APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

Report No.: WT238000445

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

SMQ

Client :

Certificate No: Z22-60475

CALIBRATION CERTIFICATE Object DAE4 - SN: 1637 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: October 31, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration **Primary Standards** 14-Jun-22 (CTTL, No.J22X04180) Jun-23 Process Calibrator 753 1971018 Signature Function Name Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: November 04, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60475

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Glossary: DAE

Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z22-60475	Page 2 of 3	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

 DC Voltage Measurement

 A/D - Converter Resolution nominal

 High Range:
 1LSB =

 Low Range:
 1LSB =

 61nV
 full range =
 -100...+300 m

 DASY measurement parameters:
 Auto Zero Time:
 3 sec; Measuring time:
 3 sec

 -100...+300 mV

Calibration Factors	x	Y	Z		
High Range	404.981 ± 0.15% (k=2)	404.800 ± 0.15% (k=2)	404.969 ± 0.15% (k=2)		
Low Range	3.96382 ± 0.7% (k=2)	3.99227 ± 0.7% (k=2)	4.00369 ± 0.7% (k=2)		

Connector Angle

 $24^{\circ} \pm 1^{\circ}$ Connector Angle to be used in DASY system

Certificate No: Z22-60475

Page 3 of 3

Certificate No: Z22-60305

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn SMQ

Client

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN : 3881

January 03, 2023

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration			
Power Meter NRP2		101919	14-Jun-22(CTTL, No.J22X04181)	Jun-23			
Power Meter NRP2 101919 Power sensor NRP-Z91 101547			14-Jun-22(CTTL, No.J22X04181)	Jun-23			
Power sensor NRP-Z9		101548	14-Jun-22(CTTL, No.J22X04181)	Jun-23			
Reference 10dBAttenu		18N50W-10dB	20-Jan-21(CTTL, No.J21X00486)	Jan-23			
Reference 20dBAttenu		18N50W-20dB	20-Jan-21(CTTL, No.J21X00485)	Jan-23			
Reference Probe EX3	DV4	SN 3846	20-May-22(SPEAG, No.EX3-3846_Ma	y22) May-23			
DAE4		SN 771	20-Jan-22(SPEAG, No.DAE4-771_Jan22) Jan-				
Secondary Standards		ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration			
SignalGenerator MG3	700A	6201052605	14-Jun-22(CTTL, No.J22X04182)	Jun-23			
Network Analyzer E50	71C	MY46110673	14-Jan-22(CTTL, No.J22X00406)	Jan-23			
	Nam	ne	Function	Signature			
Calibrated by:	Yu	Zongying	SAR Test Engineer	ART			
Reviewed by:	Lin	Нао	SAR Test Engineer	林杨学			
Approved by:	Qi	Dianyuan	SAR Project Leader	20			
			Issued: Janua	ary 10, 2023			
This calibration certificate	e shall n	not be reproduce	d except in full without written approval o	f the laboratory.			

Certificate No: Z22-60305

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

In Collaboration with
S P C A G
CALIBRATION LABORATORY

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z22-60305

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3881

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.50	0.56	0.57	±10.0%
DCP(mV) ^B	106.1	110.6	104.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	179.8	±2.3%
		Y	0.0	0.0	1.0		191.0	7
		Z	0.0	0.0	1.0		185.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60305

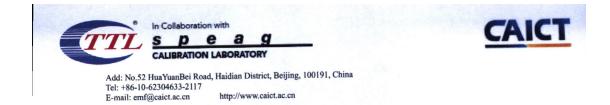
Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

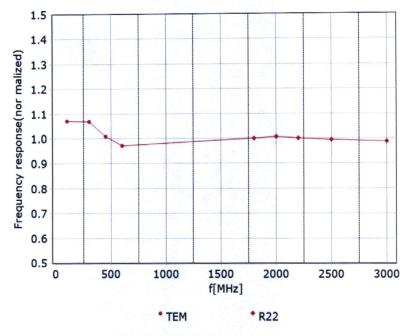
DASY/EASY – Parameters of Probe: EX3DV4 – SN:3881

Calibration Parameter Determined in Head Tissue Simulating Media Calibration Parameter Determined in Head Tissue Simulating Media f IMHzIC Relative Conductivity ConvF X ConvF Y ConvF Z Alpha^G Depth^G Unct.

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.00	10.00	10.00	0.18	1.08	±12.7%
835	41.5	0.90	9.62	9.62	9.62	0.10	1.46	±12.7%
900	41.5	0.97	9.49	9.49	9.49	0.13	1.40	±12.7%
1750	40.1	1.37	8.25	8.25	8.25	0.16	1.27	±12.7%
1810	40.0	1.40	8.05	8.05	8.05	0.18	1.16	±12.7%
1900	40.0	1.40	7.98	7.98	7.98	0.20	1.11	±12.7%
2100	39.8	1.49	8.05	8.05	8.05	0.17	1.18	±12.7%
2300	39.5	1.67	7.80	7.80	7.80	0.44	0.69	±12.7%
2450	39.2	1.80	7.53	7.53	7.53	0.41	0.75	±12.7%
2600	39.0	1.96	7.30	7.30	7.30	0.37	0.85	±12.7%
3300	38.2	2.71	7.10	7.10	7.10	0.35	0.91	±13.9%
3500	37.9	2.91	6.95	6.95	6.95	0.40	0.89	±13.9%
3700	37.7	3.12	6.76	6.76	6.76	0.30	1.05	±13.9%
3900	37.5	3.32	6.55	6.55	6.55	0.30	1.50	±13.9%
4100	37.2	3.53	6.45	6.45	6.45	0.30	1.40	±13.9%
4200	37.1	3.63	6.35	6.35	6.35	0.30	1.50	±13.9%
4400	36.9	3.84	6.25	6.25	6.25	0.30	1.50	±13.9%
4600	36.7	4.04	6.15	6.15	6.15	0.40	1.30	±13.9%
4800	36.4	4.25	6.09	6.09	6.09	0.40	1.32	±13.9%
4950	36.3	4.40	5.89	5.89	5.89	0.35	1.50	±13.9%
5250	35.9	4.71	5.25	5.25	5.25	0.40	1.42	±13.9%
5600	35.5	5.07	4.63	4.63	4.63	0.40	1.50	±13.9%
5750	35.4	5.22	4.74	4.74	4.74	0.45	1.40	±13.9%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

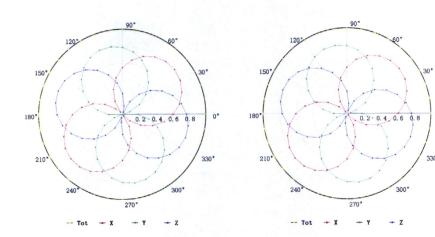
Certificate No:Z22-60305

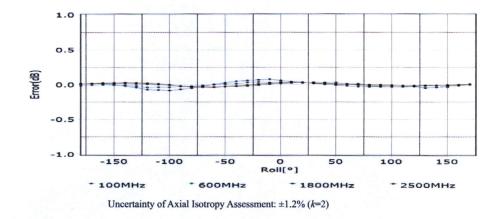
Page 4 of 9

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

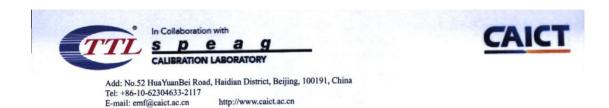
Certificate No:Z22-60305

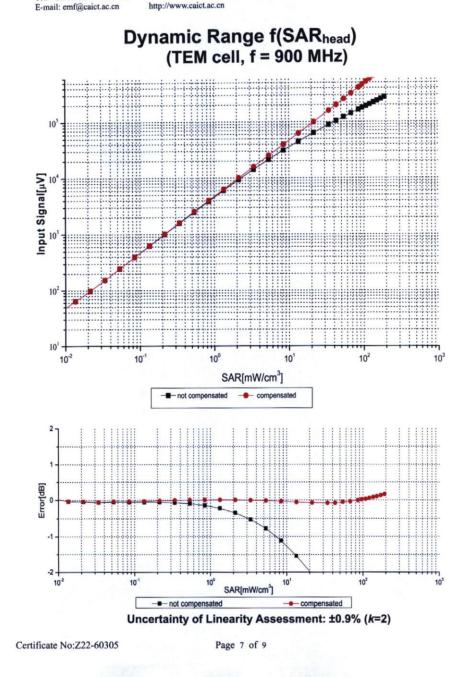

Page 5 of 9

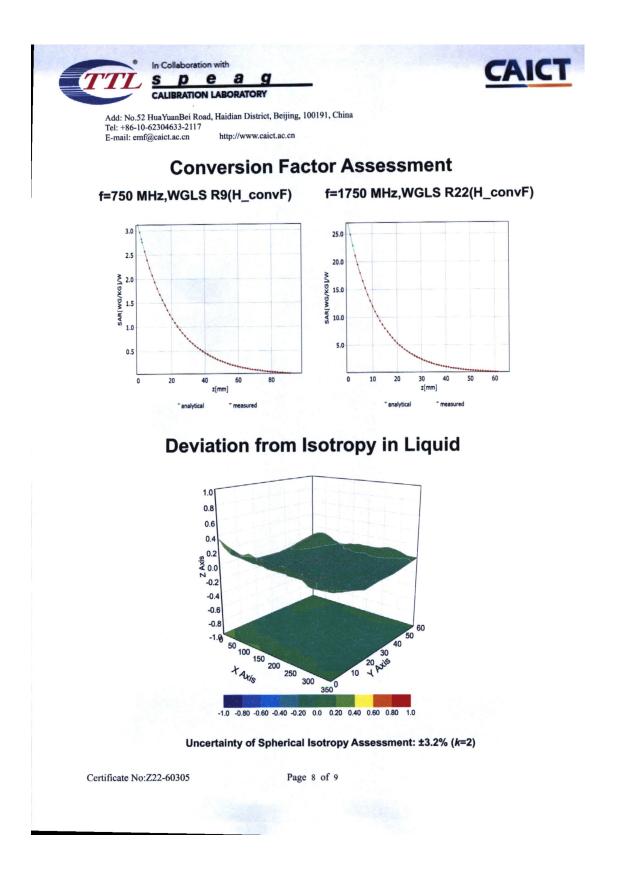


f=600 MHz, TEM

f=1800 MHz, R22


0





Certificate No:Z22-60305

Page 6 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3881

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	121.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z22-60305

Page 9 of 9

System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Test	t Probe Measured		Measured	Measured Validation for CW			Validation for Modulation				
Test Date	S/N	Calibrati	on Point	Conductivity (σ)	Permittivity (ε _r)	Sensitivity Range	Probe Linearity	Probe Isotropy	Modulation Type	Duty Factor	PAR
Jan. 20, 2023	3881	Head	750	0.900	41.860	Pass	Pass	Pass	N/A	N/A	N/A
Jan. 20, 2023	3881	Head	835	0.890	41.500	Pass	Pass	Pass	N/A	N/A	N/A
Jan. 20, 2023	3881	Head	835	0.890	41.500	Pass	Pass	Pass	GMSK	Pass	N/A
Jan. 20, 2023	3881	Head	1800	1.380	39.724	Pass	Pass	Pass	N/A	N/A	N/A
Jan. 20, 2023	3881	Head	1900	1.360	39.800	Pass	Pass	Pass	N/A	N/A	N/A
Jan. 20, 2023	3881	Head	1900	1.360	39.800	Pass	Pass	Pass	GMSK	Pass	N/A
Jan. 20, 2023	3881	Head	2450	1.825	39.945	Pass	Pass	Pass	OFDM	N/A	Pass
Jan. 20, 2023	3881	Head	2600	2.023	38.491	Pass	Pass	Pass	N/A	N/A	N/A
Jan. 20, 2023	3881	Head	5250	4.696	36.050	Pass	Pass	Pass	OFDM	N/A	Pass
Jan. 20, 2023	3881	Head	5600	5.199	36.180	Pass	Pass	Pass	OFDM	N/A	Pass
Jan. 20, 2023	3881	Head	5750	5.232	35.730	Pass	Pass	Pass	OFDM	N/A	Pass