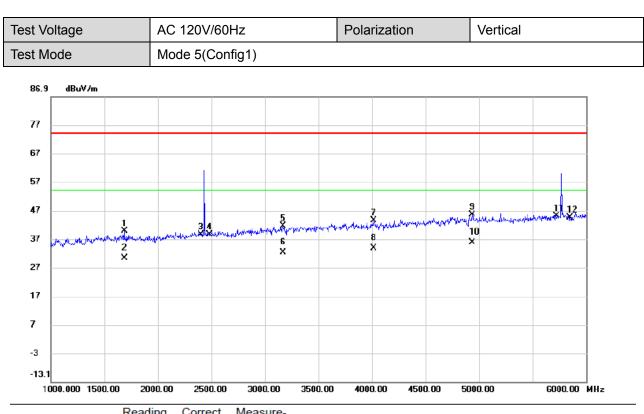

- Limit line = specific limits (dBuV) + 9.5 dB.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

3.3.4 DEVIATION FROM TEST STANDARD


No deviation

3.3.5 TEST SETUP

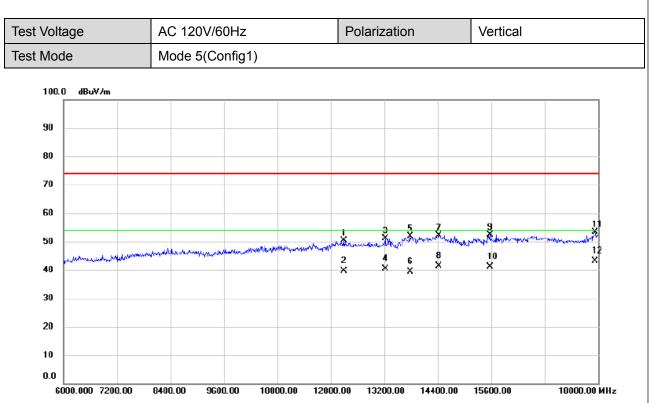
18 GHz-40 GHz



3.3.6 TEST RESULTS

Remark:

- (1) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (2) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



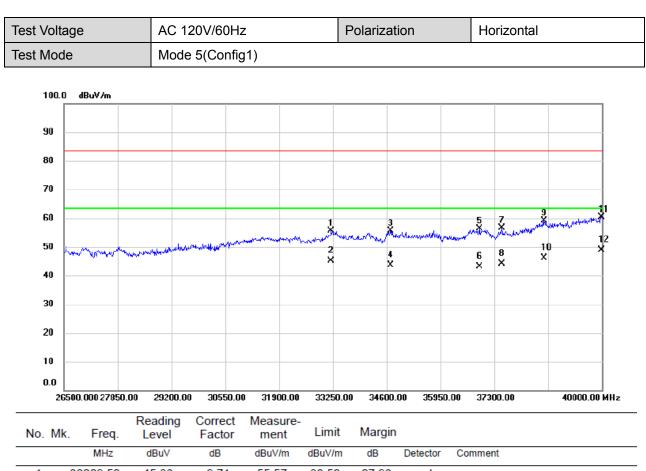
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	1	687.500	41.01	-1.23	39.78	74.00	-34.22	peak	
2	1	687.500	31.39	-1.23	30.16	54.00	-23.84	AVG	
3	2	400.000	36.88	1.58	38.46	74.00	-35.54	peak	
4	2	483.500	36.67	1.95	38.62	74.00	-35.38	peak	
5	3	170.000	37.15	4.36	41.51	74.00	-32.49	peak	
6	3	170.000	27.93	4.36	32.29	54.00	-21.71	AVG	
7	4	015.000	35.92	7.50	43.42	74.00	-30.58	peak	
8	4	015.000	26.34	7.50	33.84	54.00	-20.16	AVG	
9	4	935.000	35.43	10.09	45.52	74.00	-28.48	peak	
10	* 4	935.000	25.66	10.09	35.75	54.00	-18.25	AVG	
11	5	725.000	33.00	12.05	45.05	74.00	-28.95	peak	
12	5	850.000	31.92	12.51	44.43	74.00	-29.57	peak	

Fest Vo	oltage	AC 1	20V/60H	Z	F	Polariza	ation	Но	orizontal		
Fest Mo	ode	Mode	e 5(Config	g1)							
86.9) dBuV/m										
77											
67											
57											
47					5		7		9 	11 12	
		and the second	13	And the second second	3 man			und have	10	UNIV-SAMAGEN SERVICE	
37	And Martha Martin	the state of the s			4 6 X X		×		x		
27											
17											
7											
-3											
-13.1										1	
-13.	1										
	1 000.000 1500.00	0 2000.00	2500.00	3000.00	3500.00	4000.	.00 4500.0	00 500)0.00	6000.00	MHz
1	000.000 1500.00	Reading	Correct	Measure-				00 500)O. OD	6000.00	MHz
1	000.000 1500.00				3500.00 Limit	4000. Margir dB		00 500 Comme		6000.00	MHz
1	000.000 1500.00 k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margi	n Detector			6000.00	MHz
1 No. M	000.000 1500.00 k. Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Margii dB	n Detector peak			6000.00	MHz
1 No. M 1	000.000 1500.00 k. Freq. MHz 2400.000	Reading Level dBuV 38.47	Correct Factor dB 1.58	Measure- ment dBuV/m 40.05	Limit dBuV/m 74.00	Margin dB -33.95	n Detector peak peak			6000.00	MHz
1 No. M 1 2	k. Freq. MHz 2400.000 2483.500	Reading Level dBuV 38.47 37.43	Correct Factor dB 1.58 1.95	Measure- ment dBuV/m 40.05 39.38	Limit dBuV/m 74.00 74.00	Margii dB -33.95 -34.62	n Detector peak peak peak			6000.00	MHz
1 No. M 1 2 3 4 5	k. Freq. MHz 2400.000 2483.500 3255.000 3255.000 3630.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65	Correct Factor dB 1.58 1.95 4.65 4.65 6.01	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66	Limit dBuV/m 74.00 74.00 74.00 54.00 74.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34	n Detector peak peak peak peak AVG peak			6000.00	MHz
1 No. M 1 2 3 4 5 6	k. Freq. MHz 2400.000 2483.500 3255.000 3255.000 3630.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65 27.78	Correct Factor dB 1.58 1.95 4.65 4.65 6.01 6.01	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66 33.79	Limit dBuV/m 74.00 74.00 74.00 54.00 74.00 54.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34 -20.21	n Detector peak peak peak peak AVG AVG			6000.00	MHz
1 No. M 1 2 3 4 5 6 7	k. Freq. MHz 2400.000 2483.500 3255.000 3255.000 3630.000 3630.000 4340.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65 27.78 35.82	Correct Factor dB 1.58 1.95 4.65 4.65 6.01 6.01 8.44	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66 33.79 44.26	Limit dBuV/m 74.00 74.00 74.00 54.00 54.00 54.00 74.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34 -20.21 -29.74	n Detector peak peak peak peak AVG peak AVG peak			6000.00 I	MHz
1 No. M 1 2 3 4 5 6 7 8	k. Freq. MHz 2400.000 2483.500 3255.000 3630.000 3630.000 4340.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65 27.78 35.82 26.74	Correct Factor dB 1.58 1.95 4.65 4.65 6.01 6.01 8.44 8.44	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66 33.79 44.26 35.18	Limit dBuV/m 74.00 74.00 54.00 54.00 54.00 74.00 54.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34 -20.21 -29.74 -18.82	n Detector peak peak peak AVG AVG AVG peak AVG			6000.00 I	
1 No. M 1 2 3 4 5 6 7 8 9	k. Freq. MHz 2400.000 2483.500 3255.000 3255.000 3630.000 3630.000 4340.000 4340.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65 27.78 35.82 26.74 35.61	Correct Factor dB 1.58 1.95 4.65 4.65 6.01 6.01 8.44 8.44 10.46	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66 33.79 44.26 35.18 46.07	Limit dBuV/m 74.00 74.00 54.00 54.00 54.00 74.00 54.00 54.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34 -20.21 -29.74 -18.82 -27.93	n Detector peak peak peak AVG peak AVG peak AVG peak AVG			6000.00	MHz
1 No. M 1 2 3 4 5 6 7 8 9	k. Freq. MHz 2400.000 2483.500 3255.000 3630.000 3630.000 4340.000	Reading Level dBuV 38.47 37.43 37.69 28.59 37.65 27.78 35.82 26.74	Correct Factor dB 1.58 1.95 4.65 4.65 6.01 6.01 8.44 8.44	Measure- ment dBuV/m 40.05 39.38 42.34 33.24 43.66 33.79 44.26 35.18	Limit dBuV/m 74.00 74.00 54.00 54.00 54.00 74.00 54.00	Margii dB -33.95 -34.62 -31.66 -20.76 -30.34 -20.21 -29.74 -18.82	n Detector peak peak peak AVG peak AVG peak AVG peak AVG			6000.00 I	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		12300.00	28.97	21.40	50.37	74.00	-23.63	peak	
2		12300.00	18.25	21.40	39.65	54.00	-14.35	AVG	
3		13218.00	27.02	24.03	51.05	74.00	-22.95	peak	
4		13218.00	16.25	24.03	40.28	54.00	-13.72	AVG	
5		13782.00	24.66	27.23	51.89	74.00	-22.11	peak	
6		13782.00	12.25	27.23	39.48	54.00	-14.52	AVG	
7		14418.00	23.18	29.05	52.23	74.00	-21.77	peak	
8		14418.00	12.35	29.05	41.40	54.00	-12.60	AVG	
9		15570.00	29.58	22.87	52.45	74.00	-21.55	peak	
10		15570.00	18.25	22.87	41.12	54.00	-12.88	AVG	
11		17928.00	20.62	32.82	53.44	74.00	-20.56	peak	
12	*	17928.00	10.30	32.82	43.12	54.00	-10.88	AVG	

est Vo	oltage	AC	120V/60H	z	F	Polariza	ation	F	lorizontal	
Fest M	ode	Mod	le 5(Confi	g1)						
100.	0 dBuV/m									
90										
80										
70										
60						1	3	5	Z	9 11 XX
50	herionshirthat	- Antonia and	man	marked and a survey of the	a summer the paper of	montan		when the	8	10 12
40	of the stand with the stand					2 X	4 X	Б Х	×	××
30										
20										
20										
10										
0.0 6	000.000 7200.00	8400.00	9600.00	10800.00	12000.00	13200	.00 14400	.00 15	600.00	18000.00 MHz
No. M		eading Level	Correct Factor	Measure- ment	Limit	Margin	1			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent	
1	12984.00									
	12001.00	29.27	23.00	52.27	74.00	-21.73	peak			
2	12984.00	16.25	23.00	39.25	54.00	-14.75	peak AVG			
3	12984.00 13638.00	16.25 26.24	23.00 26.24	39.25 52.48	54.00 74.00	-14.75 -21.52	AVG peak			
3 4	12984.00 13638.00 13638.00	16.25 26.24 15.25	23.00 26.24 26.24	39.25 52.48 41.49	54.00 74.00 54.00	-14.75 -21.52 -12.51	AVG peak AVG			
3 4 5	12984.00 13638.00 13638.00 15210.00	16.25 26.24 15.25 29.71	23.00 26.24 26.24 24.70	39.25 52.48 41.49 54.41	54.00 74.00 54.00 74.00	-14.75 -21.52 -12.51 -19.59	AVG peak AVG peak			
3 4	12984.00 13638.00 13638.00 15210.00 15210.00	16.25 26.24 15.25	23.00 26.24 26.24	39.25 52.48 41.49	54.00 74.00 54.00	-14.75 -21.52 -12.51	AVG peak AVG			
3 4 5 6	12984.00 13638.00 13638.00 15210.00 15210.00 16116.00	16.25 26.24 15.25 29.71 16.25	23.00 26.24 26.24 24.70 24.70	39.25 52.48 41.49 54.41 40.95	54.00 74.00 54.00 74.00 54.00	-14.75 -21.52 -12.51 -19.59 -13.05	AVG peak AVG peak AVG			
3 4 5 6 7	12984.00 13638.00 13638.00 15210.00 15210.00 16116.00 16116.00	16.25 26.24 15.25 29.71 16.25 31.85	23.00 26.24 26.24 24.70 24.70 22.97	39.25 52.48 41.49 54.41 40.95 54.82	54.00 74.00 54.00 74.00 54.00 74.00	-14.75 -21.52 -12.51 -19.59 -13.05 -19.18	AVG peak AVG peak AVG peak			
3 4 5 6 7 8 9 10	12984.00 13638.00 13638.00 15210.00 15210.00 16116.00 16116.00 17436.00 17436.00	16.25 26.24 15.25 29.71 16.25 31.85 21.33 26.06 15.03	23.00 26.24 26.24 24.70 24.70 22.97 22.97 29.12 29.12	39.25 52.48 41.49 54.41 40.95 54.82 44.30 55.18 44.15	54.00 74.00 54.00 54.00 54.00 74.00 54.00 74.00 54.00	-14.75 -21.52 -12.51 -19.59 -13.05 -19.18 -9.70 -18.82 -9.85	AVG peak AVG peak AVG peak AVG			
3 4 5 6 7 8	12984.00 13638.00 13638.00 15210.00 15210.00 16116.00 16116.00 17436.00 17436.00 17940.00	16.25 26.24 15.25 29.71 16.25 31.85 21.33 26.06	23.00 26.24 26.24 24.70 24.70 22.97 22.97 29.12	39.25 52.48 41.49 54.41 40.95 54.82 44.30 55.18	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-14.75 -21.52 -12.51 -19.59 -13.05 -19.18 -9.70 -18.82	AVG peak AVG peak AVG peak AVG peak			

est Vo	oltage	A	C 120V/60	Hz		Polariz	zation		Vertical		
est Mo	ode	М	ode 5(Con	ifig1)							
100.0	dBuV/m										
90											
80											
70											
60				1				3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	an Aurona with	Mary Marine Mary	
50	a hadaa hadadha taraha tarah	would what the down	half war and a start which	2	youngentline	new ALLANN	WANNA AND A MAN	4 6 × ×	8 X	12 12	
40				ž					×		
30											
20											
20											
10											
0.0	000.000 18850.	00 19700.	00 20550.00) 21400.00	22250.0	0 23100	.00 2395	50.00 24	1800.00	26500.00 MH	z
		Reading		Measure-							
No. Mk		Level	Factor	ment	Limit	Margin	ı				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent		
1	21459.50	30.27	21.35	51.62	83.50	-31.88	peak				
2	21459.50	20.26	21.35 24.61	41.61 55.65	63.50 83.50	-21.89 -27.85	AVG peak				
4	24052.00	21.33	24.01	45.94	63.50	-17.56	AVG				
5	24621.50	30.74	25.54	56.28	83.50	-27.22	peak				
6	24621.50	19.25	25.54	44.79	63.50	-18.71	AVG				
7	24944.50	30.69	25.88	56.57	83.50	-26.93	peak				
8	24944.50	18.50	25.88	44.38	63.50	-19.12	AVG				
9	25556.50		26.82	59.85	83.50						
10 *	25556.50	22.33	26.82	49.15	63.50	-14.35					
11	26483.00	31.89	27.81	59.70	83.50						
12	26483.00	21.33	27.81	49.14	63.50	-14.36	AVG				



Test Vo	oltage	AC	: 120V/60I	Hz		Polariza	ation	ŀ	Iorizontal	
Test M	ode	Мо	de 5(Con	fig1)						
100.0) dBuV/m									
90										
80										
70										
60			1	3		5 X	when when the market	Z	mm to have been	and have the work
50	warmalindeworkthing	A Charles and a second	1 X markey warmy		manna	6	MM-00-00	8 ×	10 ×	12 X
40			2 X	×		×				
30										
30										
20										
10										
0.0	000 000 10050 0	10700.0	0 00550.00	21 100 00		0 00100	00 0005		00.00	20500.00 1111
18	000.000 18850.00				22250.0	0 23100.	.00 23950	J.UU 248	800.00	26500.00 MHz
No. Mk		Reading Level	Correct Factor	Measure- ment	Limit	Margin	I			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent	
1	19972.00	32.16	19.57	51.73	83.50	-31.77	peak			
2	19972.00	22.33	19.57	41.90	63.50	-21.60	AVG			
3	21672.00	32.10	21.49	53.59	83.50	-29.91	peak			
4	21672.00	22.35	21.49	43.84	63.50	-19.66	AVG			
5	23108.50	31.66	23.67	55.33	83.50	-28.17	peak			
6	23108.50	21.33	23.67	45.00	63.50	-18.50	AVG			
	24519.50	32.18	25.44	57.62	83.50	-25.88	peak			
7	0		05 44	48.69	63.50	-14.81	AVG			
8	24519.50	23.25	25.44							
-	25403.50	32.13	25.44 26.67	58.80	83.50	-24.70	peak			
8 9 10	25403.50 25403.50	32.13 22.32	26.67 26.67	58.80 48.99	63.50	-14.51	peak AVG			
8	25403.50	32.13	26.67	58.80			-			

iest V	oltage	AC	120V/60H	Hz	F	Polariza	ation	\	/ertical	
Test M	lode	Mo	de 5(Conf	ig1)						
100.	.0 dBuV/m									
100.										
90										
80										
70										
10										
60				1			3	S.	and an and the second	And the state of t
50	week on the manufacture of the second	munspheres	ender of the second states	2	ALL STREET, ST		4	6 X	8 X	10 X
40				×			×			
30										
20										
10										
0.0	6500.000 27850.0	0 29200.0	0 30550.0	0 31 900.00	33250.00	34600	.00 35950	00 17	300.00	40000.00 MHz
	.000.000.27.000.0				33230.00			1.00 ar	300.00	40000.00 MHZ
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir				
lo. M	MHz	Reading	Correct	Measure- ment dBuV/m	dBuV/m	Margir dB	Detector	Comm		
1	MHz 31724.50	Reading Level dBuV 46.13	Correct Factor dB 9.04	Measure- ment dBuV/m 55.17	dBuV/m 83.50	Margir dB -28.33	Detector peak	Comm		
1 2	MHz 31724.50 31724.50	Reading Level dBuV 46.13 35.33	Correct Factor dB 9.04 9.04	Measure- ment dBuV/m 55.17 44.37	dBuV/m 83.50 63.50	Margir dB -28.33 -19.13	Detector peak AVG	Comm		
1 2 3	MHz 31724.50 31724.50 34951.00	Reading Level dBuV 46.13 35.33 45.40	Correct Factor dB 9.04 9.04 11.29	Measure- ment dBuV/m 55.17 44.37 56.69	dBuV/m 83.50 63.50 83.50	Margir dB -28.33 -19.13 -26.81	Detector peak AVG peak	Comm		
1 2 3 4	MHz 31724.50 31724.50 34951.00 34951.00	Reading Level dBuV 46.13 35.33 45.40 33.26	Correct Factor dB 9.04 9.04 11.29 11.29	Measure- ment dBuV/m 55.17 44.37 56.69 44.55	dBuV/m 83.50 63.50 83.50 63.50	Margir dB -28.33 -19.13 -26.81 -18.95	Detector peak AVG peak AVG	Comm		
1 2 3 4 5	MHz 31724.50 31724.50 34951.00 34951.00 36854.50	Reading Level dBuV 46.13 35.33 45.40 33.26 47.02	Correct Factor dB 9.04 9.04 11.29 11.29 10.80	Measure- ment dBuV/m 55.17 44.37 56.69 44.55 57.82	dBuV/m 83.50 63.50 83.50 63.50 83.50	Margir dB -28.33 -19.13 -26.81 -18.95 -25.68	Detector peak AVG peak AVG peak	Comm		
1 2 3 4	MHz 31724.50 31724.50 34951.00 34951.00	Reading Level dBuV 46.13 35.33 45.40 33.26	Correct Factor dB 9.04 9.04 11.29 11.29	Measure- ment dBuV/m 55.17 44.37 56.69 44.55	dBuV/m 83.50 63.50 83.50 63.50 83.50 63.50	Margir dB -28.33 -19.13 -26.81 -18.95	Detector peak AVG peak AVG peak AVG	Comm		
1 2 3 4 5 6	MHz 31724.50 31724.50 34951.00 34951.00 36854.50 36854.50	Reading Level dBuV 46.13 35.33 45.40 33.26 47.02 36.25	Correct Factor dB 9.04 9.04 11.29 11.29 10.80 10.80	Measure- ment dBuV/m 55.17 44.37 56.69 44.55 57.82 47.05	dBuV/m 83.50 63.50 83.50 63.50 83.50 63.50 83.50	Margir dB -28.33 -19.13 -26.81 -18.95 -25.68 -16.45	Detector peak AVG peak AVG peak AVG peak	Comm		
1 2 3 4 5 6 7	MHz 31724.50 31724.50 34951.00 34951.00 36854.50 36854.50 37394.50	Reading Level dBuV 46.13 35.33 45.40 33.26 47.02 36.25 47.67	Correct Factor dB 9.04 9.04 11.29 11.29 10.80 10.80 10.94	Measure- ment dBuV/m 55.17 44.37 56.69 44.55 57.82 47.05 58.61	dBuV/m 83.50 63.50 83.50 63.50 83.50 63.50 83.50 63.50	Margir dB -28.33 -19.13 -26.81 -18.95 -25.68 -16.45 -24.89	Detector peak AVG peak AVG peak AVG peak AVG	Comm		
1 2 3 4 5 6 7 8 9	MHz 31724.50 31724.50 34951.00 34951.00 36854.50 36854.50 37394.50 37394.50	Reading Level dBuV 46.13 35.33 45.40 33.26 47.02 36.25 47.67 35.20	Correct Factor dB 9.04 9.04 11.29 11.29 10.80 10.80 10.94 10.94	Measure- ment dBuV/m 55.17 44.37 56.69 44.55 57.82 47.05 58.61 46.14	dBuV/m 83.50 63.50 63.50 63.50 63.50 63.50 63.50 83.50 83.50	Margir dB -28.33 -19.13 -26.81 -18.95 -25.68 -16.45 -24.89 -17.36	Detector peak AVG peak AVG peak AVG peak AVG peak	Comm		
2 3 4 5 6 7 8	MHz 31724.50 31724.50 34951.00 34951.00 36854.50 36854.50 37394.50 37394.50 39217.00	Reading Level dBuV 46.13 35.33 45.40 33.26 47.02 36.25 47.67 35.20 44.58	Correct Factor dB 9.04 9.04 11.29 11.29 10.80 10.80 10.94 10.94 15.51	Measure- ment dBuV/m 55.17 44.37 56.69 44.55 57.82 47.05 58.61 46.14 60.09	dBuV/m 83.50 63.50 83.50 83.50 63.50 83.50 63.50 83.50 83.50 63.50	Margir dB -28.33 -19.13 -26.81 -18.95 -25.68 -16.45 -24.89 -17.36 -23.41	Detector peak AVG peak AVG peak AVG peak AVG peak	Comm		

	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	33209.50	45.86	9.71	55.57	83.50	-27.93	peak	
2	33209.50	35.33	9.71	45.04	63.50	-18.46	AVG	
3	34694.50	44.42	11.12	55.54	83.50	-27.96	peak	
4	34694.50	32.50	11.12	43.62	63.50	-19.88	AVG	
5	36922.00	45.54	10.86	56.40	83.50	-27.10	peak	
6	36922.00	32.33	10.86	43.19	63.50	-20.31	AVG	
7	37489.00	45.64	10.95	56.59	83.50	-26.91	peak	
8	37489.00	33.25	10.95	44.20	63.50	-19.30	AVG	
9	38555.50	45.30	13.76	59.06	83.50	-24.44	peak	
10	38555.50	32.35	13.76	46.11	63.50	-17.39	AVG	
11	39986.50	42.91	17.56	60.47	83.50	-23.03	peak	
12 *	39986.50	31.35	17.56	48.91	63.50	-14.59	AVG	