

Report No. : FR020103A

FCC RADIO TEST REPORT

FCC ID	:	R9C-CPH2025
Equipment	:	Mobile Phone
Brand Name	:	OPPO
Model Name	:	CPH2025
Applicant	:	GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP.,LTD.
		NO. 18 HaiBin Road, WuSha village, Chang An Town, DongGuan City [,] Guangdong,China
Manufacturer	:	GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP.,LTD.
		NO. 18 HaiBin Road, WuSha village, Chang An Town, DongGuan City [,] Guangdong,China
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Feb. 03, 2020 and testing was started from Feb. 06, 2020 and completed on Mar. 17, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	24
	3.4	20dB and 99% Bandwidth Measurement	27
	3.5	Output Power Measurement	46
	3.6	Conducted Band Edges Measurement	47
	3.7	Conducted Spurious Emission Measurement	60
	3.8	Radiated Band Edges and Spurious Emission Measurement	79
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	85
4	List o	of Measuring Equipment	86
5	Unce	rtainty of Evaluation	88
Арр	oendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR020103A	01	Initial issue of report	Mar. 19, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Conducted Band Edges Pass	
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 6.06 dB at 48.430 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 11.00 dB at 0.179 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Remark: The FR020103A report reuse test data from the TR012210A report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, NFC, and GNSS.

Product Specification subjective to this standard				
Sample 1	EUT with leather cover			
Sample 2	EUT with ceramics cover			
	WWAN: Fixed Internal Antenna			
	WLAN			
	<ant.1>: Fixed Internal Antenna</ant.1>			
Antenna Type	<ant.2>: Fixed Internal Antenna</ant.2>			
	Bluetooth: Fixed Internal Antenna			
	GPS / Glonass / BDS / Galileo: Fixed Internal Antenna			
	NFC: Loop Antenna			

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No. Sporton Site No. TH05-HY C0		Site No. CO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No. 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

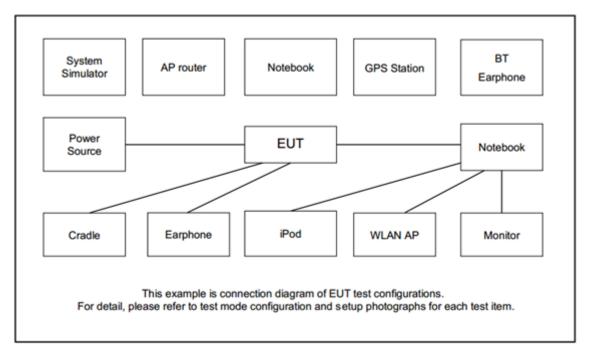
Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


	5	Summary table of Test Cases	6				
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	Bluetooth BR 1Mbps GFSK						
Radiated	Mode 1: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz						
		Mode 3: CH78_2480 MHz					
AC Conducted		VLAN (2.4GHz) Link + GPS Adapter) + SIM 1 for Sample 1					
Emission							
Remark:							
1. For radiate	d test cases, the worst mode	data rate 1Mbps was reported	only since the highest RF				
output pow	ver in the preliminary tests. The	e conducted spurious emissior	ns and conducted band edge				
measurem	ent for other data rates were r	not worse than 1Mbps, and no	other significantly				
frequencie	s found in conducted spurious	emission.					

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, the tests were performed with Sample 1

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	NOTE BOOK	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT V4.0-00156" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

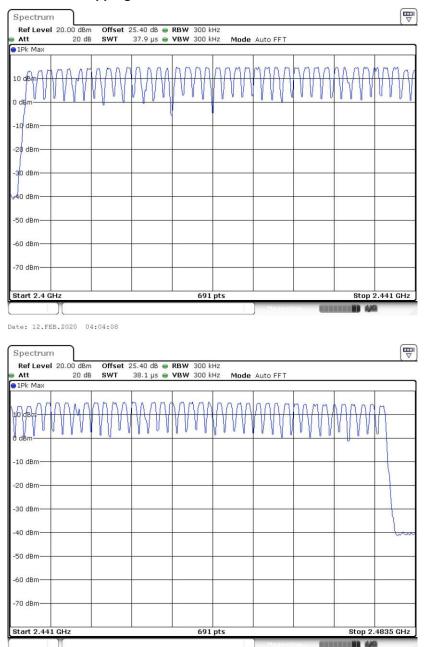
3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer

EUT

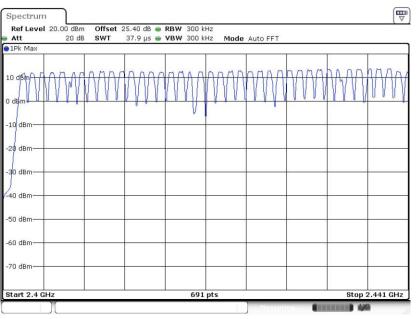


3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Ant. 1

Number of Hopping Channel Plot on Channel 00 - 78



Date: 12.FEB.2020 04:04:25

Ant. 2

Date: 17.MAR.2020 18:54:55

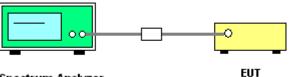
Att 1Pk Max	20 dB	SWT	38.1 µs 👄	VBW 300 k	Hz Mode	Auto FFT		
Ddam dem				MM			MM	Ŋ
10 dBm								
20 dBm								
30 dBm								
10 dBm	2							the state
i0 dBm								
70 dBm								
tart 2.441	GHz			691	nts		 Stop 2	.4835 GH

Date: 17.MAR.2020 18:55:35

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

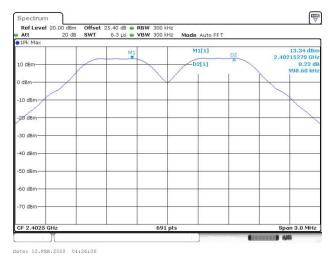
3.2.3 Test Procedures

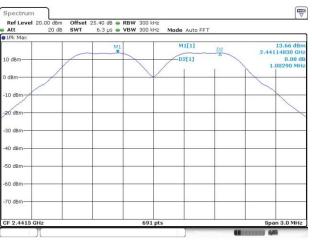
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

Spectrum Analyzer

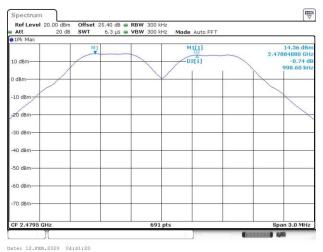
3.2.5 Test Result of Hopping Channel Separation


Please refer to Appendix A.


Ant. 1

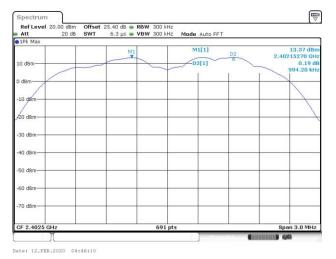
<1Mbps>

Channel Separation Plot on Channel 00 - 01

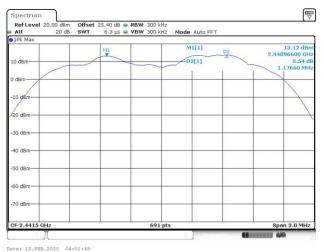


Channel Separation Plot on Channel 39 - 40

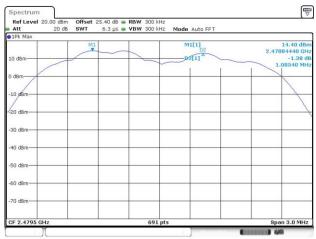
Date: 12.FEB.2020 04:31:59



Channel Separation Plot on Channel 77 - 78

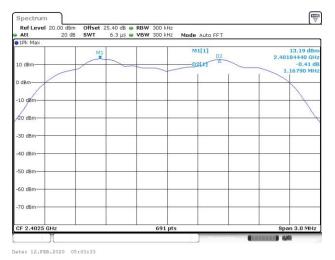

<2Mbps>

Channel Separation Plot on Channel 00 - 01

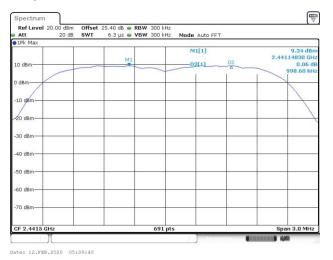

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

Channel Separation Plot on Channel 39 - 40

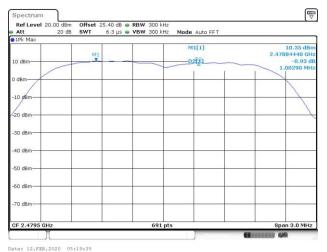
Channel Separation Plot on Channel 77 - 78



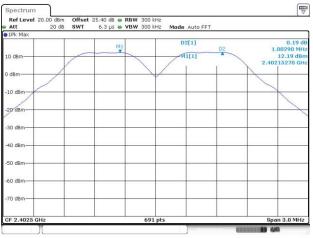
Date: 12.FEB.2020 04:57:08



<3Mbps>

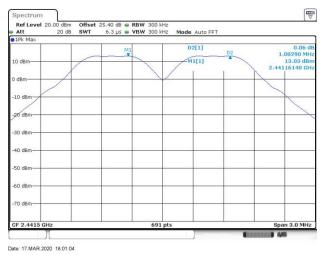

Channel Separation Plot on Channel 00 - 01

Channel Separation Plot on Channel 39 - 40

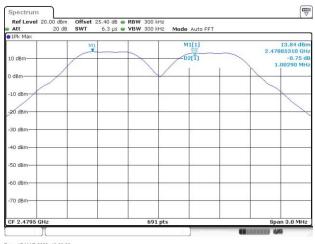


Channel Separation Plot on Channel 77 - 78

Ant. 2

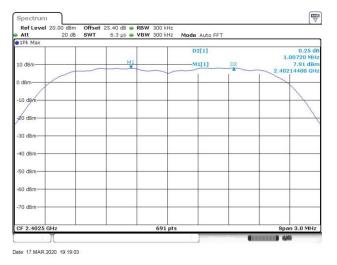

<1Mbps>

Channel Separation Plot on Channel 00 - 01

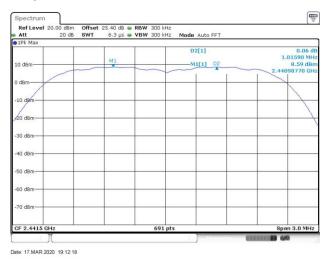

Date: 17.MAR 2020 17:56:55

Channel Separation Plot on Channel 39 - 40

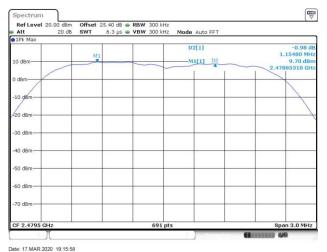
Channel Separation Plot on Channel 77 - 78



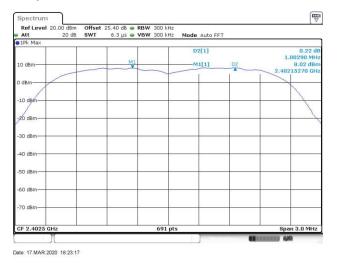
Date: 17.MAR.2020 18:03:22



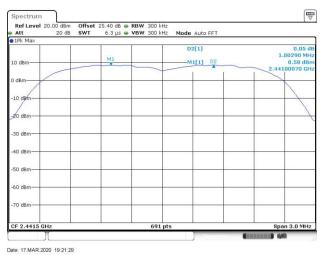
<2Mbps>


Channel Separation Plot on Channel 00 - 01

Channel Separation Plot on Channel 39 - 40



Channel Separation Plot on Channel 77 - 78


<3Mbps>

Channel Separation Plot on Channel 00 - 01

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

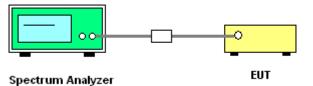
Channel Separation Plot on Channel 39 - 40

Channel Separation Plot on Channel 77 - 78

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

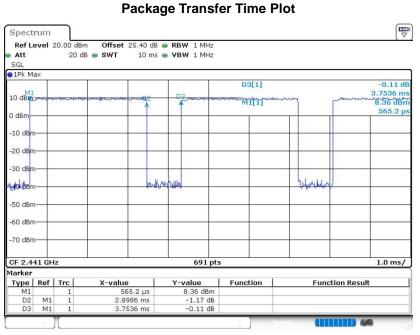

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

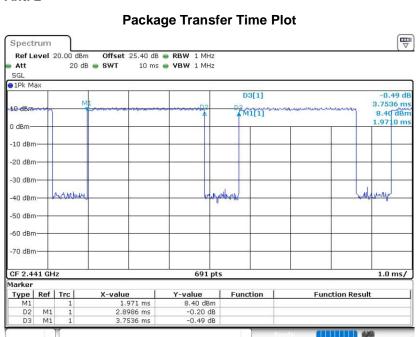
3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



3.3.5 Test Result of Dwell Time


Please refer to Appendix A.

Ant. 1

Date: 7.FEB.2020 03:38:49

Ant. 2

Date: 26.FEB.2020 22:19:53

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

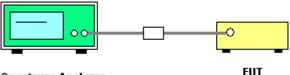
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

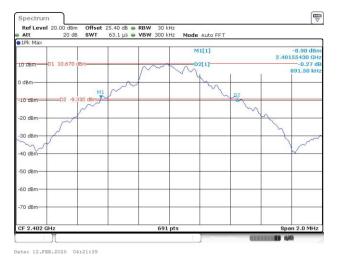
3.4.3 Test Procedures

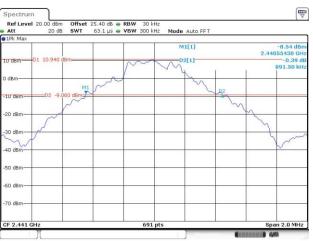
- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

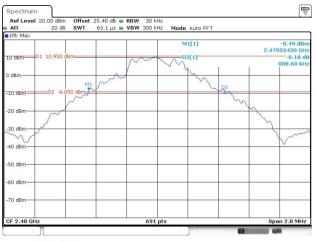
3.4.5 Test Result of 20dB Bandwidth


Please refer to Appendix A.


Ant. 1

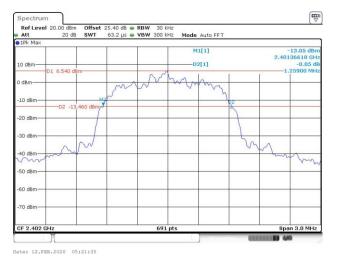
<1Mbps>

20 dB Bandwidth Plot on Channel 00



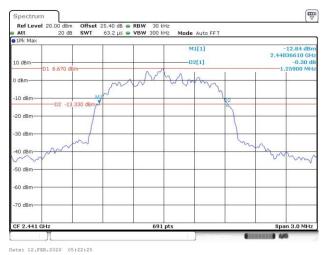
20 dB Bandwidth Plot on Channel 39

Date: 12.FEB.2020 04:28:02



20 dB Bandwidth Plot on Channel 78

Date: 12.FEB.2020 04:37:01


<2Mbps>

20 dB Bandwidth Plot on Channel 00

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

20 dB Bandwidth Plot on Channel 39

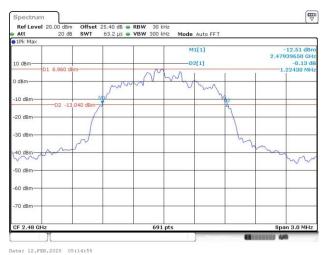
20 dB Bandwidth Plot on Channel 78



Date: 12.FEB.2020 04:52:59

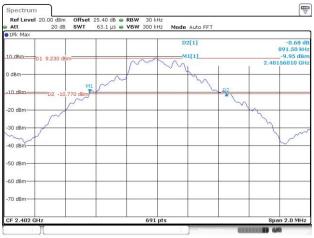
<3Mbps>

20 dB Bandwidth Plot on Channel 00



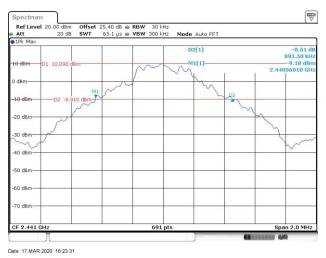
20 dB Bandwidth Plot on Channel 39

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

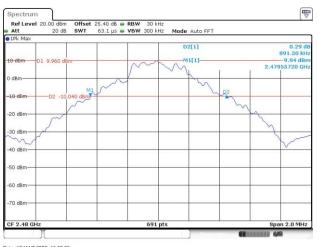


20 dB Bandwidth Plot on Channel 78

Ant. 2


<1Mbps>

20 dB Bandwidth Plot on Channel 00

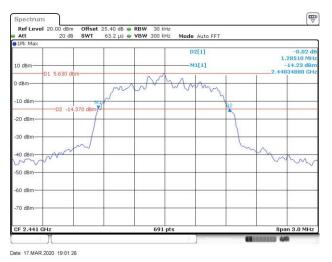

Date: 17.MAR.2020 16:11:48

20 dB Bandwidth Plot on Channel 39

20 dB Bandwidth Plot on Channel 78



Date: 17.MAR.2020 18:57:50

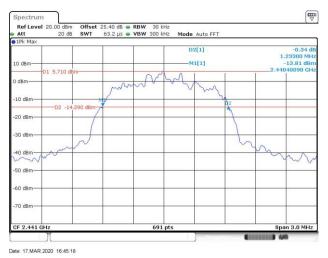


<2Mbps>

20 dB Bandwidth Plot on Channel 00

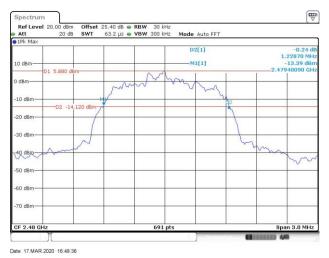
20 dB Bandwidth Plot on Channel 39




20 dB Bandwidth Plot on Channel 78

<3Mbps>

20 dB Bandwidth Plot on Channel 00

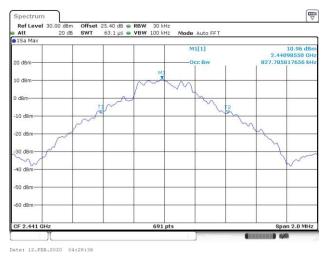


20 dB Bandwidth Plot on Channel 39

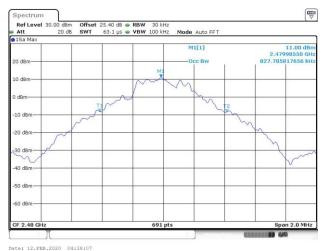
20 dB Bandwidth Plot on Channel 78

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


Ant. 1

<1Mbps>


99% Occupied Bandwidth Plot on Channel 00

99% Occupied Bandwidth Plot on Channel 39


99% Occupied Bandwidth Plot on Channel 78

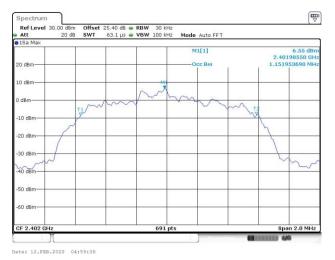
<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

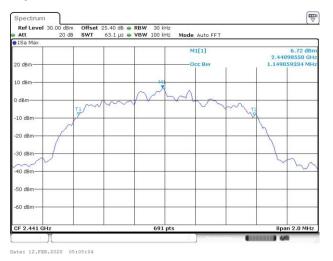


99% Occupied Bandwidth Plot on Channel 39

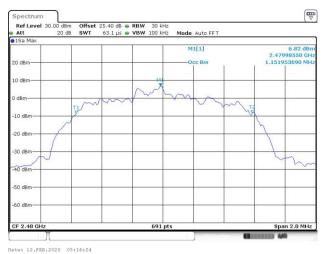
99% Occupied Bandwidth Plot on Channel 78



Date: 12.FEB.2020 04:53:56



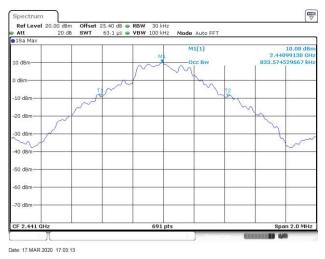
<3Mbps>


99% Occupied Bandwidth Plot on Channel 00

99% Occupied Bandwidth Plot on Channel 39

99% Occupied Bandwidth Plot on Channel 78

Ant. 2

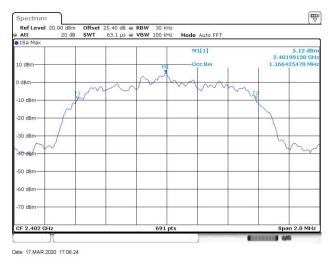

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

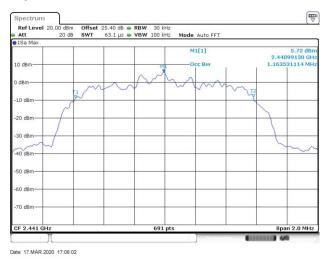

Date: 17.MAR.2020 17:01:15

99% Occupied Bandwidth Plot on Channel 39

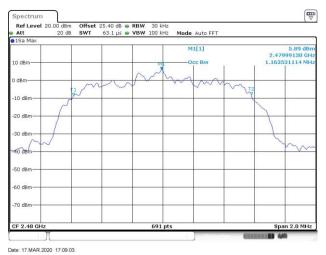
99% Occupied Bandwidth Plot on Channel 78



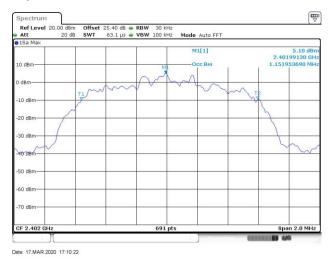
Date: 17.MAR.2020 17:04:14

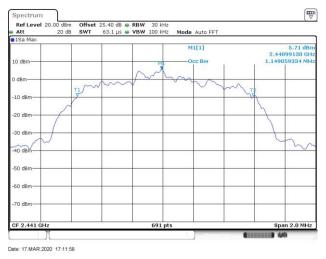


<2Mbps>


99% Occupied Bandwidth Plot on Channel 00

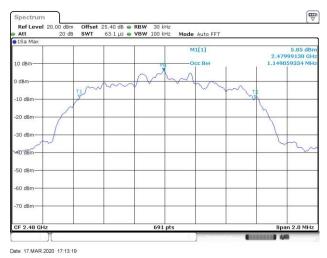
99% Occupied Bandwidth Plot on Channel 39




99% Occupied Bandwidth Plot on Channel 78

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00



99% Occupied Bandwidth Plot on Channel 39

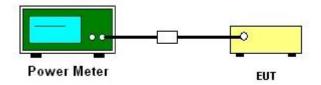
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

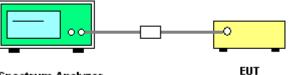
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

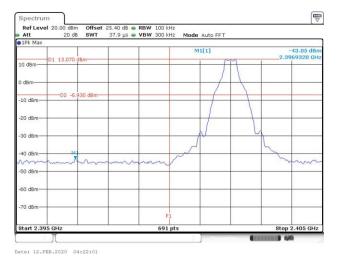
See list of measuring equipment of this test report.

3.6.3 Test Procedures

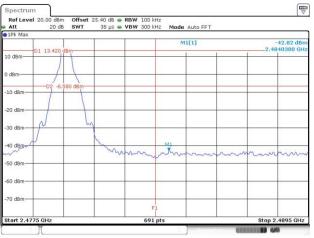
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer



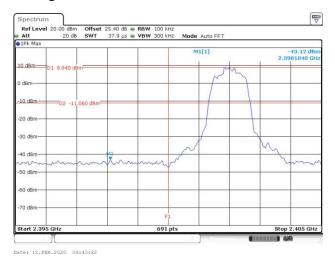
3.6.5 Test Result of Conducted Band Edges


Ant. 1

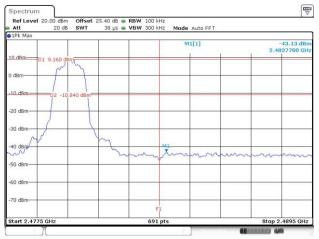
<1Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78


Date: 12.FEB.2020 04:37:23

TEL : 886-3-327-3456	Page Number	: 48 of 88
FAX : 886-3-328-4978	Issued Date	: Mar. 19, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01



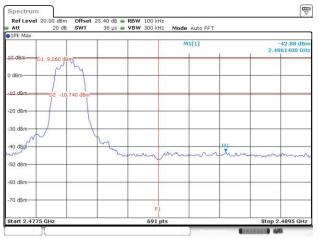
<2Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78



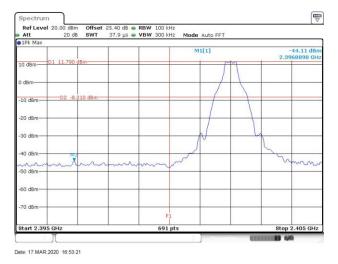
Date: 12.FEB.2020 04:53:20

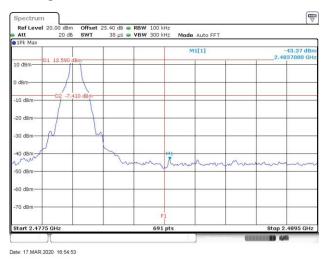


<3Mbps>

Low Band Edge Plot on Channel 00

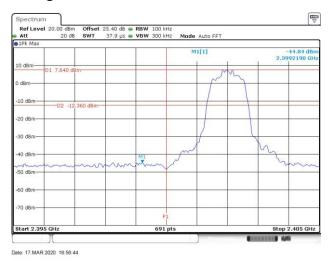
High Band Edge Plot on Channel 78

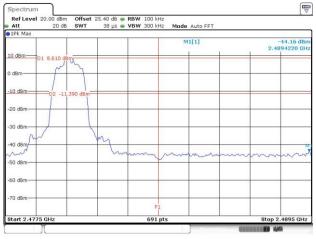

Date: 12.FEB.2020 05:15:45


Ant. 2

<1Mbps>

Low Band Edge Plot on Channel 00

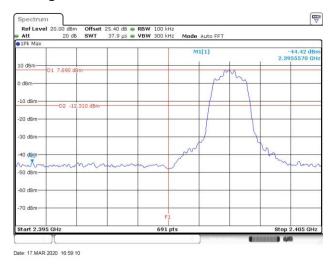

High Band Edge Plot on Channel 78



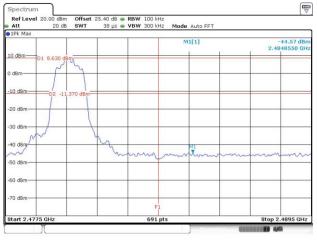
<2Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78



Date: 17.MAR.2020 16:58:31



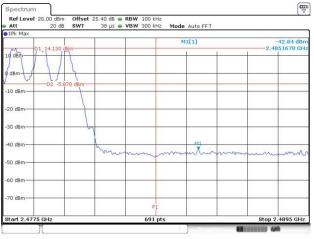
<3Mbps>

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78

Date: 17.MAR.2020 16:59:51

3.6.6 Test Result of Conducted Hopping Mode Band Edges


Ant. 1

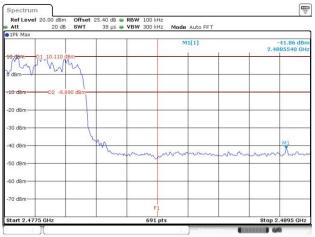
<1Mbps>

Hopping Mode Low Band Edge Plot

Hopping Mode High Band Edge Plot


Date: 12.FEB.2020 04:04:54

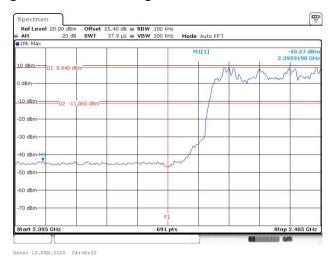
TEL : 886-3-327-3456	Page Number	: 54 of 88
FAX : 886-3-328-4978	Issued Date	: Mar. 19, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01



<2Mbps>

Hopping Mode Low Band Edge Plot

Hopping Mode High Band Edge Plot

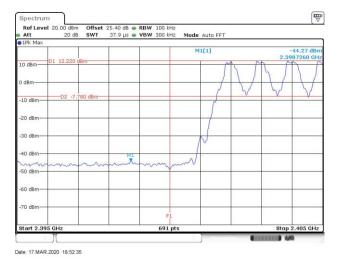


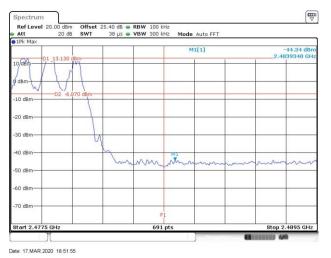
Date: 12.FEB.2020 04:05:52

<3Mbps>

Hopping Mode Low Band Edge Plot

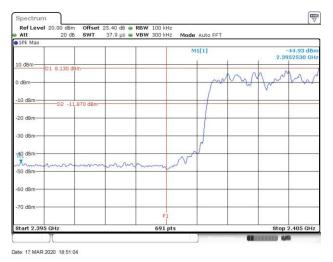
Hopping Mode High Band Edge Plot

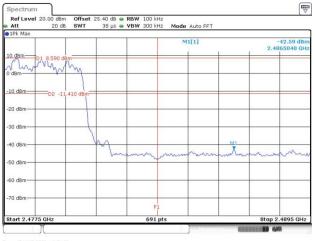

Date: 12.FEB.2020 04:07:00


Ant. 2

<1Mbps>

Hopping Mode Low Band Edge Plot


Hopping Mode High Band Edge Plot

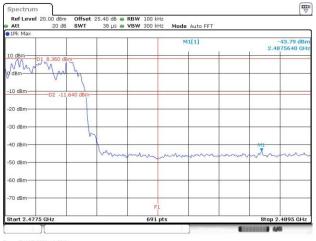


<2Mbps>

Hopping Mode Low Band Edge Plot

Hopping Mode High Band Edge Plot

Date: 17.MAR.2020 18:51:30



<3Mbps>

Hopping Mode Low Band Edge Plot

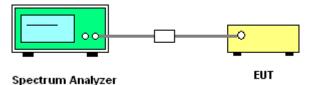
Hopping Mode High Band Edge Plot

Date: 17.MAR.2020 18:50:21

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

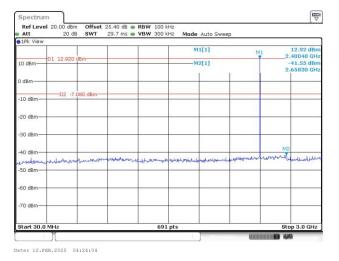
See list of measuring equipment of this test report.

3.7.3 Test Procedure

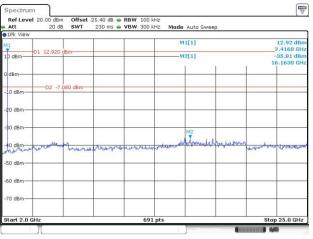
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

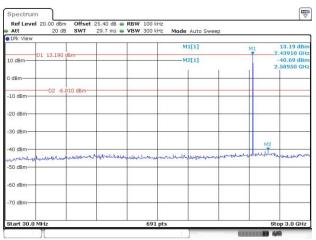


3.7.5 Test Result of Conducted Spurious Emission


Ant. 1

<1Mbps>

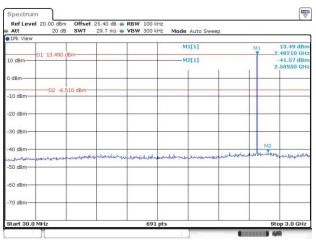
CSE Plot on Ch 00 between 30MHz ~ 3 GHz



1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 12.FEB.2020 04:24:49

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$


Date: 12.FEB.2020 04:29:25

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

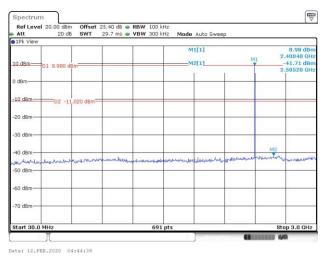
01 13.160 dBm 2.490 10 dBm M2[1] -36.66 0 dBm 02 4.840 dBm 17.8600 -10 dBm 02 4.840 dBm -490 -20 dBm -20 dBm -490 -30 dBm -490 -490 -0 dBm -490 -490 -50 dBm -50 dBm -490	Att	20 dB	SWT	230 ms 🖷	VBW 300 k	Hz Mode	Auto Swee)		
10 dem 46.66 0 dem 17.660 0 dem 17.660 10 dem 17.660 10 dem 16.66 20 dem 16.66 30 dem 16.66 30 dem 16.66 30 dem 16.66 50 dem 16.66		1				M	1[1]			13.16 dBr
dbm 02 6.840 dbm 20 dbm 02 6.840 dbm 20 dbm 0 0 30 dbm 0 0 50 dbm 0 0 30 dbm 0 0 50 dbm 0 0 50 dbm 0 0		L 13.160 c	Bm			-M	2[1]			2.4490 GH -36.66 dBr 7.8600 GH
20 dBm 20 dBm 30 dBm) dBm									
20 dam	10 dBm		140 dBm							
0 dam - Martin Ma Martin Martin Marti	20 dBm									
0 dem	30 dBm						MS			
50 dBm	40 dBm	and a	handa	white the part	white	Mannah	howard	Munster	Un hut the sto	a Concella
60 dBm-	60 dBm									
70 dBm	70 dBm									
	Start 2.0 GH	z			691	pts			Sto	25.0 GH

Date: 12.FEB.2020 04:29:58

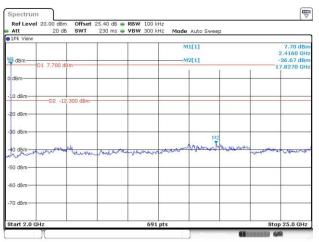
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 12.FEB.2020 05:35:44

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

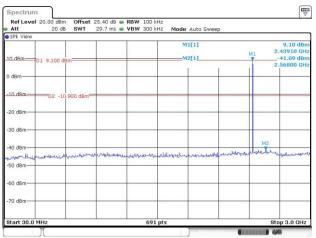

Att	20 dB	SWT	230 ms 🖷	VBW 300 k	Hz Mode	Auto Swee	0		
1Pk View		r							
M1		1			M	1[1]			13.26 dBr 2.4830 GH
10 dBm	1 13.260	dBm			M	2[1]			-36.33 dB
					144				7.8270 GH
dBm-									
GDIII									
10 dBm	-D2 -6.	740 dBm-		-					<u> </u>
							i i		
20 dBm									
-30 dBm						M2			
					al.		AL SHARE AND		
40 dBm at	to the	auchobien	ophinon	al dry Mark	whichwat	Anadres	an canone	water	Work
W									
-50 dBm			-						<u> </u>
-60 dBm			-						
-70 dBm		-	-	-			-		-
	Iz				pts				25.0 GH

Date: 12.FEB.2020 05:36:13



<2Mbps>

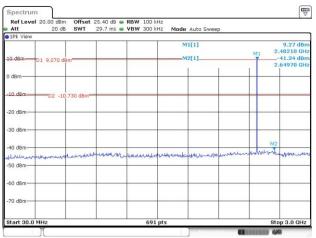
CSE Plot on Ch 00 between 30MHz ~ 3 GHz



CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 12.FEB.2020 04:45:09

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$


Date: 12.FEB.2020 04:50:13

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

		SWT	200 110	VBW 300 k	m2 Mode	Auto Swee	9		
1Pk View dBm	D1 8.690 dBr	n 				1[1] 2[1]			8.69 dBr 2.4490 GH -36.07 dBr 7.8270 GH
dBm				-	-				
10 dBm	D2 -11.3	310 dBm-							
20 dBm									
30 dBm						M2			
0 dBm	Jures Martin	hallward	1 Marine Mar	uphanto	proto proto Ma	provina	M. Muhahan	Uranoved	with
50 dBm-									
50 dBm				-					
70 dBm-									

Date: 12.FEB.2020 04:50:42

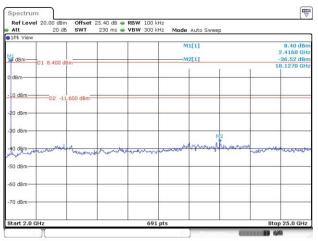
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 12.FEB.2020 04:55:46

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

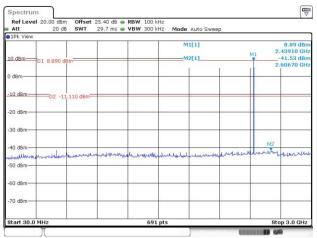
Att	20 dB	SWT	230 ms 👳	VBW 300 k	Hz Mode	Auto Sweep	0		
1Pk View			-						8.70 dBr
					m.	1[1]		3	2.4830 GH
dBm-	1 8.700 dBn				M	2[1]			35.94 dB
						1		1	7.8270 GH
dBm			-	-					
10 dBm	D2 -11.3	00 dBm							
20 dBm									
20 asm									
30 dBm									
					-	M2			
0 dBm	mound		A. A.Mu	Sec. Mala Marchane	would will	round	Munder	who who have	and and
Manan	w.	- March	- 190-0- P		-				
50 dBm				-					
000000									
60 dBm									
70 dBm									
o dont									
tart 2.0 GF									25.0 GH
tart 2.0 GF	12			691	prs			stop	20.0 GH2

Date: 12.FEB.2020 04:56:17



<3Mbps>

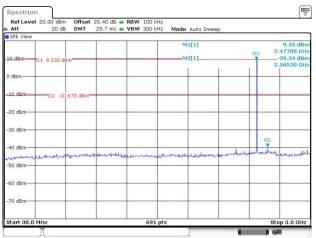
CSE Plot on Ch 00 between 30MHz ~ 3 GHz



CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 12.FEB.2020 05:01:50

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$


Date: 12.FEB.2020 05:07:29

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att 1Pk View	20 dB	SWT	230 ms 🖷	VBW 300	ma mode	Auto Sweep	9		
0 dBm	D1 6.800 df	Bm				1[1] 2[1]	4.		6.80 dBr 2.4490 GH -36.22 dBr 17.8600 GH
dBm				-					-
10 dBm		.200 dBm-			- Pro-	-			
20 d8m									-
30 dBm						M2			
O dBm	webergelige	Montrabilion	a Murtu	duran tom	areverall	popularitationally	N-war	- and the	mer miller
50 dBm									-
60 dBm									
70 dBm									

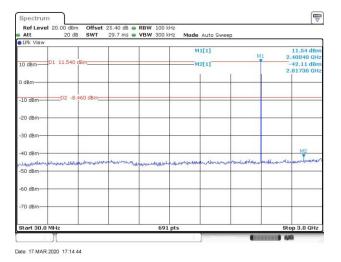
Date: 12.FEB.2020 05:08:11

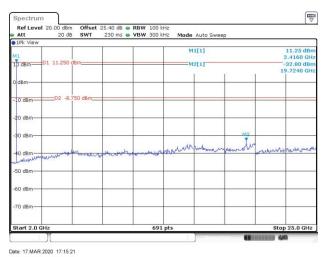
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 12.FEB.2020 05:17:01

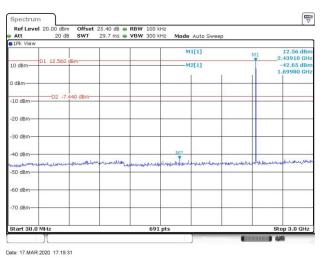
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

M1[1]	8.94 dB 2.4430 G 36.15 dB 18.1930 G
M2[1]	-36.16 dB
	18.1930 G
N2	0
mannaparmalle	and when the man
	Stop 25.0 G
	and a star and a star and a star and a star a st

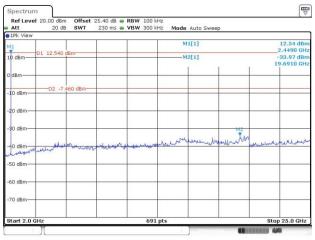

Date: 12.FEB.2020 05:17:41

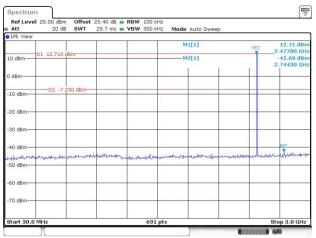

Ant. 2

<1Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz




CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 17.MAR.2020 17:20:12

CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 17.MAR.2020 17:21:30

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	20 dE	SWT	230 ms 🖷	VBW 300 k	Hz Mode	Auto Swee	р		
1Pk View									
M1					N	11[1]			12.70 dBr 2.4830 GH
10 dBm	1 12.700	d8m-			N	12[1]			-33.91 dBr
					· · · · · · · · · · · · · · · · · · ·				0.3570 GH
0 dBm									
o ubin									
-10 d8m	-D2 -7.	300 dBm	-				-		
-10 UBIII-							1		
-20 dBm									
-20 0011									
-30 dBm									
-30 ubiii								2	
10 d0m		and .	ale of adea	U. LAN	heren	hadrenet	mainautro	100 million to	man
- which are noted	warmen	040-00-00	Constant to Constant	who are a				A	
-50 dBm									
-50 dBm-									
-60 dBm									
-60 gBm									
70 40 -									
-70 dBm									
Start 2.0 GH	Iz		0	691	pts			Stop	25.0 GHz
	1							A	6

Date: 17.MAR.2020 17:22:19